
Open Problems in Fuzzing RESTful APIs: A Comparison of Tools

MAN ZHANG, Kristiania University College, Norway

ANDREA ARCURI, Kristiania University College and Oslo Metropolitan University, Norway

RESTful APIs are a type of web service that are widely used in industry. In the last few years, a lot of effort in the research

community has been spent in designing novel techniques to automatically fuzz those APIs to find faults in them. Many real

faults were automatically found in a large variety of RESTful APIs. However, usually the analyzed fuzzers treat the APIs as

black-box, and no analysis of what is actually covered in these systems is done. Therefore, although these fuzzers are clearly

useful for practitioners, we do not know what are their current limitations and actual effectiveness. Solving this is a necessary

step to be able to design better, more efficient and effective techniques. To address this issue, in this paper we compare seven

state-of-the-art fuzzers on 18 open-source, one industrial and one artificial RESTful APIs. We then analyzed the source code

of which parts of these APIs the fuzzers fail to generate tests for. This analysis points to clear limitations of these current

fuzzers, listing concrete challenges for the research community to follow up on.

CCS Concepts: • Software and its engineering ✙ Software verification and validation; Search-based software

engineering.

Additional Key Words and Phrases: Automated test generation, SBST, fuzzing, REST, comparison

1 INTRODUCTION

RESTful APIs are widely used in industry. Arguably, REST is the most common kind of web service, used to
provide functionality (i.e., an API) over a network. Many companies worldwide provide services via a RESTful
API, like Google [8], Amazon [1], LinkedIn [12], Twitter [23], Reddit [15], etc. The website ProgrammableWeb [14]
currently lists more than 24 thousand APIs available on internet, where the vast majority of them is implemented
with REST. Furthermore, REST APIs are also commonly used when developing backend enterprise applications
using a microservice architecture [65].

Due to their wide use in industry, in recent years there has been a large interest in the research community [?
] to design novel techniques to automatically test this kind of applications (e.g., [28, 38, 55, 61, 67, 68]). Compared
to other kinds of applications (e.g., data parsers) and types of testing (e.g., unit testing), system testing of RESTful
APIs has some unique challenges, like dealing with network communications (e.g., HTTP over TCP) and with
accesses to databases (e.g., Postgres and MySQL).
In the literature, different techniques have been proposed [?], which have been able to automatically find

many faults in existing APIs (e.g., [28, 38, 55, 61, 67, 68]). However, so far, most of the investigated techniques
are black-box, applied on remote web services on the internet. Although those fuzzers have been useful to detect
several faults, it is unclear how effective they truly are at testing these APIs. For example, most studies do not
report any form of code coverage, as the system under tests (SUTs) are typically remote black-boxes with no
access to their source code. For example, it can be possible that most found faults are simply in the first layer of
input validation of these SUTs, with little-to-no code of their businesses logic executed [58]. Without an in-depth

Authors’ addresses: Man Zhang, man.zhang@kristiania.no, Kristiania University College, Oslo, Norway; Andrea Arcuri, andrea.arcuri@

kristiania.no, Kristiania University College and Oslo Metropolitan University, Oslo, Norway.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/5-ART

https://doi.org/10.1145/3597205

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3597205
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597205&domain=pdf&date_stamp=2023-05-13

2 • Man Zhang and Andrea Arcuri

analysis of which parts of the SUT code is not exercised by these fuzzers, it is not possible to understand their
limitations. This hinders further research development for novel techniques to achieve better results.
To address these issues, in this paper we compare seven state-of-the-art fuzzers, namely (in alphabetic

order) bBOXRT [55], EvoMaster [28], RESTest [61], RestCT [68], RESTler [38], RestTestGen [67] and
Schemathesis [51]. We applied them on 13 RESTful APIs running on the JVM (i.e., 12 open-source and one
industrial) and six open-source RESTful APIs running on NodeJS, for which we collected line coverage metrics
using JaCoCo [10] (for JVM) and c8 [5] (for NodeJS). Experiments are carried out both for black-box and white-box
testing. To compare the effectiveness of black-box fuzzers at finding faults, also a new artificial REST API was
implemented specifically for this study.

This large set of experiments (which takes roughly 120 days if run in sequence) enables us to analyze in detail
what are the current limitations of the state-of-the-art in fuzzing RESTful APIs. These tools achieve different
degrees of code coverage, but there are still many issues that need to be addressed to achieve better results. These
include for example how to deal with underspecified schemas, and how to deal with interactions with external
services.

In this paper, we provide the following novel research contributions:

• We carried out one of the largest and most variegated to date empirical comparison of fuzzers for RESTful
APIs.

• Instead of using black-box metrics, we report actual coverage results on the employed APIs.
• We provide in-depth analyses of the current challenges in this testing domain.

The paper is organized as follows. Section 2 provides background info on the seven compared tools. Related
work is discussed in Section 3. Section 4 presents the details of the tool comparisons. Section 4.7 provides the main
scientific contribution of this paper, with an analysis of the current open-problems identified by our empirical
study (with in depth-analyses on each studied API provided in Appendix). Threats to validity are discussed in
Section 5. Finally, Section 6 concludes the paper.

