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Summary: Open population capture-recapture models are widely used to estimate population demographics

and abundance over time. Bayesian methods exist to incorporate open population modeling with spatial capture-

recapture, allowing for estimation of the effective area sampled and population density. Here, open population

spatial capture-recapture is formulated as a hidden Markov model, allowing inference by maximum likelihood

for both Cormack-Jolly-Seber and Jolly-Seber models, with and without activity center movement. The method

is applied to a twelve-year survey of male jaguars (Panthera onca) in the Cockscomb Basin Wildlife Sanctuary,

Belize, to estimate survival probability and population abundance over time. For this application, inference is

shown to be biased when assuming activity centers are fixed over time, while including a model for activity center

movement provides negligible bias and nominal confidence interval coverage, as demonstrated by a simulation

study. The hidden Markov model approach is compared with Bayesian data augmentation and closed population

models for this application. The method is substantially more computationally efficient than the Bayesian

approach and provides a lower root-mean-square error in predicting population density compared to closed

population models.
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1 INTRODUCTION

1. Introduction

Many capture-recapture surveys (Otis et al., 1978) are conducted over time periods

where the surveyed population undergoes change: individuals are born, immigrate, em-

igrate, or die. For these methods, each individual must have a unique mark that allows

detectors to record encounters with them, creating their capture history. Two widely

used statistical models for open populations, the Cormack-Jolly-Seber (CJS) (Cormack,

1964; Seber, 1965) and Jolly-Seber (JS) (Jolly, 1965; Seber, 1965) models, use these

capture histories. For CJS models, inference is restricted to those individuals whose

capture histories were recorded: marked individuals. From this, the apparent survival and

detectability of marked individuals can be estimated. Only apparent survival is estimable

since animals that die and those that permanently emigrate are indistiguishable from

their capture histories. JS models, by assuming marked and unmarked individuals are

exchangeable, extend inference to the entire population: estimating population size over

time, recruitment (birth and immigration) rate, and survival rate.

Neither CJS nor JS incorporate the spatial component inherent in capture-recapture:

individuals that range closer to a detector are more likely to be captured by that detector.

Spatial capture-recapture (SCR) methods (Efford, 2004; Borchers and Efford, 2008) do

use detector locations to estimate detection probability over space. This provides a

rigorous estimate of the effective area sampled and population density.

SCR provides an efficient and flexible framework for closed population capture-recapture

inference. Each individual is associated with a location in space, its activity center. The

farther an activity center is from a detector, the less likely it is that the individual

is captured by that detector. This activity center is a latent variable: it is unobserved.

Maximum likelihood SCR modeling (Borchers and Efford, 2008) is achieved by numerical

integration, averaging over all possible activity centers in the survey region. Bayesian

SCR models (Royle et al., 2013) obtain inference by sampling activity centers within a

Markov chain Monte Carlo (MCMC) algorithm, using the full joint likelihood of detection

parameters and activity centers. Alternatively, Bayesian inference can be obtained from

the semi-complete data likelihood where integration over activity centers is achieved by

quadrature (King et al., 2016).

Existing open population SCR models (Gardner et al., 2010; Royle et al., 2013), which

are extensions of CJS and JS, rely on a Bayesian approach and the full joint likelihood

of detection parameters, activity centers, and life histories. Each individual has a latent

life history that is sampled within an MCMC algorithm. For JS, data augmentation is

used: a super-population, of pre-determined size, is sampled where some individuals are
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1.1 Motivation 1 INTRODUCTION

born, and so contribute to the estimated population size, and some are never born. The

super-population is chosen to ensure it exceeds the size of the true population and the

MCMC sampling is used to infer the distribution of the population size. This method

is computationally demanding and, in the formulation of Gardner et al. (2010), ties the

interpretation of recruitment parameters to the size of the super-population; this de-

pendence on the super-population size has been removed by Chandler and Clark (2014),

though at the cost of further computation. No methods exist to fit open population SCR

models by maximum likelihood; in particular, no algorithm other than MCMC has been

used to average over all possible life histories.

In this paper, open population SCR is formulated as a hidden Markov model (HMM)

(Zucchini et al., 2016), allowing for inference to be drawn by maximum likelihood and

marginalization over all life histories to be done exactly. A HMM can be described by

two processes: a hidden process and an observation process. The hidden process is a

Markov chain of discrete states; the observations comprise a time series that depends on

this hidden process: at each time, an observation depends only on the current state of the

hidden process, and conditional on these hidden states, observations are independent.

For open population SCR, the hidden process is the life history of the individual and the

observations are the capture records (Figure 1). HMM methodology provides an efficient

algorithm to average over all possible life histories. Combined with the extant numerical

integration over activity centers, this allows both SCR CJS and JS models to be fit by

maximum likelihood. Also, it allows for a semi-complete data likelihood to be computed

and Bayesian inference obtained more efficiently.

