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Abstract We develop a mathematical framework for the computation of open orb-

ifold Gromov-Witten invariants of [C3/Zn] and provide extensive checks with pre-

dictions from open string mirror symmetry. To this aim, we set up a computation of

open string invariants in the spirit of Katz-Liu [23], defining them by localization.

The orbifold is viewed as an open chart of a global quotient of the resolved conifold,

and the Lagrangian as the fixed locus of an appropriate anti-holomorphic involution.

We consider two main applications of the formalism. After warming up with the sim-

pler example of [C3/Z3], where we verify physical predictions of Bouchard, Klemm,

Mariño and Pasquetti [4,5], the main object of our study is the richer case of [C3/Z4],
where two different choices are allowed for the Lagrangian. For one choice, we make

numerical checks to confirm the B-model predictions; for the other, we prove a mirror

theorem for orbifold disc invariants, match a large number of annulus invariants, and

give mirror symmetry predictions for open string invariants of genus ≤ 2.
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1 Introduction

In recent years, string-theoretic dualities have spurred a flurry of activity in the

Gromov-Witten theory of Calabi-Yau manifolds. In Physics, Gromov-Witten theory

comes naturally in two flavors: the closed topological A-model gives rise to a (virtu-

ally) enumerative theory of compact Riemann surfaces mapping to the target space,

whereas its open string counterpart, where the strings propagate with their boundary

constrained to certain submanifolds of the target (called D-branes), should correspond

to a mathematical counting problem of maps from a Riemann surface with non-empty

boundary. In the context of the open topological A-model on toric Calabi-Yau three-

folds [2,3], mirror symmetry techniques have been developed in the physics literature

and have led in recent times to a complete recursive formalism for the calculation of

“open Gromov-Witten invariants” [4,13,27]. This progress on the Physics side of the

subject raised a host of new mathematical challenges, as the purported relationship of

topological open string theory amplitudes with a counting problem of maps from a

Riemann surface with non-empty boundary posed the problem of developing a suitable

mathematical framework for the definition [30] and the effective calculation [19,23]

of such invariants.

This paper is concerned with the open Gromov-Witten theory of a toric Calabi-Yau

orbifold (of dimension 3). We develop a mathematical framework for the computa-

tion of open orbifold invariants: Eq. (19) simultaneously defines and computes open

invariants for any orbifold of the form [C3/Zn]. The upshot of the formula is that

open invariants are controlled by degree 0 closed GW theory with descendants and a

combinatorial function, which we call disc function, depending on the group action

defining the orbifold. Anyone familiar with Atyiah-Bott localization will immediately

recognize that in fact our formula can be readily extended to compute invariants for

an arbitrary toric orbifold, up to the usual localization combinatorial yoga.

We apply formula (19) to confirm several predictions coming from mirror symme-

try. In this area, physics-based predictions have been even more sharply ahead of their

A-model counterpart. In particular, the combined effect of the relationship of topolog-

ical open string amplitudes with quasi-modular forms [1], physical expectations about

their behavior under variation of the Kähler structure of the target manifold, and the

recursive formalism of [4] eventually led to a series of predictions for open orbifold

Gromov-Witten invariants [4,5,7]. First, we focus on the orbifold [C3/Z3].

Check 1 Numerical computations for disc invariants for [C3/Z3] confirm the mirror

symmetry predictions of [4,5].

Our main case of study is however [C3/Z4], where we have two different choices

of Lagrangian: we call asymmetric the case in which the Lagrangian intersects one of

the two axes that are quotiented effectively, symmetric when it stems from the axis

with non-trivial isotropy. In the asymmetric case, we prove a mirror theorem for disc

invariants.

Theorem 1.1 The analytic part of the B-model asymmetric disc potential for [C3/Z4]
at framing 1 coincides, for positive winding numbers and up to signs, with the gener-

ating function of orbifold Gromov-Witten disc invariants obtained from (19).
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For annulus invariants, we are only able to perform numerical checks.

Check 2 Numerical computations for asymmetric annulus invariants for [C3/Z4]
agree with the mirror symmetry predictions.

This check is particularly interesting as the mirror symmetry computations involves

non-trivially the fact that the B-model annulus potential is a quasi-modular form of

Ŵ(2) ⊂ SL(2, Z). We might then regard this as an a posteriori A-model check of the

relationship between generating functions of Gromov-Witten invariants of Calabi-Yau

threefolds and modular forms in the context of open invariants. In the asymmetric case,

we also give mirror symmetry predictions for open invariants in genus ≤ 2.

Check 3 Numerical computations for symmetric disc invariants agree with the mir-

ror symmetry predictions, up to a global factor of ±i . Numerical computations for

symmetric annulus invariants agree with the mirror symmetry predictions, up to the

usual sign ambiguity.

The phase discrepancy in the disc invariants leads us to speculate that there may

be a normalization factor between invariants that may somehow be related to the non-

trivial (in fact Z2) isotropy on the fixed circle of the Lagrangian. At present, we do

not have any explanation for this phenomenon.

1.1 Plan of the paper

The paper is organized as follows. In Sect. 2.1, we set up the computation of open

orbifold invariants of [C3/Zn] by viewing the orbifold as an open chart of a global

quotient of the resolved conifold OP1(−1)⊕OP1(−1), and the Lagrangian as the fixed

locus of an appropriate anti-holomorphic involution. Section 3 aims at a self-contained

review of the B-model setup of [1–4,13] for a mathematical audience and prepares the

ground for the mirror symmetry computations in the rest of the paper. In Sect. 4, we

consider the case of [C3/Z3], which was considered from the B-model point of view

by Bouchard, Klemm, Mariño and Pasquetti in [4,5]; we move in Sect. 5 to our main

case of study: [C3/Z4]. Finally, we collect in the Appendix a few technical results

about the Eynard-Orantin recursion and its relationship with quasi-modular forms,

and list part of the results of our B-model computations of higher genus open string

potentials for [C3/Z4].

2 The A-model side

2.1 Open Gromov-Witten invariants following Katz and Liu

In [23], Katz and Liu propose a tangent/obstruction theory for the moduli space of

open stable maps which parallels the construction in ordinary Gromov-Witten the-

ory. Consider an almost Kähler manifold (X, J, ω), a Lagrangian L ⊂ X , a class

β ∈ H2(X, L) and classes γi ∈ H1(L) such that
∑

γi = ∂β. The sheaves of the

obstruction theory (here described in terms of their fiber over a smooth moduli point
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(�, f ) of Mg,h(X, L|β; γ1, . . . , γh)) fit in the exact sequence:

0 → H0(�, ∂�, T�, T∂�) → H0(X, L , f ∗TX , ( f|∂�)∗TL) → T 1 →
H1(�, ∂�, T�, T∂�) → H1(X, L , f ∗TX , ( f|∂�)∗TL) → T 2 → 0 (1)

The expected dimension is:

rk T 1 − rk T 2 = μ( f ∗TX , ( f|∂�)∗TL) − (dim X − 3)χ(�), (2)

where μ denotes the generalized Maslov index of the real sub-bundle ( f|∂�)∗TL ⊂
f ∗TX [23, Section 3.7]. In the case that X is a complex manifold and L is the fixed

locus of an anti-holomorphic involution, the complex double of ( f ∗TX , ( f|∂�)∗TL) is

f ∗
C

TX and the Maslov index coincides with the first Chern class of the latter bundle.

Hence, for X a Calabi-Yau threefold, we obtain a moduli space of virtual dimension 0.

With the additional assumption that the moduli space is endowed with a well-behaved

torus action, Katz and Liu propose the existence of a virtual cycle and give an explicit

formula for its localization to the fixed loci of the torus action. Such cycle does depend

on the torus action: different choices of action lead to different enumerative invariants.

Next, Katz and Liu specialize to X the resolved conifold, that is, the total space

of OP1(−1) ⊕ OP1(−1), and the Lagrangian L being the fixed locus of the anti-

holomorphic involution A : (z, u, v) �→ (1/z̄, z̄v̄, z̄ū), where we use local coordi-

nates (z, u, v) for a chart around 0 ∈ P1. The standard circle action on the base P1

preserves the equator (L ∩ P1). An extension of the circle action to a C∗ action and

lifting of the torus action to the total space of the resolved conifold is compatible with

the anti-holomorphic involution if it has Calabi-Yau weights. Any such choice, say

with weights (h̄,−ah̄, (a−1)h̄)(∈ H∗
C∗(pt.) ∼= H∗

S1(pt.) = C[h̄]) over 0, determines

uniquely a real line bundle inside (TL)|equator, and this topological data in turn deter-

mine the virtual cycle used to compute open invariants. The fact that the invariants are

not intrinsic to the geometry of (X, L) matches the physical expectations from large

N duality [18], and in particular makes a the natural closed string counterpart of the

framing ambiguity of knot invariants in Chern-Simons theory [32].

The torus action on the target induces a torus action on the moduli space of maps,

and the fixed loci are easy to understand. The restriction of the virtual cycle to the

fixed loci is evaluated using sequence (1). Before describing these steps in detail, we

recall the properties of two bundles that play a special role in the restriction of the

virtual cycle to the fixed loci.

2.1.1 The bundles L(2m), N (m)

We describe two Riemann-Hilbert bundles on (D2, S1) that play a special role in our

story. For m > 0, consider the bundle OP1(2m) and the anti-holomorphic involu-

tion σ : (z, u) �→ (1/z̄,−z̄−2m ū). The fixed locus for σ is a real sub-bundle of the

restriction of OP1(2m) to the equator. We abbreviate Katz and Liu and define

L(2m) = (L(2m), L(2m)R) :=
(
OP1(2m)|D2 ,OP1(2m)σ|S1

)
. (3)
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The global sections of L(2m) are by definition the σ -invariant sections of OP1(2m),

and they can be embedded torus equivariantly into the sections of the complex bundle

OP1(m):

H0(L(2m)) →֒ H0(OP1(m))

m−1∑

j=0

(
a j z

j − ā j z
2m− j

)
+ ibzm �→

m−1∑

j=0

a j z
j + bzm, (4)

with a j ∈ C, b ∈ R. Therefore, the weights of the torus action for the left-hand side

can be computed in terms of the weights for the right-hand side.

Remark 2.1 The identification (4) chooses an orientation for the space of global sec-

tions of L(2m).

Remark 2.2 There is an abuse of notation in saying “torus equivariantly”, since a real

torus acts on the left vector space, while the complex torus C∗ acts on the right. Here we

identify the circle with U (1) ⊂ C∗. For w ∈ Z, we identify the real two-dimensional

S1-representation corresponding to rotation by wθ with the one-dimensional complex

C∗ representation corresponding to multiplication by αw, and we give both weight

wh̄. By weight 0, we mean the trivial representation, which is one real dimensional in

the real case, and one complex dimensional in the complex case.

For m > 0, now consider OP1(−m) ⊕ OP1(−m). The anti-holomorphic involu-

tion σ : (z, u, v) �→ (1/z̄, z̄m v̄, z̄m ū) fixes a two-dimensional real sub-bundle on the

equator that we use to define N (m):

N (m) = (N (m), N (m)R) := ((OP1(−m) ⊕ OP1(−m))|D2 ,
(
OP1(−m) ⊕ OP1(−m))σ|S1

)
. (5)

The sections of the first cohomology group of N (m) are by definition the σ -invariant

sections of H1(OP1(−m) ⊕ OP1(−m)), and an orientation is chosen by the torus

equivariant identification with the sections of H1(OP1(−m)):

H1(N (m)) → H1(OP1(−m))⎛
⎝

m−1∑

j=1

ā j

zd− j
,

m−1∑

j=1

a j

z j

⎞
⎠ �→

m−1∑

j=1

a j

z j
. (6)

2.2 The orbifolds [C3/Zn]

2.2.1 The geometric setup

In this section, we specialize the framework of [23] to the case of the “orbifold ver-

tex”, deriving general formulas for open Gromov-Witten invariants in terms of the
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closed full descendant Gromov-Witten potential. Identify Zn with the multiplicative

group of nth roots of unity, set ε = e
2π i

n and consider the quotient X = [C3/Zn] by a

Gorenstein action:

ε · (x0, x1, x2) = (εα0 x0, ε
α1 x1, ε

α2 x2), (7)

with α0 + α1 + α2 ≡ 0 (mod n). We wish to view our orbifold as an open chart of a

global quotient of the resolved conifold:

X ⊂ [O(−1) ⊕ O(−1)/Zn]

Recall that OP1(−1) ⊕ OP1(−1) can be given local coordinates (z, u, v) at 0,

(z′, u′, v′) at ∞ and the transition functions are z′ = 1/z, u′ = uz, v′ = vz. Making

the identification (x0, x1, x2) = (z, u, v), the action (7) on the chart centered at 0

induces an action on the chart at ∞:

ε · (z′, u′, v′) := (ε−α0 z′, εα0+α1 u′, εα0+α2v′).

Define an anti-holomorphic involution:

σ(z, u, v) = (1/z̄, z̄v̄, z̄ū).

The fixed locus of σ is a Lagrangian L with topology S1 × R2 and explicit equation:

L = {(eiθ , u, z̄ū)}

One checks that ε · σ(−) = σ(ε · −); hence, σ descends to the quotient defining a

Lagrangian L ⊂ X. We want a C∗ action on the total space of the resolved conifold,

which lifts the canonical action on P1, descends to the quotient and is compatible with

the anti-holomorphic involution (that is, U (1) ⊂ C∗ preserves the Lagrangian):

σ(λP) = 1/λ̄σ (P).

