
Open Multi-Methods for C ++

Peter Pirkelbauer Yuriy Solodkyy Bjarne Stroustrup
Texas A&M University,

College Station, TX 77843-3112
peter.pirkelbauer@tamu.edu, {yuriys, bs}@cs.tamu.edu

Abstract
Multiple dispatch – the selection of a function to be invoked based
on the dynamic type of two or more arguments – is a solution to
several classical problems in object-oriented programming. Open
multi-methods generalize multiple dispatch towards open-class ex-
tensions, which improve separation of concerns and provisions for
retroactive design. We present the rationale, design, implementa-
tion, and performance of a language feature, called open multi-
methods, for C++. Our open multi-methods support both repeated
and virtual inheritance. Our call resolution rules generalize both
virtual function dispatch and overload resolution semantics. Af-
ter using all information from argument types, these rules can re-
solve further ambiguities by using covariant return types. Great
care was taken to integrate open multi-methods with existing C++

language features and rules. We describe a model implementa-
tion and compare its performance and space requirements to exist-
ing open multi-method extensions and workaround techniques for
C++. Compared to these techniques, our approach is simpler to use,
catches more user mistakes, and resolves more ambiguities through
link-time analysis, runs significantly faster, and requires less mem-
ory. In particular, the runtime cost of calling an open multimethod
is constant and less than the cost of a double dispatch (two virtual
function calls). Finally, we provide a sketch of a design for open
multi-methods in the presence of dynamic loading and linking of
libraries.

Categories and Subject Descriptors D [3]: 3

General Terms Design, Languages, Performance

Keywords multi-methods, open-methods, multiple dispatch, object-
oriented programming, generic programming, C++

1. Introduction
Runtime polymorphism is a fundamental concept of object-oriented
programming (OOP), typically achieved by late binding of method
invocations. “Method” is a common term for a function chosen
through runtime polymorphic dispatch. Most OOP languages (e.g.:
C++ [34], Eiffel [26], Java [3], Simula [6], and Smalltalk [20])
use only a single parameter at runtime to determine the method to
be invoked (“single dispatch”). This is a well-known problem for
operations where the choice of a method depends on the types of

This is the author’s version of the work. It is posted here by permission ofACM
for your personal use. Not for redistribution. The definitive version was published
in Proceedings of the 6th international conference on Generative programming and
component engineering, 2007. http://doi.acm.org/10.1145/1289971.1289993

GPCE’07, October 1–3, 2007, Salzburg, Austria.
Copyright c© 2007 ACM 978-1-59593-855-8/07/0010. . . $5.00

two or more arguments (“multiple dispatch”), such as the binary
method problem [8]. Another problem is that dynamically dis-
patched functions have to be declared within class definitions. This
is intrusive and often requires more foresight than class designers
possess, complicating maintenance and limiting the extensibility
of libraries. Open-methods provide an abstraction mechanism that
solves these problems by separating operations from classes.

Workarounds for both of these problems exist for single-
dispatch languages. In particular, the visitor pattern (double dis-
patch) [18] circumvents these problems without compromising
type safety. Using the visitor pattern, the class-designer provides
an accept method in each class and defines the interface of the vis-
itor. This interface definition, however, limits the ability to intro-
duce new subclasses and hence curtails program extensibility [12].
In [37] Visser presents a possible solution to the extensibility prob-
lem in the context of visitor combinators, which make use of RTTI.

Providing dynamic dispatch for multiple arguments avoids the
restrictions of double dispatch. When declared within classes, such
functions are often referred to as “multi-methods”. When declared
independently of the type on which they dispatch, such functions
are often referred to as open class extensions, accessory func-
tions [39], arbitrary multi-methods [28], or “open-methods”. Lan-
guages supporting multiple dispatch include CLOS [32], MultiJava
[12, 27], Dylan [30], and Cecil [10]). We implemented and mea-
sured both multi-methods and open-methods. Since open-methods
address a larger class of design problems than multi-methods and
are not significantly more expensive in time or space, our discus-
sion concentrates on open-methods.

Generalizing from single dispatch to open-methods raises the
question how to resolve function invocations when no overrider
provides an exact type match for the runtime-types of the argu-
ments. Symmetric dispatch treats each argument alike but is sub-
ject to ambiguity conflicts. Asymmetric dispatch resolves conflicts
by ordering the argument based on some criteria (e.g.: an argu-
ment list is considered left-to-right). Asymmetric dispatch seman-
tics is simple and ambiguity free (if not necessarily unsurprising
to the programmer), but it is not without criticism [9]. In addition,
asymmetric dispatch differs radically from C++’s symmetric func-
tion overload resolution rules.

We derive our design goals for the open-method extension from
the C++ design principles outlined in [33]. For open-methods, this
would mean the following. Open-methods should address several
specific problems, be more convenient to use than all workarounds
(e.g. the visitor pattern) as well as outperform them in both time
and space. They should neither prevent separate compilation of
translation units nor increase the cost of ordinary virtual function
calls. Open-methods should be orthogonal to exception handling
in order to be considered suitable for hard real-time systems (e.g.
[25]), and parallel to the virtual and overload resolution semantics.

The contributions of this paper include:

• A design of open-methods that is coherent with C++ call-
resolution semantics.

• An efficient implementation and performance data to support
its practicality.

• A first known consideration of repeated and virtual inheritance
for multi-methods.

• A novel idea of harnessing covariance of the return type for
ambiguity resolution.

• A discussion of handling open-methods in the presence of dy-
namic linking.

2. Application Domains
Whether open-methods address a sufficient range of problems to be
a worthwhile language extension is a popular question. We think
they do, but do not consider the problem one that can in general be
settled objectively, so we just present examples that would benefit
significantly. We consider them characteristic for larger classes of
problems.

2.1 Shape Intersection

An intersect operation is a classical example of multi-methods us-
age [33]. For a hierarchy of shapes,intersect() decides if two
shapes intersect. Handling all different combinations of shapes (in-
cluding those added later by library users) can be quite a challenge.
Worse, a programmer needs specific knowledge of a pair of shapes
to use the most specific and efficient algorithm.

Using the multi-method syntax from [33], withvirtual indicat-
ing runtime dispatch, we can write:

bool intersect(virtual Shape&, virtual Shape&); // open−method
bool intersect(virtual Rectangle&, virtual Circle&); // overrider

We note that for some shapes, such as rectangles and lines,
the cost of double dispatch can exceed the cost of the intersect
algorithm itself.

2.2 Data Format Conversion

Consider an image format library, written for domains such as im-
age processing or web browsing. Conversion between different rep-
resentations is not among the core concerns of an image class and
a designer of a format typically can’t know all other formats. De-
signing a class hierarchy that takes aspects like this into account
is hard particularly when these aspects depend on polymorphic be-
havior. In this case, generic handling of formats by converting them
to and from a common representation in general gives unacceptable
performance, degradation in image quality, loss of information, etc.
Optimal conversion between different formats requires knowledge
of exact source and destination types, therefore it is desirable to
have open-class extensions in the language, like open-methods.
Here is the top of a realistic image format hierarchy:

Image

RasterImage

LoslessImage
LossyImage

RandomAccessImage
CompressedImage

VectorImage

YUV
 CMYK
RGB

PalletizedRGB
TrueColorRGB
PackedYUV
PlanarYUV

A host of concrete image formats such as RGB24, JPEG, and
planar YUY2 will be represented by further derivations. The opti-

mal conversion algorithm must be chosen based on a source-target
pair of formats [22] [41].