1.1 Motivation

The JS method is applied to a camera trap survey of male jaguars (Panthera onca) in

the Cockscomb Basin Wildlife Sanctuary, Belize (Harmsen et al., 2017). The survey was

repeated for twelve years, between 2002 and 2015, during dry season months, between

January and July. A key question for this population is how population size changes over

time and what demographic processes drive this change. The method presented provides

SCR estimates of population density, identifies which demographic rates are responsible

for population change, and provides a means of testing whether these rates vary over

time.

Finally, a simulation study is conducted to investigate the effect of small sample size, due

to low population density or low detectability, on maximum likelihood estimates. The
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2 METHODS

simulation is based on the jaguar survey and estimates the bias and confidence interval

coverage for each estimated parameter.

2. Methods

Consider a capture-recapture survey with K occasions and J detectors. During the

survey, n individuals are detected and uniquely marked, or identified to have some

natural unique mark. Unique marks are used to recognise whether an individual was

detected on each occasion or not: the capture history. Individual i has a capture history

Ωi, a J × K matrix, with kth column ωi,·,k and (j, k)th entry ωi,j,k. The entries of the

capture history depend on the type of detector used: ωi,j,k = 0, 1 is binary for detectors

that physically trap individuals or only register whether the individual was captured, or

not, on each occasion (e.g. DNA hair traps); alternatively, ωi,j,k can be the number of

times an individual is encountered by the detector, if this is recorded (e.g. with cameras).

The collection of all capture histories is denoted Ω.

During each occasion, each individual is associated with a latent activity center in two-

dimensional space. Let xi,k denote the activity center of individual i during occasion

k and let xi,1 be termed the initial activity center of individual i. The activity centers

are the spatial component of the model: each is the point in two-dimensional space that

represents the average location of the individual over an occasion. In each occasion,

the probability that an individual is detected on a particular detector is a decreasing

function of the distance between this detector and the individual’s activity center: those

individuals that spend, on average, more time far away from the detector are detected

less often than those that spend their time at a closer distance.

In open population capture-recapture, each individual has a life history, which is unob-

served. On each occasion k, individual i has one of three possible life states, si,k: unborn,

alive, or dead. Individuals who will be born or newly immigrate into the study area on

an occasion after occasion k are said to be in the ‘unborn’ state; individuals that are

alive and present in the survey region on occasion k are in the ‘alive’ state; finally, those

individuals that died or permanently emigrated from the study area before occasion k

are said to be in the ‘dead’ state.

Here, the aim is to incorporate both SCR and open population capture-recapture into

a single, tractable likelihood.

This article is protected by copyright. All rights reserved.
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2.1 Detection model 2 METHODS

2.1 Detection model

In a particular occasion, the probability that an individual is detected, and the number

of times the individual is detected by each detector, depends on the individual’s activity

center and life state. This can be described by an encounter rate model where λj,k(x, s)

is the mean number of captures of an individual with activity center x and life state

s during occasion k at detector j. Clearly, individuals that are yet to be born and

those who have already died cannot be detected: λj,k(x, s) = 0 for s = unborn, dead.

For those individuals that are alive on occasion k, λj,k(x, alive), can be specified, for

example, as a half-normal (or many other possible functional forms can be used, see

Efford (2012)). Alternatively, one may specify the probability that an individual with

activity center x and life state s is seen at all in occasion k by detector j, pj,k(x, s),

for example as half-normal, and then derive the encounter rate through the relationship

pj,k(x, s) = 1− exp {−λj,k(x, s)}.
Given the mean encounter rate, the probability of the observed capture record on

each occasion can be stated. If capture records are binary, only a record of whether

the animal was seen or not seen in each occasion is made, then the probability is

[ωi,j,k|xi,k, si,k] = p
ωi,j,k

i,j,k (1−pi,j,k)1−ωi,j,k , where pi,j,k = pj,k(xi,k, si,k), for brevity. If capture

records are counts, which are all assumed to be independently Poisson distributed, then

[ωi,j,k|xi,k, si,k] = λ
ωi,j,k

i,j,k exp(−λi,j,k)/ωi,j,k!, where λi,j,k = λj,k(xi,k, si,k), for brevity.

The probability of the entire capture record on occasion k, assuming detectors and

detections are independent, is thus [ωi,·,k|xi,k, si,k] =
∏J

j=1[ωi,j,k|xi,k, si,k]. If detections

are not independent, then detectors are competing and this can be described by assuming

[ωi,·,k|xi,k, si,k] has a multinomial distribution. This can occur, for example, when phys-

ical trapping of the individual in one detector removes the possibility of being captured

in another detector for that occasion.

In surveys that employ the robust design approach (Pollock, 1982), the occasion, as

discussed here, corresponds to the primary occasion. These primary occasions may

include multiple secondary occasions. In that case, the above describes the likelihood

contribution for each secondary occasion and, assuming secondary occasions to be inde-

pendent, [ωi,·,k|xi,k, si,k] is a product of these terms.