Any Calabi-Yau action, i.e., an action where the sum of the three weights for the

tangent space of a fixed point equals zero satisfies these requirements. Since the weight

s0 is canonically linearized via the standard action on the tangent bundle to the dou-

bled (orbi)-disc, the weights are determined up to the choice of a free parameter. It is

convenient to use fractional weights for the induced action on the quotient:

(s0, s1, s2) =
(

h̄

neff
,−ah̄, ah̄ − h̄

neff

)
,

The parameter a should then correspond (up to an “integer/n” translation) to the large

N dual of the framing ambiguity of Chern-Simons knot invariants [2,32]. To keep the

notations lighter in the general formulas, we continue to use (s0, s1, s2), implicitly

intending them as functions of the framing a as in the above equation.
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Fig. 1 A fixed map: the

compact (orbi)-curve K , hosting

all marks, contracts to the

“origin” of X. Two discs,

attached to K at possibly stacky

points, map to the “z-axis” their

boundaries winding around the

intersection of the Lagrangian L

2.2.2 The fixed loci

The fixed maps for the torus action consist of a compact curve, possibly with twisted

marks, with a collection of orbi-discs attached, depicted in Fig. 1. The origin of the

discs can be twisted, and the corresponding attaching point on the compact curve is

twisted by the opposite character. The compact curve contracts to the (image of the)

origin, and the discs are mapped rigidly to the zero section of [O(−1) ⊕ O(−1)/Zn],
with their boundary wrapping around the equator. We describe such a map f via the

universal diagram of its complex doubling. Doubling the disc, we obtain an orbi-sphere

C with 0 a k-twisted point, ∞ a (−k)-twisted point. A fixed map f of degree d is then

described by the following diagram:

⋃tin
j=1(P

1, x j )

X=x
teff
j

��

FC
�� (P1, z)

Z=zneff

��

C
fC

��

�������������
[P1/Zn]

�����������

(P1, X)
Z=Xd

�� (P1, Z)

(8)

where

nin = gcd(α0, n) neff = n/gcd(α0, n)

tin = gcd(k, n) teff = n/gcd(k, n)

FC : {z = x
dnin/tin
j }

and the diagonal maps are the projections to the coarse moduli spaces. The Zn action

on the upper-left collection of P1’s is defined as follows: if p j ∈ (P1, x j ), then

ε · p j = p j+1 ∈ (P1, x j+1) and

x j+1(p j+1) = εx j (p j ).
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Remark 2.3 It is immediate to check that the above diagram is k-twisted equivariant

(FC(εtin · x j ) = εk · FC(x j )) if and only if:

d ≡ k
α0

nin
(mod neff), (9)

and therefore, this numerical condition between degree and twisting must hold for f

to exist. Note also that Eq. (9) guarantees that the degree of FC is always integer.

2.2.3 The obstruction theory

In this section, we give a formula for the restriction of the obstruction theory (1) to a

particular fixed locus in terms of the combinatorial data of the fixed locus. We give

a careful treatment of the disc contribution, since that is essentially the part which is

new. We denote by d the winding degree, and by k the twisting at the center of the

disc.

• compact curve: the contribution by a contracting compact curve is given by the

equivariant euler class of three copies of the dual of the appropriate αi -character

sub-bundles of the Hodge bundle, linearized with the weights of the torus action.

Notation and further explanation can be found, for example, in [8, Section 2.1]:

eeq(E∨
α0

(s0) ⊕ E∨
α1

(s1) ⊕ E∨
α2

(s2)). (10)

• node: each node contributes a torus weight for any direction that the twisting makes

invariant (i.e. si if kαi ≡ 0 (mod n)), a denominator corresponding to smoothing

the node. There is a gluing factor of n (carefully discussed in [8, Section 1.4]).

And finally, we include an automorphism factor at the denominator to cancel the

automorphisms of the disc. Define δi := s
δ
[n]
kai ,n

i = si if kαi ≡ 0 (mod n) and 1

otherwise. Then the contribution is

δ0δ1δ2 · 1
h̄
d

− ψ
· n · 1

h̄
d

(11)

• disc: a degree d, k-twisted at 0, fixed map f from a disc has nin automorphisms, an

h̄/d factor for infinitesimal automorphisms, and a contibution from the pull-back

of the tangent bundle to X:

1

nin

h̄

d
· eeq(R•

∗ f ∗(TX, TL)) := Dk(d, a). (12)

In the remainder of this section, we give an explicit discussion and derive formu-

las for this last contribution, which we dub disc function. We study f ∗(TX, TL) by

studying its pull-back to the universal diagram. Splitting the bundle into its tangent
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and normal component to the x0 direction, we have

F∗(TC3 , TL) =
tin⊕

j=1

L

(
2

dnin

tin

)
⊕

tin⊕

j=1

N

(
dnin

tin

)
. (13)

This bundle (over an irreducible component of the fixed locus) is trivial but not

equivariantly trivial. Its weights are computed via the identification discussed in

Sect. 2.1.1, as in [23]. We must take this process one step further and select the sec-

tions that descend to the orbifold bundles, i.e., that are invariant under the Zn action.

Referring to diagram (8) to identify the appropriate local coordinates, and defining

xℓ =
∑tin

j=1 xℓ
j , we have

H0(L(2m))Zn

T −equiv∼=
tin⊕

j=1

〈
∂

∂z
, x j

∂

∂z
, x j

2 ∂

∂z
, . . . , x j

m−1 ∂

∂z

〉Zn

=
〈

xℓ ∂

∂z

∣∣∣∣ 0 ≤ ℓ < m, ℓ ≡ m (mod teff)

〉
. (14)

Remark 2.4 The section xm ∂
∂z

, corresponding to the pull-back of z ∂
∂z

, does not appear

in the above list as it is acted upon trivially both by the torus and by Zn . This also

explains the congruence in the last equality of (14).

For the normal part of the obstruction theory,

H1(N (m))Zn

T −equiv∼=
tin⊕

j=1

〈
1

x j

,
1

x j
2
, . . . ,

1

x j
m−1

〉Zn

=
〈
xℓ

∣∣∣∣−m < ℓ < 0, ℓ ≡ kα1

tin
(mod teff)

〉
. (15)

To compute the torus weights of the invariant sections, we look at the weights

over 0:

1. The section ∂
∂z

has weight s0 = h̄/neff .

2. The section x j has weight − tin
nd

h̄.

3. The trivializing section for the bundle N (m) has weight s1.
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Piecing everything together, we obtain

eeq
(

H0(L(2m))Zn

)
=

⌊ d
neff

⌋∏

r=1

h̄r

d
= ⌊ d

neff
⌋!
(

h̄

d

)⌊ d
neff

⌋
(16)

eeq
(

H1(N (m))Zn

)
=

⌊ d
neff

− 1
teff

+
〈

kα1
n

〉
⌋∏

r=1

(
s1 − h̄

d

〈
kα1

n

〉
+ h̄r

d

)

=
(

h̄

d

)⌊ d
neff

− 1
teff

+
〈

kα1
n

〉
⌋ Ŵ
(

ds1 +
〈

kα2
n

〉
+ d

neff

)

Ŵ
(

ds1 −
〈

kα1
n

〉
+ 1
) (17)

For k and d satisfying (9), the disc function is then:

Dk (d, a) = 1

nin

(
h̄

d

)age(εk )
1

⌊ d
neff

⌋!

Ŵ
(

ds1 +
〈

kα2
n

〉
+ d

neff

)

Ŵ
(

ds1 −
〈

kα1
n

〉
+ 1
) (18)

2.2.4 The localization formula for open invariants

We combine all ingredients and write down our localization formula/definition for

open Gromov-Witten invariants.

Definition 1 For an invariant for a genus g bordered Riemann surface with r (labeled)

boundary components with winding d1, . . . , dr and mi insertions of the inertia class

1 i
n

(and at least two total insertions), we have

〈
1m0 1

m1
1
n

· · · 1
mn−1
n−1

n

〉d1,...,dr

g

=
(

neff

h̄

)r ∑

k j

r∏

j=1

(
δ

j
0δ

j
1δ

j
2 Dk j (d, a)

) ∫

M

eeq
(
E∨

α0
(s0) ⊕ E∨

α1
(s1) ⊕ E∨

α2
(s2)
)

∏r
j=1

(
h̄
d j

− ψ j

) ,

(19)

where

M = Mg,
∑

m j +r

(
BZn, 0; 1m0 1

m1
1
n

· · · 1
mn−1
n−1

n

, 1 n−k1
n

, . . . , 1 n−kr
n

)

and the sum is over all 0 ≤ k j < n that satisfy (9) and such that
∑

k j =
∑

imi

(mod n).

Definition 2 Let λ, w = {wm}m∈N , τ = {τi }n
i=1 be formal parameters. The open orb-

ifold Gromov-Witten potential F (X,L)(λ, w, τ ) and the genus g, h-holes open orbifold
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Gromov-Witten potentials F
(X,L)
g,h (w1, . . . , wh, τ ) of (X, L) are defined as the formal

power series

F (X,L)(λ, w, τ ) :=
∞∑

g,h=0

λ2g−2+h
∑

d1,...,dh
m0,...,mn−1

h∏

j=1

w
d j

j

d j !

n∏

k=1

τ
mk

k

mk !

〈
1m0 1

m1
1
n

· · · 1
mn−1
n−1

n

〉d1,...,dr

g

=:
∞∑

g,h=0

λ2g−2+h F
(X,L)
g,h (w1, . . . , wh, τ ) (20)

We refer to the potentials F
(X,L)
g,h (w1, . . . , wh, τ ) in terms of the topology of the

source curve; in particular, F
(X,L)
0,1 (w, τ) and F

(X,L)
0,2 (w1, w2, τ ) will often be respec-

tively called the disc potential and the annulus potential in the following.

2.2.5 Disc invariants and Givental’s J -function

An immediate consequence of formula (19) is that a generating function for disc

invariants can be obtained by appropriately turning our disc function into an orbifold

cohomology- valued function and by pairing it with Givental’s J -function. This is the

first step of a general philosophy that should allow to recover a generating function

for all open Gromov-Witten invariants for [C3/Zn] in terms of the (full descendant)

Gromov-Witten potential for the closed theory. We are investigating this together with

Hsian-Hua Tseng.

Givental’s J -function is a generating function that encodes all Gromov-Witten

invariants with at most one descendant insertion. We consider the “small” J -function,

where we set the age zero and age two insertion variables equal to 0. We denote by

1α the fundamental classes of inertia strata of age one, τα the corresponding dual

coordinate. By 1β , we denote an arbitrary inertia stratum.

J (si ; τα; z) = z1 + τα1α

∑

m

τm
α (1β)∨

m!

×
∫

M0,m+1(BZn ,0;1m
α ,1β )

e
(
E∨

1 ⊗ O(s0) ⊕ E∨
1 ⊗ O(s1) ⊕ E∨

1 ⊗ O(s2)
)

(z − ψ)

(21)

Note that inside the summation formula, we insert cohomology classes that are dual

to 1β with respect to the orbifold Poincaré pairing.
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We package disc functions into a cohomology-valued generating function:

D(d, a) :=
n−1∑

k=0

Dk(d, a)
(

1 k
n

)∨
. (22)

Then the degree d disc potential for [C3/Zn] is obtained by specializing the variable

z to h̄/d and pairing with the disc function:

Fdisc
0 (x, y, a) :=

∑

n,d

〈1m
α ; a〉d

0

xm

m!
yd

d!

=
∑

d

[
1

h̄
J

(
s1, s2, s3; x; h̄

d

)
D(d, a)

]
yd

d!

Remark 2.5 Note that the J -function packaging takes care of the unstable terms as

well:

no insertions. these terms are obtained from the multiplication of the term 1
h̄

z1 with

D0(d, a)(1)∨.

one 1α insertion. likewise these terms are obtained as the products

1

h̄
1α D1(d, a)(1α)∨

3 The B-model side

3.1 Toric mirror symmetry and spectral curves

We review the main concepts that lead to the computation of B-model generating

functions. We first review the mirror symmetry construction of [20,21] of B-model

mirrors of toric Calabi-Yau threefolds, thereby introducing the notion of mirror spec-

tral curves, as well as its extension to the open string sector [2,3,25]. Finally, we

review the formalism of [4,13] for the computation of open string potentials from the

spectral curve, as well as their transformation properties when crossing a wall in the

extended Kähler moduli space [1,5,7].

3.1.1 A review of closed mirror symmetry

Let X be a Calabi-Yau threefold. Let {�i }b2(X)
i=1 be a basis of H2(X, Z) given by funda-

mental classes of compact holomorphic curves in X , and denote {�i }b2(X)
i=1 their duals

in co-homology. For t ∈ H1,1(X) ≃ H2(X, C), write t =
∑

i ti�
i . Closed mirror

symmetry for Calabi-Yau threefolds (see [12] for a comprehensive review) turns the
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computation of the genus zero Gromov-Witten potential of X

F X
0 (t) = 1

3! (t, t ∪ t) +
∑

β∈H2(X,Z)

β �=0

e−t·β N0,β , (23)

where

(a, b) =
∫

X

a ∪ b for a, b ∈ H•(X), N0,β =
∫

[M0,0(X,β)]vir

1, (24)

into the computation of periods of the holomorphic (3, 0) form � of a “mirror” flat

family of Calabi–Yau threefolds X̂ → B, where B is a complex algebraic orbifold

with dimC B = h2,1(X̂):

ti ({a j }) =
∮

Ai

�
∂F X̂

0

∂ti
({a j }) =

∮

Bi

�. (25)

In (25), {a j }h2,1(X̂)
j=1 are local coordinates on the base B, while {Ai , Bi }n

i=1 are a basis

of homology three cycles Ai , Bi ∈ H3(X̂ , Z) such that the intersection pairing has

the canonical Darboux form (Ai , B j ) = δi j , (Ai , A j ) = (Bi , B j ) = 0, and canoni-

cally fixed by the asymptotic properties of the periods around a maximally unipotent

monodromy point. The statement of mirror symmetry is then

F X
0 (ti ) = F X̂

0 (a j (ti )) (26)

By (25), Gromov-Witten invariants of X can be recovered by explicit knowledge of

the periods of the holomorphic (3, 0) form of X̂ and therefore of the mirror manifold

X̂ itself.

