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Open Pit Block Sequencing Optimization: A Mathematical Model and 

Solution Technique 

Abstract: This study presents a comprehensive mathematical formulation model for a 

short-term open-pit mine block sequencing problem, which considers nearly all relevant 

technical aspects in open pit mining. The proposed model aims to obtain the optimum 

extraction sequences of the original-size (smallest) blocks over short-time intervals and 

in the presence of real-life constraints, including precedence relationship, machine 

capacity, grade requirements, processing demands and stockpile management. A hybrid 

branch-and-bound and simulated annealing algorithm is developed to solve the problem. 

Computational experiments show that the proposed methodology is promising to 

provide quantitative recommendations for mine planning and scheduling engineers. 

Keywords: Mine Optimization, Block Sequencing, Hybrid Heuristic, Simulated 

Annealing  

1. Introduction  

Open-pit mining is a type of surface mining which is used to extract near-surface 

minerals. In mining optimization process, a deposit of interest is divided into thousands 

of three-dimensional (3D) rectangular cubes called a block model. In a pre-optimization 

stage, a set of attributes is estimated for each block and it is assumed that the attributes 

are homogeneously distributed and given for each block.  

According to the specification of blocks, a destination is assigned to each 

individual block. In an open pit mine, a destination can be a mineral processing plant, a 

stockpile or a waste dump. The destination assignment can be done thorough a static 

procedure such that the accepted ranges of attributes are defined for each destination 

and eligible blocks are assigned to this destination. This static approach suffers from 

ignoring blending, processing demands consideration and grade-tonnage distribution of 

mined blocks (Asad and Topal 2011; Johnson et al. 2011). In a more flexible approach, 
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which is called dynamic destination assignment, destinations of blocks are dynamically 

determined while the processing plants requirements, grade-tonnage distribution and 

economical parameters are considered.  

This article addresses a real-world problem which is called open-pit mine block 

sequencing (MBS) problem. The MBS problem can be defined as specifying the 

sequence in which blocks should be removed from the mine and allocated to the 

appropriate destination. The key components of the MBS model are: blocks, processing 

circuits, stockpiles, excavators, time horizons and mining rules. 

The considered stockpiles in this study are blending and mixing stockpiles used 

to blend material with a particular characteristic with other material to improve recovery 

of processing. A time horizon in this article is about three to six months, in which 

blocks are sequenced for weekly or fortnight periods. The main mining rules are: 

minimum required space for excavators; the extraction direction; excavator’s working 

territory; drop-cut considerations; waste extraction priority; and the number of active 

benches. 

The literature review demonstrates that there are two main gaps in the previous 

studies in the area of the block sequencing problem. The first gap is to model the MBS 

for a short term horizon and the second gap is the lack of efficient solution approaches 

which are suitable for this problem. Several studies have addressed the MBS problem 

over the life of mine.  Caccetta and Hill (2003) presented an MIP model of the long 

term MBS problem and developed a branch and cut algorithm to solve the problem. 

Chicoisne et al. (2012) developed an efficient heuristic approach to solve a real-world 

MBS case. Lamghari and Dimitrakopoulos (2012) presented a tabu search metaheuristic 

for an extended MBS problem with the consideration of metal uncertainty. Espinoza et 

al. (2013) presented a library of benchmark MBS instances called MineLib to mining 
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community. Lambert and Newman (2014) employed a tailored Lagrangian relaxation in 

the MBS formulation. Lambert et al. (2014) concluded a tutorial of fundamental MBS 

mathematical formulation models. Shishvan and Sattarvand (2015) developed an ant 

colony optimization metaheuristic to solve an extended MBS problem for a Copper-

Gold mine. Lamghari et al. (2015) developed a two-phase approach to solve MBS, in 

which the first phase is to generate the initial solution by a series of LP models and the 

second phase is to apply a variable neighbourhood search procedure to improve the 

initial solution. Liu and Kozan (2016) developed two state-of-the-art graph-based 

algorithms to efficiently solve large-scale benchmark MBS instances from MineLib. To 

see more related papers in the area of long term MBS problem, readers are referred to 

see review papers by Osanloo et al. (2008),  Newman et al. (2010) and Kozan and Liu 

(2011).  

 Compared to the sequencing over life of mine, following main considerations 

should be simultaneously taken into account for a short time horizon (Whittle 2011): 

 operational mining rules should be considered in the model; 

 the destination of mined material should be determined dynamically and the 

blending should be allowed; 

 stockpiles should be included in the production circuit as they are used to feed 

the process circuits in some periods; and 

 Block extraction should be determined at the level of the original block size to 

keep the resolution and accuracy of grade estimation.  

Eivazy and Askari-Nasab (2012) developed a model based on the aggregated blocks for 

MBS problem and used the TOMLAB/CPLEX package in which branch-and-cut 

algorithm is implemented to solved the problem. In the aggregation approach several 
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blocks are combined and larger units (aggregates) are created (Ramazan 2007). An 

aggregate acts as a single large-size block, therefore a homogenous grade is assigned to 

it. The aggregation approach decreases the size of the problem as well as the complexity 

of the problem in terms of precedence relations. However, assigning a unique grade to a 

large-size aggregate (which is a combination of several blocks) decreases the resolution 

and the granularity of the grade estimation (Cullenbine et al. 2011). The aggregation 

method is used in most of commercial mine planning software packages (Runge 

PincockMinarco Limited 2013; Huang et al. 2009; Minemap Pty. Ltd 2013; Minemax 

Pty Ltd 2012).  When the solution of aggregation approach is  decomposed to the 

original blocks, the obtained solution may not be optimal and sometimes it may be even 

infeasible (Boland et al. 2007).  L’Heureux et al. (2013) developed a MIP model for 

short-term production optimization in open-pit mines where the excavator movements 

have been integrated into the block sequencing problem. They used the ILOG CPLEX 

to solve the problem and pointed out that this problem cannot be solved in reasonable 

time by standard solvers. Kumral (2013, 2012) formulated block sequencing problem 

and considered block destination as a decision variable in MIP formulation of the 

problem and applied a simulated annealing metaheuristic algorithm to solve this 

problem.  Mousavi et al. (2014) developed a MIP model to optimize block sequencing 

over a short time horizon. Numerical investigations indicated that the industry-scale 

MBS instances are intractable for standard MIP solvers. Groeneveld and Topal (2011) 

discussed the application of stockpiles in mining operations and proposed a binning 

approach in which each virtual bin has a maximum and a minimum grade limits on the 

entrance ore mineral. Singh et al. (2013) developed an optimization tool for medium-

term rail scheduling for iron ore mining in Western Australia. As discussed, considering 

blending stockpile in mining operation introduces non-linearity in the MIP models of 
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optimization problems. Kozan and Liu (2015) proposed a new multi-resource multi-

stage mine scheduling model for optimizing the open-pit drilling, blasting and loading 

operations.  