2.2 Open population model

Two popular models in open population capture-recapture are the Cormack-Jolly-Seber

(CJS) and the Jolly-Seber (JS) model (Schwarz and Arnason, 1996). For CJS, individuals

are known to be alive from the first occasion they are studied: individuals can only
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2 METHODS 2.2 Open population model

have life states that are ‘alive’ or ‘dead’. Individuals may be first captured on different

occasions and so tracked over different periods of time. For simplicity, it is assumed

here that all individuals are tracked from occasion 1 onwards; however, the method is

easily adapted to the case where individuals are tracked from different starting points.

The probability that an individual alive in the study region in occasion k survives until

occasion k + 1 is called the survival probability on occasion k and is denoted φk. In

particular, only the capture histories of those individuals that are marked, captured at

least once, are used and so the population studied, the population of marked individuals,

has known size.

For JS, individuals can be born, as well as survive and die, during a survey. Furthermore,

JS models assume unmarked individuals are exchangeable with marked individuals, that

is, their capture histories arise from the same model. This assumption allows JS models

to estimate the number of individuals ever to have lived during the survey, N . In SCR,

individuals with activity center x arise from a Poisson process with rate D(x). This

rate is interpreted as the density at location x. When incorporated with the JS model,

this interpretation changes. Each individual is assigned an initial activity center, just as

before, at location x with rate D(x), but that individual is, possibly, only alive for some

number of occasions.

Conceptually, all individuals are placed in a queue: some wait to enter the queue (‘un-

born’), some are in the queue (‘alive’), and some have left the queue (‘dead’). The

parameter N is the number who were in the queue at some point. The N individuals

are divided among the k occasions: some are in the queue from occasion 1, some join in

occasion 2, and so on. The probability that an individual is selected to join the queue

in occasion k is αk. For example, α1 is the probability that an individual is in the queue

at the beginning of the survey, that is, is alive from the beginning; α2 is the probability

that an individual is born in occasion 2. Equivalently, the probability that an individual

enters the queue on occasion k given it has not entered up to that time is denoted βk

where β1 = α1 and βk = αk/
∏k−1

l=1 (1 − βl) for k > 1. Similarly, individuals leave the

queue after occasion k with probability 1− φk.
This queue can be described by a Markov chain. The life state of an individual in

an occasion depends only on its state in the previous occasion, satisfying the Markov

property. A Markov chain is fully specified by its initial distribution and transition

probability matrix.

For JS, the initial distribution depends on an estimable parameter: δ = (1 − α1, α1, 0).
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The transition probability matrix for JS is

Γk =

unborn alive dead
1− βk βk 0 unborn

0 φk 1− φk alive

0 0 1 dead

Note that, βk, not αk, is used because it is the conditional probability of being born,

given the individual hasn’t been born up to that time, that is needed. This implicitly

uses the knowledge that an individual in the ‘unborn’ state must have been in this state

for all past occasions.

For CJS, the initial distribution δ is known, all individuals begin in the alive state: δ =

(1, 0). The transition probability matrix for CJS is the 2× 2 sub-matrix corresponding

to the alive and dead states.

2.3 Hidden Markov Model

Hidden Markov models are applied to time series data where observed records at each

time point depend on an unobserved Markov chain. Here, the capture history of an

individual is recorded over time, and each capture record depends on the unobserved life

state of that individual, where life states follow a Markov chain (Figure 1). Therefore,

CJS and JS are examples of hidden Markov models.

[Figure 1 about here.]

Incorporating SCR with this formulation is simple. Conceptually, for each occasion,

individuals in the queue (those that are alive) are either recorded or not depending on

their activity center. Following hidden Markov model methodology, this is formulated by

a matrix, termed here the detection matrix. The detection matrix for CJS and JS, Pk, is

a 2×2 and 3×3 diagonal matrix respectively where the sth diagonal is [ωi,·,k|xi,k, si,k = s]

for s = unborn, alive, dead.

The power of recognising this to be a hidden Markov model is clear when it comes to

averaging over all possible life histories, weighting each by their probability. It is simply a

matrix product: [Ωi|xi,1, . . . ,xi,K ] = δPi,1Γ1Pi,2Γ2 . . .ΓK−1Pi,Kε where Pi,k = Pk(xi,k)

and ε is a column vector of ones with the appropriate size.

2.4 Spatial process

Until now, the activity center of each individual has been treated as known. Each indi-

vidual is associated with a latent movement path: its activity centers over all occasions.

This article is protected by copyright. All rights reserved.
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In the standard implementation of maximum likelihood spatial capture-recapture, each

individual’s activity center is assumed to be stationary, that is, xi,k = xi,1 for all k;

a spatial point process model is specified for the initial activity center. The latent

activity centers are then marginalised by a two-dimensional numerical integration for

each individual. In the Bayesian framework, correlated movement of activity centers

over occasions has been implemented; the corresponding maximum likelihood method

to do so is presented here.