In the case in which X is toric, it is natural to expect that the pair (X̂ ,�) could

be constructed entirely from the toric data of X . In the physics literature [20,21],

arguments of two-dimensional quantum field theory suggest an explicit construction

of (X̂ ,�), which we briefly review. Since K X ≃ OX , the tip of the one-dimensional

cones of the fan of X all lie on an affine hyperplane H ⊂ C3 [16]; the intersection of

the fan with H yields a finite order subset of Z2 (see Figs. 2–3). Let �X denote the

convex hull of such a set of points.

Definition 3 (Hori-Iqbal-Vafa mirror, [20,21]) The B-model target space X̂ mirror

to a toric CY three-fold X is the family of hypersurfaces in C2(x1, x2)× (C∗)2(U, V )

x1x2 = PX (U, V ), (27)
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Fig. 2 The toric fan of

X = O
P1 (−1) ⊕ O

P1 (−1)

4

v 2

v 3

v 1

v

Fig. 3 The Newton polytope

�X of X =O
P1 (−1)⊕O

P1 (−1)

(1, 1)(0, 1)

(0, 0) (1, 0)

where PX (U, V ) is the Newton polynomial associated to the polytope �X

PX (U, V ) =
∑

p∈�X

apU pr1(p)V pr2(p) (28)

and we have denoted by pri : �X → Z, i = 1, 2 the canonical projections to the

coordinate axes of C2 ⊃ Z2.

Example Let X = OP1(−1) ⊕ OP1(−1). The rays of its fan can be taken to be

v1 =

⎛
⎝

1

0

1

⎞
⎠ , v2 =

⎛
⎝

0

1

1

⎞
⎠ , v3 =

⎛
⎝

0

0

1

⎞
⎠ , v4 =

⎛
⎝

1

1

1

⎞
⎠ . (29)

The affine hyperplane H in this case is the subspace z = 1 of C3(x, y, z). The polytope

�X is depicted in Fig. 3; the Newton polynomial PX (U, V ) in this case is

PX (U, V ) = a1 + a2U + a3V + a4U V
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Equation (27) suggests that the non-trivial aspects of the complex geometry of X̂ be

entirely encoded in the affine curve PX (U, V ) = 0. This is true in particular for period

integrals.

Proposition 3.1 ([14,22]) Periods of the holomorphic 3-form reduce to periods

∮

γ

dλX (30)

of the 1-differential

dλX = log V d log U (31)

over one cycle γ of the mirror curve HX given by the zero locus PX (U, V ) = 0. Its

projectivization ŴX = HX is a smooth projective curve of genus g, where g is equal

to the number of internal points of �X .

Remark 3.2 The periods of � for compact Calabi-Yau manifolds are usually com-

puted by solving the associated Picard-Fuchs system. However, when X is toric and

therefore non-compact, the evaluation of � on H3(X̂ , Z) ≃ H1(ŴX , Z) fails to repro-

duce a complete set of solutions of the Picard-Fuchs equations [12,17]. If � is a

choice of a principal branch for the logarithm on ŴX , i.e., a disconnected union of real

segments on ŴX such that log U, log V are single-valued meromorphic functions on

ŴX \ �, the missing period integrals can be recovered by considering periods of dλX

along non-compact cycles γ in ŴX \� [7,14]. When we need to stress that we refer to

the set of non-compact periods with logarithmic singularities (i.e. periods over three

cycles which are mirror of non-compact divisors of X ), we denote them with a tilde

{t̃i }b2(X)−g
i=1 .

3.1.2 Open string mirror symmetry

We have seen that the ordinary statements of mirror symmetry simplify, in the toric

case, into computations of periods of a 1-differential on a Riemann surface. This

situation generalizes to the open string setting.

Open string mirror symmetry deals with a B-model construction of the open

Gromov-Witten potentials F
(X,L)
g,h (as in Definition 2) of a pair (X, L), with L ⊂ X a

Lagrangian submanifold, in terms of a “mirror” pair (X̂ , L̂), where L̂ is a holomor-

phic submanifold of X̂ . As a natural extension of the closed mirror symmetry lore,

genus zero open mirror symmetry intends to recover genus zero open Gromov-Witten

invariants N
d1,...,dh

0,β and the corresponding potentials

F
(X,L)
0,h (ti , xi ) =

∑

β∈H2(X,Z)

∞∑

d1=1,...,dh=1

N
d1,...,dh

0,β e−t·β
h∏

i=1

x
di

i

di !
(32)
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from the study of complex variations of the pair (X̂ , L̂), thus leading to period compu-

tations in relative co-homology [15,24,28]. In particular, the disc potential (in physical

terms, the domain wall tension) should be computed as a co-chain integral [33]

F
(X̂ ,L̂)
0,1 =

∫

H

�, (33)

where ∂ H = B+ − B− and [B+] = [B−] = [L̂].1
The toric case presents a number of simplifications in the open setting too. A distin-

guished class of special Lagrangian A-branes with topology R2 × S1 were constructed

by Aganagic and Vafa in [3]: in an affine patch, these are the Lagrangians constructed

in Sect. 2 for n = 1. It was proposed by [3] that their mirror B-branes should be cut

by the equations

x1 = 0 = P(U, V ) or x2 = 0 = P(U, V ) (34)

The ambiguity in the choice of x1 or x2 results [3] in an overall sign ambiguity of the

open string amplitudes. For this kind of branes, dimensional reduction of the holomor-

phic Chern-Simons action on the brane shows that the computation of disc invariants

reduces to the computation of a sort of “Abel-Jacobi” map on the mirror curve.

Definition 4 Let X be a toric Calabi-Yau threefold, and L ⊂ X be an Aganagic-Vafa

Lagrangian A-brane. Then the B-model disc potential of (X̂ , L̂) is given by

F
(X̂ ,L̂)
0,1 (p) =

p∫

p∗

dλX , (35)

where p∗, p ∈ ŴX , with p∗ fixed, and dλX is as in (31).

Remark 3.3 Both the “closed” (30) and the “open” (35) periods are defined in terms

of a contour integral of the one-form dλX , which is specified by the toric data. The

latter in itself is however only defined up to an action of G ≃ GL(3, Z), i.e., changes

of basis for the three-dimensional lattice where the fan of X lives; in particular, a

subgroup H ≃ GL(2, Z) acts effectively on the hyperplane H where the tip of the

one-dimensional cones lie. By (28), this induces a GL(2, Z) transformation on the

B-model variables V and U

(
V

U

)
→
(

Ṽ

Ũ

)
=
(

V aU b

V cU d

)
, ad − bc = ±1 (36)

and, accordingly, on the 1-differential dλX = log V d log U . Remarkably [13], the

prepotential F X̂
0 computed via (25) is invariant under the transformation (36). This

1 Notice that (33) implies the choice of representatives in the homology class of L̂ . This causes an ambiguity

in the leading term of the open string moduli expansion, entirely analogous to the quadratic ambiguity of

the ordinary, closed genus zero Gromov-Witten potential.
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is however not the case for the disc potential (35), that is, the disc potential is not an

invariant of the pair (X̂ , L̂), but it rather comes with an integer ambiguity. Its meaning

was elucidated in the study by [2] (see also [4] for a very clear exposition). First of all

recall that GL(2, Z) has three generators:

P =
(

1 0

0 −1

)
, S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
(37)

The T transformation generates a free abelian subgroup of SL(2, Z), which leaves

invariant the U -direction of C2(V, U ). Then

1. Fixing a U -direction, for example by acting by a combination involving S and T ,

amounts to specifying the Aganagic-Vafa SLag L . The reader can find the details,

based on the description of smooth toric Calabi-Yau threefolds as T2×R fibrations,

in [4].

2. After fixing the U -direction, there’s a leftover Z ⋊ Z2-ambiguity given by the T

and P transformations. The P-ambiguity results by (31) in a sign ambiguity in

the definition of the disc function, presumably related to orientation problems in

the construction of the moduli space of stable maps with Lagrangian boundary

conditions [30]. The T -ambiguity, called the framing of the brane L , is an intrinsic

ambiguity in the computation of the disc function, and it was related in [2] to an

analogous ambiguity [32] in the conjectural dual description of the A-model on

(X, L) via Chern-Simons theory and related knot invariants [29].

Conjecture 3.4 (Mirror symmetry for disc invariants)

F
(X,L)
0,1 (ti , x j ) = F

(X̂ ,L̂)
0,1 (zi (ti ), p(ti , x j )) (38)

As in the ordinary closed string case, physical arguments related to the BPS inter-

pretation of open string amplitudes suggest that the conjectural relationship of F
X̂ ,L̂
0,1

with a Gromov–Witten disc potential should hold true [2,25] only up to a change of

variables relating the B-model open modulus p in (35), i.e., a point on the mirror

curve ŴX , with a suitably defined A-model open coordinate x . Mathematically, this

is achieved by writing a Picard-Fuchs system extended to relative co-homology [15]:

the additional solutions provide the so-called open mirror map. When X is smooth,

i.e., at “large radius”, p in (35) and x in (32) are related as

x = p
∏

i

(
zi

qi

)ri

, (39)

where ri ∈ Q, zi are B-model closed moduli, and qi are exponentiated, closed flat

coordinates qi = eti ; the rational numbers ri are determined by the solutions of the

extended Picard-Fuchs system. In other words, Eq. (39) means that the open string

A-model modulus is related to the B-model one by a correction involving closed

moduli only. Equation (52) describes how (39) is modified in the orbifold setting.
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3.2 The remodeled B-model and open orbifold invariants

3.2.1 The Eynard-Orantin recursion

We have seen how the B-model prepotential and disc function are completely deter-

mined in terms of the mirror geometry, i.e., the mirror curve ŴX together with its

graph in (C∗)2(U, V ). Recently, an influential proposal was put forward by Bouchard,

Klemm, Mariño and Pasquetti [4,27], which gives a complete and unambiguous pre-

scription for the computation of generating functions for genus g, h-holed open Gro-

mov-Witten invariants via residue calculus on ŴX . Their conjecture was based on an

application of the Eynard-Orantin recursive formalism [13] to the case of mirrors of

toric Calabi-Yau threefolds.

To give the precise statement of the conjecture, we start with the following

Definition 5 A spectral curve S is a 5-tuple (Ŵ, C,�, u, v) where

1. Ŵ is a family of genus g complex projective curves,

2. C = {C1, . . . , Cm}, for m ∈ N, is a collection of holomorphic sections of Ŵ,

3. � = {�1, . . . ,�[ m
2 ]} is a smooth real family of arcs � = {�i = (C2i−1, C2i )}

[ m
2 ]

i=1,

4. u, v : Ŵ → C are marked analytic functions on Ŵ, meromorphic on Ŵ \ � and

with at most logarithmic polydromies on �.

If du and dv never vanish simultaneously, the spectral curve is called regular.

Mirror symmetry for toric Calabi-Yau threefolds provides us with an example

of a spectral curve. In this case, S = (ŴX , C,�, log U, log V ), where C = {p ∈
ŴX |V (p)U (p) = 0} ∪ {p ∈ ŴX |1/(V (p)U (p)) = 0},� is a choice of principal

branch for log V, log U , and we have denoted with the same symbol U, V the unique

meromorphic lift of U, V to ŴX .

Suppose now that S is a regular spectral curve, and let {qi } denote the ramification

points of the v projection to C. Near qi there are two points q, q̄ ∈ Ŵ with the same

projection U (q) = U (q̄). Picking a polarization H ∈ Sp(2g, Z) of Ŵ, that is, a sym-

plectic basis of H1(Ŵ, Z), the Bergmann kernel is defined as the unique meromorphic

differential on Ŵ × Ŵ with a double pole at p = q with no residue and no other pole,

and normalized so that for every p ∈ Ŵ

∮

p×AI

B(p, q) = 0. (40)

It is useful to introduce also the 1-form

dEq(p) = 1

2

q̄∫

q

B(p, ξ), (41)

which is defined locally near a ramification point qi . Notice that B(p, q) depends only

on (Ŵ,H) and on no additional data.
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Out of S, Eynard and Orantin [13] define recursively an infinite sequence of cor-

relators W
(g)

h (p1, . . . , ph) from the spectral curve as follows:

Definition 6 (Eynard–Orantin recursion) For all g, h ∈ Z+, h ≥ 1, a meromor-

phic differential W
(g)

h (p1, . . . , ph) ∈ Symh�(1,0)(ŴX ) is defined from the following

recursion

W
(0)
1 (p) = 0 (42)

W
(0)
2 (p, q) = B(p, q) (43)

W
(g)

h+1(p, p1, . . . , ph) =
∑

qi

Res
q=qi

dEq(p)

�(q) − �(q̄)

(
W

(g−1)

h+2 (q, q̄, p1, . . . , ph)

+
g∑

l=0

∑

J⊂H

W
(g−l)
|J |+1(q, pJ )W

(l)
|H |−|J |+1(q̄, pH\J )

)
.

(44)

Here we wrote �(u) := v(u)du. Moreover, we denoted H = 1, . . . , h, and given

any subset J = {i1, . . . , i j } ⊂ H we defined pJ = {pi1 , . . . , pi j
}.