This paper aims to formulate a more comprehensive model to involve nearly all 

relevant technical and practical aspects of the MBS problem and develops an efficient 

hybrid heuristic algorithm to solve the problem. The proposed MBS model 

simultaneously optimizes the block extraction, blending, grade control, stockpiling and 

destination determination.  The proposed model is presented at the operational level to 

keep the processing selectivity and can be applied for open-pit hard rock mining (e.g., 

iron, copper, gold).  As the industry-scale instances of the problem cannot be solved by 

standard solver in reasonable time, a hybrid heuristic algorithm includes simulated 

annealing (SA), branch-and-bound (B&B), and large neighbourhood search (LNS) is 

proposed.  

The reminder of this paper is organized as follows: Section 2 describes the block 

sequencing problem and presents the mathematical formulation. The proposed solution 

approaches are presented in Section 3. Section 4 discusses computational experiments. 

A detailed application of proposed methodology for a real mine operation are given in 

Section 5. Finally, Section 6 contains the conclusion of this study and recommends 

future work in this field. 

2. The MBS problem definition and formulation  

The MBS problem is defined to determine the sequence in which blocks should be 

extracted such that stockpiling costs including rehandling and holding costs are 

minimized and all physical and tactical constraints such as precedence relationships, 

mining capacity, processing demands and grade requirements are satisfied. In addition, 

the solution of MBS should obtain the optimum material flow from mine to processes 
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and stockpiles, and from stockpiles to processes.  

Indices 

𝑡: Time period index, 𝑡 = 1,2, . . . , 𝑇. 

𝑖: Block index, 𝑖 = 1,2, . . . , 𝐼. 

𝑚:  Machine index (e.g., excavator, shovel, loader), 𝑚 = 1,2, . . . , 𝑀. 

𝑑: Destination index, 𝑑 = 1,2, . . . , 𝐷. 

𝜌: Processing (mineral processing plant or mill) index, 𝜌 = 1,2, . . . , 𝑃. 

𝑠: Stockpile index, 𝑠 = 1,2, . . . , 𝑆. 

𝑤: Waste dump index, 𝑤 = 1,2, . . . , 𝑊. 

𝛼:  Attribute (grade) index, 𝛼 = 1,2, . . . , 𝒜. 

Parameters 

𝑣𝑖: Volume of block 𝑖 (cubic meter). 

𝑏𝑖: Tonnage of block 𝑖 (tonne).  

𝑔𝑖
𝛼: Percentage of attribute 𝛼 of block 𝑖. 

Γ𝑝𝑖
: Set of immediate predecessors of block 𝑖. 

Γ𝑎𝑓𝑖
: Set of adjacent blocks in side 𝑓 of block 𝑖.  

Γ𝑑𝑐𝑖
: Set of blocks which should be extracted consecutively as block 𝑖, if 

block 𝑖 is a drop-cut. 

𝛽𝑖:  Swell factor of block 𝑖 (%). 

𝑓𝑖:  Fillability (fill factor) of block 𝑖 (%). 

𝐸𝑚: Extraction capacity of machine 𝑚 (cubic meters).  

𝜆𝑚
𝑡 :  Effectiveness of machine 𝑚 in period 𝑡 (%). 

𝐼𝑚:  Blocks which are eligible to be extracted by machine 𝑚.  

𝑀𝑚
𝑡 : Minimum required mining production in period 𝑡. 
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𝑀𝜌
𝑚𝑖𝑛: Minimum capacity of processing 𝜌.  

𝑀𝜌
𝑚𝑎𝑥: Maximum capacity of processing 𝜌. 

𝜑𝛼𝑑
𝑚𝑖𝑛: Minimum attribute 𝛼 requirement at destination 𝑑. 

𝜑𝛼𝑑
𝑚𝑎𝑥: Maximum attribute 𝛼 requirement at destination 𝑑.  

𝜙𝑠: Safety inventory level of stockpile 𝑠. 

𝑀𝑠: Storage capacity of stockpile 𝑠.  

𝑆𝜌: Set of stockpiles which feed processing ρ. 

𝐼𝑠
0: Initial inventory of stockpile 𝑠.  

𝑐ℎ
𝑡 : Inventory holding cost of one tonne of material in period 𝑡.  

𝑐𝑟
𝑠𝜌

: Rehandling cost for one tonne of material transferred from stockpile 𝑠 to 

processing ρ. 

𝑐𝑝
𝑖 : Cost of processing waste block 𝑖 in processing ρ. 

𝑐𝑤
𝑖 : Cost of sending ore block 𝑖 to the waste dump 𝑤. 

𝑐𝑑𝑐
𝑖 : Drop-cut cost for block 𝑖 if block 𝑖 is extracted by drop-cut.  

Decision variables 

𝑥𝑖𝑚𝑑
𝑡

= {
1    if block 𝑖 is extracted by machine 𝑚 in period 𝑡 and sent to destination 𝑑 (𝜌, 𝑠, 𝑜𝑟 𝑤).
0                                                                                                                                                 otherwise.

 

𝑧𝑠𝜌
𝑡 : Amount of material transferred from stockpile 𝑠 to processing 𝜌 in period 𝑡. 

yif
t = {

1        if block 𝑖 is extracted from side 𝑓 in period 𝑡.
0                                                                           otherwise.

 

The objective  

The objective of the MBS problem is to minimize the total cost, which includes 
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rehandling and holding costs, misclassification and drop-cut costs. The misclassification 

cost is monitored to ensure that material is assigned to the right destination. Finally, a 

drop-cut cost is considered in order to give priority to the side cut extraction, unless a 

new working bench is required to be opened.  

Minimize 

  ∑ ∑ ∑ 𝑐𝑟
𝑠𝜌

𝑧𝑠𝜌
𝑡𝑃

𝜌=1
𝑆
𝑠=1

𝑇
𝑡=1 +

∑ ∑ 𝑐ℎ
𝑡 (𝐼𝑠

0 + ∑ ∑ ∑ 𝑥𝑖𝑚𝑠
𝑟 𝑏𝑖

𝐼
𝑖=1

𝑀
𝑚=1

𝑡
𝑟=1 −  ∑ ∑ 𝑧𝑠𝜌

𝑟𝑃
𝜌=1

𝑡
𝑟=1 )𝑆

𝑠=1
𝑇
𝑡=1 +

∑ ∑ ∑ ∑ 𝑥𝑖𝑚𝑑
𝑡 𝑐𝑝

𝑖 +𝐼
𝑖=1

𝑀
𝑚=1

𝐷
𝑑=1,𝑑≠𝑤

𝑇
𝑡=1 ∑ ∑ ∑ ∑ 𝑥𝑖𝑚𝑤

𝑡 𝑐𝑤
𝑖  𝐼

𝑖=1
𝑀
𝑚=1

𝑊
𝑤=1

𝑇
𝑡=1 + ∑ ∑ 𝑦𝑖5

𝑡 𝑐𝑑𝑐
𝑖  𝑇

𝑡=1
𝐼
𝑖=1

    (1) 

A drop-cut is a condition such that a block is extracted while all the adjacent 

blocks have not been extracted yet, shown in Figure 1.a. Contrary to drop-cut, side-cut 

is performed when the excavator is located in a same bench as the block, shown in 

Figure 1.b.  

 

Figure 1. a) drop cut, b) side cut. 

Constraints 

Constraint (2) enforces that the top-down precedence relations must be satisfied. 