2 BACKGROUND: USED TOOLS

In this paper, we compare seven different fuzzers for RESTful APIs, namely bBOXRT, EvoMaster, RESTest,
RestCT, RESTler, RestTestGen and Schemathesis. Here in this section they are briefly described, in alphabetic
order. For the tool comparisons, we used their latest released versions, as per 23rd of May 2022.

To the best of our knowledge, this selection represents the current state-of-the-art in fuzzing RESTful APIs, as
those are the most used, most popular (e.g., number of stars and download stats from GitHub) and cited work
in the literature. For example, some tools in the literature like QuickRest [53] do not seem available online,
whereas others like ApiTester [46] have no documentation and have not been updated in years [3]. The recent
tool Morest [56] is not open-source, and its replication package seems that it provides no executable nor code
to replicate its experiments1, only the data analysis. So, no comparison seems possible with these other tools.
In addition, there exist some open-source fuzzers made by practitioners in industry, such as APIFuzzer [2],
Dredd [11] and Tcases [22]. However, since these fuzzers do not appear in the scientific literature (i.e., they do
not have scientific articles describing the techniques they use to generate test cases), and considering that in a
previous study [54] these tools achieve worse results compared to the other fuzzers, we do not include them in
this study.

All these tools require a OpenAPI/Swagger [13] schema to operate. Based on such a schema, these tools send
syntactically valid HTTP requests, using different strategies (e.g., random and search-based) to choose how to
create the input data (e.g., query parameters and JSON body payloads).

1https://anonymous.4open.science/r/morest-rest-8CAE/ currently gives a ‘‘The repository is expired’’ error

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 3

bBOXRT [55] aims at black-box robustness testing of RESTful APIs. The tool is written in Java, and its source
code is available online on the authors’ institute pages [4], since 2020. We could not find any released version, so
we used the latest version on its Git master branch (commit 7c894247).

EvoMaster [28--31, 33--35, 71, 76] is a search-based tool that uses evolutionary computation to generate test
cases for RESTful APIs. It supports both black-box and white-box testing [31] (but this latter only for programs
running on the JVM and JavaScript/TypeScript). The tool is written in Kotlin, and open-sourced on GitHub [6],
since 2016. For this study, we used version 1.5.0. We are the authors of this tool.
RESTest [60--63, 66] is black-box testing tool, open-sourced on GitHub [17], since 2018. One of the main

features of this tool is the ability to analyze inter-dependencies among input parameters. The tool is written in
Java. We used its 1.2.0 version.

RestCT [68] uses Combinatorial Testing for black-box testing of RESTful APIs. It is open-sourced onGitHub [16],
since 2022. The tool is written in Python. We used its 1.0 version.

RESTler [38, 39, 47, 48] is a black-box fuzzer for RESTful APIs. It is open-sourced on GitHub [18], since 2020.
The tool is written in Python and F#. It does not have any published release, although its Git repository has
tagged commits. We use the version of the repository with the latest tag v8.5.0.
RestTestGen [45, 67] is another black-box fuzzer for RESTful APIs. It is written in Java, but the original

versions used in [67] are not open-source. Since late 2021, a new rewrite of the tool as open-source is available
on Github [19]. Then, in this study, we use the version with the latest tag v22.01.
Schemathesis [51] is a black-box fuzzer which employs property-based testing techniques [57], whose

development started in 2019. The fuzzer is capable of deriving structure and semantics of SUTs based on their
API schemas, such as OpenAPI [13]. It is written in Python, and can be installed with pip. In this study, we use
the version 3.15.2 [21].

These seven tools have different levels of maturity, usability and quality of documentation. On the one hand,
achieving high code coverage and fault detection might be not so important for practitioners if a tool cannot be
used because it is too complex to set up and does not have documentation. On the other hand, most of these tools
are academic prototypes, primary meant to study research questions, and not for wide use by practitioners.
As we are the authors of EvoMaster, we are too biased to comment on its maturity and usability. We can

only state that it is the oldest of these seven, and it is actively maintained.
Among the other six tools, Schemathesis is clearly the one that puts most emphasis on usage by practitioners,

with its user-friendliness (e.g., GitHub Actions support) and extensive documentation. Tools like RESTler and
RestTestGen for example require to clone their Git repositories and build the tools locally (e.g., in contrast to
Schemathesis that can be installed with pip, or EvoMaster that provides installers for all major operating
systems, such as .msi for Windows). RESTest provides released jars and useful documentation, but in our
experiments it was not as user-friendly as Schemathesis (e.g., it requires few manual steps to set it up). At
the time of this writing, the other tools (i.e., bBOXRT, and RestCT) have not been updated for several months
(according to the commit history in their Git repositories). Therefore, they might not be longer maintained.

3 RELATED WORK

To achieve better results (e.g., higher code coverage and fault detection), we need to understand what are the
limitations of current testing techniques. Throughout the years, different studies have been carried out to provide
this insight, like for example studying the limitations of Dynamic Symbolic Execution (DSE) [69, 70] and Search-
Based Software Testing (SBST) for unit testing [25, 27, 50]. However, to the best of our knowledge, no work has
been carried out to study what are the limitations of fuzzing RESTful APIs (most work is for black-box testing,
where achieved code coverage is usually not reported, and no analysis of what was not covered is carried out).

ACM Trans. Softw. Eng. Methodol.