The entire set of correlators is constructed out of the spectral curve by residue calcu-

lus on Ŵ. The conjecture of [4,27] is that when S is the mirror spectral curve of a toric

Calabi-Yau threefold X , such quantities compute precisely the open Gromov–Witten

potentials of (X, L), for any genus g and number of holes h.

Conjecture 3.5 (BKMP, [4,27]) Let S = (ŴX , C,�, log U, log V ) be the mirror

spectral curve of a toric CY 3-fold X, and let Ai in (40) correspond to homology

one cycle in ŴX such that the periods of the Hori–Vafa differential have logarithmic

singularities at the large complex structure point. Let S f be the one-integer param-

eter family of spectral curves obtained by sending U → U V f , V → V for f ∈ Z.

Then the integrated correlation functions, F
(X̂ ,L̂)
g,h =

∫
W

(g)

k (p1, . . . , pk)
dp1

p1
· · · dph

ph
,

for 2g + h > 1, are equal to the A-model framed open Gromov–Witten potential of

(X, L) where L is the mirror brane to ŴX ⊂ X̂ , after plugging in the closed and open

mirror maps.

3.2.2 Open string amplitudes and wall-crossings

The residue computation of Eqs. (42)–(44) gives, in principle, the correlators

W
(g)

h (p1, . . . , ph) as closed functions of the open moduli p1, . . . ph as well as of

the complex moduli of the Hori-Iqbal-Vafa curve (28). A remarkable property of

W
(g)

h (p1, . . . , ph) is that they are almost-modular forms [5,13] of ŴX , as we now

review.

The mirror Calabi-Yau X̂ of X has a complex structure moduli space MX̂ , which

by the Bogomolov-Tian-Todorov theorem is a smooth complex manifold of complex

dimension b2(X). MX̂ admits a natural toric compactification to a toric orbifold MX̂ ,
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whose fan is given by the secondary fan of X [12]; the Gauss-Manin connection on

MX̂ lifts to a (in general meromorphic) connection on MX̂ , whose monodromies

around each boundary point of MX̂ generate the monodromy group G of X̂ . The lat-

ter [1] turns out to be a finite index subgroup of Sp(2g, Z), where g is the genus of ŴX .

We have the following

Theorem 3.6 ([5,13]) W
(g)

h (p1, . . . , ph) admits the following expansion

W
(g)

h (p1, . . . , ph) =
3g−3+2h∑

n=0

cn(τ, {t̃i }, {p j })En
2 (τ ), (45)

where τ is the period matrix of ŴX , {t̃i }b2(X)−g
i=1 are the periods of v(p)du(p) over

cycles mirror of non-compact divisors of X (see Remark 3.2), cn is a holomorphic

function of τ, {t̃i }, and {p j }, and E2 is the genus-g generalization of the second

Eisenstein series (see [1]).

Theorem 3.6 acquires particular relevance in view of the following

Conjecture 3.7 ([4]) W
(g)

h (p1, . . . , ph) is a weight zero holomorphic almost modular

form of G. More precisely, cn in (45) is for all pi and t̃i a −2n modular form of G.

Let us explain more in detail what we mean by almost modularity, focusing for def-

initeness to the case g = 1 which will be discussed in Sects. 4–5. Under an Sp(2, Z) =
SL(2, Z) transformation

M :=
(

A B

C D

)
∈ SL(2, Z) (46)

τ → τ̃ = (Cτ + D)−1(Aτ + B) (47)

E2(τ ) transforms as

E2(τ̃ ) = (Cτ + D)2 E2(τ ) + d2(τ ), (48)

where

d2(τ ) = 6

π i
C(Cτ + D). (49)

Hence, it is nearly a weight two modular form of SL(2, Z), but for a shift linear in τ .

The almost modularity of W
(g)

h (p1, . . . , ph) stems entirely from that of E2(τ ). Under

a modular transformation τ → τ̃ , the expansion (45) gets transformed to

W
(g)

h → W
(g)

h

W
(g)

h (p1, . . . , ph) =
3g−3+2h∑

n=0

cn(τ, {t̃i }, {pi })(E2(τ ) + d2(τ ))n . (50)
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Equation (50) expresses the variation of the open string generating functions under a

change in the choice of polarization of the mirror curve. Recall that in Conjecture 3.5,

a polarization was fixed by requiring the A-periods of the Hori–Vafa differential to be

large radius flat coordinates, i.e., logarithmic solutions of the PF system around the

maximally unipotent monodromy point. Changing polarization then corresponds to

an Sp(2g, Z) transformation to a different basis of solutions of the GKZ system.

Almost-modularity has a particular relevance for the mirror symmetry treatment of

the behavior of Gromov–Witten potentials under variations of the Kähler structure and

in particular under birational transformations. Let us consider a situation in which two

pairs (X, L) and (X,L) are given, where X is a smooth toric CY3, L ⊂ X an Agana-

gic-Vafa brane, X a reduced algebraic orbifold birational to X and L the corresponding

lagrangian in X. Let T ≃ C∗ � X,X specify torus actions on X,X that act trivially on

the canonical bundle and such that the resolution morphism is T -equivariant. We use

here {t X
i }b2(X)

i=1 and {tXi }bCR
2 (X)

i=1 for the quantum parameters of Q H•
T (X) and Q H•

T (X),

respectively,2 and {x j } and {w j } for their open string expansion parameters. In the

terminology of Remark 3.2, we distinguish between “compact” moduli {t̂ X
i , t̂Xi }gi=1

and “non-compact” ones {t̃ X
i , t̃Xi }b2(X)−g

i=1 . Mirror symmetry arguments then lead to

the following statements:

1. the (compact) flat coordinates and the prepotential [6,9] of X and X should be

related by a linear, 2g × 2g invertible transformation

(
t̂ X
i

∂F X
0

∂ t̂ X
i

)
=
(

A B

C D

)⎛
⎝

t̂Xi
∂FX

0

∂ t̂Xi

⎞
⎠ (51)

2. the winding parameters {x j } and {w j } should be related by a rescaling factor,

involving exponentiated flat coordinates only

x j = w j

∏

k

q
rk

k . (52)

We refer to Eq. (51) as the open orbifold mirror map.

Remark 3.8 Equation (51) was justified physically in the study by [1] as a necessary

transformation to ensure monodromy invariance of the orbifold partition function. Its

ultimate mathematical justification resides in Givental’s symplectic vector space for-

malism [6,11]. Equation (52) was taken in [4,7] as a working definition of an open

“flat” modulus at the orbifold point: in the examples of [4,7], this was the minimal

choice that could yield an analytic potential at the orbifold point, without fractional

powers of the quantum parameters. An a priori derivation of (52), even by physics-

based considerations, is to our knowledge still lacking.

2 In Sect. 2.2.4, we used τi for the variables of orbifold quantum co-homology; we prefer to denote them

with tX
i

here to avoid confusion with the period matrix τ of the mirror curve.
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The following conjecture states that knowledge of the g × g matrices A, B, C and

D suffices to reconstruct the open Gromov-Witten potentials of X starting from those

of X .

Conjecture 3.9 (Mirror symmetry for open orbifold invariants) Let W
(g)

h denote

the open string correlators of X for 2g + h > 1; when g = 0, h = 1 define W
(0)
1 =

dλX . Moreover, let M be the matrix

(
A B

C D

)
(53)

representing the change of basis from the (normalizable) solutions of the PF system

at large radius to those of the B-model boundary point associated to X. Define now

for 2g + h > 1 the transformed open string correlators W
(g)

h of X as in (50); when

g = 0, h = 1, set W̃
(0)
1 = W

(0)
1 . Then the open orbifold potentials F

(X,L)
g,h in (20) are

given by the integrated correlator
∫

W
(g)

k (p1, . . . , pk)
dp1

p1
· · · dph

ph
, after plugging in

the orbifold open and closed mirror maps.

Conjecture 3.9 thus prescribes a three-step recipe to compute open Gromov–Witten

invariants of X starting from those of X :

1. when 2g + h > 1, transform the correlators as in (50);

2. analytically continue them from the large radius to the relevant boundary point

corresponding to X;

3. expand them in powers of the appropriate local flat coordinates.

Remark 3.10 It should be noticed that the two bases of solutions of the PF system

need not be related by a simple change of polarization of the mirror curve. This is

particularly true for the case of orbifolds [1,7]. In that case, however, Eqs. (49) and

(50) still make sense, even though they are no longer the result of the composition

of W
(g)

h with the modular transformation (47). This is why Eq. (50) was taken as the

definition of the transformed W
(g)

h in Conjecture 3.9.

4 Warming up: [C3/Z3]

In this section, we specialize the computation to the case of disc invariants for the orb-

ifold [C3/Z3]. We first review the B-model predictions by Bouchard, Klemm, Mariño

and Pasquetti in [4,5] and then recover them via our formalism. A similar computation

was carried out independently by Hsian-Hua Tseng [31].

4.1 The B-model disc potential

The orbifold [C3/Z3] is obtained by quotienting affine space with characters α0 =
α1 = α2 = 1; the Newton polytope associated to its fan is represented in Fig. 4. The
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Fig. 4 The Newton polytope of

the fan of X = [C3/Z3]

(0, 0)

(0, 1)

(3, −1)

(1, 0)

Fig. 5 The Newton polytope of

the fan of X = K
P2

(0, 0)

(0, 1)

(3, −1)

(1, 0)

crepant resolution is the canonical line bundle over the projective plane KP2 (Newton

polytope in Fig. 5).

According to Definition 3, the mirror curve of [C3/Z3] is given by

1 + V + U − U 3

3ψV
= 0, (54)

where ψ is the B-model mirror of the A-model flat coordinate τ , and we write

Q H2([C3/Z3]) ∋ � = τ 1
3
11/3 for a generic age 1 twisted class. It was argued by[4]

that this choice of representative of the mirror curve corresponds to a brane with zero

framing, located on the outer legs of the p − q web diagram of KP2 . Moreover, the

authors [1,4] found that the mirror map relating ψ and τ 1
3

has the form

τ 1
3

= ψ 3 F2

(
1

3
,

1

3
,

1

3
; 2

3
,

4

3
;−ψ3

27

)
,

where 3 F2 (a, b, c; d, e; x) is the generalized hypergeometric function

3 F2 (a, b, c; d, e; x) =
∞∑

n=0

Ŵ(a + n)Ŵ(b + n)Ŵ(c + n)Ŵ(d)Ŵ(e)

Ŵ(a)Ŵ(b)Ŵ(c)Ŵ(d + n)Ŵ(e + n)

xn

n! ,

while the open orbifold mirror map is

w = ψU
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The B-model orbifold disc potential at framing zero is then

F
[C3/Z3],( f =0)
0,1

(
τ 1

3
, w
)

=

U (w,ψ(τ 1
3
))

∫
dλ

f =0

[C3/Z3]

(
ψ
(
τ 1

3

)
, U
)

, (55)

where the Hori-Vafa differential reads, from (54),

dλ
f =0

[C3/Z3](ψ, U ) =
log
(

1
2

(√
(U + 1)2 − 4U 3

ψ
+ U + 1

))

U

The inclusion of framing can then be accomplished [5] through the T -transformation

(V, U ) → (V, U V f )

4.2 The A-model disc potential

In this case, we have only one age 1 class in orbifold cohomology, namely the class 1 1
3
.

Non-equivariant invariants only admit non-trivial insertions of this type. Condition (9)

and the monodromy condition on the space of maps to BZ3 imply degree, twisting

and number of insertions are all equal mod 3 (d ≡ k ≡ m (mod 3)). Then only one

fixed locus contributes to the disc invariant 〈1m
1
3

〉d
0 , and formula (19) reduces to:

〈1m
1
3

〉d
0 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
d

D0(d, a) m = 0, d ≡ 0 (mod 3)

1
h̄

D1(d, a) m = 1, d ≡ 1 (mod 3)

3Dk(d, a) f1(m, d, a) d �≡ 0 (mod 3)

3s0s1s2 Dk(d, a) f2(m, d, a) d ≡ 0 (mod 3),

(56)

where

f1(m, d, a) =
∫

M0,m+1(BZ3,0;1m
1
3

,1 −m
3

)

eeq
(
E∨

1 (s0) ⊕ E∨
1 (s1) ⊕ E∨

1 (s2)
)

h̄
d

− ψ
(57)

f2(m, d, a) =
∫

M0,m+1(BZ3,0;1m
1
3

,1)

eeq
(
E∨

1 (s0) ⊕ E∨
1 (s1) ⊕ E∨

1 (s2)
)

h̄
d

− ψ
(58)

The torus weights are

(s0, s1, s2) =
(

1

3
,−a, a − 1

3

)
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Fig. 6 The Newton polytope of

the fan of X = [C3/Z4]

(0, −1)

(0, 0)

(0, −2)

(−1, 0) (1, 0)

and the disc function:

Dk(d, a) = 1⌊
d
3

⌋
!

(
h̄

d

)3〈d/3〉 Ŵ( d
3

+ 〈 d
3
〉 − da)

Ŵ(1 − 〈 d
3
〉 − da)

Specializing to the torus weight a = 0, the one descendant Z3-Hodge integrals in

question are computed using the recursions of [8]. Integrating the Maple code3 written

by Cadman-Cavalieri with formula (56), we recover all invariants in Table 3.3 of [5]

with the physical framing f = −2/3. 4

5 The main case: [C3/Z4]

In this section, we consider the orbifold [C3/Z4], where the orbifold group acts with

weights (1, 1, 2), for two different choices of Lagrangians. When α1 =2, α0 =α2 =1,

the action is effective along the axis that gets doubled to become the zero section of the

orbi-bundle. We refer to this choice of weights as the “asymmetric choice”. We then

treat the case when α0 = 2, α1 = α2 = 1, in which the action is symmetric between

the fibers and has instead a non-trivial Z2 stabilizer along the base.