∑ ∑ ∑ 𝑥𝑗𝑚𝑑
𝑟 −𝐷

𝑑=1
𝑀
𝑚=1

𝑡
𝑟=1 ∑ ∑ 𝑥𝑖𝑚𝑑

𝑡 ≥𝐷
𝑑=1

𝑀
𝑚=1 0       ∀ { 𝑖, 𝑗 ∈ 𝐼 | 𝑗 ≠ 𝑖;  𝑗 ∈ Γ𝑝𝑖

);  𝑡 =

1,2, . . . , 𝑇.   (2) 

Constraints (3) and (4) satisfy drop-cut and precedence relationships exist in a 

bench. In a real-life mining operation a block can be extracted from either one of four 

adjacent sides or by a drop-cut. Therefore, totally there are five constraints of which at 
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least one should be satisfied. In-bench precedence relationships are considered in order 

to provide enough space before extracting a given block. 

∑ ∑ 𝑥𝑖𝑚𝑑
𝑡 −𝐷

𝑑=1
𝑀
𝑚=1 ∑ ∑ ∑ 𝑥𝑘𝑚𝑑

𝑟 ≤𝐷
𝑑=1

𝑀
𝑚=1

𝑡
𝑟=1 (1 − 𝑦𝑖𝑓

𝑡 )      ∀ { 𝑖, 𝑘 ∈ 𝐼 | 𝑘 ≠ 𝑖;  𝑘 ∈

𝛤𝑎𝑓𝑖
);  𝑓 = 1,2, … ,4;  𝑡 = 1,2, . . . , 𝑇.                                                                           (3)    

𝑥𝑖𝑚𝑑
𝑡 ≤ ∑ 𝑦𝑖𝑓

𝑡5
𝑓=1       ∀ 𝑖 = 1,2, … , 𝐼; 𝑚 = 1,2, … , 𝑀; 𝑑 = 1,2, … , 𝐷; 𝑡 = 1,2, … , 𝑇. (4) 

Constraint (5) ensures that if block i is extracted as a drop-cut, then a set of pre-

determined blocks should be extracted in the same time period. This mining rule 

ensures that when a new bench is opened, enough space for mining machinery is 

provided.  

∑ ∑ ∑ 𝑥𝑙𝑚𝑑
𝑟 −𝐷

𝑑=1
𝑀
𝑚=1

𝑡
𝑟=1 𝑦𝑖5

𝑡 ≥  0      ∀ { 𝑖, 𝑙 ∈ 𝐼 | 𝑙 ≠ 𝑖;  𝑙 ∈ Γ𝑑𝑐𝑖
);  𝑡 = 1,2, . . . , 𝑇.   (5) 

Constraint (6) ensures that each block can be extracted no more than once. 

However, some blocks may remain as un-mined blocks. 

∑ ∑ ∑ 𝑥𝑖𝑚𝑑
𝑡𝐷

𝑑=1
𝑀
𝑚=1

𝑇
𝑡=1 ≤ 1              ∀ 𝑖 = 1,2, … , 𝐼.  (6) 

The machine capacity is controlled by Constraint (7):  

∑ ∑ 𝑥𝑖𝑚𝑑
𝑡𝐷

𝑑=1
𝐼
𝑖=1 𝑣𝑖𝛽𝑖/𝑓𝑖 ≤ 𝐸𝑚𝜆𝑚

𝑡           ∀ 𝑚 = 1,2, … , 𝑀;  𝑡 = 1,2, … , 𝑇.  (7) 

Constraint (8) deals with the working territory for each excavator. As the MBS 

problem is solved for a short term periods, long distance machine movement is not 

practical. Therefore, the excavator territory is limited with the specific area.  

∑ ∑ ∑ 𝑥𝑖𝑚𝑑
𝑡𝐷

𝑑=1
𝐼
𝑖∈{𝐼−𝐼𝑚},

𝑇
𝑡=1 ≤ 0             ∀ 𝑚 = 1,2, … , 𝑀.  (8) 
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Constraint (9) ensures that minimum production capacity is satisfied. Indeed, this 

constraint forces the model to extract waste material after satisfying processing 

requirements.  

∑ ∑ ∑ 𝑥𝑖𝑚𝑑
𝑡 𝑏𝑖

𝐼
𝑖=1

𝐷
𝑑=1

𝑀
𝑚=1 ≥ 𝑀𝑚

𝑡              ∀ 𝑡 = 1,2, … , 𝑇.  (9) 

Constraints (10) and (11) satisfy the minimum and maximum processing 

capacities.  

∑ ∑ 𝑥𝑖𝑚𝜌
𝑡𝐼

𝑖=1
𝑀
𝑚=1 𝑏𝑖 + ∑ 𝑧𝑠𝜌

𝑡𝑆𝜌

𝑠=1 ≤  𝑀𝜌
𝑚𝑎𝑥     ∀ 𝑡 = 1,2, … , 𝑇;  𝜌 = 1,2, . . . , 𝑃.  (10) 

∑ ∑ 𝑥𝑖𝑚𝜌
𝑡𝐼

𝑖=1
𝑀
𝑚=1 𝑏𝑖 + ∑ 𝑧𝑠𝜌

𝑡𝑆𝜌

𝑠=1 ≥  𝑀𝜌
𝑚𝑖𝑛     ∀ 𝑡 = 1,2, … , 𝑇;  𝜌 = 1,2, … , 𝑃.   (11) 

Constraint (12) ensures that the stockpile inventory stays below the capacity of 

stockpile. Constraints (13) and (14) state that the material flow from stockpile to 

processing should be less than the stockpile inventory while the safety level is kept.  

𝐼𝑠
𝑡 ≤ 𝑀𝑠                    ∀ 𝑡 = 1,2, . . . , 𝑇;  𝑠 = 1,2, … , 𝑆.  (12) 

𝑧𝑠𝜌
𝑡 ≤ 𝐼𝑠

𝑡−1 − 𝜙𝑠            ∀ 𝑡 = 2,3, … , 𝑇;  𝑠 = 1,2, … , 𝑆;  𝜌 = 1,2, … , 𝑃.   (13) 

𝑧𝑠𝜌
1 ≤ 𝐼𝑠

0  + ∑ ∑ 𝑥𝑖𝑚𝑠
1 𝑏𝑖

𝑀
𝑚=1

𝐼
𝑖=1 − 𝜙𝑠     ∀ 𝑠 = 1,2, … , 𝑆;  𝜌 = 1,2, … , 𝑃.  (14) 

Here, 𝐼𝑠
𝑡 is the inventory of the 𝑠𝑡ℎ stockpile at the end of period 𝑡 which can be 

written as an ordinary inventory balance equation:  

𝐼𝑠
𝑡 = 𝐼𝑠

0 + ∑ ∑ ∑ 𝑥𝑖𝑚𝑠
𝑟 𝑏𝑖

𝐼
𝑖=1

𝑀
𝑚=1

𝑡
𝑟=1 −  ∑ ∑ 𝑧𝑠𝜌

𝑟𝑃
𝜌=1

𝑡
𝑟=1    ∀ 𝑡 = 2,3, … , 𝑇;  𝑠 = 1,2, … , 𝑆.  