4 • Man Zhang and Andrea Arcuri

Regarding tool comparisons for fuzzing RESTful APIs, there has been some work in the literature. For example,
the authors of RestTestGen compared four black-box tools (RestTestGen, RESTler, bBOXRT and RESTest)
on 14 APIs [44]. These APIs are written in different languages (e.g., Java, C#, PHP, JavaScript and Go), with
the largest having up to 24044 lines of code. However, no code coverage was reported. From this comparison,
RestTestGen seems the most effective tool, whereas RESTler is the most robust (i.e., could be used on more
APIs without crashing).

The authors of RESTest and EvoMaster compared the two tools [59], aiming at studying the tradeoffs
between black-box and white-box testing. For example, they studied the impact on performance of using ‘‘custom
generators’’, with test data provided by the users.
The authors of RestCT, when they introduced their tool [68], compared it with RESTler on 11 APIs coming

from two projects (i.e., GitLab and Bing Maps), showing better results for RestCT.
The authors of Morest [56] compared it against with black-box EvoMaster, RestTestGen and RESTler, on

6 APIs. They claimed Morest gives the best results. However, as Morest is not available for comparisons (in
contrast to EvoMaster, RestTestGen and RESTler), such claims cannot be independently verified.
In previous work, we compared EvoMaster’s black-box and white-box mode on 8 SUTs [31], 7 open-source

and 1 industrial, showing better results for its white-box mode. The SUTs used in this paper are a super-set of the
open-source SUTs used in [31] (i.e., for the experiments on the JVM we used the same SUTs plus another 5).
In parallel, at the same time of the first arXiv version of this paper [72], Kim et al. [54] made a comparison

of tools for fuzzing RESTful APIs. A total of different 9 tools (the same as here, minus the recent RestCT, but
plus the aforementioned APIFuzzer [2], Dredd [11] and Tcases [22]) were compared on 20 APIs running on the
JVM (where half of them are the same as here, which come from our own EMB [7] repository of APIs we use
to experiment with EvoMaster). To better differentiate from this existing work that was done in parallel, and
to better generalize our results, here we include as well 6 JavaScript/TypeScript APIs running on NodeJS, as
well one industrial API coming from one of our industrial partners. Furthermore, where the focus of [54] seems
to be the comparison of tools, our focus is on the in-depth analysis of the open problems in fuzzing RESTful
APIs (Section 4.7). The comparison of tools is only a means to identify the one that gives the best results, as the
tests generated by such tool are the starting point of the in-depth analyses. In both studies [54, 72] black-box
EvoMaster gives the best results, closely followed by Schemathesis, and white-box testing gives better results
than black-box. Kim et al. [54] do not seem to be authors of any of the compared tools. On the one hand, their
comparison is therefore unbiased. This is different from our case, as we are the authors of EvoMaster, which
turned out to be the best in all these comparisons. One should always be a bit skeptical of studies where the tool
of the authors gives the best results, especially if such results are not possible to be replicated by third-parties.
This is one of the main reasons why EvoMaster is open-source, with all its experiment scripts stored in its Git
repository, automatically updated on Zenodo for long term storage at each new release (e.g., version 1.5.0 [36]),
as well preparing all the SUTs for experiments in a single repository (i.e., EMB [7]). On the other hand, being the
authors of the most performant tool gives us a unique insight when analyzing and discussing the current open
problems in fuzzing RESTful APIs (Section 4.7).

4 EMPIRICAL ANALYSIS

In this paper, we aim at answering the following research questions:

• RQ1: How do the seven compared black-box fuzzers fare in terms of line coverage?
• RQ2: What is the impact of the time budget on the performance of the black-box fuzzers?
• RQ3: What kind of faults can the compared black-box fuzzers find?
• RQ4: What line coverage and fault detection results are obtained with white-box fuzzing?
• RQ5: What are the main open problems currently hindering the results?

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 5

To answer these research questions, we carried out 3 different sets of experiments, on the case study described
in Section 4.1. First set is for black-box testing aimed at code coverage (RQ1 and RQ2, in Section 4.3 and 4.4,
with common setup described in Section 4.2), then for fault finding (RQ3, Section 4.5), and then for white-box
testing (RQ4, Section 4.6). From the results of these experiments, the in-depth analysis of the results for RQ5
follows in Section 4.7.

4.1 Case Study

Table 1. Statistics on 18 RESTful APIs from EMB [7], one industrial API and one artificial API.

SUT Language Endpoints Files File LOCs c8/JaCoCo LOCs

cyclotron JavaScript 50 25 5803 2458
disease-sh-api JavaScript 34 57 3343 2997
js-rest-ncs JavaScript 6 8 775 768
js-rest-scs JavaScript 11 13 1046 1044
realworld-app TypeScript 19 37 1229 1077
spacex-api JavaScript 94 63 4966 3144

catwatch Java 23 106 9636 1835
cwa-verification Java 5 47 3955 711
features-service Java 18 39 2275 457
gestaohospital-rest Java 20 33 3506 1056
ind0 Java 20 75 5687 1674
languagetool Java 2 1385 174781 45445
ocvn-rest Java 258 526 45521 6868
proxyprint Java 115 73 8338 2958
rest-ncs Java 6 9 605 275
rest-news Kotlin 7 11 857 144
rest-scs Java 11 13 862 295
restcountries Java 22 24 1977 543
scout-api Java 49 93 9736 2673

rest-faults Java 8 3 115 26

Total (X, Y)* 778 (214,564) 2640 (203,2437) 285013 (17162,267851) 76448 (11488,64960)

* Note that, regarding Total(X,Y), Total represents the total of the statistic on all case studies, whereas X represents the total on just the
JavaScript/TypeScript APIs, and Y represents the total on the JVM APIs.