Activity center movements are assumed to be independent random deviates from a

two-dimensional Gaussian distribution: xi,k+1 conditional on xi,k is a two-dimensional

Gaussian random variable with mean xi,k and variance ν2∆tkI where ∆tk is the number

of time units separating occasions k and k+1, and I is an identity matrix. The variable ν

is termed the movement range. This is a Markov process. It follows that the probability

density function (PDF) of the movements for a single individual i given their initial

activity center is a product of bivariate Gaussian PDFs, [xi,2, . . . ,xi,K | xi,1]. The full

PDF for the movement of activity centers is thus specified once a spatial model is

determined for the initial activity center. The appropriate spatial point process model

depends on whether a CJS or JS model is used.

2.5 Likelihood

The point process from which the initial location of each individual arises is assumed to

be an inhomogeneous Poisson process with rate D(x) at location x. The distribution of

initial locations of individuals detected at least once during the survey is thus a thinned

point process with thinning probability p(x1) = 1−[Ω0|x1] where x1 is the initial activity

center of the individual and Ω0 is the capture history of an individual that is never seen

by any detector on any occasion with [Ω0|x1] =
∫

[Ω0 | x1, . . . ,xK ][x2, . . . ,xK | x1] dx2 . . . dxK .

Thus, the overall intensity function of the thinned point process is µ(x) = D(x)p(x) for

initial activity center x. The likelihood is built from two components: the probability

of detecting n individuals and the probability of observing the capture histories given

detection at least once, averaged over activity centers.

The likelihood, L, assuming individuals to be independent, can now be stated. For JS,

the likelihood is

L =
exp(−µ)

n!

n∏
i=1

∫
[Ωi | xi,1, . . . ,xi,K ][xi,2, . . . ,xi,K | xi,1]

×D(xi,1) dxi,1 . . .xi,K

where µ =
∫
µ(x) dx. A full derivation is given in the Web Appendix A.
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For CJS, data are collected conditional on n individuals, thus the thinned Poisson process

is an inhomogeneous Binomial point process. The likelihood is thus

L =
1

D
n

n∏
i=1

∫
[Ωi | xi,1, . . . ,xi,K ][xi,2, . . . ,xi,K | xi,1]

×D(xi,1) dxi,1 . . .xi,K

where D =
∫
D(x) dx.

In both cases, the likelihood can be decomposed into a product of 2K-dimensional

integrals, one for each individual. When the activity center of each individual is assumed

to be the same over all occasions, stationary, then this reduces to a product of two-

dimensional integrals, one for each individual, and can be computed using standard,

numerical integration techniques. When the activity center of an individual moves,

as described above, according to a Gaussian process, the integral can be computed

efficiently by incorporating the numerical integration with the HMM formulation.

As with standard numerical quadrature, the survey area is divided into M grid points,

termed the mask or mesh in the SCR literature. Each individual is assumed to have an

activity center that resides at one of these grid points. In other words, the grid point

representing the activity center of individual i on occasion k, gi,k, is a latent variable. The

movement of the individual across the grid is a hidden process. Assuming movement is

a Markov process implies that the combined hidden state (gi,k, si,k) is a Markov process.

Transition between life states is described in Section 2.2. Transitions between grid points

can similarly be formulated as a transition matrix. The probability of moving from grid

point a to grid point b is denoted γa,b. Given a Gaussian movement process, the transition

probability density of movement to a point y conditional on being located at a point x

is a bivariate Gaussian PDF with mean x and variance ν2I, for identity matrix I. The

probability of transition from location x to the grid cell B, represented by grid point b, is

the integral of this transition density over B. The entry γa,b is the transition probability

from point x to grid cell B averaged over all x in the grid cell surrounding grid point a.

For each grid point gi,k corresponding to spatial location xi,k, Section 2 gives the initial

life state distribution δ, transition probability matrix Γk and the detection matrix Pi,k.

The corresponding entries for the augmented hidden process (gi,k, si,k), the initial state

vector ∆, the transition probability matrix Γ̃k, and the detection matrix P̃i,k can be

computed from these (see Web Appendix B). Given this, the likelihood approximated

by numerical integration over all activity center movements can be computed by a HMM

likelihood: L =
∏n

i=1

{
∆
(∏K−1

k=1 P̃i,kΓ̃k

)
P̃i,Kε

}
where ε is a column vector of ones of

This article is protected by copyright. All rights reserved.
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appropriate size. In practice, the matrix Γ̃k is a sparse matrix when ν is small compared

to the size of the grid: individuals move small distances compared to the size of the

survey region. Thus, efficient sparse matrix computations can be used to perform the

matrix multiplication.