  (15) 



12 

Constraints (16) and (17) satisfy the lower and upper bounds on required grades at 

processing circuit. In other words, the ore content of the material sent to processing in 

period t must be between minimum and maximum required ore content. 

∑ ∑ (𝑔𝑖
𝛼−𝑔𝛼𝜌

𝑚𝑎𝑥)𝑥𝑖𝑚𝜌
𝑡 𝑏𝑖 + ∑ (𝑔𝑠

𝛼−𝑔𝛼𝜌
𝑚𝑎𝑥)𝑧𝑠𝜌

𝑡𝑆𝜌

𝑠=1
𝐼
𝑖=1

𝑀
𝑚=1 ≤ 0 ∀ 𝑡 = 1,2, … , 𝑇; 𝜌 =

1,2, . . . , 𝑃;  𝛼 = 1,2, . . . , 𝒜.    (16) 

∑ ∑ (𝑔𝑖
𝛼−𝑔𝛼𝜌

𝑚𝑖𝑛)𝑥𝑖𝑚𝜌
𝑡 𝑏𝑖 + ∑ (𝑔𝑠

𝛼−𝑔𝛼𝜌
𝑚𝑖𝑛)𝑧𝑠𝜌

𝑡𝑆𝜌

𝑠=1
𝐼
𝑖=1

𝑀
𝑚=1 ≥ 0  ∀ 𝑡 = 1,2, … , 𝑇; 𝜌 =

1,2, . . . , 𝑃;  𝛼 = 1,2, … , 𝒜.    (17) 

Here, 𝑔𝑠
𝛼 represents the percentage of attribute 𝛼 in stockpile s. In the case that all 

material is stocked in the stockpile and homogenized, these constraints state that the 

average grade of ore production of a period should be within the minimum and 

maximum limits, so that the constructed stockpile contains appropriate ore material to 

be used in next periods.   

Constraints (18) and (19) ensure that the average percentage of attribute 𝛼 in the 

feed of stockpile 𝑠, is within the predefined acceptable range. 

∑ ∑ (𝑔𝑖
𝛼−𝑔𝛼𝑠

𝑚𝑎𝑥𝑀
𝑚=1

𝐼
𝑖=1 )𝑥𝑖𝑚𝑠

𝑡 𝑏𝑖 ≤  0   ∀𝑠 = 1, . . . , 𝑆; ∀ 𝑡 = 1,2, . . . , 𝑇; 𝛼 = 1, . . . , 𝒜.  

  (18) 

∑ ∑ (𝑀
𝑚=1

𝐼
𝑖=1 𝑔𝑖

𝛼 − 𝑔𝛼𝑠
𝑚𝑖𝑛)𝑥𝑖𝑚𝑠

𝑡 𝑏𝑖 ≥ 0  ∀𝑠 = 1, . . , 𝑆; ∀ 𝑡 = 1,2, . . , 𝑇; 𝛼 = 1, . . . , 𝒜.  

  (19) 

Similar to the last two constraints, Constraints (20) and (21) are applied to 

control material flow to the right waste dump. 

∑ ∑ (𝑔𝑖
𝛼−𝑔𝛼𝑤

𝑚𝑎𝑥𝑀
𝑚=1

𝐼
𝑖=1 )𝑥𝑖𝑚𝑤

𝑡 𝑏𝑖 ≤  0  ∀𝑤 = 1, . . , 𝑊; ∀ 𝑡 = 1,2, . . , 𝑇; 𝛼 = 1, … , 𝒜.   

  (20)  
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∑ ∑ (𝑀
𝑚=1

𝐼
𝑖=1 𝑔𝑖

𝛼 − 𝑔𝛼𝑤
𝑚𝑖𝑛)𝑥𝑖𝑚𝑤

𝑡 𝑏𝑖 ≥ 0  ∀𝑤 = 1, . . , 𝑊; ∀ 𝑡 = 1,2, . . , 𝑇; 𝛼 = 1, … , 𝒜.  

  (21) 

Constraints (22) and (23) state the type of decision variables:  

𝑥𝑖𝑚𝑑
𝑡  𝑎𝑛𝑑 𝑦𝑖𝑓

𝑡  ∈ {0,1}     ∀ 𝑖 = 1,2, … , 𝐼;  𝑚 = 1,2, … , 𝑀;  𝑑 = 1,2, … , 𝐷;  𝑡 =

1,2, … , 𝑇; 𝑓 = 1,2, … ,5.   (22) 

 𝑧𝑠𝜌 
𝑡 ≥ 0   ∀ 𝑠 = 1,2, … , 𝑆;  𝜌 = 1,2, … , 𝑃; 𝑡 = 1,2, … , 𝑇.   (23) 

Supplementary material 1 

 

 

3. Solution Approach 

To solve the MBS problem, simulated annealing (SA), large neighbourhood search 

(LNS) and branch-and-bound (B&B) are hybridized. In the proposed hybrid heuristic, a 

partial neighbourhood solution (PNS) is constructed in each iteration of the SA. Then a 

full neighbourhood solution (NS) is achieved by assigning destinations to the blocks 

using the B&B algorithm.  

3.1. Simulated annealing 

Simulated annealing (SA) was introduced by Kirkpatrick et al. (1983) and 

independently by (Černý 1985) for solving the combinational optimization problems. 

The key element in an efficient simulated annealing is the cooling schedule which 

decreases the temperature from an initial temperature to the final temperature. For the 

MBS problem, a cooling schedule is developed in which the number of internal 

iterations (number of iterations executed at each temperature) increases as the 

temperature decreases. Temperature and number of internal iterations are updated at 
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each iteration using following equations: 

𝜏𝑘 = 𝛼𝜏𝑘−1   |  𝜏𝑘 ≥ 𝒯𝑓 ,    𝑘 = 1,2, … , 𝐾.        (24) 

Η𝜏𝑘 = Η𝜏𝑘−1 + Δ          (25) 

Here, 𝛼 is a constant number (less than one), 𝜏𝑘 is the temperature at iteration 𝑘, 

𝒯𝑓 is the final temperature, 𝐾 is the number of iterations, Η𝜏𝑘 is equal to the number of 

internal iterations at temperature 𝜏𝑘 and Δ is a constant number. As the iteration of 

algorithm changes from 𝑘 to 𝑘 + 1, the cooling mechanism reduces temperature by 𝛼% 

and increases number of internal iterations by Δ.   

3.2.  Large neighbourhood search 

Large neighbourhood search (LNS) was proposed and applied by Shaw (1998). Unlike 

the common neighbourhood search, LNS uses a destroy-and-repair mechanism to define 

a new solution. According to this mechanism, a part of the solution is destroyed and 

then a repair technique rebuilds the solution (Pisinger and Ropke 2010).  

The proposed LNS for the MBS problem destroys the assigned destinations and 

the new destinations are allocated to blocks by branch-and-bound method. The LNS can 

improve the quality of the MBS solution by covering two drawbacks of the common 

local search. Firstly, there are some blocks which should be extracted in a certain time 

period due to the precedence relationships. Since these blocks are fixed in a period, they 

are not considered in the neighbourhood search. Secondly, as blending is allowed, a 

decision for a given block should be made taking into account other blocks’ 

destinations.  
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3.3. Neighborhood structure for MBS 

The following two main movements are defined in the structure of MBS 

neighbourhood search: move between periods and move between destinations.  