5.1 B-model, asymmetric case

The Newton polytope associated to the fan of [C3/Z4] is depicted in Fig. 6. Accord-

ingly, the mirror curve has the following form (Fig. 7)

P[C3/Z4](U, V ) = V + 1

V
− a 1

2
− a 1

4
/U − 1/U 2 = 0 (59)

In (59), a 1
4

and a 1
2

are the B-model coordinates which are mirror to the small

quantum co-homology parameters τ 1
4
, τ 1

2
, where we write H2

CR([C3/Z4]) ∋ � =

3 All codes can be made available to the interested reader upon request.

4 Further computations (for a = 2/3), in agreement with the f = 0 invariants of [5], suggest that the

relationship should be a simple translation a = f + 2/3.
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Fig. 7 The Newton polytope of

the fan of X = KF2

(0, −1)

(0, 0)

(0, −2)

(1, 0)(−1, 0)

τ 1
4
1 1

4
+ τ 1

2
1 1

2
. The precise relation was found in [7,11]; we have

τ 1
2

= 2 arcsin

(a 1
2

2

)
(60)

and at the first few orders in a 1
4
, a 1

2

τ 1
4

=

⎛
⎝1 +

a2
1
2

32
+

25a4
1
2

6144

⎞
⎠ a 1

4
+

⎛
⎝−

a 1
2

192
−

25a3
1
2

18432

⎞
⎠ a3

1
4

+ · · · (61)

5.1.1 The B-model disc potential

In writing (59), we have implicitly made a choice of a SL(2, Z) representative for

the spectral curve. It was argued in [7] that this choice corresponds to the analytic

continuation at the orbifold point of an open string setup with branes on the upper legs

of the pq-web diagram of KF2
: this corresponds precisely to the asymmetric case for

framing f = 1. The Hori-Vafa differential dλ[C3/Z4] corresponding to (59), which

gives the derivative of the B-model disc function (35), reads

dλ
(α), f =1

[C3/Z4]

(
a 1

4
, a 1

2
, U
)

= log

(
1

2U 4

(
1 + a 1

4
U + a 1

2
U 2

+
√(

1 + a 1
4
U + a 1

2
U 2
)2

− 4U 4

))
dU

U
, (62)

whereas the open orbifold mirror map is trivial [7]

w = U (63)

up to the sign ambiguity that, as we have reviewed in Sect. 3, is intrinsic in the def-

inition of open invariants. We have appended a superscript (α) to the differential to

stress the fact that it refers to the asymmetric choice. The B-model disc potential is
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then

F
[C3/Z4],(α, f =1)
0,1

(
τ 1

4
, τ 1

2
, w
)

=
U (w)∫

dλ
(α), f =1

[C3/Z4]

(
a 1

4

(
τ 1

4
, τ 1

2

)
, a 1

2

(
τ 1

2

)
, U
)

(64)

5.1.2 Higher genus open invariants from mirror symmetry

In this section, we work out in detail the general predictions of open orbifold mirror

symmetry for open invariants. This lays the basis for the comparison with the A-model

computation of the orbifold annulus function in Sect. 5.2.2 and provides highly non-

trivial predictions for some g ≤ 2 open orbifold potentials.

We start with the following

Theorem 5.1 Conjecture 3.7 is true for [C3/Z4]. In this case G = Ŵ(2), i.e., the

group of SL(2, Z) matrices congruent to the identity modulo 2.

Some of the arguments to prove it were used, in a slightly different context, in the

study by [7]. We need the following technical

Lemma 5.2 Let S = (Ŵ, C,�, u, v) be a spectral curve with genus 1 support,

i.e. g(Ŵ) = 1, and logarithmic branch cuts � �= ∅. Let V := ev be a degree 2

branched covering map to P1 and q1, q2, q3, q4 be its branch points; the fact that V

be degree 2 can always be accomplished up to a symplectic transformation (36). Then

the Eynard-Orantin correlators (42) have the form for 3g − 3 + 2h > 0

W
(g)

h (p1, . . . , ph,S) =
3g−3+2h∑

l=0

Al

(
p1, . . . , ph, {qi }4

i=1

)
Gl({qi }), (65)

where the propagator G({qi }) is defined as

G(q1, q2, q3, q4) = E (k)

K (k)

k = (q1 − q3)(q2 − q4)

(q1 − q2)(q3 − q4)

(66)

and Al(p1, . . . , ph, {qi }) are for all l meromorphic functions of {p j } for every {qi },
and algebraic functions of the complex moduli of vdu for every {p j }.

The ordering of the set of branch points in (66) is dictated by the choice of polariza-

tion H ∈ H1(Ŵ, Z) of the spectral curve. In (66), E(x) and K (x) denote the complete

elliptic integrals of the second and first kind, respectively.

Proof We just sketch here the main lines of the proof; the interested reader may find

the details in Appendix A.

A proof can be given recursively. First of all (65) is true for the Bergmann kernel

(as derived in (127)). Then, the Eynard-Orantin recursion straightforwardly implies

(65) for g = 0; when g > 0, if we assume that (65) is true for W
(g−1)

h+1 (p, p1, . . . , ph),
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then expressing the residues of the prime form dE(p, q) in terms of elliptic inte-

grals shows that the expansion (65) holds for W
(g)

h (p1, . . . , ph) (see (124), (125) and

(134)). By regularity of the curve, all coefficients A(p1, . . . , ph, {qi }) are algebraic in

the complex moduli of v(p)du(p); meromorphicity in p1, . . . , ph is trivially proven

recursively. ⊓⊔

Proof of Theorem 5.1 From (59), we see that the family of curves for [C3/Z4] is given

as

(
V + 1

V

)
= a 1

2
+ a 1

4
/U + 1/U 2 (67)

i.e., the support ŴX of the spectral curve is given by a family of complex tori, and

either V or U realize Ŵ as a twofold branched covering of P1. Therefore, g = 1; since

bCR
2 ([C3/Z4]) = 2, we have one “tilded” period integral in the notation of Remark 3.2

and Theorem 3.6, i.e., one flat coordinate of Q H•(KF2
) ≃ Q H•([C3/Z4]) which is

not dual to a compact divisor. Closed mirror symmetry considerations [7] show that

t̃ = a 1
2
.

By exploiting the analogy with the Seiberg-Witten curves of N = 2 pure Yang-

Mills, it was shown by [7] that the branch points qi of the V -projection are given

by

1/U = −
a 1

4

2
± c1(τ ), 1/U = −

a 1
4

2
± c2(τ ), (68)

where in terms of the elliptic modulus τ of the torus (67), we have

c1(τ ) = 2θ2
4 (τ )

θ2
2 (τ )

(69)

c2(τ ) = 2θ2
3 (τ )

θ2
2 (τ )

(70)

a 1
4

(
a 1

2
, τ
)

= 2

√
4θ2

4 (τ )

θ2
2 (τ )

+ 2 + a 1
2

(71)

By Lemma 5.2 and (69)–(71), we have

W
(g)

h (p1, . . . , ph) =
3g−3+2h∑

l=0

Al

(
p1, . . . , ph, a 1

2
, τ
)

Gl(c1, c2), (72)

where we have expressed the closed modulus a 1
4

as a function of the non-compact

period a 1
2

and the elliptic modulus, and the dependence on a 1
2

cancels from the prop-

agator because of (68).

A(p1, . . . , ph, a 1
2
, τ ) is then, for every {pi } and a 1

2
, a holomorphic weight zero

modular form of Ŵ(2) by (69)–(71), since the Jacobi theta functions are modular
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forms of Ŵ(2) of weight 1/2. As far as G(c1, c2) is concerned, we use the fact that

denoting

k = (q1 − q3)(q2 − q4)

(q1 − q2)(q3 − q4)

we have the remarkable identities

E(k)K (k) =
(π

2

) 4E2(2τ) − E2(τ )

3
(73)

and

K (k) = 2

π
θ2

4 (τ ) (74)

Using the duplication formula

E2(2τ) = 2E2(τ ) + θ2
3 (τ ) + θ2

4 (τ )

4
(75)

the claim follows. ⊓⊔

We now turn to the B-model computation of higher order open orbifold potentials.

To this aim, let us fix first a choice of polarization H ∈ H1(Ŵ[C3/Z4], Z): the point of

maximally unipotent monodromy [12] of the torically compactified B-model moduli

space is given, in inhomogeneous B-model coordinates, by (a 1
2
, a 1

4
) ∼ (∞,∞) [7].

We will fix a polarization of H as follows: let A (resp. B) ∈ H1(Ŵ[C3/Z4], Z) be the

one cycle represented by a loop encircling the [q1, q2] (resp. [q3, q4]) segment in the

U -plane. We order the set of branch points {qi }4
i=1 such that the periods of dλ[C3/Z4

]
around A (resp. B) has a logarithmic (resp. double-logarithmic) singularity around

the maximally unipotent monodromy point. This corresponds to computing W
(g)

h in

the so-called “large radius phase”. Then we have the following

Proposition 5.3 Let W
(g)

h (p1, . . . , ph) be the correlators computed from the recur-

sion (42)–(44) with the choice of polarization H above, and let (65) be their polynomial

expansion in powers of the propagator. Then the orbifold correlators W
(g)

h (p1, . . . , ph)

are given by

W
(g)

h (p1, . . . , ph) =
3g−3+2h∑

l=0

Al(p1, . . . , ph, {qi })G̃l({qi }), (76)

where the coefficients Al(p1 . . . , ph, {qi }) coincide with those in (65), and the orbifold

propagator G̃ is defined by

G̃
(

a 1
4
, a 1

2

)
:= G

(
a 1

4
, a 1

2

)
− π

2K
(
w−) (K

(
w−)+ K

(
w+)) , (77)
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where

w− = −

(√
a2

1
4

− 4a 1
2

− 8 −
√

a2
1
4

− 4a 1
2

+ 8

)2

4

√(
a2

1
4

− 4a 1
2

)2

− 64

, (78)

w+ =

(√
a2

1
4

− 4a 1
2

− 8 +
√

a2
1
4

− 4a 1
2

+ 8

)2

4

√(
a2

1
4

− 4a 1
2

)2

− 64

. (79)

The proof relies on applying the transformation (50) with the shift (49) and the

change of basis (51) computed by [7]

M =

⎛
⎜⎜⎝

2π3/2

Ŵ
(

1
4

)2

(1−i)
√

π

Ŵ
(

1
4

)2

−
Ŵ
(

1
4

)2

√
π

(
1
2 + i

2

)
Ŵ
(

1
4

)2

π3/2

⎞
⎟⎟⎠ (80)

It is quite remarkable to notice that the sole analytic continuation of the “large radius”

open string generating functions around (a 1
2
, a 1

4
) ≃ (0, 0), without the shift E2(τ ) →

E2(τ ) + d(τ ), would end up in an expansion in τ 1
2
, τ 1

4
with irrational (in fact tran-

scendental) coefficients. Indeed, the propagator G has the following expansion in flat

coordinates

G(τ 1
4
, τ 1

2
) =

(
1

2
+ 4π2

Ŵ
(

1
4

)4

)
+
(

− i

32
− 2iπ4

Ŵ
(

1
4

)8

)
τ 2

1
4

+
((

i

8
+ 8iπ4

Ŵ
(

1
4

)8

)
+
(

8π6

Ŵ
(

1
4

)12
− π2

8Ŵ
(

1
4

)4

)
τ 2

1
4

)
τ 1

2

+
((

− 16π6

Ŵ
(

1
4

)12
+ π2

4Ŵ
(

1
4

)4

)
+
)

τ 2
1
2

+ · · · (81)

The terms containing powers of Ŵ(1/4) are exactly canceled by the shift in the prop-

agator in (77)

G̃(τ 1
4
, τ 1

2
) = 1

2
−

iτ 2
1
4

32
−

11iτ 6
1
4

61440
+

⎛
⎝ i

8
+

13iτ 4
1
4

6144
+

457iτ 8
1
4

13762560

⎞
⎠ τ 1

2

+

⎛
⎝−

iτ 2
1
4

128
−

371iτ 6
1
4

1474560

⎞
⎠ τ 2

1
2

+ · · · (82)
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Conjecture 3.9 then implies that upon integrating with respect to p1, . . . , ph and plug-

ging in the mirror map, the orbifold correlators should provide the genus g, h-holes

orbifold potentials of [C3/Z4]. The results of our B-model computations of open

orbifold Gromov-Witten invariants up to genus 2 are contained in Appendix B.

5.2 A-model, asymmetric case

It appears that the way to compare the localization computations with the B-model

predictions at f = 1 is to choose a to be equal to one over the effective degree of the

action in the first fiber direction. In this case, the torus weights become:

(s0, s1, s2) =
(

1

4
,−1

2
,

1

4

)
. (83)

Insertions that give rise to non-equivariant invariants correspond to the two age one

orbifold cohomology classes, 1 1
4
, 1 2

4
. The compatibility condition between degree and

twisting (9) is k ≡ d (mod 4), and the disc function is

D(α)(d, 1/2) = 1⌊
d
4

⌋
!

(
h̄

d

)age

(
1 d

4

)

Ŵ
(

d
4

+ 〈 d
4
〉 − d

2

)

Ŵ
(
1 − 〈 d

4
〉 − d

2

)
(

1 d
4

)∨
(84)

Once again, we have added a superscript (α) to stress the fact that we refer to the

asymmetric choice.

5.2.1 A mirror theorem for orbifold disc invariants

The small J -function for the closed theory is

J (si ; τα; z) = z1 + τ 1
4
1 1

4
+ τ 2

4
1 2

4
+
∑

m1,m2

3∑

k=0

τ
m1
1
4

τ
m2
2
4

(
1 k

4

)∨

m1!m2!