2.3 Compiler Pass over an AST

High-level compiler infrastructures ([35], [29]) typically use ab-
stract syntax trees (AST) to represent programs. OOP enables mod-
eling the language constructs in an oo-hierarchy. Then, storing
pointers to a base class allows the use of several classes in the same
context. For example, a statement class would be the common base
for selective (e.g.:if or switch) and iterative constructs e.g.:for or
while. Analysis or transformation passes that would take the se-
mantics of the statement into account (e.g.: dataflow framework)
need to uncover the real type. This is typically implemented with
visitors or type-tags used to cast to a derived class. Open-methods
are a non-intrusive technique to write these compiler passes. They
guarantee type-safety, and allow retroactive extension of the oo-
hierarchy to support new language features or dialects.

3. Definition of Open-methods
Open-methods are dynamically dispatched functions, where the
callee depends on the dynamic type of one or more arguments. ISO
C++ supports compile-time (static) function overloading on an ar-
bitrary number of arguments and runtime (dynamic) dispatch on a
single argument. The two mechanisms are orthogonal and comple-
mentary. We define open-methods to generalize both, so our lan-
guage extension must unify their semantics. Our dynamic call res-
olution mechanism is modeled after the overload resolution rules of
C++. The ideal is to give the same result as static resolution would
have given had we known all types at compile time. To achieve this,
we treat the set of overriders as a viable set of functions and choose
the single most specific method for the actual combination of types.

We derive our terminology from virtual functions: a function
declared virtual in a base class (super class) can be overridden in a
derived class (sub class):

• an open-methodis a non-member function with one or more
parameters declared virtual

• an overrider is an open-method that refines another open-
method according to the rules defined in§3.1

• an open-method that does not override another open-method is
called abase-method.

For example:

struct A { virtual ˜A(); } a;
struct B : A {} b;

void print(virtual A&, virtual A&); // (1)
void print(virtual B&, virtual A&); // (2)
void print(virtual B&, virtual B&); // (3)

Here, both (2) and (3) are overriders of (1), allowing us to resolve
calls involving every combination of A’s and B’s. For example, a
callprint(a,b) will involve a conversion of the B to an A and invoke
(1). This is exactly what both static overload resolution and double
dispatch would have done.

To introduce the role of multiple inheritance, we can add to that
example:

struct X { virtual ˜X(); };
struct Y : X, A {};

void print(virtual X&, virtual X&); // (4)
void print(virtual Y&, virtual Y&); // (5)

Here (4) defines a new open-methodprint on the class hierarchy
rooted in X. Y inherits from both A and X, and since bothprint
open-methods have the same signature, – (5) is an overrider for
both (4) and (1).

3.1 Overriding

DEFINITION 1. An open-method is considered an overrider (or)
for an open-method (om) in the same translation unit if it has the
same name, the same number of parameters, covariant virtual pa-
rameter types, invariant non-virtual parameter types, and a possi-
bly covariant return-type.

A base-method must be declared before any of its overriders.
This restriction parallels other C++ rules and greatly simplifies
compilation. As shown in the previous example, an overrider can
be associated with more than one base-method.

For every overrider and base-method pair, the compiler checks,
if the exception specifications and covariant return type (if present)
comply with the semantics used for virtual functions.

DEFINITION 2. An open-method that is not an overrider and an
overrider that introduces a covariant return type are considered a
base-methodfor a translation unit.

DEFINITION 3. A Dispatch table (DT)maps the type-tuple of the
base-method’s virtual parameters to actual overriders that will be
called for that type-tuple.

Millstein and Chambers show in [28] that open-methods cannot
be modularly type checked if the language (like C++) supports
multiple implementation inheritance. Therefore, we split our call
resolution mechanism into three distinct stages:

• Overload resolution

• Ambiguity resolution

• Runtime dispatch

The goal of overload resolution is to find at compile time a unique
base-method, through which the call can be dispatched. This base-
method determines a dispatch table through which the call will
be made, the necessary casts of the arguments, and the expected
return type. The actual overrider to handle the call is determined at
runtime.

The C++ overload resolution rules [23] are unchanged: the vi-
able set includes both open-methods and regular functions and
treats open-methods like any other freestanding functions. Follow-
ing the static rules exactly would imply that a base-method is used
only if an open-method is the best match. We can do slightly better;
that is, we can resolve some static ambiguities at link time (where
more information is available): if a set of best matches consists of
open-methods only and the intersection of their base-methods has
a single element - overload resolution does not report an ambiguity.
We demonstrate with an example:

struct X;
struct Y;
struct Z;

void foo(virtual X&, virtual Y&); // (1)
void foo(virtual Y&, virtual Y&); // (2)
void foo(virtual Y&, virtual Z&); // (3)

struct XY : X, Y {} xy;
struct YZ : Y, Z {} yz;

void foo(virtual XY&, virtual Y&); // (4)
void foo(virtual Y&, virtual YZ&); // (5)

Open-methods 1,2 and 3 are three independent base-methods
defined on different class hierarchies. Because XY and YZ are
parts of several hierarchies, overriders 4 and 5 refine several base-
methods. In particular, 4 is an overrider for 1 and 2, while 5 is an
overrider for 2 and 3.

A call foo(xy,yz); is now ambiguous according to the standard
overload resolution rules as both 4 and 5 are equally good matches.

Our relaxed rule, however, does not reject this call as ambiguous at
compile time, because these overriders have a unique base-method
through which the call can be dispatched – 2.

At link time, when all the overriders have been seen, we check
the overriders for return type consistency, perform ambiguity reso-
lution and build the dispatch tables.

Runtime dispatch simply looks up the entry in the dispatch
table that corresponds to the dynamic types of the arguments and
dispatches to that function.

This three-stage approach parallels the resolution to the equiv-
alent modular-checking problem for template calls using concepts
in C++0x [21]. Further, the use of open-methods (as opposed to or-
dinary virtual functions and multi-methods) can be seen as adding
a runtime dimension to generic programming [4].

3.2 Ambiguity Resolution

C++ supports single-, repeated-, and virtual inheritance:

A

C
B

A

D

A

C
B

D

A

C
B

D

Note that to distinguish repeated and virtual inheritance, this di-
agram represents sub-object relationships, not just sub-class rela-
tionships. We must handle all ambiguities that can arise in all these
cases. By “handle”, we mean resolve or detect as errors.

Our ideal for resolving open-method calls combines the ideals
for virtual functions and overloading:

• virtual functions: the same function is called independently of
which class in an inheritance hierarchy is used in the call.

• overloading: a call is considered unambiguous if (and only
if) every parameter is at least as good a match for the actual
argument as the equivalent parameter of every other candidate
function and that it has at least one parameter that is a better
match than the equivalent parameter of every other candidate
function.