In a move between periods the assigned extraction period of one or several blocks 

may be altered while a move between destinations is made for reassigning the 

destination of some blocks.  

Move between Periods 

To select the most attractive time periods and blocks, the following strategies are 

applied:  

 select time periods in order to compensate processing shortage: 

𝐹𝑡: 𝓌 → (0,1) is a function which assigns a priority weight 𝓌 to period 𝑡. 

Therefore, each period is mapped with a weight such that ∑ 𝓌𝑡 = 1𝑇
𝑡=1 . 

The weights are assigned such that if 𝑡′ has the maximum shortage of processing 

feed, then 𝓌𝑡 < 𝑤𝑡′ < 1  ∀ 𝑡 ∈ { 𝑡1, 𝑡2, … , 𝑇 }. After assigning weights to the periods, a 

random weighted sampling method is performed to identify a time period which accepts 

new blocks from other time periods. This period is called 𝑡_𝑖𝑛 and the period from which 

some blocks are transferred to 𝑡_𝑖𝑛 is named 𝑡_𝑜𝑢𝑡. The 𝑡_𝑜𝑢𝑡 is selected as follows: 

𝑡_𝑜𝑢𝑡 = {
𝑡_𝑖𝑛 − 1,    𝑖𝑓 𝑆𝐿𝐵𝑡_𝑖𝑛−1 ≥  𝑆𝐿𝐵𝑡_𝑖𝑛+1 𝑎𝑛𝑑 𝑡_𝑜𝑢𝑡 ≠ 𝑇; 

𝑡_𝑖𝑛 + 1,                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
 (26) 

 Where 𝑆𝐿𝐵𝑡_𝑖𝑛−1 shows the number of blocks assigned to the stockpiles in 

period 𝑡_𝑖𝑛 − 1. 

 select time periods in order to postpone stocking material  
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To minimize stockpiling holding costs, material should be stocked in the stockpile 

as late as possible. Therefore, if some stockpile-labelled blocks are transferred from 

period 𝑡 (as 𝑡_𝑜𝑢𝑡) to period 𝑡 + 1 (as 𝑡_𝑖𝑛) then the objective value may be improved. 

The periods are prioritized such that the period which has the maximum stockpile-

labelled blocks has the highest priority to be selected as 𝑡_𝑜𝑢𝑡. In this case 𝑡_𝑜𝑢𝑡 ≠ 𝑇 and 

𝑡_𝑖𝑛= 𝑡_𝑜𝑢𝑡+1.  

 select the most attractive blocks 

Suppose that (𝜛𝑖, i) represents block 𝑖 with weight 𝜛𝑖. A function 𝐹𝑏 is defined 

such that 𝐹𝑏: 𝜛 → (0,1).  𝐹𝑏 is a discrete function which maps a priority weight 

between zero and one to all blocks, to be extracted in 𝑡_𝑖𝑛and 𝑡_𝑜𝑢𝑡, according to the 

following rules: 

For block 𝑖 labelled to be extracted in time period 𝑡_𝑜𝑢𝑡, a weight is assigned 

based on the number of stockpile-labelled blocks in the ℒ𝑠𝑖

𝑡_𝑜𝑢𝑡  (if 𝑡_𝑜𝑢𝑡 < 𝑡_𝑖𝑛, 

otherwise ℒ𝑝𝑖

𝑡_𝑜𝑢𝑡), Where ℒ𝑠𝑖

𝑡_𝑜𝑢𝑡 denotes successors of block 𝑖 which are extracted in 

time 𝑡_𝑜𝑢𝑡 in solution 𝑥 and ℒ𝑝𝑖

𝑡_𝑜𝑢𝑡  represents predecessors of block 𝑖 which are mined in 

time 𝑡_𝑜𝑢𝑡 in solution 𝑥. The weights are assigned to blocks such that a block which has 

the maximum number of stockpile-labelled blocks in ℒ𝑠𝑖

𝑡_𝑜𝑢𝑡 (if 𝑡_𝑜𝑢𝑡 > 𝑡_𝑖𝑛, ℒ𝑝𝑖

𝑡_𝑜𝑢𝑡) has 

the largest weight. 

For block 𝑗 labelled to be extracted in time period 𝑡_𝑜𝑢𝑡, a weight is assigned 

based on the number of processing-labelled blocks in the ℒ𝑝𝑖

𝑡_𝑖𝑛  (if 𝑡_𝑜𝑢𝑡 < 𝑡_𝑖𝑛, 

otherwise ℒ𝑠𝑖

𝑡_𝑜𝑢𝑡), such that a block that has the minimum number of processing-labelled 

blocks has the largest weight. 

Move between destinations 

Since moves between periods are k-exchange moves, in which 𝑘 blocks are swapped 
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between periods, the solution space for move between destinations is very large. 

Performing move-between destinations can be more complicated when there are several 

processing circuits, stockpiles and average grade requirements constraints are applied. 

Therefore, a sub-problem is defined and called destination assignment sub-problem 

(DA) and solved in associated with large neighbourhood search. Rules for applying DA 

are given below:  

 Only the transferred blocks (blocks moved from a period to another period) are 

taken into account for DA.  

 With a certain probability, a large neighbourhood search (LNS) is applied to 

reset the destination of all stockpile-labelled and processing-labelled blocks. 

 A block which is labelled as a waste block keeps its destination unless it has a 

positive economic value.  

 The DA is solved only for 𝑡_𝑖𝑛 and 𝑡_𝑜𝑢𝑡, unless LNS is applied. When LNS is 

hybridized, DA is solved for 𝑡_𝑖𝑛, 𝑡_𝑜𝑢𝑡 and other time periods which are greater 

than 𝑡_𝑖𝑛 and 𝑡_𝑜𝑢𝑡. 

The B&B algorithm is proposed to solve the DA, because the conducted 

computational experiments show that B&B can obtain a high quality solution for DA 

quickly.  