×
∫

M0,m1+m2+1(BZ4,0;1m1
1
4

,1
m2
2
4

,1 k
4
)

(85)

×
e
(
E∨

1 ⊗ O(s0) ⊕ E∨
2 ⊗ O(s1) ⊕ E∨

1 ⊗ O(s2)
)

(z − ψ)
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and the potential for open disc invariants is given by:

F
[C3/Z4],(α)
0,1

(
τ 1

4
, τ 2

4
, w, 1/2

)
:=

∑

m1,m2,d

〈
1

m1
1
4

1
m2
2
4

; 1

2

〉d

0

τ
m1
1
4

m1!

τ
m2
2
4

m2!
wd

d!

=
∑

d

[
J

(
1

4
,−1

2
,

1

4
; 0, τ 1

4
, τ 2

4
; 1

d

)
D(α)(d, 1/2)

]
wd

d!

As was argued by [7] by physical considerations of monodromy invariance, the

asymmetric case is the one for which the B-model computations of the previous sec-

tion have the best chance to yield a correct answer. In this section, we give a full proof

of this statement, by establishing a version of open orbifold mirror symmetry for disc

invariants for this example.

Theorem 5.4 The analytic part of the B-model disc potential (64) coincides, for

positive winding numbers and up to signs, with the generating function of orbifold

Gromov-Witten disc invariants (86).

Remark 5.5 Theorem 5.4 postulates open orbifold mirror symmetry as an almost-

equality of A and B-model open string potentials, which coincide only after dropping

non-analytic terms and up to signs. This might seem a bit of a nuisance, but it should

in fact be entirely expected: the non-analytic terms that are dropped, analogous to the

power-of-a-logarithm terms of their closed string counterparts, are degree-zero con-

tributions for which we do not have a clear A-model definition, and likewise for the

zero-winding number term. On the other hand, the possible sign differences reside in

the inherent ambiguity in the definition of the open string potential and mirror map

on the B-model side. In this case, again, the unfixed torus weight a is identified with

the framing ambiguity on the mirror side.

Proof of Theorem 5.4 We explicitly evaluate the power series expansion of the

A-model disc function (86) in the winding parameter by analyzing the expression

of the twisted equivariant J -function of [C3/Z4] and compare the results with the

analogous expansion of the B-model disc function as written in (64). The key idea

is to work with closed B-model coordinates, i.e., a 1
4

and a 1
2
, instead of flat ones. To

begin with, define

g A
(

a 1
4
, a 1

2
, w
)

:= ∂w∂a 1
4

F
[C3/Z4],(α)
0,1

(
τ 1

4

(
a 1

4
, a 1

2

)
, τ 1

2

(
a 1

2

)
, w
)

(86)

gB
(

a 1
4
, a 1

2
, w
)

:= ∂w∂a 1
4

F
[C3/Z4],(α)
0,1

(
τ 1

4

(
a 1

4
, a 1

2

)
, τ 1

2

(
a 1

2

)
, w
)

(87)

From (62) and (64), we obtain for gB

gB
(

a 1
4
, a 1

2
, w
)

= 1√(
1 + a 1

4
w + a 1

2
w2
)2

− 4w4

(88)
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The expression above simplifies greatly the task of finding a closed form for the Taylor

coefficients of F
[C3/Z4],(α)
0,1 . Expansion of the square root at the denominator around

w = 0, Newton’s binomial formula and standard power series manipulations yield

gB
(

a 1
4
, a 1

2
, w
)

=
∞∑

m,n,k=0

(−1)k4n

(
k

−m + 2k + 4n

)(
1

2

)

n

(2n + 1)k

×
a−m+2k+4n

1
2

am−k−4n
1
4

k!n! , (89)

where as usual the binomial function and the Pochhammer symbol are defined as

(
n

k

)
= n!

k!(n − k)! , (a)n = Ŵ(n + a)

Ŵ(a)

Let us turn to analyze Eq. (86). The small J -function of [C3/Z4] in B-model coordi-

nates is given [9–11] by the following expression

J
(

a 1
4
, a 1

2
; z
)

= z

∞∑

m,n=0

am
1
4

an
1
2

R−n/2−m/4,−m/2(z)1〈n/2+m/4〉, (90)

where for the asymmetric case and weights (83), we have

Rk,l(z) =
∏0

b=k+1(
1
4

+ bz)2
∏0

b=l+1(− 1
2

+ bz)

(l − 2k)!(−2l)!z−2k−l
(91)

and we have denoted with 〈x〉 = x −[x] the fractional part of a real number x and with

the short-hand notation J
(

a 1
4
, a 1

2
; z
)

:= J
(

1
4
,− 1

2
, 1

4
; 0; τ 1

4
(a 1

4
, a 1

2
), τ 1

2
(a 1

2
); z
)

the

small J -function, expressed in B-model coordinates, with the torus weights given

by (83).

By the form (84) of the disc function, the contribution of the J -function to the

winding number d term of F
[C3/Z4],(α, f )
0,1 comes from the component of J propor-

tional to 1 d
4
. It is therefore convenient to isolate the projection of the J -function to

1 d
4

at winding number d = k mod 4 for each k = 0, 1, 2, 3. To this aim, denote the

projections as

J =:
3∑

k=0

J[k]1 k
d
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For k = 0, i.e. d = 4L , L ∈ Z, we find from (90), (91)

J[0] =: J even
[0] + J odd

[0]

J even
[0]

(
a 1

4
, a 1

2
,

1

4L

)
=

∞∑

a,b=0

⎡
⎣

Ŵ(−2L)Ŵ(L + 1)2a4b+2
1
4

a2a+1
1
2

2(2a + 1)!(4b + 2)!Ŵ(−a − b + L)2

× 1

Ŵ(−2(b + L))

⎤
⎦ (92)

J odd
[0]

(
a 1

4
, a 1

2
,

1

4L

)
=

∞∑

a,b=0

⎡
⎣

Ŵ(1 − 2L)Ŵ(L + 1)2a4b
1
4

a2a
1
2

4L(2a)!(4b)!Ŵ(−2b − 2L + 1)

× 1

Ŵ(−a − b + L + 1)2

⎤
⎦ (93)

while the disc function is

D(α)(4L , 1/2) = (−1)L(2L − 1)!
(L!)2

(10)
∨ (94)

For k = 4L + 1, we obtain likewise

J[1] =: J even
[1] + J odd

[1]

J even
[1]

(
a 1

4
, a 1

2
,

1

4L + 1

)
=

∞∑

a,b=0

[
(−2(b + L))2b

(2a)!Ŵ(4b + 2)
a4b+1

1
4

a2a
1
2

× (−a − b + L + 1)a+b
2

]
(95)

J odd
[1]

(
a 1

4
, a 1

2
,

1

4L + 1

)
=

∞∑

a,b=0

[
(−a − b + L)a+b+1

2

Ŵ(2a + 2)Ŵ(4b + 4)
a4b+3

1
4

a2a+1
1
2

× (−2b − 2L − 1)2b+1

]
(96)

and

D(α)(4L + 1, 1/2) = 2(−1)LŴ(2L)

(4L + 1)L!Ŵ(L)

(
1 1

4

)∨
(97)
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For k = 4L + 2, we have in the same way

J[2] =: J even
[2] + J odd

[2]

J even
[2]

(
a 1

4
, a 1

2
,

1

4L + 2

)
=

∞∑

a,b=0

⎡
⎢⎣

(
−2b − 1

8L+4

)
2b+1

(2a)!Ŵ(4b + 3)
a2a

1
2

a4b+2
1
4

×
(

−a − b + L + 1

4L + 2

)2

a+b

⎤
⎥⎦ (98)

J odd
[2]

(
a 1

4
, a 1

2
,

1

4L + 2

)
=

∞∑

a,b=0

⎡
⎢⎣

(
−2b − 1

8L+4
+ 1
)

2b

(4b)!Ŵ(2a + 2)
a2a+1

1
2

a4b
1
4

×
(

−a − b + L + 1

4L + 2

)2

a+b

⎤
⎥⎦ (99)

and

D(α)(4L + 2, 1/2) = 2(−1)LŴ(2L)

(4L + 2)L!Ŵ(L)

(
1 1

2

)∨
(100)

Finally for k = 4L + 3,

J[3] =: J even
[3] + J odd

[3]

J even
[3]

(
a 1

4
, a 1

2
,

1

4L + 2

)
=

∞∑

a,b=0

⎡
⎢⎣

(
2L+1
4L+3

− 2b
)

2b
a2a+1

1
2

a4b+1
1
4

(4L + 3)Ŵ(2a + 2)Ŵ(4b + 2)

×
(

−(a + b) + L + 1

4L + 3

)2

a+b

⎤
⎥⎦ (101)

J odd
[3]

(
a 1

4
, a 1

2
,

1

4L + 2

)
=

∞∑

a,b=0

⎡
⎢⎣

(
2(L+b(4L+3)+1)

−4L−3

)
2b+1

(4L + 3)(2a)!Ŵ(4b + 4)
a2a

1
2

a4b+3
1
4

×
(

−a − b + L + 1

4L + 3

)2

a+b

⎤
⎥⎦ (102)



914 A. Brini, R. Cavalieri

and

D(α)(4L + 3, 1/2) = (−1)L+1Ŵ(2L + 2)

L(4L + 3)2 L!Ŵ(L)

(
1 3

4

)∨
(103)

With these expression at hand, we can now make a detailed comparison with the

B-model disc function. Write

g A
(

a 1
4
, a 1

2
, w
)

=:
∞∑

d=0

g A
d

(
a 1

4
, a 1

2

)
wd , gB

(
a 1

4
, a 1

2
, w
)

=:
∞∑

d=0

gB
d

(
a 1

4
, a 1

2

)
wd

(104)

We find from (89) and (95)–(102)

g A
4L+k

(
a 1

4
, a 1

2

)
= (−1)L gB

4L+k

(
a 1

4
, a 1

2

)
, k = 0, 1, 2, 3 (105)

This establishes mirror symmetry for all disc invariants with at least one insertion of

11/4.

As far as invariants with only 11/2-insertions are concerned, define

h A
(

a 1
2
, w
)

:= ∂w∂a 1
2

F
[C3/Z4],(α)
0,1

(
0, a 1

2
, w
)

hB
(

a 1
2
, w
)

:= ∂w∂a 1
2

F
[C3/Z4],(α)
0,1

(
0, a 1

2
, w
)

On the B-model side, the situation parallels closely what we have already done , given

that

∂w∂a 1
2

F
[C3/Z4],(α)
0,1

(
a 1

4
, a 1

2
, w
)

= w∂w∂a 1
4

F
[C3/Z4],(α)
0,1

(
a 1

4
, a 1

2
, w
)

(106)

as the reader can easily check, while on the A-model side, we just have to isolate the

O(a0
1
4

) terms in the J -function in order to compute h A. We find, defining h A(a 1
2
, w) =:

∑∞
d=0 h A

d (a 1
2
)wd , hB(a 1

2
, w) =:

∑∞
d=0 hB

d (a 1
2
)wd , that

h A
4L+k

(
a 1

4
, a 1

2

)
= (−1)L hB

4L+k

(
a 1

4
, a 1

2

)
, k = 0, 2 (107)

where the identity above is trivially true for k = 1, 3, when both sides are zero.
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All we are left to do to complete the proof is to compute the A-model disc function

in the absence of insertion of twisted classes. Putting a 1
4

= 0, a 1
2

= 0 in (95)–(102)

and performing the sum over winding numbers in (86), we find

∂w F
[C3/Z4],(α)
0,1 (0, 0, w) =

∞∑

d=1

(−1)d+1 (2d − 1)!
(d!)2

w4d−1

=
log
(

1
2

(√
4w4 + 1 + 1

))

w
(108)

which, by (62) and (64), coincides with ∂w F
[C3/Z4],(α)
0,1 (0, 0,−w), upon dropping the

non-analytic logarithmic term (i.e., restricting to positive degrees only). This concludes

the proof. ⊓⊔

5.2.2 Annulus invariants

Our localization formula expresses annulus invariants in terms of the disc function

and of compact invariants with two descendant insertions:

〈
1m0 1

m1
1
4

1
m2
2
4

〉d1,d2

0

=
(

4

h̄

)2 2∏

j=1

(
ϕ(d j )D

(α)
d j

(
d j , 1/2

)) ∫

M

eeq
(
E∨

1 (1/4) ⊕ E∨
2 (−1/2) ⊕ E∨

1 (1/4)
)

(
h̄
d1

− ψ1

) (
h̄
d2

− ψ2

) ,

(109)

where

M = M0,
∑

m j +2

(
BZ4, 0; 1m0 1

m1
1
4

1
m2
2
4

, 1 4−k1
4

, 1 4−k2
4

)

and

ϕ(k) :=

⎧
⎨
⎩

− h̄3

32
k = 0

1 k = 1, 3
h̄
4

k = 2

The second descendant insertion can be removed inductively using the genus 0

topological recursion relations; this allows us to compute many invariants, for which

we find perfect agreement with the mirror symmetry predictions of Sect. 5.1.2. In

Tables 1–3, we collect the first values for up to n < 9 insertions.
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Table 1 Annulus orbifold Gromov–Witten invariants 〈1m
1
4

1n
1
2

〉(1,1)
0 of [C3/Z4] in the asymmetric case at

winding number (1, 1)

m 0 2 4 6

n

0 0 − 1
8 0 − 3

128

1 1
4 0 1

128 0

2 0 0 0 − 35
512

3 − 1
32 0 3

128 0

4 0 − 3
256

0

5 1
64 0

6 0

7 − 23
1024

Table 2 Annulus orbifold Gromov–Witten invariants 〈1m
1
4

1n
1
2

〉(2,1)
0 of [C3/Z4] in the asymmetric case at

winding number (2, 1)

m 1 3 5 7

n

0 0 3
16 0 21

1024

1 − 1
8 0 3

512
0

2 0 − 5
256

0

3 5
128 0 − 255

8192

4 0 35
4096 0

5 − 21
2048 0

6 0

7 465
32768

We conclude this section with a very explicit example, to point out how to unravel

explicitly the localization formula.