Maximum likelihood estimation can be used to obtain point, variance and interval

estimates of all parameters in the standard way with Wald or profile likelihood intervals;

similarly, priors can be specified for parameters and MCMC used with this semi-complete

data likelihood.

2.6 Abundance

For JS models, the total number of individuals to have lived at some time during the

survey is estimated: N̂ =
∫
D̂(x) dx. This quantity, however, is rarely of interest.

The true interest lies in estimating abundance over time. The mean estimated density

in occasion k can be computed: D̂k(x) = D̂(x)δ̂Γ̂1 . . . Γ̂k−1ε1, where ε1 is the 3 × 1

vector (0, 1, 0). The estimated abundance on occasion k is then derived in the usual way:

N̂k =
∫
D̂k(x) dx.

When parameters are estimated by maximum likelihood, the variance and confidence

intervals for N̂k can be obtained assuming a log-normal asymptotic distribution (Fewster

and Jupp, 2009) or by bootstrap. If Bayesian estimation were used, posterior inference

for Nk is obtained trivially from the above formula and the posteriors of the model

parameters.

3. Application: Jaguars

The aim is to infer the population size and demographics over time of male jaguars in

the east of the Cockscomb Basin Wildlife Sanctuary, Belize (Harmsen et al., 2010) in

a survey area of 1598 square kilometers. Capture-recapture camera trap surveys were

conducted for on average 91 days each year between 2002− 2008 and 2011− 2015. Full

details of the survey are given by Harmsen et al. (2017).

Each survey year was considered an occasion and capture histories comprised counts of

the number of times each jaguar was seen on each camera trap. A total of 21 pairs of

cameras were used at some time during the survey, each pair being treated as a single

detector. Nineteen of the detectors remained in the same position over the entire survey

(Figure 2). Detectors were placed at approximately two kilometer intervals along trails

preferentially used by male jaguars. In 2011, photographic cameras were replaced with

digital technology, which may affect detectability.

This article is protected by copyright. All rights reserved.
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[Figure 2 about here.]

3.1 Data summary

Over 12 occasions, 53 unique male jaguars were detected with an average of 23.4 de-

tections per individual. The biological research focusses on three processes: detection,

recruitment, and survival. Before considering a statistical model, summary statistics

can be computed. These summary statistics are not rigorous parameter estimates. Nev-

ertheless, they are useful because they provide independent pictures of the data. Open

population models and spatial capture-recapture models induce non-linear relationships

between parameters: a larger estimated detection range may force a reduced estimated

encounter rate, for example. The resultant estimates from a model are a compromise

between the accurate depiction of the detection, demographic, and movement processes

in light of the data collected. Summary statistics allow the analyst to determine before

modeling what an appropriate model is and to identify if the constraints of the model

have distorted the resulting inference, leading to a poor goodness-of-fit.

• Detection range: The detection range, the range covered within each occasion by

an individual, can be summarised by the statistics proposed by Calhoun and Casby

(1958) (CC statistic): Cwithin,k =
√∑R

r=1 ‖yr,k − yk‖2/(2R− 2) where ‖ · ‖ denotes

the Euclidean distance metric, R is the total number of sightings of the individual

during occasion k, yr,k is the location of the detector the individual was seen at during

occasion k for sighting r, and yk is the mean of these locations over occasion k. This

statistic provides an initial estimate for the detection range. In this survey, the Cwithin

statistic indicates a mean individual range of 3120 meters with a standard deviation of

408 meters. Individuals captured in 2005 had the smallest mean range (2459 meters)

and those in 2013 the largest range (4069 meters). It should be noted that these are

the detected ranges; movements beyond the scope of the detectors is unobserved.

• Encounter rate: The encounter rate, λ0, is the number of encounters an individual has

with a detector when its activity center coincides with the location of that detector.

The encounter rate (ER) summary statistic is chosen to reflect this quantity. For

occasion k, ERk =
1

n

∑n
i=1 maxj ωi,j,k/Tk where Tk is the number of days occasion k

lasted. This statistic gives a negatively-biased estimator of encounter rate, but provides

a useful indicator of change in encounter rate over time. Here, the mean ER across

occasions was 0.046 individuals per day with a standard deviation of 0.012. The ER

statistic has a mean of 0.040 before 2011, when the digital cameras were first used,
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and this increases to 0.055 from 2011. This indicates that the change in technology

may have affected the detection process.

• Survival: The survival process is a geometric process in which individuals fail to

survive with probability 1 − φ on each occasion. A useful summary statistic is the

mean number of occasions between each individual’s first and last sighting for those

individuals seen on at least two occasions. Here, on average, the duration between the

first and last sighting of an individual is 3.49 years. For a geometric distribution, this

corresponds to an annual survival probability of 0.71.