3.4. Evaluation of a neighbourhood solution 

The evaluation process is performed by checking the constraints of the MBS model to 

be satisfied. However, to enhance the chance of obtaining a feasible solution, 

considerations are taken into account for precedence relationships and machine 

capacity. The other constraints are checked after performing a move.  
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Precedence relationships consideration 

Let assume that the current solution is 𝑥 and the move will construct a neighbourhood 

solution 𝑥′ ∈ 𝑁(𝑥). If transferring block 𝑖 from 𝑡_𝑜𝑢𝑡 to 𝑡_𝑖𝑛 makes the new solution 𝑥′, 

then: 

If 𝑡_𝑖𝑛 > 𝑡_𝑜𝑢𝑡: 

𝑥𝑖𝑚𝑑

𝑡_𝑜𝑢𝑡 = 0,  𝑥𝑖𝑚𝑑

𝑡_𝑖𝑛 = 1,  𝑥𝑗𝑚𝑑

𝑡_𝑜𝑢𝑡 = 0 ,  𝑎𝑛𝑑 𝑥𝑗𝑚𝑑

𝑡_𝑖𝑛 = 1   ∀ 𝑗 ∈ ℒ𝑠𝑖
𝑡 , 𝑚 ∈ {1, 2, … , 𝑀}, 𝑎𝑛𝑑 𝑑

∈ {1,2, … , 𝐷}, 

Otherwise: 

𝑥𝑖𝑚𝑑

𝑡_𝑜𝑢𝑡 = 0, 𝑥𝑖𝑚𝑑

𝑡_𝑖𝑛 = 1;  𝑥𝑘𝑚𝑑

𝑡_𝑜𝑢𝑡 = 0 , 𝑥𝑘𝑚𝑑

𝑡_𝑖𝑛 = 1  ∀ 𝑘 ∈ ℒ𝑝𝑖
𝑡 , 𝑚 ∈ {1, 2, … , 𝑀}, 𝑎𝑛𝑑 𝑑 ∈

{1,2, … , 𝐷}, 

Machine capacity constraint consideration 

To obtain a feasible solution in terms of machine capacity the following constraints 

should be satisfied: 

ℳ𝑜𝑢𝑡 + ℳ𝑡_𝑖𝑛 ≤  ℳ𝑐
𝑡_𝑖𝑛   (27) 

ℳ𝑖𝑛 + ℳ𝑡_𝑜𝑢𝑡 ≤  ℳ𝑐
𝑡_𝑜𝑢𝑡   (28) 

Where,  

ℳ𝑜𝑢𝑡: Tonnage of material sent from period 𝑡_𝑜𝑢𝑡 to 𝑡_𝑖𝑛. 

ℳ𝑡_𝑖𝑛:  Tonnage of material extracted in period 𝑡_𝑖𝑛in solution x (the transferred 

blocks should be ignored at this stage). 

ℳ𝑐
𝑡_𝑖𝑛:  Machine capacity in period 𝑡_𝑖𝑛. 

ℳ𝑖𝑛: Tonnage of material transferred from period 𝑡_𝑖𝑛 to 𝑡_𝑜𝑢𝑡. 
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ℳ𝑡_𝑜𝑢𝑡: Tonnage of material extracted in period 𝑡_𝑜𝑢𝑡 in solution 𝑥. 

ℳ𝑐
𝑡_𝑜𝑢𝑡: Machine capacity in period 𝑡_𝑜𝑢𝑡. 

When a decision is made to transfer some blocks from 𝑡_𝑜𝑢𝑡 to 𝑡_𝑖𝑛, the 

Equations (27) and (28) should be solved. The ℳ𝑜𝑢𝑡 can be calculated because the 

blocks which are sent to the 𝑡_𝑖𝑛 are known. ℳ𝑐
𝑡_𝑖𝑛 and ℳ𝑐

𝑡_𝑜𝑢𝑡  are given parameters. 

4. Computational experiments 

The MBS model is tested by using several realistic instances reported in Table 1. Two 

different studies are presented. Firstly, the solution of proposed hybrid SA and B&B 

(SA_B&B) is compared with the CPLEX solution for those instances which CPLEX 

obtained at least one solution. Secondly, a comparison is performed between the 

obtained solution by SA_B&B, and hybrid SA_B&B and LNS (SA_B&B_LNS). The 

results of both algorithms as well as the best obtained objective value by CPLEX are 

reported in Table 1.  

Following parameters are considered for heuristic technique: initial temperature 

for SA=0.95, final temperature=1E-8, maximum run time for B&B=2 seconds, 

probability of applying LNS=0.2. In addition to the final temperature, a 2-hour time 

limit is considered to stop the SA in all instances except instances 10, 11, and 22-24 in 

which a 6-hour time limit is applied.  

A column labelled as deviation represents the deviation between CPLEX solution 

and the proposed heuristic solution. Where the deviation is negative, the objective value 

of our heuristic is better than CPLEX solution. Furthermore, each instance is run 15 

times in order to observe the variance of achieved solutions. The standard deviation and 

coefficient of variation (CV%) are calculated and summarized in Table 1. CV% is a 
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ratio of standard deviation to the mean and represents the dispersion of the obtained 

results. 

As it is shown in Table 1 both SA_B&B and SA_LNS_B&B obtained good 

solutions for all instances. The reported deviations show that the SA_LNS_B&B 

reaches the optimum solutions for instances with known optimum values. In addition, 

only in a few cases there are positive deviations which are less than 1%. As the size of 

the instances increase the trend of the deviations goes negative which means that the 

quality of SA_LNS_B&B is better than CPLEX solution. Moreover, for industry-scale 

cases such as instances 22-24, which CPLEX is unable to find a solution, good solutions 

are obtained by the SA_LNS_B&B. Finally, the outcomes show that the SA_B&B can 

also provide good solutions. However, the quality of the solution is not as good as the 

SA_LNS_B&B. Nevertheless, still the deviations for all instances are less than 3 %.  

The reported CV% for both proposed heuristics shows that in many cases the 

value of CV% is zero. This means that in all 15 runs, the proposed heuristic converges 

to a same solution. However, due to the direction of neighbourhood search, a positive 

amount of CV% can be observed in some cases.  

 

Table 1. Results of computational experiment. 

 

5. Case Study 

The proposed model and solution approaches are implemented in the real iron ore mine 

case study. A case study, extraction of 2500 blocks over 6 months is used and detail is 

given in Table 2. A time period is considered as two weeks and the problem is solved 

for 12 time periods (6 months). Blocks are rectangular and each one is 20m*20m*12 m.  
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Table 2. Case study: Extraction 2500 blocks over 12 time periods. 

 

The solution algorithm runs about 6 hours and results are discussed here. The 

material flow, reported in Table 3, shows that a high percentage of processing demands 

(89%) is provided by direct feed. Furthermore, it is observed that in the first period in 

which the minimum demands of P1 (270 kt) and P2 (570 kt) are not satisfied by run-of-

mine material, rehandling provides the maximum demands of P1 and P2. However, 

there is a similar situation in period 10, but rehandling provides the minimum demands 

of P1 and P2. This happens because keeping a tonne of material in the stockpile from 

first period to last period costs $1.2(0.1*12) which is more than the $1 rehandling cost. 

Therefore, the difference between direct feed and maximum demand is rehandled. 

However, for period 10, holding a tonne of material is always cheaper than rehandling.  

As can be seen in Table 3, the model tries to mine stockpile-labelled blocks as late 

as possible. The results show that most material is sent to the stockpiles in periods 5 to 9 

and not too much in the last three periods. Investigation of the extraction periods, 

precedence relations and ramp points shows that the available blocks for the last three 

periods are mostly waste. Therefore, a large amount of waste is extracted in these three 

periods, especially in period 11. 

Supplementary material 2 

 

The results for mined waste material, columns W1 and W2, shows that the stripping 

ratio (ratio of extracted waste to mined ore in a period) is not constant. Therefore, 

defining the stripping ratio by a mining engineer is not required because it can be 

obtained more accurately by the model, which is based on the accessibility of ore blocks 

and the processing requirements. 
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Table 3. Material flow and stockpile inventory. 