This implies that a call of a single-argument open-method is re-
solved equivalently to a virtual function call. The rules described in
this paper closely approximate this ideal. As mentioned, the static
resolution is done exactly according to the usual C++ rules. The dy-
namic resolution is presented as the algorithm for generating dis-
patch tables in§3.4. Before looking at that algorithm, we present
some key motivating examples.

3.2.1 Single Inheritance

In object models supporting single inheritance (§3.2) ambiguities
can only occur with open-methods taking at least two virtual pa-
rameters. Ambiguities in this case have to be resolved by intro-
ducing a new overrider. The resolution of an open-method with
one argument is identical to that of a virtual function. Thus, open-
methods provide an unsurprising mechanism for expressing non-
intrusive (“external”) polymorphism. This eliminates the need to
complicate a class hierarchy just to support the later addition of
additional “methods” in the form of visitors.

3.2.2 Repeated Inheritance

Consider the repeated inheritance case (§3.2) together with this set
of open-methods visible at a call site tofoo(d1,d2):

void foo(virtual A&, virtual A&);
void foo(virtual B&, virtual B&);
void foo(virtual B&, virtual C&);
void foo(virtual C&, virtual B&);
void foo(virtual C&, virtual C&);

Even tough the compiler can determine a unique base-method
foo(A&, A&) through which the call can be dispatched, the call
with two arguments of type D gets rejected at compile-time. The
problem in this case, is that there are multiple pathes from D to
sub-objects of type A.

To resolve that conflict, a user can either add an overrider
foo(D&,D&) visible at the call site or explicitly cast arguments to
either the B or C sub-object. Making an overrider forfoo(D&,D&)
available at the call site, renders the choice of the path to the
subobject irrelevant. It would always be dispatched to the same
overrider.

If the (B,C)-vs.-(C,B) conflict is resolved by casting, a question
remains on how the linker should resolve a call with two arguments
of type D? We know at runtime (by looking into the virtual function
table’s open-method table (see§4) which “branch” of a D object
(either B or C) is on. Thus, we can fill our dispatch table appropri-
ately; that is, for each combination of types, there is a unique “best
match” according to the usual C++ rules:

A B C D/B D/C
A AA AA AA AA AA
B AA BB BC BB BC
C AA CB CC CB CC
D/B AA BB BC BB BC
D/C AA CB CC CB CC

This depicts the dispatch table for the repeated-inheritance hierar-
chy in §3.2 and the set of overriders above. Since the base method
is foo(A&,A&) and A occurs twice in D, each dimension has two
entries for D: D/B meaning ”D along the B branch”. This resolution
exactly matches our ideals.

3.2.3 Virtual Inheritance

Consider the virtual inheritance class hierarchy from§3.2 together
with the set of open-methods from§3.2.2: In contrast to repeated
inheritance, a D has only one A part, shared by B, C, and D.
This causes a problem for calls requiring conversions, such as
foo(b,d); is that D to be considered a B or a C? There is not enough
information to resolve such a call. Note that the problem can arise
is such a way that we cannot catch it at compile time:

C& rc = d;
foo(b,rc);
B& rb = d;
foo(b,rb);

Using static type information to resolve either call would violate
the fundamental rule for virtual function calls: use runtime type
information to ensure that the same overrider is called from every
point of a class hierarchy. At runtime, the dispatch mechanism will
(only) know that we are callingfoo with a B and a D. It is not known
whether (or when) to consider that D a B or a C. Based on this
reasoning (embodied in the algorithm in§3.4) we must generate
this dispatch table:

A B C D/A
A AA AA AA AA
B AA BB BC ??
C AA CB CC ??
D/A AA ?? ?? ??

We cannot detect the ambiguities marked with?? at compile
time, but we can catch them at link time when the full set of
overriders are known.

3.3 Covariant Return Types

Covariant return types are a useful element of C++. If anything,
they appear to be more useful for operations with multiple argu-
ments than for single argument functions. Covariant return types
complicate the use of workaround techniques. In case of the visi-
tor, it would require even more foresight and lead to a proliferation
of accept methods that have to be replicated in each derived class.

As an example for using covariant return type, consider a class
Symmetric derived fromMatrix:

Matrix& operator+(Matrix&, Matrix&);
Symmetric& operator+(Symmetric&, Symmetric&);

It follows that we must generalize the covariant return rules for
open-methods. Doing so turns out to be useful because covariant
return types help resolve ambiguities.

In single dispatch, covariance of a return type implies covari-
ance of the receiver object. Consequently, covariance of return
types for open-methods implies an overrider (or) - base-method
(bm) relationship between two open-methods. Liskov’s substitu-
tion principle [24] guarantees that any call type-checked based on
bm can useor’s covariant result without compromising type safety.

This can be used to eliminate what would otherwise have been
ambiguities. Consider the class hierarchiesA ← B ← C and
R1← R2← R3 together with this set of open-methods:

R1∗ foo(virtual A&, virtual A&);
R2∗ foo(virtual A&, virtual B&);
R3∗ foo(virtual B&, virtual A&);

A call foo(b,b) appears to be ambiguous and the rules out-
lined so far would indeed make it an error. However, choosing
R2∗ foo(A&,B&) would throw away information compared to us-
ing R3∗ foo(B&,A&): An R3 can be used wherever an R2 can,
but R2 cannot be used wherever an R3 can. Therefore, we prefera
function with a more derived return type and for this example get
the following dispatch table:

A B C
A AA AB AB
B BA BA BA
C BA BA BA

At first glance, this may look useful, but ad hoc. However, an
open-method with a return type that differs from its base method
becomes a new base method and requires its own dispatch table (or
equivalent implementation technique). The fundamental reason is
the need to adjust the return type in calls. Obviously, the resolutions
for this new base method must be consistent with the resolution
for its base method (or we violate the fundamental rule for virtual
functions). However, sinceR2∗ foo(A&,B&) will not be part of
R3∗ foo(B&,A&)’s table, the only consistent resolution is the one
we chose.

If the return types of two overriders are siblings, then there is
an ambiguity in the type-tuple that is a meet of the parameter-
type tuples. Consider for example thatR3 derives directly from
R1 instead ofR2, then none of the existing overriders can be used
for (B,B) tuple as its return type on one hand has to be a subtype of
R2 and on the other a subtype ofR3. To resolve this ambiguity, the
user will have to provide explicitly an overrider for (B,B), which
must have the return type derived from bothR2 andR3.

Using the covariant return type for ambiguity resolution also
allows the programmer to specify preference of one overrider over
another when asymmetric dispatch semantics is desired.

To conclude: covariant return types do not only improve static
type information, but also enhance our ambiguity resolution mech-
anism. We are unaware of any other multi-method proposal using a
similar technique.

3.4 Algorithm for Dispatch Table Generation

Let us assume we have a multi-methodrf(h1, h2, ..., hk) with
k virtual arguments. Classhi is a base of hierarchy of theith

argument.Hi = {c : c <: hi} is a set of all classes from the
hierarchy rooted athi. X = H1 ×H2 × · · · ×Hk is the set of all
possible argument type-tuples off . SetY = {(y1, y2, · · · , yk)} ⊆
X is the set of argument type-tuples, on which the user defined
overridersfj for f . The setOf = {f0, · · · , fm−1} is the set
of those overriders (f0 ≡ f). A mappingF : Y ↔ Of is a
bijection between type-tuples on which overriders are defined and
the overriders themselves.