To carry out experiments in this paper, we used a collection of 19 RESTful APIs plus one artificial case study
named rest-faults for the experiment on fault detection. Table 1 shows the statistics of these 20 APIs.
As we need to measure code coverage and analyze the source code to check which parts are not covered,

we needed open-source APIs that we could run on a local machine. Furthermore, to simplify the collection
of code coverage results, it is easier to use APIs written in the same programming language (e.g., Java), or at
least use not too many different languages, as each programming language would need to configure its own
code-coverage tool to analyze the test results. Considering that we wanted to do comparisons also with white-box
testing, which currently only EvoMaster supports, and that requires some manual configurations (e.g., to set up
bytecode instrumentation for the white-box heuristics), we decided to use the same case study that we maintain
for EvoMaster. In particular, we maintain a repository of RESTful APIs called EMB [7], which is stored as well
on Zenodo [37]. Note that one of these APIs is coming from one of our industrial partners, which of course we
are not allowed to store on EMB.

ACM Trans. Softw. Eng. Methodol.

6 • Man Zhang and Andrea Arcuri

These 19 APIs are written in four different languages: Java, Kotlin, JavaScript and TypeScript. They run on 2
different environments/runtimes: the JVM and NodeJS. For each SUT, we report the number of total source files
(i.e., ending in either .java, .kt, .js or .ts), and their number of lines (LOCs). As these include as well import
statements, empty lines, comments and tests, for the APIs running on the JVM we also report the number of
actual line targets for code coverage (measured with the tool JaCoCo [10]).
For the APIs running on the NodeJS, the code coverage is measured with the tool c8, which uses native

V8 coverage. By default, the tool c8 will count code coverage only for the files which are loaded by the en-
gine [5]. For instance, regarding cyclotron, different LOCs between Files and c8 are due to unreachable files (i.e.,
api.analyticselasticsearch.js, api.analytics.js, api.statistics-elasticsearch.js). However, all
of the files will be only reached by manually modifying a configuration in config.js, i.e., the default value is
false. Therefore, we report the number of line targets measured by c8 that could be loaded with the default SUT
settings.

For the experiments on fault detection for the black-box fuzzers (Section 4.5), we created a small artificial API,
written in Java, with 10 seeded faults. This API is open-source, currently available on GitHub2 .

4.2 Black-Box Testing Experiment Settings: Code Coverage

For each SUT, we created Bash scripts to start them, including any needed dependency (e.g., as ocvn-rest uses a
MongoDB database, this is automatically started with Docker). Each SUT is started with either JaCoCo (for JVM)
or c8 (for NodeJS) instrumentation, to be able to collect code coverage results at the end of each tool execution.
Each of the seven compared tools was run on each of the 19 SUTs, repeated with different seeds a certain

amount of times (e.g., repeated 10 times for a budget setting of 1 hour), to keep into account the randomness of
these tools. Each script starts a SUT as a background process, and then one of the tools. Each script runs the SUT
on a different TCP port, to enable running any of these scripts in parallel on the same machine.
The code coverage is computed based on all the HTTP calls done during the fuzzing process, and not on the

output of the generated test files (if any). This was done for several reasons: not all tools generate test cases
in JUnit on JavaScript format, the generated tests might not compile (i.e., bugs in the tools), and setting up the
compilation of the tests and running them for collecting coverage would be quite challenging to automate (as
each tool behaves differently). This also means that, if a tool crashes, we are still measuring what code coverage it
achieves. If a tool crashes immediately at startup (e.g., due to failures in parsing the OpenAPI/Swagger schemas),
we are still measuring the code coverage achieved by the booting up of the SUT.

All the experiments for this paper were run on a Windows 10 machine with a processor Intel(R) Xeon(R),
2.40GHz, 24 Cores with 192G of RAM. To avoid potential issues in running jobs in parallel (e.g., exhausting the
resources of the operating system, which could lead to possible timeout issues), we only ran 8 jobs at a time. This
means that each experiment had 3 cores (6 virtual threads) and 24G of RAM.

Regarding the selected seven fuzzers, there exist fuzzers which do not provide an option to configure a global
time budget to terminate fuzzing (e.g., Schemathesis [20] and RESTest [17]). Also, although some fuzzers
provide the option of a timeout (e.g., RestTestGen), they might terminate much earlier than the specified timeout
value [45]. To make the comparison of the fuzzers more fair by applying the same time budget, given the same
time budget � (e.g., 1 hour), for each fuzzer we run it in a loop with the same � timeout (i.e., if the fuzzer runs
out of time, it would be terminated, and if the fuzzer completes but there is still some time remaining, it would be
re-started to generate more tests). Thus, all coverage we collected are based on the same time budget for all the
fuzzers.
To compare these tools, we use the line coverage reported by JaCoCo and c8 as metric. Another important

metric would be fault detection. However, how to compute fault detection in unbiased way, applicable for all

2https://github.com/EMResearch/rest-faults

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 7

compared tools, is far from trivial. Each tool can self-report how many faults they find, but how such fault
numbers are calculated might be very different from tool to tool, making any comparison nearly meaningless.
Manually checking (possibly tens of) thousands of test cases is not a viable option either. Therefore, for this type
of experiments line coverage was the most suitable metric for the comparisons. Still, fault detection is a very
important metric needed to properly compare fuzzers. For the black-box fuzzers, this will be evaluated with an
ad-hoc API, as explained in more details in Section 4.5. For the white-box experiments (Section 4.6), this is not a
problem, as we use the same tool (i.e., EvoMaster).