 

The results of Fe% and Al2O3% in run-of-mine material and final processing feed 

are shown in Figure 2. Figure 2.a and Figure 2.b give the Fe% and Al2O3% of blocks 

assigned to P1 and P2 in each period. The green solid circles in these figures show the 

average grade of Fe% and Al2O3% provided by run-of-mine material for each period. 

Unlike the static approach, currently used by the mine, the dynamic allocation assigns 

some blocks with Fe<62 and Al2O3>2.1 to P2. Furthermore, observation shows that the 

average grade of directed run-of-mine material may not satisfy mill requirements (e.g., 

period 10 for P2). This shortage is compensated for by stockpile-provided feed. Figure 

2.c and Figure 2.d present the final achieved average grades of Fe% and Al2O3% in 

processing feed provided by the mine and the stockpile. These figures confirm that 

grade requirements are completely satisfied for both processing circuits. 

The percentages of dispatched material to P1 & S1 and P2 & S2 for both static 

and dynamic approaches are given in Figure 3. Applying dynamic allocation can 

allocate about 20% more material to P2 and S2, compared to the static approach, while 

all constraints are fulfilled. We assumed that processing at P2 is cheaper than P1. 

Therefore, processing cost can be decreased by applying dynamic destination allocation.  

 

 

 

a) Fe% of blocks assigned to P1 and P2  b) Al2O3% of blocks assigned to P1 and P2 

c) Average grade of Fe in processing feed d) Average grade of Al2O3 in processing feed 

Figure 2. Average grade of bi-weekly production in processing feed. 
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Figure 3. Percentage of dispatched material in static and dynamic allocation 

5.1. Sensitivity Analysis 

Sensitivity analysis is performed to observe the changes in the solution. Several 

scenarios for target grades, processing demands and stockpiling costs are conducted.  

The grade bound for P1 and P2 are gradually relaxed and the results for objective 

value are reported in Figure 4.  As observed in this figure, the objective value decreases 

as the grade bounds are relaxed. This is logical because in large ranges of the accepted 

grade, ore blocks can be sent directly to the processing and both rehandling and holding 

costs are reduced. Since the misclassification and drop-cut costs (terms three to five in 

the objective function) are zero, the values for these costs have not been reported. Drop-

cut cost is zero because there are some blocks without predecessor and extractions are 

always side cut (no drop-cut is needed to open a bench).  Misclassification cost is zero 

as well, since the cost of the processing a waste block or dumping an ore block is high 

compared to stockpiling costs. Additionally, the ore and waste cut-off grade is 

considered as 50% for Fe, because in the current mine operation blocks with Fe% less 

than 50 are not processed at any processing circuits (although in some mines it may not 

be a true cut-off grade).  

Figure 4. Objective value for several grade bounds. 

 

Figure 5 shows the objective values for several cases which are run under 

different processing demands. As can be observed, the objective value can decrease by 

increasing the maximum capacity of the process, because more material can be directly 

transferred to process instead of storing in the stockpile. On the other hand, increasing 
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the minimum process demand may enhance the objective value, since the model is 

forced to compensate for the process deficit by rehandling from stockpiles. For those 

cases which have no bar in Figure 5, no feasible solution is found, because of lack of 

enough ore blocks.  

 

Figure 5. Objective value for different processing demands. 

 

To verify the effect of rehandling and holding cost, the problem is solved under 

different ratios of rehandling and holding costs such that rehandling cost is kept 

constant as $1 in all cases and holding cost is gradually increased.  

The model is solved under scenarios 1-4 and the amount of rehandled material is 

reported in Figure 6. This figure shows as unit holding costs increase, the amount of 

rehandled material also increases. This happens because keeping material in the 

stockpile is more expensive than rehandling it. Therefore, the model tries to send more 

material to the processes and satisfies maximum process demand, especially in early 

periods.  

 

Figure 6. Rehandled tonnage with different holding costs. 

 

To observe the effect of the grade distribution of the input blocks on MBS 

solution, the grades of blocks are randomly changed (the location of blocks remained 

same). Then the model is solved for the new grade configuration. Figure 7 shows the 

values of objective function, rehandling and holding costs.  

 

Figure 7. Objective values for five cases with different grade distributions. 
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The results show that depends on the grade distribution of input data, different 

objective values may be obtained. If ore blocks are accessible in all periods, then 

objective value decreases (e.g., C2). If the precedence relationships prevent access to 

ore blocks in some periods, then rehandling cost enhances (C1).  

The implementation of the model on real case study demonstrates that the 

proposed model can be successfully applied in open-pit mines, especially in mines that 

run-of-mine ore material can be directly sent to process. However, because the input 

data may not be correctly matched with the model requirements, some boundary effects 

may happen. For example, in the presented case study the excavators are unable to 

extract all blocks because they are not available full time (the average effectiveness of 

excavators for this case study is 0.36). In another scenario, excavator may finish 

extraction earlier than the end of time horizon, so they will be idle at the late periods. To 

solve this weakness, a practical way is to apply rolling horizon strategy. In a rolling 

horizon strategy the model is solved for longer time horizon, but only the solution of the 

first couple of periods is considered. Then more blocks are brought into the input data 

and model is solved again. This strategy can be useful, as in the mining industry the 

input data are regularly updated (e.g., additional drilling information, machine break 

down).  

6. Conclusion and future works 

In this paper, a new and more comprehensive mathematical programming model for 

short-term mine block sequencing is developed by tackling nearly all relevant physical 

and technical aspects in open-pit mining. The model is verified based on the smallest 

mining unit (block) to take the advantages of granularity of the grade estimation. 

Therefore, no aggregation or clustering is needed in the proposed MBS solution 
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techniques. In addition, the stockpiling process is included into the model to reflect the 

mining and processing operations over short intervals (e.g., days). The proposed model 

also considers in-site mining rules, dynamic destination assignment, blending and 

stockpiling. The ability of exact MIP solvers such as IBM ILOG-CPLEX to solve the 

MBS problem is investigated. According to the computational experiments, the real-life 

instances of the problem are intractable for CPLEX. The second main part of this paper 

is developing a hybrid heuristic approach to solve the large-size instances. In the 

proposed hybrid heuristic, the best dispatching of ore blocks is determined by applying 

B&B algorithm applied at the each iteration of SA. Moreover, in an alternative version 

of proposed heuristic, LNS is hybridized to improve the quality of solution. To test the 

efficiency of the proposed heuristic, several case studies are run by our proposed 

heuristic and CPLEX optimizer.  Computational experiments validate that the proposed 

heuristics can obtain promising results.  For those cases of which the optimum solutions 

are obtained by CPLEX, the heuristic also find the same solutions. For other instances, 

our heuristic is so competitive especially when LNS is applied as the deviation from 

CPLEX is less than 1% on average.   

The following research directions are proposed for future work. First, it is 

proposed to develop more advanced metaheuristics for solving the MBS problem 

without relying on any MIP solver. Second, for evaluating the performance of the 

heuristics in a better way, a lower bounding method based on a lagrangian relaxation 

will be developed. Third, a goal programming approach will be proposed when dynamic 

blending, processing and stockpiling requirements need to be satisfied. Last, the 

proposed MBS methodology will be incorporated with operational-level multi-stage 

mine production scheduling models (e.g., drilling, blasting, excavating, hauling and 
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railing) within a demand-responsive mines-to-ports supply chain scheduling system 

(Kozan and Liu 2012; Liu and Kozan 2011, 2012). 
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Table 1. Results of computational experiments 

*The optimal solution is obtained by CPLEX. 