Because different derivation paths may get different entries
in the dispatch table, we assume thatxi in the type-tuplex =
(x1, · · · , xk) identifies not only the concrete type, but also a
particular derivation path for it (see [38] for formal definitions).
Under this assumption, we defineB(xi) to be a direct ances-
tor (base-class) ofxi in the derivation path represented byxi.
For example, for the repeated inheritance hierarchy from§3.2,
B(D/B) = B, B(D/C) = C, B(C) = A, while for the vir-
tual inheritance hierarchyB(D/A) = A, B(B) = A, B(C) = A.

For the sake of convenience, we define:

Bi(x) ≡ (x1, · · · , B(xi), · · · , xk).

With it, we extend the definition ofB to type-tuples as follows:

B(x) ≡ {B1(x), B2(x), · · · , Bk(x)}.

P (X, <) : (x1, ..., xk) <P (y1, ..., yk)⇔ ∀i : xi <: yi ∧∃j :
yj ≮: xj defines a partial ordering that models ordering of viable
functions for overload resolution as defined in [23].max set(S) =
{x ∈ S ⊆ X : ∄y ∈ S : x < y} is a set of maximal elements ofS
with respect to the partial orderingP .

Dispatch tableDT is a mappingDT : X → Of that maps
various combinations of argument types to the overriders used to
handle that combination.

For any combination of argument typesx ∈ X, we recursively
define entries of the dispatch table DT as following:

DT [x] =

8

<

:

F (x), x ∈ Y
DT [max set(B(x))], |max set(B(x))| = 1
Ambiguity, otherwise

The above recursion exhibits optimal substructure and has over-
lapping sub-problems, which lets us use dynamic programming
[14] to create an efficient algorithm for generation of dispatch table,
shown in Algorithm 1.

To analyze its performance, we first note that comparison of
two type-tuples fromX can be done in timeO(k). If n =
max(|Hi|, i = 1, k) and r = max(ri, i = 1, k) (whereri is
a maximum number of timeshi is used as non-virtual base class in
any class of hierarchyHi) then|X| <= (n ∗ r)k and the amount
of edges for topological sort is less thenk ∗ (n ∗ r)k. Therefore
the complexity of topologically sorting X isO(k ∗nk). The second
loop has complexityO(k2∗nk) so the overall complexity isO(nk)
sincek is a constant defining the amount of virtual arguments. This
means that the algorithm is linear in the size of the dispatch table.

3.5 Alternative Dispatch Semantics

Our open-method semantics strictly corresponds to virtual member
function semantics in ISO C++ but does not entirely reflect over-
load resolution semantics. The reason is that less information is

Algorithm 1 Dispatch Table Generation

S ← topological sort(X)
for all x ∈ S do

if x ∈ Y then
DT [x]← F (x)

else
max set = {B1(x)}
for i← 2, k do

dominated← false
for all e ∈ max set do

if F−1(DT [e]) <P F−1(DT [Bi(x)]) then
max set← max set− {e}

else ifF−1(DT [Bi(x)]) <P F−1(DT [e]) then
dominated← true
break

if not dominated then
max set← max set ∪ {F−1(DT [Bi(x)])}

if |max set| = 1 then
DT [x]← F (max set)

else
Report ambiguity forx

available for compile-time resolution than for link-time or runtime
resolution. For example, consider the repeated inheritance class hi-
erarchy from§3.2 with a virtual function added:

struct A { virtual void foo(); };
struct B : A {};
struct C : A { virtual void foo(); };
struct D : B, C {};

void bar(A&); // conventional overloading
void bar(C&);

void foobar(virtual A&); // open−method
void foobar(virtual C&); // open−method

D d;
B& db = d; // B part of D
C& dc = d; // C part of D

// (runtime) Virtual Member Function Semantics:
b.foo(); // calls A::foo
c.foo(); // calls C::foo
d.foo(); // error: ambiguous

// (compile time) Overload Resolution Semantics:
bar(db); // calls bar(A&)
bar(dc); // calls bar(C&)
bar(d); // calls bar(C&) (why not ambiguous?)

// (runtime) open−method Semantics:
foobar(db); // calls foobar(A&)
foobar(dc); // calls foobar(C&)
foobar(d); // error: ambiguous

The difference between the ordinary virtual function (foo) calls and
the ordinary overloaded resolution for (bar) is odd and depends on
pretty obscure rules that may be more historical than fundamental.
Calls to the open-methodfoobar follow the virtual function resolu-
tion.

Further differences emerge in cases where a different resolution
become possible in cases where additional information from other
translation units may become available to resolve open-methods
(see§5). This parallels decisions for related parts of the language.
For example, the resolution ofstatic cast anddynamic cast can

differ even given identical arguments:dynamic cast can use more
information thanstatic cast.

Another difference to overloading is that the return type of the
overriders is bounded by the return type of the base-method.

4. Implementation
We implemented open-methods as described here by modifying the
EDG compiler front-end [15].

4.1 Changes to Compiler & Linker

Our mechanism extends ideas presented in [16, 39] as to compiler
and linker model. We adopted the multi-method syntax proposed
in [33], which in turn was inspired by an earlier idea by Doug Lea.
One or more parameters of a non-static freestanding function can
be specified to bevirtual. Overloading functions based only on the
virtual specifier is not allowed.

A virtual argument must be a reference or pointer to a polymor-
phic class (that is, a class containing at least one virtual function).
For example:

struct A { virtual ˜A(); };

void print(virtual A&); // ok
void print(int, virtual A&); // ok

void dump(virtual Shape); // compiler error
void dump(virtual int); // compiler error

Open-methods are generic freestanding functions, which do not
have the access privileges of member functions. If an open-method
needs access to non-public members of a class, that class must de-
clare it a friend. There are no abstract (pure virtual) open-methods;
that is every open-method must be defined. Consider a (dynamic)
library D1 that introduces a new class and a second (dynamic) li-
brary D2 that defines a new abstract open-method. Then, the pres-
ence of an overrider for the class in D1 could not be guaranteed.
The alternative would be runtime “method not defined” errors (re-
ported as exceptions), but that solution would be inconsistent with
the rest of C++ and would limit the use of open-methods in embed-
ded systems.

For each translation unit, the compiler generates anopen-
method description(OMD) file that stores the data needed to gen-
erate the runtime data structure discussed in§4.2. This includes
the names of all classes, their inheritance relationships, and the
kind of inheritance. Open-methods are represented by name, return
type, and their parameter list. Finally, the OMD-file also contains
definitions of all user-defined types that appear in signatures of
open-methods (both as virtual and regular parameters). These def-
initions are necessary to regenerate prototype declarations for the
open-methods, which pass data through by value.

The pre-linker uses Coco/R [40] to parse the OMD-files. Then,
the pre-linker synthesizes the OMD-data, associates all overrid-
ers with their base-methods, generates dispatch tables, issues link-
errors for ambiguities, determines the indices necessary to access
the open-method and dispatch-table, as well as defines and inter-
links the om-tables of each sub-object type according to§4.2.