Regarding experiment setup, as a black-box testing tool for fuzzing REST APIs, all tools are required to configure
where the schema of the API is located. In all these SUTs used in our case study, the schemas are provided by the
SUTs directly via an HTTP endpoint. But, we found that most of the tools do not support to fetch the schema
with a given URL, such as http://localhost:8080/v2/api-docs. To conduct the experiments with these tools, after
the SUT starts, we developed a Bash script which manages to fetch the schema and download it to the local file
system, and then configure a file-path for the tools to specify where the schema can be accessed.

Regarding additional setups to execute the tools, EvoMaster, RestCT and Schemathesis were the simplest
to configure, as they require only one setup step, as all of their options can be specified with command-line
arguments. However, RestCT currently does not work directly on Windows [16]. So, for these experiments, we
simply ran it via the Windows Subsystem for Linux (WSL). This might introduce some time delays compared to
running it directly on a Linux machine. However, RestCT is the only tool that has constraints on the type of
operating system it can run on, and practitioners in industry that use Windows would have to run it with WSL
(or Docker) as well. RestTestGen requires having a JSON file (i.e., rtg_config.json) to configure the tool with
available options [19]. RESTler requires multiple setup steps, e.g., RESTler needs to generate grammar files first,
and then employ such grammars for fuzzing. However, with its online available documentation, we could write a
Python script about how to run the tool. For RESTest, it requires a pre-step to generate a test configuration in
order to employ the tool, and such generation could be performed automatically by a utility CreateTestConf

provided by the tool. In order to use bBOXRT, a Java class file is required to load and set up the API specification.
At the time of writing this paper, there does not exist specific documentation about how to specify such Java
class. However, in its open-source repository, there exist many examples that helped us to create these Java
classes for the SUTs in our case study. Note that, for these experiments in this paper, all the above setups were
performed automatically with our Bash scripts.
All the manual steps to configure the tools that we automated in our Bash scripts take some time. However,

such time was not taken into account in the time budget (e.g., 1 hour) used in the experiments. In other words,
each tool was run for the same amonut of time regardless of the time it takes to set it up. The are two main reasons
for this. First, evaluating the cost of each manual step in a sound way would require empirical studies with
human subjects, taking into account several different properties (e.g., experience/seniority of the participants,
and familiarity with the existing fuzzers). But this kind of empirical study would be beyond the scope of this
paper. Second, tool setups on an API are a one-time cost. The same API would be tested continuously throughout
its life-cycle (e.g., on a Continuous Integration server), each time new changes/features are introduced. In this
context, such one-time setup cost would be negligible. Furthermore, when dealing with several APIs to test (e.g.,
in a microservice architecture), it can well be that the setups are very similar, and it could be just a trivial matter
of copy&paste when setting up the fuzzers for a new API (this is for example what we have experienced when
applying EvoMaster in large companies such as Meituan [74]). As anyway those manual costs were small in
terms of time (in order of minutes), but excluding the time to study the documentation of these tools, we do not
consider this as a major threat to validity to our study.

The first time we ran the experiments, we could collect results only for EvoMaster, RESTler and Schemathe-
sis. All the other tools failed to make any HTTP calls. This was due for example to mismatched schema format, or
missing/misconfigured info in the schemas. More specifically, bBOXRT only allows a schema with YAML format.

ACM Trans. Softw. Eng. Methodol.

http://localhost:8080/v2/api-docs

8 • Man Zhang and Andrea Arcuri

In the SUTs used in this study, there is only one specified with YAML (i.e., restcountries) out of the 19 schemas (the
remaining ones use JSON). RestTestGen only accepts a schema with OpenAPI v3 in a JSON format [19]. There
are only two (i.e., cwa-verification and spacex-api) out of the 19 SUTs which expose OpenAPI v3 in the JSON
format. In addition, RESTest and RestTestGen need the protocol info (e.g., http or https with servers/schemes
tag) in the OpenAPI/Swagger schema. But since the servers/schemes tag is not mandatory, such info might
not be always available in the schema. For example, seven (i.e., cyclotron, disease-sh-api, js-rest-ncs, js-rest-scs,
realworld-app, features-service and restcountries) out of the 19 SUTs have such protocol info specified in their
schemas. In addition, to create HTTP requests, RestCT, RESTest and RestTestGen require info specified in
host (for schema version 2) and servers (for schema version 3), but such info (typically related to TCP port
numbers) might not be fully correct (e.g., the host and TCP port might refer to the production settings of the
API, and not reflecting when the API is running on the local host on an ephemeral port for testing purposes).
Those three tools do not seem to provide ways to override such info. For instance, in 19 SUTs , 10 SUTs (i.e.,
cyclotron, disease-sh-api, js-rest-ncs, js-rest-scs, realworld-app, spacex-api, cwa-verification, features-service, lan-
guagetool and restcountries) are specified with a hard-coded TCP port, and in one SUT (i.e., scout-api) the TCP
port is unspecified. To avoid these issues in accessing the SUTs, we developed a utility using swagger-parser