Example We compute the annulus invariant 〈12
1
4

〉(1,1)
0 :

〈
12

1
4

〉(1,1)

0
= 42

∫

12
1
4

12
3
4

E∨
1 (1/4) ⊕ E∨

2 (−1/2) ⊕ E∨
1 (1/4)

(h̄ − ψ3)(h̄ − ψ4)

=
[
−1

2
(ψ3 + ψ4) + 4(λ1)1 − (λ1)2

]

12
1
4

12
3
4

= −1

8
,

where the final evaluation is obtained via the explicit Hodge integral computations:
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Table 3 Annulus orbifold Gromov–Witten invariants 〈1m
1
4

1n
1
2

〉(3,1)
0 of [C3/Z4] in the asymmetric case at

winding number (3, 1)

m 0 2 4 6

n

0 0 0 − 1
2 0

1 0 5
24 0 − 15

128

2 − 1
6 0 19

192 0

3 0 − 3
32 0

4 1
8 0 − 7

128

5 0 15
256

0

6 − 11
96 0

7 0

1. (λ1)1 = 1
16

;

2. (λ1)2 = 1
8

;

3. ψ3 = ψ4 = 1
4

.

5.3 B-model, symmetric case

5.3.1 Disc and annulus invariants

The B-model setup for the symmetric case is obtained via a combined S and T trans-

formation of the curve (59). A simple form is obtained for framing f = 0, where the

derivative of the symmetric disc potential is obtained from (86) by sending U → 1/U .

The Hori-Vafa differential now reads

dλ
(σ ), f =0

C3/Z4

(
a 1

4
, a 1

2
, U
)

= log

(
1

2

(
U 2 + a 1

4
U + a 1

2

−
√(

U 2 + a 1
4
U + a 1

2

)2
− 4

))
dU

U
(110)

and the open mirror map is again trivial

w = U (111)

Upon expanding in w and plugging in the closed mirror map, we find



918 A. Brini, R. Cavalieri

F
[C3/Z4],(σ )
0,1

(
τi , τ 1

2
, w
)

:=
w∫

dλ
(σ ), f =0

C3/Z4

(
a 1

4

(
τi , τ 1

2

)
, a 1

2

(
τ 1

2

)
, x
)

dx

= i

⎡
⎣
⎛
⎝
⎛
⎝1

2
+

3τ 2
1
2

64

⎞
⎠ τ 1

4
+

⎛
⎝

τ 1
2

384
+

7τ 3
1
2

12288

⎞
⎠ τ 3

1
4

+ O
(
τ 4

1
4

)
⎞
⎠w

+

⎛
⎝
⎛
⎝1

4
+

τ 2
1
2

32

⎞
⎠+

⎛
⎝

τ 1
2

32
−

5τ 3
1
2

1536

⎞
⎠ τ 2

1
4

+ O
(
τ 4

1
4

)
⎞
⎠w2

+O
(
w3
)
⎤
⎦ (112)

The B-model potential thus has an expansion in rational numbers only up to a π/2

phase. It would be interesting to track its origin in detail.

Likewise, the computation of annulus invariants requires basically no new ingre-

dients with respect to the asymmetric case, the only difference being that we have

to replace w1 → 1/w1, w2 → 1/w2 in the expression for the Bergmann kernel.

Conjecture 3.9 then allows us to compute

F
[C3/Z4],(σ )
0,2

(
τi , τ 1

2
, w1, w2

)
=

⎛
⎝

3τ 2
1
4

64
+

τ 1
2

16
+

3τ 2
1
2

τ 2
1
4

128
+

11τ 3
1
2

768
+ · · ·

⎞
⎠w1w2

+

⎛
⎝

τ 1
4

16
+

19τ 2
1
2

τ 1
4

512
+

43τ 1
2
τ 3

1
4

3072
+

295τ 3
1
2

τ 3
1
4

32768
+ · · ·

⎞
⎠

×(w2
1w2 + w2w

2
1) + · · · (113)

5.4 A-model, symmetric case

In the symmetric case, we apply formula (19) to compute disc and annulus invariants

for the orbifold [C3/Z4], with α0 = 2, α1 = α2 = 1, so the action is ineffective (with

a Z2 isotropy group) along the axis that gets doubled to become the zero section of

the orbi-bundle. The torus weights

(s0, s1, s2) =
(

1

2
,−a, a − 1

2

)
,

can be specialized to a = 1/4 to obtain symmetric weights in the fiber directions.

Once again, insertions that give rise to non-equivariant invariants correspond to the

two-age one-orbifold cohomology classes, 1 1
4
, 1 2

4
.
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The compatibility condition between degree and twisting (9) is k ≡ d (mod 2), and

the disc function is

D(σ )(d, 1/4) = 1

2

(
1 d

4

)∨

⌊
d
2

⌋
!

(
h̄

d

)age

(
1 d

4

)

Ŵ
(

d
2

+ 〈 d
4
〉 − d

4

)

Ŵ
(
1 − 〈 d

4
〉 − d

4

)

+1

2

(
1 d+2

4

)∨

⌊
d
2

⌋
!

(
h̄

d

)age

(
1 d+2

4

)

Ŵ
(

d
2

+ 〈 d+2
4

〉 − d
4

)

Ŵ
(
1 − 〈 d+2

4
〉 − d

4

)

(114)

5.4.1 Disc invariants

We can then compute the potential for open disc invariants

F
[C3/Z4],(σ )
0,1

(
τ 1

4
, τ 2

4
, w,

1

4

)
:=

∑

m1,m2,d

〈
1

m1
1
4

1
m2
2
4

; 1

4

〉d

0

τ
m1
1
4

m1!

τ
m2
2
4

m2!
wd

d!

=
∑

d

[
J

(
1

2
,−1

4
,−1

4
; 0, τ 1

4
, τ 2

4
; 1

d

)
D

(σ )

(
d,

1

4

)]
yd

d! ,

(115)

where once again J (s0, s1, s2; τ 1
4
, τ 2

4
; z) is the small J -function of the closed theory.

Explicit values for n-pointed disc invariants are shown and compared with the

physical predictions in Tables 4–5. The final result agrees with the B-model predic-

tion, apart from the usual sign ambiguity.

Table 4 Disc orbifold Gromov–Witten invariants 〈1m
1
4

1n
1
2

〉(1)
0 of [C3/Z4] in the symmetric case at winding

number 1

m 1 3 5 7

n

0 1
2 0 − 3

128 0

1 0 1
64 0 207

4096

2 3
32 0 − 49

2048 0

3 0 21
1024 0 12447

65536

4 − 91
512

0 − 2247
32768 0

5 0 361
16384 0 1272327

1048576

6 1703
8192 0 − 191349

524288
0

7 0 37661
262144 0 202603527

16777216
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Table 5 Disc orbifold Gromov–Witten invariants 〈1m
1
4

1n
1
2

〉(2)
0 of [C3/Z4] in the symmetric case at winding

number 2

m 0 2 4 6

n

0 1
4 0 0 0

1 0 1
16 0 − 9

512

2 1
16 0 1

64 0

3 0 13
128 0 − 141

2048

4 5
64 0 19

256
0

5 0 3
8 0 − 4189

8192

6 61
256

0 1137
2048 0

7 0 10111
4096 0 − 98013

16384

5.4.2 Annulus invariants

Our localization formula expresses annulus invariants in terms of the disc function

and of compact invariants with two descendant insertions:

〈
1m0 1

m1
1
4

1
m2
2
4

〉d1,d2

0

=
(

4

h̄

)2 ∑

k j ≡d j (mod 2)

2∏

j=1

(
ϕ(k j )D

(s)
k j

(
d j , 1/4

))
(116)

×
∫

M

eeq
(
E∨

2 (1/2) ⊕ E∨
1 (−1/4) ⊕ E∨

1 (−1/4)
)

(
h̄
d1

− ψ1

) (
h̄
d2

− ψ2

) ,

where

M = M0,
∑

m j +2

(
BZ4, 0; 1m0 1

m1
1
4

1
m2
2
4

, 1 4−k1
4

, 1 4−k2
4

)

and

ϕ(k) :=

⎧
⎨
⎩

h̄3

32
k = 0

1 k = 1, 3
h̄
2

k = 2

As for the asymmetric case, we remove inductively the second descendant insertion

using the genus 0 topological recursion relations and the string equation. In Tables 6–7,

we collect the first values for these invariants. Again, to the extent we have checked,

we find agreement with the B-model prediction.
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Table 6 Annulus orbifold Gromov–Witten invariants 〈1m
1
4

1n
1
2

〉(2)
0 of [C3/Z4] in the symmetric case at

winding number (1, 1)

m 1 3 5 7

n

0 0 3
32 0 − 21

512

1 1
16 0 9

512
0

2 0 3
32 0 − 159

2048

3 11
128 0 63

1024 0

4 0 317
1024 0

5 71
256

0 28877
131072

6 0 − 4179
16384

7 6687
4096

Table 7 Annulus orbifold Gromov–Witten invariants 〈1m
1
4

1n
1
2

〉(2)
0 of [C3/Z4] in the symmetric case at

winding number (2, 1)

m 0 2 4 6

n

0 1
16 0 − 3

1024 0

1 0 43
512

0 − 2859
32768

2 19
256

0 863
16384 0

3 0 2655
8192 0

4 1109
4096 0 129513

262144

5 0 306883
131072 0

6 119719
65536

0

7 0
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Appendix A: The Eynard-Orantin recursion in the elliptic case

We review some details of the Eynard-Orantin recursion specialized to the case when

the support Ŵ of the spectral curve S is a complex 2-torus, g = 1, and V realizes it as
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a degree 2 branched covering of CP1. The Hori-Vafa differential (31) reads

dλX (U ) = log

(
P2(U ) ± Y (U )

2

)
dU

U
, (117)

where

deg P2(U ) = 2, Y (U ) =
√

P2
2 (U ) − 4 =

√
U − q1) (U − q2)(U − q3)(U − q4)

(118)

We have first of all that

dλ(U ) − dλ(Ū ) = 2M(U )Y (U )dU, (119)

where the so-called “moment function” M(U ) is given, after using the fact that

log(P + Y ) − log(P − Y ) = 2 tanh−1 (Y/P), as

M(U ) = 1

UY (U )
tanh−1

[
Y (U )

P2(U )

]
. (120)

Moreover, the one-form d E(p, q) can be written as [4]

d EW (U ) = 1

2

Y (W )

Y (U )

(
1

U − W
− LC(W )

)
dU, (121)

where

C(W ) := 1

2π i

∮

A

dU

Y (U )

1

U − W
, L−1 := 1

2π i

∮

A

dU

Y (U )
(122)

We have assumed here that W stays outside the contour A; when W lies inside the

contour A, C(W ) in (121) should be replaced by its regularized version

C reg(W ) = C(W ) − 1

Y (W )
(123)

Since ŴX is elliptic, it is possible to find closed form expressions for C(U ), Creg(U ),

B(U, W ) and L . We have

C(U ) = 2(q2 − q3)

π(U − q3)(U − q2)
√

(q1 − q3)(q2 − q4)

[
�(n4, k) + U − q2

q2 − q3
K (k)

]

(124)
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C reg(U ) = 2(q3 − q2)

π(U − q3)(U − q2)
√

(q1 − q3)(q2 − q4)

[
�(n1, k) + U − q3

q3 − q2
K (k)

]

(125)

L−1 = 2√
(q1 − q3)(q2 − q4)

K

[
(q1 − q2)(q3 − q4)

(q1 − q3)(q2 − q4)

]
(126)

B(U, W ) = 1

Y (U )

[
Y 2(U )

2Y (W )(U − W )2
+ (Y 2)′(U )

4Y (W )(W − U )
+ A(U )

4Y (W )

]

+ 1

2(U − W )2
, (127)

where

k = (q1 − q2)(q3 − q4)

(q1 − q3)(q2 − q4)
, n4 = (q2 − q1)(U − q3)

(q3 − q1)(U − q2)
, n1 = (q4 − q3)(U − q2)

(q4 − q2)(U − q3)
,

(128)

A(U ) = (U − q1)(U − q2) + (U − q3)(U − q4) + (q1 − q3)(q2 − q4)
E(k)

K (k)
(129)

and K (k), E(k) and �(n, k) are the complete elliptic integrals of the first, second and

third kind respectively.

With these ingredients, one can compute the residues in (42)–(44). Given that

d Eq(p)/(dλ(q) − dλ(q̄)), as a function of q, is regular at the branch-points, all resi-

dues appearing in (44) will be linear combinations of the following kernel differentials

χ
(n)
i (p) = Resq=qi

(
d Eq(p)

dλ(q) − dλ(q̄)

1

(q − qi )n

)

= 1

(n − 1)!
1

Y (p)

dn−1

dqn−1

[
1

2M(q)

(
1

p − q
− LC(q)

)]

q=qi

(130)

In (130), C(p) should be replaced by Creg(p) when i = 1, 2.