• Recruitment: Individuals are recruited by occasion. We use the proportion of de-

tected individuals that were first seen on each occasion as a recruitment-related sum-

mary statistic. In this survey, 19% of individuals were sighted in the first occasion and

there was no apparent trend in number after that, with on average 7.4% newly sighted

individuals per occasion.

• Movement: Activity centers may move during the survey. It is important to in-

vestigate whether this occurs. One method is to compute the CC statistic over the

entire survey, Call, where the occasion-specific mean yk is replaced by the mean

detection location over the entire survey y. This can be compared to the mean within-

occasion CC statistic computed above, Cwithin. For stationary activity ranges, the

two will be similar; for moving activity centers, the range covered by an individual

over the survey will be larger than that covered in any single occasion. Here, Call

across the entire twelve survey years is 4512 kilometers; this is on average 1500 meters

larger than Cwithin, suggesting that movement has occurred. We can define Cbetween

to be the CC statistic for movement of activity centers between occasions, such that

C2
all = C2

between + C2
within. Here, the mean between-occasion range is 3204 meters with

a standard deviation of 460 meters. This estimate is biased by the detection process

and population dynamics, but can be used as an exploratory diagnostic. Here, there is

indication that a model with movement is likely to be required as the between-occasion

range is similar to the within-occasion range.

3.2 Model

SCR Jolly-Seber models with and without moving activity centers were fit to the data by

maximum likelihood where variance was estimated using the inverse Hessian approach.

The integration was performed over a grid, often called a mesh, with a mean buffer

distance around the trapping area of 17 kilometers; stability of the integration on the
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mesh was investigated as in the mask.check function of the secr software package

(Efford, 2012), see the Web Appendix C for details.

Models had three components:

• Detection model: It is assumed that the number of encounters of individual i with

trap j was Poisson distributed with a mean given by λj,k(xi,k, alive) = λ0,k exp {−dj(xi,k)2/(2σ2
k)}

where xi,k is the activity center of individual i on occasion k and dj(x) is the distance

between detector j and location x. The parameter λ0,k is termed the base encounter

rate and σk the detection range on occasion k.

• Open population model: The Schwarz-Arnason Jolly-Seber model (Schwarz and

Arnason, 1996) is assumed with recruitment probabilities β1, . . . , βK for K occasions

and survival probability φk between occasions k and k+1. When survival probability is

constant, φ, the survival probability between occasions k and k+ 1 was formulated as

φk = φδk where δk is the duration between the end of occasion k and the beginning of

occasion k+ 1: longer durations between occasions lead to lower survival probabilities

between occasions. Here, time was defined in years and φ is estimated annual survival.

• Spatial process: Initial activity centers are assumed to be distributed according to a

homogeneous Poisson process with constant rate D. For models with moving activity

centers, activity centers move according to a Gaussian process with standard deviation

νk between occasions k and k + 1. Movement is approximated by movement on the

mesh, that is, it is assumed each individual’s activity centers during the survey are

contained within the mesh.

Models were considered where parameters may change between occasions or be constant,

except D which was a constant. For the detection model, a covariate specifying whether

a digital or photographic camera was used is also considered. Models were compared by

AIC.

[Table 1 about here.]

The best fitting model selected by AIC had activity centers, encounter rate, and detection

range change by occasion while survival probability, recruitment rate, and movement

range were constant (Table 1). The covariate describing the technology used for each

camera (digital or not) did not provide a better or comparable fit (assessed by AIC)

compared to allowing detection probability to change for every occasion.

The best fitting model selected by AIC among models where activity centers were

stationary over time also had encounter rate and detection range vary by occasion while

all other parameters were constant. The estimated trend in density for the stationary
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model and model with moving activity centers is shown in Figure 3. Table 1 shows the

maximum likelihood estimates from both models. There is a remarkable difference in the

estimated mean abundance: a 40% reduction in the estimated abundance when activity

centers are assumed to be stationary. Furthermore, the stationary model estimates

survival to be 10% lower and activity range to be 60% larger. The substantial effect

the assumption of stationary activity centers has on the resultant inference makes clear

that this assumption must be validated for any application of open population models.

Moving activity centers, when present in the survey but unaccounted for in the model,

leads to two problems. First, as individuals are seen over a wider range over the entire

survey compared to within each occasion, the stationary model compensates for this

by overestimating activity range and underestimating encounter rate; this ultimately

leads to an overestimation of detection probability and, in this case, a substantially

underestimated density. The second problem is while the model with movement is able

to account for reduced detectability due to movement, the stationary model cannot and

tends to explain this reduced detectability by lowering survivial probability: individuals

that move out of detectable range are best explained by having failed to survive.

One question is whether there is evidence that population density has changed over time.