library that facilitates converting formats of schemas between JSON and YAML (only applied for bBOXRT and
RestTestGen), converting OpenAPI v2 to OpenAPI v3 (only applied for RestTestGen), adding missing schemes
info, and correcting/adding host and servers info in the schemas.
Once these changes in the schemas were applied, we repeated the experiments, to collect data from all the

seven tools. Ideally, these issues should be handled directly by the tools. But, as they are rather minor and only
required changes in the OpenAPI/Swagger schemas, we decided to address them, to be able to collect data from
all the seven tools and not just from three of them.

In addition, we needed to configure authentication info for five APIs, namely proxyprint, scout-api, ocvn-rest,
realworld-app and spacex-api. For proxyprint, scout-api and spacex-api, they need static tokens sent via HTTP
headers. This was easy to setup in RestCT, EvoMaster and Schemathesis, just by calling these tools with a
--header input parameter. RESTest required to rewrite the test configuration file by appending authentication
configuration. RESTler and RestTestGen required to write some script configurations. bBOXRT has no docu-
mentation to setup authentication, but we managed to setup it up by studying the examples it provides in its
repository.
Regarding ocvn-rest and realworld-app, for authentication, it requires to make a POST call to a form-login

endpoint, and then use the received cookie in all following HTTP requests. Out of the seven compared tools, it
seems RESTler, bBOXRT, Schemathesis, and RestTestGen could directly support this kind of authentication
by setting up it with an executable script. Given the provided documentation, we did not manage to configure it,
as it requires to write different scripts for different fuzzers to manually make such HTTP login calls then handle
responses. Technically, by writing manual scripts, it could be possible to use EvoMaster, RestCT and RESTest

as well, by passing the obtained cookie with --header option or the test configuration file. As doing all this was
rather cumbersome, and considering that for this API the authentication is needed only for admin endpoints, we
decided to do not spend significant time in trying to setup this kind dynamic authentication tokens.

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 9
T
a
b
le
2
.
E
xp
er
im

en
t
re
su
lt
s
o
f
th
e
se
ve
n
b
la
ck
-b
o
x
fu
zz
er
s
o
n
th
e
1
9
R
E
S
T
fu
l
A
P
Is
.
F
o
r
ea
ch

to
o
l
w
e
re
p
o
rt
th
e
a
ve
ra
g
e
li
n
e
co
ve
ra
g
e,
a
s
w
el
l
a
s
it
s

[m
in
,m

a
x]

va
lu
es

o
u
t
o
f
th
e
10

ru
n
s.
E
a
ch

to
o
l
a
ls
o
h
a
s
a
(r
a
n
k)

b
a
se
d
o
n
it
s
p
er
fo
rm

a
n
ce

o
n
ea
ch

S
U
T
.T

ie
s
a
re

b
ro
k
en

b
y
re
p
o
rt
in
g
th
e
a
ve
ra
g
e
ra
n
k
.

F
o
r
ea
ch

S
U
T
,t
h
e
re
su
lt
s
o
f
th
e
b
es
t
to
o
ls
(e
.g
.,
ra
n
k
(1
))
ar
e
in

b
o
ld
.W

e
al
so

re
p
o
rt
th
e
�
2
an

d
�
-v
al
u
e
o
f
th
e
F
ri
ed
m
an

te
st
fo
r
va
ri
an

ce
an

al
y
si
s
b
y
th
e

ra
n
k
s.

S
U
T

b
B
O
X
R
T

E
v
o
M
a
st
e
r
B
B

R
e
st
C
T

R
E
S
T
le
r

R
E
S
T
e
st

R
e
st
T
e
st
G
e
n

S
c
h
e
m
a
t
h
e
si
s

cy
cl
ot
ro
n

41
.3
[4
1.
3,
41
.3
]
(5
)

7
0
.3

[7
0
.1
,7
2
.3
]
(1
)

41
.3
[4
1.
3,
41
.3
]
(5
)

41
.3
[4
1.
3,
41
.3
]
(5
)

41
.3
[4
1.
3,
41
.3
]
(5
)

41
.3
[4
1.
3,
41
.3
]
(5
)

69
.1
[6
7.
7,
69
.7
]
(2
)

d
is
ea
se
-s
h
-a
p
i

56
.4
[5
5.
4,
57
.4
]
(3
)

60
.8
[6
0.
8,
60
.9
]
(2
)

48
.4
[4
8.
4,
48
.4
]
(6
.5
)

48
.5
[4
8.
5,
48
.5
]
(4
)

48
.5
[4
8.
4,
48
.5
]
(5
)

48
.4
[4
8.
4,
48
.4
]
(6
.5
)

6
1
.5

[6
1
.4
,6
1
.6
]
(1
)

js
-r
es
t-
n
cs

70
.2
[6
7.
3,
71
.1
]
(5
)