4.2 Changes to the Object Model

We augment the IA-64 C++ object model [13] by four elements
to support constant time dispatching of open-methods. First, for
each base-method there will be a dispatch table containing the
function addresses. Second, the v-table of each sub-object contains
an additional pointer to theopen-method table (om-table). Finally,
the indices used for the open-method-table offsets are stored as
global variables.

Figure 1 shows the layout of objects, v-tables, om-tables and
dispatch-tables for repeated (left) and virtual (right) inheritance.

Our extensions to the object-model are shown with grey back-
ground. From left to right the elements in each diagram represent
the object, v-table, om-table, and dispatch table(s) for the class hi-
erarchy in§3.2. From top to the bottom, the objects are of type A,
B, C, and D respectively.

An open-method can be declared after the declarations of the
classes used in its virtual parameters. Therefore, the compiler can-
not reserve v-table entries to store the data related to open-method
dispatch immediately in a class’s virtual function table. Hence, we
always extend every v-table by one pointer referencing the om-
table, which can be laid down later by the pre-linker.

The om-table reserves one position for each virtual parameter
of each base-method, where objects of this type can be passed
as arguments. This position stores an index into corresponding
dimension of the dispatch table. Since the size of the om-tables
is not known at compile time, our technique relies on a literal for
each open-method and virtual parameter position (called foo1st,
foo 2nd in Figure 1) that determines the offset within the om-tables.

Note that Figure 1 depicts our actual implementation, where
entries for first argument positions already resolve one dimension
of the table lookup. Entries for all other argument positions store
the byte offset within the table.

In the presence of multiple-inheritance, a this-pointer shift
might be required to pass the object correctly. In this case, we
replace the address of the overrider by an address of a thunk that
takes care of correctly adjusting the this-pointer. As described in
§3.2.2 in case of repeated inheritance different bases can show dif-
ferent dispatch behavior depending on the sub-object to which the
this-pointer refers. As a result, different bases may point to different
om-tables. In case of virtual inheritance, the open-method dispatch
entries are only stored through the types mentioned in the base-
method. Hence, in the virtual inheritance case, all open-method
calls are dispatched through the virtual base type.

4.3 Alternative Approaches

We considered a few other design alternatives to explore their trade-
offs in extensibility and performance.

Multi-Methods: Multi-methods differ from open-methods in
that the base-method has to be declared in the class definition of
its virtual parameters. This allows the offset within the v-table be
known at compile time, which saves two indirections per argument
of a function call (one for the om-table, and one to read the index
within the om-table). For a call withk virtual arguments, open-
methods need4k + 1, while multi-methods need only2k + 1
memory references to dispatch a call. The downside of multi-
methods is that existing classes cannot easily be extended with
dynamically dispatched functions.

Chinese Remainders: In this section, we present an ”ideal”
scheme for implementing open-methods, inspired by ideas pre-
sented in [19]. The proposed scheme circumvents the necessity for
open-method tables by moving all the necessary information from
the class to the dispatch table.

Suppose that for every multi-methodf there is a functionIf :
T × N → N such that for any typet ∈ T (where T is a domain
of all types) and argument positionn ∈ N it returns index of type
t in the nth dimension of thef ’s dispatch table. If such function
is reasonably fast (preferably constant time) and its range is small
(preferably from 0 to maximum number of types that can be used in
any argument position) then we can efficiently implement multiple
dispatch by properly arranging rows and columns accordingly to
the indices returned byIf . As in [19] we use the Chinese reminder
theorem [14] to generate functionIf .

Despite its elegance, this approach is rather theoretical because
it is hard to use for large class hierarchies. The reason is that we
need to assign different prime numbers to classes and perform

Figure 1. Object Model for repeated (left) and virtual (right) inheritance

computations on numbers that are bound by the product of these
primes. Such product can fit into 32-bit integers for only the 9
first primes and into 64-bit integers for only the 15 first primes.
Table compression techniques [2] or use of minimal perfect hash
functions [14] instead, can help overcome the problem.

5. Dynamic Linking
Outside embedded systems, dynamically linked libraries are almost
universally used with C++. Thus, a design for open-methods that
does not allow for DLLs is largely theoretical. We do not currently
have an implementation supporting dynamic linking, but we can
outline a design addressing the major issues for open-methods in a
dynamically linked library. It guarantees that the most specialized
overrider available at runtime that preserves type-safety of a call
will be used to dispatch a call.

Dynamic modules, compiled independently, may have different
sets of overriders defined at the time of compilation. Furthermore,
there could be new classes added to a hierarchy in one of the mod-
ules and objects of those classes may be passed into code of other
modules. This is not a problem for regular virtual functions as their
v-tables are found in the module where the class was defined. In
case of open-methods, the dispatch table generated within a partic-
ular module can be simply unaware of a class, defined somewhere
else. To account for this, the dynamic loader will have to update
dynamically dispatch tables of each open-method as new modules
are loaded and more information becomes available.

Covariant return introduces subtleties when dynamic linking is
used. Consider a two-class hierarchyA← B and another two-class
hierarchyR1← R2. The base-methodR1 foo(virtual A&, virtual A&)
is defined in a header visible by two dynamically linked modules
D1 andD2 that do not know anything about each other. ModuleD1

introduces overriderR2 foo(A&, B&) and moduleD2 introduces
overriderR1 foo(B&, B&). Each of the dynamically linked mod-
ules perfectly type-checks and links withfoo() resolved through
the dispatch table (a superscript in a cell denotes the type that is
returned by an overrider e.g.AB2 denotesR2 foo(A&, B&)):

AA1inD1 A B AA1inD2 A B
A AA1 AB2 A AA1 AA1

B AA1 AB2 B AA1 BB1

When both modules are loaded together, we get the dilemma
of how to resolve a call with both arguments of type B. On one
side foo(B&,B&) from D2 is more specialized, but on the other
sidefoo(A&,B&) fromD1 imposes the additional requirement that
the return type of whatever is called for (B,B) should be a subtype
of R2, which R1 is not. Such scenario would have been rejected
should it happen at compile/link time, however at load time we do
not have this option anymore.

Keeping all dispatch tables of a particular open-method consis-
tent on the overrider that will be called for a particular combination
of types will force us to choose between suboptimal and type un-
safe alternatives. What is worse - is that there may not be a unique
type-safe alternative.

Imagine for example that a moduleD3 introduces an overrider
R3 foo(B&, A&) whereR1 ← R3, soR2 andR3 are siblings.
WhenD1 andD3 are loaded together, neitherR2 foo(A&, B&)
nor R3 foo(B&, A&) can be used to resolve a call with both
arguments of type B - both alternatives are type unsafe for the other
overrider.

To deal with this subtlety, we propose to weaken for the DLL
case the requirement that the same overrider should be called for
the same tuple of dynamic types regardless of the static types used
at the call site. We require that the same overrider be used only
if it is type-safe for the caller. Strictly speakingR1 foo(B&,B&)
is not an overrider ofR2 foo(A&, B&) as defined in§3.1, be-
cause its return type is not changing covariantly in respect to the
types of arguments. Therefore, it cannot be considered for the dy-
namic resolution of calls made statically through the base-method
R2 foo(A&, B&).