To investigate this, one can consider the estimated rate of change in density between

occasions: ∆k = (Dk+1 − Dk)/∆tk where ∆tk is the time between occasions k and

k+1. Using the best-fitting model with moving activity centers, a parametric bootstrap,

simulating from the estimated asymptotic distributions of the parameters, is used to

estimate the variance of these differences. The mean change in density between occasions

was 0.06 individuals per 100 square kilometers with an estimated 95% confidence interval

of (−0.02, 0.21) using 1000 bootstrap re-samples. As the estimated confidence interval

includes zero, this indicates that the evidence for population density changing over time

is not statistically significant.

[Figure 3 about here.]

3.3 Comparison with other methods

Two popular SCR alternatives to the HMM method presented here are closed-population

SCR and the Bayesian implementation of the open population models using data aug-

mentation. These methods were applied to the jaguar case study to compare resultant

inference and efficiency. For both methods, the same formulations for detection and, for

the Bayesian model, population dynamics were used as in the models above.

For the year-specific closed-population SCR approach, the population was assumed to
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be closed within the survey conducted each year and surveys across years assumed to

be independent. This means that if an individual was captured in separate years, this

information is ignored and the detections treated as if they are from distinct individuals.

Hence, one cannot explicitly estimate recruitment or survival probability. On the other

hand, as activity centers between years are unrelated, this model is robust to movement

between occasions. Separate detection and density parameters are estimated for each

year using standard SCR methods. Figure 3 shows that the open population model with

moving activity centers and the closed population approach provide similar inference

on trend over time; however, the trend in density is more noisy when estimated by

closed population SCR due to treating years separately. To mitigate this, density can

be described by a smooth, such as a cubic spline, over time. Closed-population models

were fitted with density constant or changing smoothly according to a regression spline

with increasing dimension and then compared by AIC. The best model describes density

as a constant over time with mean 2.33 individuals per 100 square kilometers and 95%

confidence interval (1.94, 2.80). This is consistent with the open population model where

no statistically significant evidence is found for a change in density over time.

The closed population approach led to less precise estimates of density. The open

population model provides more precise estimates by using the additional information

that the closed population approach ignores. Applying a smooth to the closed popula-

tion estimates leads to similar precision to that from the open population model. The

primary advantage of the open population model over the closed population model is

the ability to make explicit inference about survival and recruitment probabilities from

the observations made on individuals during the survey.

The HMM approach was also compared to the Bayesian data augmentation approach

proposed in Gardner et al. (2010). The Bayesian method was implemented in rjags 4.6

(Plummer, 2013) with weakly informative priors. The posterior was approximated by

100, 000 iterations with a burn-in of 5000 iterations for the stationary model and 20, 000

for the model with moving activity centers. Inference obtained from the Bayesian method

was similar to that from the maximum likelihood HMM approach for both stationary

and moving activity center models (see Web Appendix D for the Bayesian results).

For the simplest model, all parameters being constant over time, maximum likelihood

inference was obtained in 5.5 minutes while the data augmentation took 23 hours. For

the best fitting models identified above, maximum likelihood inference took 4 hours to fit

compared to 1.5 days. Both methods were implemented on a desktop Intel(R) Core(TM)

i7-4790 CPU (@3.6 GHz) with a cache size of 8 Gb and 16 Gb of RAM. Overall, compared
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with data augmentation in JAGS, averaging over life history with R and Rcpp using

a HMM was more computationally efficient, provided similar inference, and avoided

auto-correlation issues common when MCMC is applied to models with latent temporal

processes. Some of this computational efficiency is gained from switching from using

JAGS to using Rcpp and some from switching from data augmentation to marginalization.

The comparison, however, does show the relative efficiency of the maximum likelihood

analysis compared to the common, at present, JAGS analysis conducted by practitioners.

4. Simulation study

The performance of the maximum likelihood estimators was investigated by simulation.

Surveys identical to the jaguar survey, with the same camera locations and number of

occasions, were simulated. All parameters were set to be constant over the survey with

λ0 = 0.05, σ = 3000, φ = 0.8, β1 = 0.2, and D = 0.06. Two scenarios were considered, one

where activity centers were stationary and one where they moved by Brownian motion

with standard deviation ν = 3000. For the stationary simulations, an open population

model with stationary activity centers and a closed population spatial capture-recapture

model were fit to each data set by maximum likelihood. For the simulation with moving

activity centers, two open population models were considered, one with a movement

model and one without, along with a closed population model. Percentage relative

bias and 95% confidence interval coverage was estimated for each parameter from one

thousand simulations.

When activity centers are stationary, the model assuming stationary activity centers

is negligibly biased for all parameters (Figure 4) and 95% confidence interval cov-

erage is 94.6% on average for all parameters. When simulated activity centers move

between occasions, detection, survival, and recruitment parameters become notably

biased (Figure 4). Despite this, the estimated bias for the super-population density

remains small. This is similar to the findings of Royle et al. (2016): the stationary

model provides robust estimates of density by using the detection model to account

for the unobserved, unmodeled movement process: detection range is overestimated and

encounter rate underestimated. In the open population model, both the detection and

population dynamics models are distorted to account for the movement of individuals

in to, within, and out of the study area: initial recruitment probability, β1, and survival

probability are underestimated: individuals not present initially immigrate and some

present, emigrate.