93
.0
[8
9.
8,
95
.8
]
(2
)

92
.2
[8
7.
5,
92
.7
]
(3
)

44
.3
[4
4.
3,
44
.3
]
(6
.5
)

44
.3
[4
4.
3,
44
.3
]
(6
.5
)

88
.6
[8
5.
8,
93
.0
]
(4
)

1
0
0
.0

[1
0
0
.0
,1
0
0
.0
]
(1
)

js
-r
es
t-
sc
s

83
.2
[8
3.
0,
83
.5
]
(5
)

8
8
.7

[8
7
.5
,8
9
.5
]
(1
)

83
.2
[8
3.
1,
83
.2
]
(6
)

54
.1
[5
4.
1,
54
.1
]
(7
)

84
.1
[8
3.
3,
84
.6
]
(4
)

86
.4
[8
5.
4,
87
.1
]
(2
)

86
.1
[8
5.
9,
87
.4
]
(3
)

re
a
lw
or
ld
-a
p
p

64
.2
[6
2.
8,
66
.4
]
(4
)

69
.4
[6
9.
4,
69
.4
]
(2
)

59
.7
[5
9.
7,
59
.7
]
(6
)

66
.5
[6
6.
5,
66
.5
]
(3
)

59
.7
[5
9.
7,
59
.7
]
(6
)

59
.7
[5
9.
7,
59
.7
]
(6
)

6
9
.7

[6
9
.1
,6
9
.8
]
(1
)

sp
a
ce
x-
a
p
i

76
.1
[7
6.
1,
76
.2
]
(6
)

84
.7
[8
4.
7,
84
.8
]
(2
)

76
.1
[7
6.
1,
76
.2
]
(7
)

76
.3
[7
6.
3,
76
.4
]
(3
)

76
.3
[7
6.
3,
76
.3
]
(5
)

76
.3
[7
6.
3,
76
.4
]
(4
)

8
5
.4

[8
5
.3
,8
5
.6
]
(1
)

ca
tw
a
tc
h

31
.0
[2
9.
2,
31
.8
]
(3
)

3
5
.9

[3
4
.3
,3
6
.9
]
(1
)

9.
7
[9
.7
,9
.7
]
(7
)

17
.3
[1
4.
5,
20
.5
]
(5
)

20
.8
[1
5.
9,
23
.8
]
(4
)

15
.1
[1
2.
3,
18
.3
]
(6
)

35
.8
[3
3.
6,
39
.1
]
(2
)

cw
a
-v
er
if
ic
a
ti
on

43
.4
[4
2.
9,
43
.5
]
(4
)

49
.4
[4
9.
1,
49
.6
]
(2
)

21
.9
[2
1.
9,
21
.9
]
(6
)

21
.9
[2
1.
9,
21
.9
]
(6
)

21
.9
[2
1.
9,
21
.9
]
(6
)

43
.8
[4
3.
3,
43
.9
]
(3
)

4
9
.5

[4
9
.5
,4
9
.5
]
(1
)

fe
a
tu
re
s-
se
rv
ic
e

35
.7
[3
5.
7,
35
.7
]
(4
)

5
9
.7

[5
8
.4
,6
2
.1
]
(1
)

21
.0
[2
1.
0,
21
.0
]
(6
)

21
.0
[2
1.
0,
21
.0
]
(6
)

21
.0
[2
1.
0,
21
.0
]
(6
)

45
.9
[4
5.
1,
46
.8
]
(3
)

52
.0
[4
6.
6,
57
.1
]
(2
)

ge
st
a
oh
os
p
it
a
l-
re
st

36
.2
[3
6.
2,
36
.2
]
(4
)

50
.8
[4
4.
8,
54
.3
]
(3
)

19
.9
[1
9.
9,
19
.9
]
(7
)

21
.5
[2
1.
5,
21
.5
]
(6
)

29
.0
[2
8.
1,
32
.0
]
(5
)

57
.2
[5
1.
7,
58
.7
]
(2
)

5
8
.7

[5
5
.9
,6
2
.3
]
(1
)

in
d
0

8
.2

[8
.2
,8
.2
]
(3
)

8
.2

[8
.2
,8
.2
]
(3
)

7.
6
[7
.6
,7
.6
]
(6
.5
)

7.
6
[7
.6
,7
.6
]
(6
.5
)

8
.2

[8
.2
,8
.2
]
(3
)

8
.2

[8
.2
,8
.2
]
(3
)

8
.2

[8
.2
,8
.2
]
(3
)

la
n
gu
a
ge
to
ol

1.
7
[1
.7
,1
.7
]
(6
)

3
2
.6

[2
6
.0
,3
5
.1
]
(1
)

1.
5
[1
.5
,1
.5
]
(7
)

1.
9
[1
.9
,1
.9
]
(4
.5
)

2.
5
[2
.5
,2
.5
]
(2
)

1.
9
[1
.9
,1
.9
]
(4
.5
)

2.
2
[2
.1
,2
.5
]
(3
)

oc
vn
-r
es
t

10
.1
[1
0.
1,
10
.1
]
(5
)

2
7
.5

[2
7
.5
,2
7
.6
]
(1
)

10
.1
[1
0.
1,
10
.1
]
(5
)