 

Instanc
e 

Characteristics 
(#I, #M, #D, 
#T) 

 
Best integer 
solution by 
CPLEX × 10^5 
 
(a) 

SA_B&B  SA_LNS_B&B 
Average 
objective 
value of 
runs × 10^5 
(b) 

Minimum 
objective 
value of runs 
× 10^5 
 

× 10^3 

Standard 
deviation 

CV 
% 

Deviation % 
(1-a/b)*100 

 

Average 
objective value 
of runs × 10^5 
 
(c) 

Minimum 
objective 
value of runs 
× 10^5 
 

Standard 
deviation 
× 10^3 

CV 
% 

Deviation % 
(1-a/c)*100 

Ins1 (25,2,4,2) 0.54* 0.54 0.54 0 0 0.00   0.54 0.543 0 0 0 

Ins2 (50, 2, 4, 2) 2.02* 2.02 2.02 0 0 0.00   2.02 2.02 0 0 0 

Ins3 (75,2,4,2)   1.31* 1.32 1.31 0.36 0.28 0.76   1.31 1.31 0 0 0 

Ins4 (100 ,2,4,2) 1.39 1.4 1.4 0 0 0.71   1.4 1.39 0.17 0.12 0.71 

Ins5 (180,2,4,2) 2.15* 2.17 2.16 0.79 0.37 0.92   2.15 2.15 0 0 0 

Ins6 (242,2,4,2) 2.62 2.7 2.66 2.91 1.08 2.96   2.62 2.61 0.49 0.19 0 

Ins7 (372,2,4,3) 4.13 4.16 4.08 5.12 1.23 0.72   4.03 3.94 4.30 1.07 -2.49 

Ins8 (412,2,4,3) 3.82 3.83 3.82 0.50 0.13 0.26   3.82 3.82 0.23 0.06 0 

Ins9 (515,4,4,4) 5.56 5.47 5.36 8.98 1.64 -1.65   5.38 5.3 8.02 1.49 -3.34 

Ins10 (620,4,4,4) - 15.4 1.52 21.2 1.37  -   1.55 1.52 1.65 1.07  - 

Ins11 (900,4,4,6) -  15.8 15.4 33.97 2.15 -    15.8 15.4 33.9 2.15  - 

Ins12 (25,2,6,2) 0.91* 0.91 0.91 0 0 0.00   0.91 0.913 0 0 0 

Ins13 (50,2,6,2) 2.09* 2.12 2.09 2.32 1.1 1.42   2.09 2.09 0 0 0 

Ins14 (75,2,6,2) 2.05* 2.06 2.05 0.78 0.38 0.49   2.05 2.05 0 0 0 

Ins15 (100,2,6,2) 1.91 1.94 1.92 2.01 1.04 1.55   1.91 1.91 0 0.07 0 

Ins16 (180,2,6,2) 2.01 2.07 2.04 1.35 0.65 2.90   2.02 2.01 1.52 0.75 0.49 

Ins17 (242,2,6,2) 3.49 3.52 3.5 0.49 0.14 0.85   3.51 3.49 1.14 0.32 0.57 

Ins18 (372,2,6,3) 5.07 4.93 4.92 1.79 0.36 -2.84   4.93 4.92 1.18 0.24 -2.85 

Ins19 (412,2,6,3) 6.61 6.74 6.65 5.11 0.76 1.93   6.66 6.61 2.47 0.37 0.75 

Ins20 (515,4,6,4) 6.69 6.61 6.43 19.9 3 -1.23   6.58 6.43 17.4 2.65 -1.67 

Ins21 (620,4,6,4) 8.21 7.81 7.71 9.68 1.24 -5.12   7.82 7.72 8.29 1.06 -5.00 

Ins22 (900,4,6,6) -  17.9 17.7 13.7 0.77  -   17.9 17.8 10.73 0.60  - 

Ins23 (1200,4,6,6) -  13.3 13.2 8.22 0.62  -   13.3 13.2 6.35 0.47  - 

Ins24 (2500,6,6,12) -  23.8 21.6 96.6 4.06  -   24.0 22.2 126.1 5.25  - 
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Table 2. Case study: Extraction 2500 blocks over 12 time periods 

   Excavators 

 E1 E2 E3 E4 E5 E6 E7 E8 

Units 1 1 1 1 1 1 3 2 

Capacity (kt/day) 52.2 41.6 27.5 33.8 11.5 10.8 79.1 29.2 

 
 

Processing circuits 

 P1 P2 

Target feed range 270-300 kt 570-600 kt 

Target %Fe range 56.5-57.5% 63-63.5% 

Target % Al2O3 range no limitation < 2.1% 

 
 

Waste dumps 

 W1 W2 

Capacity unlimited unlimited 

Target %S no limitation >0.2 

 
 

Stockpiles 

 S1 S2 

Initial inventory 900 kt 1500 kt 

Safety level 300kt 600 kt 

Capacity unlimited unlimited 

Target Fe% range >50 >50 

Target Al2O3% range no limitation < 2.1 

Rehandlin Cost ($/tonne) 1 1 

Holding Cost ($/tonne) 0.1 0.1 
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Table 3. Material flow and stockpile inventory 

Time 

period 
Dispatched run-of-mine material (kt) 

 Stockpiles to 

processing 

flow (kt) 

 Final 

processing 

feed (kt) 

 
Stockpile 

inventory (kt) 

 P1 P2 S1 S2 W1 W2 
 S1 to 

P1 

S2 to 

P2 

 
P1 P2 

 
S1 S2 

1 198 566 39 0 1790 519  102 34  300 600  837 1470 

2 300 600 238 82 1800 285  0 0  300 600  1080 1550 

3 200 600 0 0 1930 537  70 0  270 600  1010 1550 

4 295 600 0 169 1630 503  0 0  295 600  1010 1720 

5 300 600 134 324 1220 647  0 0  300 600  1140 2040 

6 300 600 147 383 1290 522  0 0  300 600  1290 2420 

7 300 600 253 508 1330 239  0 0  300 600  1540 2930 

8 300 600 327 618 1150 199  0 0  300 600  1870 3550 

9 300 600 81 192 1860 187  0 0  300 600  1950 3740 

10 147 448 0 0 2460 179  123 122  270 570  1820 3620 

11 18 153 0 0 3050 0  252 417  270 570  1570 3200 

12 277 599 0 350 2020 0  0 0  277 599  1570 3550 
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Figure 1. a) drop cut, b) side cut 

Figure 2. Average grade of bi-weekly production in processing feed 

Figure 3. Percentage of dispatched material in static and dynamic allocation 

Figure 4. Objective value for several grade bounds 

Figure 5. Objective value for different processing demands 

Figure 6. Rehandled tonnage with different holding costs 

Figure 7. Objective values for five cases with different grade distributions 

 

 