In this case, however, interest is not in the super-population density estimate, but in the
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estimated abundance (or density) within each occasion. As in the jaguar application, the

estimated density for each occasion is negatively biased when movement is not accounted

for. The within-occasion density estimator is biased because the population dynamics

(survival and recruitment) are confounded with the unmodeled movement process.

The open population model where movement is explicitly modeled provides estimates

that are negligibly biased (< 3% in all cases) and confidence interval coverage was less

than one percent from nominal. For this scenario, β1 was marginally underestimated

and N marginally overestimated. This may indicate that at low sample sizes, moving

activity centers can still cause bias in the detection or population dynamics models due

to the subtle confounding between these processes.

When compared to the closed-population model fit to the same simulated data sets,

the mean percentage relative root-mean-square error in the estimate of density for each

occasion was on average 30% smaller for the open population model when compared

to the closed population model. Confidence intervals for the density on each occasion

were on average 2.5 times wider using the closed population model compared to the

open population model. The root-mean-square error and uncertainty in density estima-

tors from the closed population model could be reduced using a smoothing approach.

When smoothed, closed population models can provide similar inference on the trend in

population density, but not the mechanisms that drive these trends.

[Figure 4 about here.]

5. Conclusion

Formulating open population spatial capture-recapture (SCR) as a hidden Markov model

(HMM) incorporates CJS and JS models into a general framework and allows marginal-

ization over life histories and movement to be achieved with computational efficiency,

making more complex modeling and model selection practically feasible. Maximum

likelihood estimation leads to similar inference compared with a data augmentation,

Bayesian approach; furthermore, marginalization could be used in the Bayesian context

with a semi-complete data likelihood (King et al., 2016). Overall, the presented frame-

work is flexible and open to extension: alternative movement models, life histories with

more states (e.g. temporary emigration), and incorporation of observed states (i.e. dead

recoveries or recorded births).
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Figure 1. HMM formulation of open population spatial capture-recapture model: indi-
vidual i has life state si,k and capture record (over all detectors) ωi,·,k in occasion k. Life
history is a hidden Markov process and capture records are independent conditional on
life history. Nodes represent random variables and arrows terminate on variables whose
distribution is defined conditional on the variable from whence the arrow originated.
Unconnected nodes are conditionally independent given their parent nodes.
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Figure 2. Cockscomb Basin Wildlife Sanctuary, Belize with approximate positions of
camera traps during the survey.
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Figure 3. Estimated density per 100 square kilometers (line) of male jaguars in
the Cockscomb Basin Wildlife Sanctuary, Belize for each occasion (points) with lower
(unfilled) and upper (filled) 95% confidence interval bounds for closed-population SCR
model (dashed line, squares), open population maximum likelihood model with station-
ary activity centers (dotted line, triangles), and open population maximum likelihood
with moving activity centers (solid line, diamonds). Models were selected as the best fit
by AIC. All models have detection parameters vary by occasion and open population
models have constant survival and recruitment probabilities. This figure appears in color
in the electronic version of this article.
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Figure 4. Boxplot of relative percentage bias from one thousand simulated open
population spatial capture-recapture surveys for encounter rate λ0, detection range σ,
survival probability φ, probability an individual is present at the start of the survey
β1, super population density D, and mean abundance on a single occasion N in the
Cockscomb Wildlife Basin Sanctuary. For each parameter, bias is shown for the model
assuming stationary activity centers fitted to data simulated with stationary activity
centers (left) and moving activity centers (middle), and bias from a model allowing for
activity center movement fit to data simulated with moving activity centers (right). This
figure appears in color in the electronic version of this article.
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Table 1
Maximum likelihood estimates (EST), lower (LCL) and upper (UCL) 95% confidence intervals from open

population spatial capture-recapture models for mean abundance within a single occasion (N), density of
super-population (D), mean encounter rate (λ0), mean activity range (σ), survival probability (φ), probability

alive at the start of the survey (β1), and standard deviation of movement of activity centers (ν). Estimates are
for the best fitting models (selected by AIC) where activity centers were stationary over time (left) and where

activity centers were moving according to Brownian motion (right).

Stationary Moving

EST LCL UCL EST LCL UCL

N 21.8 13.8 35.0 35.8 23.7 54.7
D 4.73 3.57 6.27 5.96 4.48 7.92
λ0 0.043 0.030 0.063 0.057 0.040 0.083
σ 4946 4219 5805 3074 2604 3637
φ 0.77 0.70 0.83 0.85 0.78 0.91
β1 0.27 0.11 0.40 0.30 0.11 0.45
ν – – – 3501 3056 4011
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