It is instructive to see the appearance in general of the propagators G(q1, q2, q3, q4)

as defined in (66). Let f : C → C be a complex valued function with meromorphic

square f 2(x) and denote with f
(n)
i the (n + 1)-th coefficient in a Laurent expansion

of f (x) around qi

f (x) =
∞∑

n=−Ni

f
(n+Ni )
i

(p − qi )n/2
(131)

Then Eq. (42)–(44) and (130) imply that the correlators will be a polynomial in the

following four basic building blocks
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M
(n)
i , A

(n)
i ,

(
1

Y

)(n)

i

, C
(n)
i (132)

where we have defined

C
(n)
i =

{
C

(n)
reg,i for i = 1, 2

C
(n)
i for i = 3, 4

(133)

It is immediate to see that the residue computation involving M
(n)
i will always yield

an algebraic function of the “bare” complex moduli, that is, the coefficients of P2.

This means that they have degree zero as a polynomial in G({qi }). On the other hand,

they are the only ones who bring a dependence on the marked functions of the spectral

curve SX : all the others only depend on differences of branch points qi , which (perhaps

up to a rescaling of U and V ) leads to functions of the elliptic modulus of ŴX which

are linear in G({qi }). This is apparent for A
(n)
i and (1/Y )

(n)
i from formulae (118) and

(129), while the case of C
(n)
i follows from the fact that

∂x�(x, y) =
x E(y) + (y − x)K (y) +

(
x2 − y

)
�(x, y)

2(x − 1)x(y − x)

The above formula implies that

∂(n)
x �(x, y) = An(x, y)K (y) + Bn(x, y)E(y) + Cn(x, y)�(x, y), (134)

where An, Bn and Cn are rational functions of x and y. From (128), to compute C
(n)
i ,

we need to evaluate these expressions when n1 (respectively, n4) equals either 0 or k.

But using

�(0, y) = K (y), �(y, y) = E(y)

1 − y
(135)

we conclude that

C
(n)
i = R

(n)
1 ({qi }) K (k) + R

(n)
2 ({qi }) E(k) (136)

for two sequences of rational functions R
(n)
i . Notice that by (130), C

(n)
i always appears

multiplied by L in the recursion; therefore, from (126), LC
(n)
i is linear in G({qi }).

Appendix B: Mirror symmetry predictions of open orbifold GW invariants

of
[

C3/Z4

]

in the asymmetric case

See Tables 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21, 22
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Table 8 Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (1, 1, 1)

m 1 3 5 7

n

0 0 − 3
64 0 189

4096

1 1
32 0 − 33

2048 0

2 0 11
1024 0 14547

65536

3 − 7
512

0 − 1989
32768 0

4 0 353
16384 0 1809801

1048576

5 − 79
8192 0 − 218993

524288
0

6 0 33711
262144 0 330787647

16777216

7 − 7287
131072 0 − 36190149

8388608 0

8 0 4907493
4194304 0 84814988181

268435456

9 − 889439
2097152

0 − 8528369313
134217728 0

10 0 1045989811
67108864 0 29188217357547

4294967296

11 − 167510567
33554432

0 − 2728134070309
2147483648 0

12 0 307481197833
1073741824 0 13004327932052961

68719476736

Table 9 Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (2, 1, 1)

m 0 2 4 6 8

n

0 1
2 0 9

64 0 − 21
128

1 0 − 1
16 0 3

64 0

2 1
16 0 − 7

256
0 − 4377

8192

3 0 3
128 0 87

1024 0

4 − 1
32 0 − 3

512
0 − 64593

16384

5 0 − 7
512

0 4509
8192 0

6 17
512

0 − 111
2048 0 − 5600217

131072

7 0 − 1
64 0 170919

32768 0

8 9
512

0 − 11867
32768 0 − 85512669

131072

9 0 − 423
2048 0 4679277

65536
0

10 1091
4096 0 − 493299

131072 0 − 14083706541
1048576

11 0 − 176659
65536

0 701236689
524288

0

12 22219
8192 0 − 7019643

131072 0 − 753800096679
2097152
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Table 10 Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (2, 2, 1)

m 1 3 5 7

n

0 − 3
4 0 − 111

256
0

1 0 15
128 0 − 2595

8192

2 − 1
64 0 603

4096 0

3 0 − 177
2048 0 − 40479

131072

4 65
1024 0 1245

65536
0

5 0 895
32768 0 − 4055235

2097152

6 − 541
16384 0 343623

1048576
0

7 0 − 68737
524288

0 − 568999599
33554432

8 34245
262144 0 39364105

16777216 0

9 0 − 5665425
8388608 0 − 119917956675

536870912

10 1984519
4194304 0 7678005843

268435456
0

11 0 − 1112041297
134217728 0 − 35129545858719

8589934592

12 386924425
67108864 0 2109027490965

4294967296 0

Table 11 Predictions for g = 0, h = 3 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (3, 1, 1)

m 1 3 5 7

n

0 − 2
3 0 − 19

32 0

1 0 35
192 0 − 1655

4096

2 − 1
16 0 599

3072 0

3 0 − 127
1024 0 − 34639

65536

4 7
64 0 71

1024 0

5 0 385
16384 0 − 4900175

1048576

6 − 733
12288 0 263963

262144 0

7 0 − 280541
786432 0 − 972023479

16777216

8 8599
32768 0 71107289

6291456
0

9 0 − 12976415
4194304 0 − 276764938375

268435456

10 1372579
1048576

0 12755007193
67108864 0

11 0 − 3203261567
67108864 0 − 105795705480319

4294967296

12 28966097
1572864

0 1153922108479
268435456

0
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Table 12 Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number 1

m 1 3 5 7

n

0 1
48 0 9

1024 0

1 0 − 5
1536

0 − 3375
32768

2 1
768 0 1367

49152
0

3 0 − 81
8192 0 − 326497

524288

4 65
12288 0 40345

262144 0

5 0 − 19145
393216 0 − 50714835

8388608

6 4321
196608 0 5760669

4194304 0

7 0 − 2469623
6291456

0 − 11529490917
134217728

8 490945
3145728

0 3642090395
201326592

0

9 0 − 158835215
33554432

0 − 3604297162935
2147483648

10 85184641
50331648

0 354513303549
1073741824 0

11 0 − 128738647003
1610612736 0 − 1481653476327337

34359738368

12 21004177025
805306368

0 137005640391385
17179869184 0

Table 13 Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number 2

m 0 2 4 6 8

n

0 0 − 1
32 0 − 3

512
0

1 1
48 0 − 1

512
0 19

64

2 0 1
192 0 − 27

512
0

3 − 5
384 0 5

512
0 121865

65536

4 0 − 5
3072 0 − 315

1024 0

5 1
768 0 1277

24576
0 1175231

65536

6 0 − 11
2048 0 − 89893

32768 0

7 − 85
12288 0 6995

16384 0 131562305
524288

8 0 − 275
6144 0 − 9362985

262144 0

9 − 389
12288 0 1350073

262144 0 631910777
131072

10 0 − 25459
49152

0 − 337003153
524288

0

11 − 27155
98304 0 4250765

49152
0 2044307220305

16777216

12 0 − 4343505
524288

0 − 16051763495
1048576

0
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Table 14 Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number 3

m 1 3 5 7

n

0 0 1
12 0 − 21

256

1 − 5
144 0 115

3072 0

2 0 − 59
2304 0 9679

49152

3 53
2304 0 − 1903

49152
0

4 0 305
18432 0 219465

131072

5 − 235
12288 0 − 716555

2359296
0

6 0 4819
65536

0 240631049
12582912

7 − 16007
589824

0 − 14352681
4194304 0

8 0 962165
1179648 0 7715651635

25165824

9 − 2979965
9437184 0 − 3575613975

67108864 0

10 0 1821378401
150994944

0 21402084232819
3221225472

11 − 207837889
50331648

0 − 10779639149749
9663676416 0

12 0 32205472535
134217728 0 1609762782468295

8589934592

Table 15 Predictions for g = 1, h = 1 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number 4

m 0 2 4 6 8

n

0 1
3 0 − 5

16 0 315
256

1 0 3
32 0 − 181

512
0

2 − 1
24 0 39

256
0 − 109

128

3 0 − 11
128 0 387

2048 0

4 7
96 0 − 3

32 0 − 162943
16384

5 0 233
3072 0 11689

8192 0

6 − 31
384 0 − 403

2048 0 − 8297873
65536

7 0 − 331
12288 0 286821

16384 0

8 187
1536

0 − 31927
12288 0 − 70090611

32768

9 0 1389
4096 0 73463763

262144 0

10 389
6144 0 − 5027977

131072 0 − 25016794729
524288

11 0 193951
49152

0 6224145569
1048576

0

12 47767
24576

0 − 99929913
131072 0 − 2869421365529

2097152
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Table 16 Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (1, 1)

m 0 2 4 6

n

0 0 1
192 0 − 83

2048

1 − 1
96 0 19

1536
0

2 0 − 3
512

0 − 1313
6144

3 1
128 0 59

1024 0

4 0 − 127
6144 0 − 116319

65536

5 11
1024 0 10619

24576
0

6 0 − 3329
24576

0 − 1426777
65536

7 761
12288 0 238597

49152
0

8 0 − 5593
4096 0 − 1171872737

3145728

9 4423
8192 0 20167831

262144 0

10 0 − 15545773
786432 0 − 4454455581

524288

11 228811
32768 0 2578302709

1572864
0

12 0 − 1225078949
3145728

0 − 4181947560489
16777216

Table 17 Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (2, 1)

m 1 3 5 7

n

0 0 − 3
128 0 749

8192

1 1
64 0 − 73

4096 0

2 0 11
2048 0 59347

131072

3 − 13
3072 0 − 4277

65536
0

4 0 323
98304 0 7763577

2097152

5 161
16384 0 − 1512059

3145728
0

6 0 14031
524288

0 1484285887
33554432

7 28147
786432 0 − 87714437

16777216 0

8 0 6282863
25165824

0 395292407237
536870912

9 4059523
12582912

0 − 21529218793
268435456

0

10 0 1355800153
402653184

0 140469708824427
8589934592

11 277853969
67108864 0 − 21346688578591

12884901888 0

12 0 132430149801
2147483648 0 64325487060690897

137438953472
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Table 18 Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (2, 2)

m 0 2 4 6 8

n

0 − 1
4 0 7

128 0 − 63
256

1 0 − 1
96 0 19

512
0

2 − 1
32 0 − 19

1536
0 − 15543

16384

3 0 5
768 0 85

2048 0

4 1
64 0 73

3072 0 − 254719
32768

5 0 − 47
3072 0 2213

6144 0

6 − 17
1024 0 391

4096 0 − 23761463
262144

7 0 − 25
768 0 246515

65536
0

8 − 9
1024 0 187937

196608 0 − 383755867
262144

9 0 − 4013
12288 0 14299413

262144 0

10 − 1091
8192 0 10594097

786432 0 − 66113744979
2097152

11 0 − 1594085
393216 0 3320919305

3145728
0

12 − 22219
16384 0 68613211

262144 0 − 3672961920137
4194304

Table 19 Predictions for g = 1, h = 2 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number (3, 1)

m 0 2 4 6

n

0 − 4
9 0 1

8 0

1 0 − 29
576

0 189
2048

2 5
144 0 − 95

2304 0

3 0 17
512

0 6733
24576

4 − 1
18 0 − 59

1536
0

5 0 − 13
18432 0 215983

65536

6 115
4608 0 − 1335

2048 0

7 0 16493
73728 0 13351407

262144

8 − 433
2304 0 − 179953

18432 0

9 0 8527
3072 0 1095436053

1048576

10 − 50965
36864 0 − 25251695

131072 0

11 0 117348941
2359296

0 348308890001
12582912

12 − 387979
18432 0 − 3841015873

786432 0
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Table 20 Predictions for g = 2, h = 1 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number 1

m 1 3 5

n

0 1
3840 0 − 851

81920

1 0 391
122880 0

2 − 91
61440 0 − 235817

3932160

3 0 32689
1966080 0

4 − 6263
983040 0 − 11465707

20971520

5 0 1451137
10485760

0

6 − 739891
15728640

0 − 7332916417
1006632960

7 0 855699469
503316480

0

8 − 394660109
754974720

0 − 2156215517801
16106127360

9 0 233999737631
8053063680

0

10 − 32994415691
4026531840

0 − 279022560888339
85899345920

11 0 85088983138249
128849018880 0

12 − 3705845271181
21474836480 0 − 414824442483351281

4123168604160

Table 21 Predictions for g = 2, h = 1 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number 2

m 0 2 4 6

n

0 0 − 23
3840 0 397

20480

1 37
5760

0 − 9
2560

0

2 0 47
46080 0 6763

61440

3 − 37
23040 0 − 1837

122880 0

4 0 11
73728 0 404921

393216

5 599
184320 0 − 97087

737280 0

6 0 2443
491520

0 108494989
7864320

7 10501
737280 0 − 2175833

1310720 0

8 0 22249
294912 0 1589644841

6291456

9 191287
1474560

0 − 9401217
327680 0

10 0 517601
368640 0 15956291063

2621440

11 10024913
5898240

0 − 123550208597
188743680 0

12 0 414232039
12582912

0 9407394255163
50331648



932 A. Brini, R. Cavalieri

Table 22 Predictions for g = 2, h = 1 open orbifold Gromov–Witten invariants of
[
C

3/Z4

]
at winding

number 3

m 1 3 5

n

0 0 221
5760

0

1 − 643
34560

0 19633
737280

2 0 − 7651
552960

0

3 7231
552960

0 907759
11796480

4 0 − 16787
1105920

0

5 24737
8847360 0 583154159

566231040

6 0 − 10955107
47185920

0

7 12947971
141557760

0 53326890019
3019898880

8 0 − 4233264583
1132462080 0

9 2754790277
2264924160 0 2105326035057

5368709120

10 0 − 2843659084991
36238786560

0

11 825581791111
36238786560

0 25692970234497637
2319282339840

12 0 − 101535236275903
48318382080 0
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