Taking the above into account, we propose that the dynamic
linker fills in the dispatch table of every base-method indepen-
dently. This results in:

AA1 A B AB2 B BA3 A B
A AA1 AB2 A AB2

B BA3 BB1 B AB2 B BA3 BA3

It looks as if the dispatch table for the base-methodR1 foo(A&,A&)
now violates covariant consistency, but in reality it does not because
all the return types in it are cast back through thunks to R1, which
is the type statically expected at the call site.

As can be seen, this logic may result in different functions being
called for the same type tuple depending on the base-methods seen
at the call site. We note, however, thatthe call is always made to
the most specialized overrider that is type-safe for the caller.

Even when covariant return types are not used, dynamic linking
can introduce ambiguities in the dispatch tables. The simplest ex-
ample would be to think of two different modules that both provide
overrider for the same pair of dynamic types.

Let us consider a plausible scenario involving three DLLs:

// dll−1
struct GuiButton { virtual ˜GuiButton(); };
struct GuiEvent { virtual ˜GuiEvent(); };

void handleEvent(virtual GuiButton&, virtual GuiEvent&);

// dll−2
#include<dll1>
struct MyButton : GuiButton { };

void handleEvent(virtual MyButton&, virtual GuiEvent&);

// dll−3
#include<dll1>
struct SpecialEvent : GuiEvent {};

void handleEvent(virtual GuiElement&, virtual SpecialEvent&);

The first DLL defines a classGuiButton, a classGuiEvent,
and a base-multi-methodhandleEvent. Internally, a second DLL
derives a new typeMyButton from GuiButton and introduces a
new overrider forhandleEvent. Likewise, the third DLL derives
a new internal classSpecialEvent from GuiEvent and introduces a
new overrider. The second and third DLL could stem from different
vendors that do not know about each other.

Now a call ofhandleEvent with aMyButton and aSpecialEvent
is ambiguous. The writer of the total system (the “system integra-
tor”) should in principle have considered that possibility and dealt
with it. Therefore, one solution would be to terminate the program
or to throw an exception [31]. However, such problems are hard to
predict and design for. Relaxed Multi-Java [27] resolves these con-
flicts by introducing glue methods (to glue DLL2 and DLL3) that
the system-integrator provides. While this might be a viable solu-
tion for software developers integrating several libraries, it is not a
feasible scenario for end-user applications, as dynamically linked
modules can be loaded into the process without direct request of a
developer. This, for example, is the case with various component
object models when application may ask the system to create an
object with a particular name and operating system will locate and
load the module it is resided in.

We emphasize that in current C++, it is not possible to write
programs against both types without getting an ambiguity. We
report such an ambiguity when it is detected at compile or link
time, however, at load time we do not have such an option as it is
detected on a user’s machine.

One way to handle such a scenario will be to treat both classes
as their base classes and dispatch appropriately. We note, however,
that in the plug-in like usage scenarios modules may have only seen
the interface: the base-multi-method and the roots of the hierarchies
on which it is defined. Nevertheless, such use-cases would expect
more refined overriders to handle calls on derived classes.

In principle,bothhandleEvent functions should correctly han-
dle the event; that is, eachhandleEvent function must assume that
its argument type is just base class and the actual argument could
be of an unknown derived class. Consequently, eachhandleEvent
function must be written in a way that is generic on its argument
(probably using virtual functions on the individual argument). This
implies that as long as an event handler’s code does not make more
assumptions about its arguments than the interface defined in the
base-class guarantees, it can be replaced by the other event handler.
Even a non-deterministic selection of the overrider would produce
a correct result! However, developers and testers strongly prefer
deterministic choices, so we consistently choose one of the alterna-
tives. Furthermore, as we have already mentioned, two DLLs may
provide different implementations for the same overrider, in which
case we have to make a choice.

With this said we propose to resolve ambiguities at load time as
following. For each base-method of a given open-method:

• If there is a unique best match among type-safe overriders that
can handle a particular combination of argument types – use it.

• If there is no unique best match, – make a deterministic choice
among all best matches.

We chose an unspecified determinism over non-determinism to
guarantee that the same method will always be selected and to keep
the dynamic dispatch symmetric.

6. Related Work
Programming languages can support multi-methods either through
built-in facilities, pre-processors, or through library extensions.
Naturally, tighter language integration enjoys a much broader de-
sign space for type checking, ambiguity handling, and optimiza-
tions compared to libraries. In this section, we will first review both
library and non-library approaches for C++ and then give a brief
overview of multi-methods in other languages.

6.1 Cmm

Cmm [31] is a preprocessor based prototype implementation for
an open-method C++ extension. It takes a translation unit and
generates C++ dispatch code from it. Cmm is available in two
versions. One of them uses RTTI to recover the dynamic type of
objects to identify the best overrider. The other approach achieves
constant time dispatch by relying on a virtual function overridden in
each class. Dispatch ambiguities are signalled by throwing runtime
exceptions. Cmm allows dynamically linked libraries to register
and unregister their open-methods at load and unload time. In
addition to open-method dispatch, Cmm also provides call-site
virtual dispatch. Cmm does not provide special support for multiple
inheritance and therefore its dispatch technique does not entirely
conform with virtual function semantics.

6.2 DoubleCpp

DoubleCpp [5] is another preprocessor based approach for multi-
methods dispatching on two virtual parameters. It essentially trans-
lates these multi-methods into the visitor pattern. For doing so,
DoubleCpp requires access to the files containing the class defi-
nitions in order to add the appropriate accept and visit methods.
DoubleCpp, like any other visitor-based approach, does not report
but quietly resolve ambiguities.

6.3 Accessory Function

The accessory functions papers [16, 39] allow open method dis-
patch based on a single virtual argument and discuss ideas to extend
the mechanism for multiple dispatch. The compilation model they

describe uses, like our approach, a compiler and linker coopera-
tion to perform ambiguity resolution and dispatch table generation.
However, the accessory functions are integrated into the regular v-
tables of their receiver types, which requires the linker to not only
generate the dispatch table but also to recompute and resolve the
v-table index of any other virtual member function. Both papers do
not provide a detailed discussion of the intricacies when multiple
inheritance is involved. The authors do not refer to a model or pro-
totype implementation to which we could compare our approach.

6.4 Loki

Loki [1], based on Alexandrescu’s template programming library
with the same name, provides several different dispatchers that
balance between speed, flexibility, and code verbosity. Currently,
it supports multi-methods with two arguments only, except for the
constant-time dispatcher that allows more arguments. The static
dispatcher provides call resolution based on overload resolution
rules, but requires manual linearization of the class hierarchy in
order to uncover the most derived type of an object first. All other
dispatchers do not consider hierarchical relations and effectively
require explicit resolution of all possible cases.

6.5 Other Languages

One of the first widely known languages to support multi-methods
was CLOS [32]. CLOS linearizes the class hierarchy and uses
asymmetric dispatch semantics to avoid ambiguity conflicts. Ce-
cil [9, 10] views silent ambiguity resolution as a potential source
for programming errors. Therefore, it uses symmetric dispatch se-
mantics and dispenses with object hierarchy linearization in or-
der to expose these errors at compile-time. In [28], Millstein and
Chambers discuss the trade-offs between multi-methods and mod-
ular type-checking in languages with neither a total order of classes
nor asymmetric dispatch semantics. Ranging from globally type-
checked programs to modularly type-checked units, the models
embrace or restrict the expressive power of the language to dif-
ferent degrees. Based on these findings, MultiJava [12] implements
a model that allows separate compilation and eliminates the need
for a link-time type-checker but also curtails extensibility. Relaxed
MultiJava [27] re-introduces a link-time type checker and relies on
the system integrator to resolve ambiguities by providing new over-
riders (glue-methods). Parasitic methods model multi-methods as
class members and give the receiver precedence over other argu-
ments. Implementations for Java [7] and Smalltalk [17] exist. An
example of a language adding multi-methods through a library is
Python [36]. Chambers and Chen [11] present an alternative imple-
mentation technique based on a lookup DAG. Their work general-
izes multiple dispatch to be a subset of predicate-based dispatch.

7. Results
In order to discuss time and space performance, we compare a
number of handcrafted implementations with EDG/Omm, our im-
plementation described in§4, Cmm, DoubleCpp, and the Loki
library. The handcrafted approaches include multi-methods and
open-methods, model implementations used to initially assess the
performance trade-offs, a Chinese Remainder (§4.3) based imple-
mentation, and the visitor pattern.

We wrote 20 classes (representing shapes, etc.) which can inter-
sect each other. Overall, this results in 400 combinations for binary
dispatch functions. We implemented 40 specific intersect functions
to which all of the 400 combinations are dispatched to. In order
to get a reliable timing of the function invocation, these 40 inter-
sect functions only increment a counter. Since not all techniques
we use support multiple inheritance, these 20 classes only use sin-
gle inheritance. The actual test consists of a loop that randomly

chooses 2 out of 32 objects and invokes the intersect method. We
implemented a table-based random number generator that is sim-
ple and does not contain any floating-point calculations or integer-
divisions. We ran the loop twice with the same random numbers:
The first run allows implementations, which build the dispatch data
structure on the fly to warm up and load data/code into the cache.
The second loop was timed. The clock-cycle based timer takes the
time before and after the loop and we calculate the average number
of clock-cycles per loop to compare the results.

7.1 Implementations

We tested the approaches on a Pentium D, 2.8 Ghz running CentOS
Linux and a Core2Duo running Mac OSX. The code was compiled
with g++ 4.0 (Linux) and gcc 4.0.1 (OSX) with optimization level
set to -O3. EDG/Omm generates source code lowered to C, which
was compiled with the corresponding gcc versions and linked to
the pre-linker generated dispatch tables.

Using the Chinese Remainder approach, the number associated
with the dispatch table grows exponentially with the number of
types. Therefore the test is limited to eight types instead of 20 and
the size of the executable is omitted. We could only implement a
simplified version that can handle eight types instead of 20. Hence,
we omit the size of the program executable.

For Loki, we only tested the static dispatcher because the other
require manual handling of all possible cases. Using other dispatch-
ers would have been closer to a scenario of manually allocated array
of functions through which calls are made. However, as we indi-
cated before, the dual nature of multi-methods require them to pro-
vide both dynamic dispatch and automatic resolution mechanism.

7.2 Results & Interpretation

Our experimental results can be summarized in terms of execution
time and program size:

Approach Size (bytes) Cycles/Loop Cycles/Loop
Linux Pentium-D Core2Duo

Virtual function n/a 75 55

C++ Multi-method 19 547 78 60
C++ Open-method 19 725 82 63
EDG/Omm 70 647 82 64
Double Cpp 20 859 120 82
C++ Visitor 35 289 132 82
Chinese Remainders n/a 175 103
Cmm (constant time) 112 250 415 239
Cmm 111 305 1 320 772
Loki Library 34 908 3 670 2 238

Executable size: We present the executable size obtained on
the Linux system. The size of dispatch tables is mentioned as one of
the major drawbacks of providing multi-methods as programming
language feature [39]. However, our results reveal that the visitor
that is based on a brute force implementation is 80% bigger than
the multi-method approach. With the visitor, each shape class has
intersect methods for all 20 shapes of the hierarchy. A somewhat
smarter approach would be to remove redundant intersect overrid-
ers. However, removing specific overriders is tedious and difficult
to maintain, since the dispatch would be based on the static type
information of the base class. Even an optimized approach would
be at best able to match the multi-method implementation, simply
because each type contains 20 intersect entries in the v-table. Mul-
tiplying this with the number of shapes, 20, results in 400, exactly
the number of entries found in the dispatch table. The executable
generated by EDG/Omm is bigger because it is statically linked to
EDG’s C++ runtime library. We do not discuss the program size of

the two Cmms and Loki, since they use additional header files such
as<typeinfo> and<stdexcept> that distort a direct comparison.

Execution time: Multi-Methods, Open-Methods, and EDG/Omm
are (as expected) roughly comparable to a single virtual function
dispatch, which needs 75 (55 on the Core2Duo) cycles per loop.
Hence, the better performance compared to the visitors is not sur-
prising. However, the fact that multi-methods reduce the runtime
to 62% (73%) of the reference implementation using the visitor
is noteworthy. We conjecture this is an effect of the size of the
class hierarchy and that the time to double dispatch depends on the
number of overriders. On the Pentium D, two observations support
our conjecture: firstly, the DoubleCpp-based visitor has no redun-
dant overriders and runs slightly faster. Secondly, we simulated an
analysis pass dispatching over AST-objects of 20 different types
and counting the category to which they belong (type, declaration,
expression, statement, other). In this case, the double dispatch has
only 20 leaf-functions instead of 400 and our dispatch test runs 78
cycles instead of 132. The open-method approach requiring only
five overriders, is still faster and needs 68 cycles.
The difference between multi-methods and open-methods (EDG/Omm)
is within the expected range. Three more indirections require 4 (4)
more clock cycles on the Pentium and 3 (4) more on the Core2Duo.
Although significantly slower, Cmm (constant time) performs bet-
ter than expected, since its author estimates the dispatch cost as
10 times a regular virtual function call. As expected the two non-
constant time approaches perform worst.

Significance of performance: The performance numbers
comes from experiments designed to highlight the cost of multi-
ple dispatch: the functions invoked hardly do anything. Depending
on the application the improved performance might or might not
be significant. For the image conversion example, gains in exe-
cution speed are negligible compared to time spent in the actual
conversion algorithm. In other cases, such as the evaluation of ex-
pressions using user-defined arithmetic types, traversal of abstract
syntax trees, and some of the most frequent shape intersect exam-
ples, the speed differences among the double dispatch approaches
appear to be notable.

Contrary to much “popular wisdom”, our experiments revealed
that for many applications the use of dispatch tables for open-
methods and multi-methods actually reduce the program size com-
pared to brute-force and work-around techniques.

8. Conclusions and Future Work
We presented a novel approach to dispatching open multi-methods
that is in line with the multiple inheritance semantics of the current
C++ object model and the C++ overload resolution rules. This im-
plies compile-time or link-time detection of ambiguities. By con-
sidering covariant return type in the ambiguity resolution, we re-
duce the number of potential conflicts. We have discussed an im-
plementation based on modifications to the EDG compiler front-
end and have described a mechanism that supports the integration
of several translation units. Our evaluation of different approaches
to implementing open-methods in C++ shows that our approach is
significantly better (in time and space) than current alternatives. In-
deed, it is almost as efficient as single dispatch. Since the dispatch
is constant time and does not rely on exceptions to signal ambigui-
ties, it is applicable in embedded and hard real-time systems.

Future plans to extend our work include:

8.1 Virtual Function Templates

Virtual function templates are a powerful abstraction mechanism
not part of C++. Generating v-tables for virtual function templates
requires a whole-program view and C++ traditionally relies almost
exclusively on separate compilation of translation units. The pre-

linker technique described here should be able to synthesize v-
tables for virtual function templates as it does for open-methods.

8.2 Function Pointers to Open-methods

Pointers to open-methods would generalize pointer to member-
functions. This allows to separate n-ary open-methods from their
arguments and write code abstracted from a concrete operation.

8.3 Calling a Base Implementation

C++ provides a syntax to call a particular base implementation
of a virtual member function directly, avoiding dynamic dispatch.
This is often used to call the function in the base class. To do
this, C++ requires the user to use a fully qualified name of virtual
member function: e.g.:p−>MyClass::foo(); It is likely that similar
functionality will be required for open-methods.

8.4 Space Optimizations

With large class hierarchies, the size of dispatch tables can become
significant, especially when we consider support for covariant re-
turn types. The implementation of space optimizations techniques
to compressing and reusing of dispatch tables [2] would reduce the
memory footprint.

References
[1] A. Alexandrescu.Modern C++ Design: Generic Programming and

Design Patterns Applied. AW C++ in Depth Series. Addison Wesley,
January 2001.

[2] E. Amiel, O. Gruber, and E. Simon. Optimizing multi-method
dispatch using compressed dispatch tables. InOOPSLA ’94, pages
244–258, New York, NY, USA, 1994. ACM Press.

[3] K. Arnold, J. Gosling, and D. Holmes.The Java Programming
Language, 3rd edition. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2000.

[4] M. H. Austern. Generic programming and the STL: using and
extending the C++ Standard Template Library. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[5] L. Bettini, S. Capecchi, and B. Venneri. Double dispatchin C++.
Software - Practice and Experience, 36(6):581 – 613, 2006.

[6] G. M. Birtwistle, O. Dahl, B. Myhrhaug, and K. Nygaard.Simula
BEGIN. Auerbach Press, Philadelphia, 1973.

[7] J. Boyland and G. Castagna. Parasitic methods: an implementation
of multi-methods for Java. InOOPSLA ’97, pages 66–76, New York,
NY, USA, 1997. ACM Press.

[8] K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pierce. On
binary methods.Theor. Pract. Object Syst., 1(3):221–242, 1995.

[9] C. Chambers. Object-oriented multi-methods in Cecil. InECOOP
’92, pages 33–56, London, UK, 1992. Springer-Verlag.

[10] C. Chambers. The Cecil language: Specification and rationale. 3.2.
Technical report, Department of Computer Science and Engineering.
University of Washington, 2004.

[11] C. Chambers and W. Chen. Efficient multiple and predicated
dispatching. InOOPSLA ’99, pages 238–255, New York, NY, USA,
1999. ACM Press.

[12] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.MultiJava:
modular open classes and symmetric multiple dispatch for Java. In
OOPSLA ’00, pages 130–145, New York, NY, USA, 2000. ACM
Press.

[13] Codesourcery.com. The Itanium C++ ABI. Technical report, 2001.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction
to algorithms. MIT Press, Cambridge, MA, USA, 2001.

[15] Edison Design Group. C++ Front End, March 2006.

[16] C. B. Flynn and D. Wonnacott. Reconciling encapsulation and
dynamic dispatch via accessory functions. Technical Report387,
Rutgers University Department of Computer Science, 1999.

[17] B. Foote, R. Johnson, and J. Noble. Efficient Multimethods in a
Single Dispatch Language.Proceedings of the European Conference
on Object-Oriented Programming, Glasgow, Scotland, July, 2005.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design patterns:
Elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[19] M. Gibbs and B. Stroustrup. Fast dynamic casting.Softw. Pract.
Exper., 36(2):139–156, 2006.

[20] A. Goldberg and D. Robson.Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

[21] D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. D. Reis, and A. Lums-
daine. Concepts: Linguistic support for generic programming. OOP-
SLA’06, 2006.

[22] International Organization for Standardization.ISO/IEC 10918-
1:1994: Information technology — Digital compression and coding
of continuous-tone still images: Requirements and guidelines. 1994.

[23] ISO/IEC 14882 International Standard.Programming languages
C++ . American National Standards Institute, September 1998.

[24] B. Liskov. Keynote address - data abstraction and hierarchy. In
OOPSLA ’87, pages 17–34, New York, NY, USA, 1987. ACM Press.

[25] Lockheed Martin. Joint Strike Fighter, Air Vehicle, C++ Coding
Standard. Lockheed Martin, December 2005.

[26] B. Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[27] T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava:
balancing extensibility and modular typechecking. InOOPSLA
’03, pages 224–240, New York, NY, USA, 2003. ACM Press.

[28] T. D. Millstein and C. Chambers. Modular statically typed
multimethods. InECOOP ’99, volume 1628 ofLNCS, pages 279–
303, London, UK, 1999. Springer-Verlag.

[29] M. Schordan and D. Quinlan. A source-to-source architecture for
user-defined optimizations. InJMLC’03, volume 2789 of LNCS,
pages 214–223. Springer-Verlag, August 2003.

[30] A. Shalit. The Dylan Reference Manual. 2nd edition. Apple Press,
1996.

[31] J. Smith. Draft proposal for adding multimethods to C++. Technical
Report N1463, JTC1/SC22/WG21 C++ Standards Committee, 2003.

[32] G. L. Steele Jr.Common LISP: the language (2nd ed.). Digital Press,
Newton, MA, USA, 1990.

[33] B. Stroustrup. The design and evolution of C++. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1994.

[34] B. Stroustrup.The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[35] B. Stroustrup and G. Dos Reis. Supporting SELL for high-
performance computing. InLCPC’05, volume 4339 of LNCS, pages
458–465. Springer-Verlag, October 2005.

[36] G. van Rossum.The Python Language Reference Manual. Network
Theory Ltd., September 2003.

[37] J. Visser. Visitor combination and traversal control. In OOPSLA ’01,
pages 270–282, New York, NY, USA, 2001. ACM Press.

[38] D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operational
semantics and type safety proof for multiple inheritance in C++. In
OOPSLA ’06, pages 345–362, New York, NY, USA, 2006. ACM
Press.

[39] D. Wonnacott. Using accessory functions to generalizedynamic
dispatch in single-dispatch object-oriented languages. In COOTS,
pages 93–102. USENIX COOTS, 2001.

[40] A. Wöß, M. Löberbauer, and H. M̈ossenb̈ock. LL(1) conflict
resolution in a recursive descent compiler generator. InJMLC’03,
volume 2789 of LNCS, pages 192–201. Springer-Verlag, 2003.

[41] www.fourcc.org. Video codec and pixel format definition, February
2007.