10
.1
[1
0.
1,
10
.1
]
(5
)

10
.1
[1
0.
1,
10
.1
]
(5
)

10
.1
[1
0.
1,
10
.1
]
(5
)

27
.5
[2
7.
5,
27
.7
]
(2
)

p
ro
xy
p
ri
n
t

4.
2
[4
.2
,4
.2
]
(5
)

3
4
.0

[3
2
.5
,3
5
.0
]
(1
)

4.
2
[4
.2
,4
.2
]
(5
)

4.
2
[4
.2
,4
.2
]
(5
)

4.
2
[4
.2
,4
.2
]
(5
)

4.
2
[4
.2
,4
.2
]
(5
)

4.
4
[4
.4
,4
.4
]
(2
)

re
st
-n
cs

55
.0
[5
2.
4,
56
.4
]
(5
)

64
.5
[6
4.
4,
64
.7
]
(3
)

85
.5
[8
5.
5,
85
.5
]
(2
)

40
.7
[4
0.
7,
40
.7
]
(6
)

5.
1
[5
.1
,5
.1
]
(7
)

64
.3
[6
4.
0,
64
.7
]
(4
)

9
4
.1

[9
3
.1
,9
4
.5
]
(1
)

re
st
-n
ew

s
34
.9
[3
4.
0,
36
.8
]
(5
)

6
9
.4

[6
9
.4
,6
9
.4
]
(1
)

13
.9
[1
3.
9,
13
.9
]
(6
.5
)

44
.4
[4
4.
4,
44
.4
]
(4
)

13
.9
[1
3.
9,
13
.9
]
(6
.5
)

47
.2
[4
7.
2,
47
.2
]
(3
)

68
.8
[6
7.
4,
70
.8
]
(2
)

re
st
-s
cs

60
.2
[5
9.
3,
61
.4
]
(6
)

6
6
.9

[6
4
.4
,7
0
.2
]
(1
)

60
.5
[6
0.
3,
61
.0
]
(5
)

58
.3
[5
8.
3,
58
.3
]
(7
)

61
.7
[6
1.
4,
62
.4
]
(4
)

65
.3
[6
4.
4,
67
.1
]
(2
)

64
.8
[6
4.
4,
65
.1
]
(3
)

re
st
co
u
n
tr
ie
s

65
.5
[6
3.
7,
68
.5
]
(5
)

7
6
.1

[7
6
.1
,7
6
.1
]
(1
)

3.
5
[3
.5
,3
.5
]
(7
)

50
.6
[5
0.
6,
50
.6
]
(6
)

73
.0
[7
1.
5,
74
.2
]
(4
)

75
.4
[7
3.
5,
76
.6
]
(2
)

73
.9
[7
2.
4,
75
.0
]
(3
)

sc
ou
t-
a
p
i

18
.1
[1
8.
1,
18
.1
]
(5
)

3
6
.7

[3
2
.8
,4
1
.1
]
(1
)

12
.0
[1
2.
0,
12
.0
]
(6
.5
)

26
.5
[2
6.
4,
26
.6
]
(2
)

12
.0
[1
2.
0,
12
.0
]
(6
.5
)

23
.0
[2
1.
4,
23
.8
]
(4
)

23
.0
[2
2.
1,
25
.1
]
(3
)

A
v
er
ag
e

41
.9
(4
.6
)

56
.8
(1
.6
)

35
.4
(5
.8
)

34
.6
(5
.1
)

33
.6
(5
.0
)

45
.4
(3
.9
)

54
.5
(1
.9
)

Fr
ie
d
m
an

T
es
t

�
2
=
7
1
.8
4
5
,�

-v
a
lu
e
=
≤
0
.0
0
1

ACM Trans. Softw. Eng. Methodol.

10 • Man Zhang and Andrea Arcuri

4.3 RQ1: Black-Box Testing Experiments

To answer this research question, each of the seven compared tools was run on each of the 19 SUTs, repeated for
10 times to keep into account the randomness of these tools. This results in a total of 7 × 19 × 10 = 1330 Bash
scripts.
In each script, each tool was run for 1 hour, for a total of 1330 hours, i.e., 55.4 days of computation efforts.

Note: the choice of the runtime for each experiment might impact the results of the comparisons. The choice of 1
hour is technically arbitrary, but based on what practitioners might want to use these fuzzers in practice, and
also not too long to make running all these experiments unviable in reasonable time.
Table 2 shows the results of these experiments. For each tool, we report the average (i.e., arithmetic mean)

line coverage, as well as the min and max values out of the 10 runs. Each tool is then ranked (1 to 7) based on
their average performance on each SUT (where 1 is the best rank). A Friedman test is conducted to analyze the
variance of these techniques, based on ranks of their performance on the SUTs.

From these results we can infer few interesting observations. First, regarding the ranking, EvoMaster seems
the best black-box fuzzer (best in 11 out of 19 SUTs, with an average coverage of 56.8%,), closely followed by
Schemathesis (best in 7 SUTs, with an average coverage of 54.5%). The variance of the techniques is statistically
significant at the significance level 0.05 (i.e., � ≤ 0.05) with the Friedman test. EvoMaster-BB achieves the
best average rank, i.e., 1.6, while Schemathesis has the second best average rank, i.e., 1.9. Then, the remaining
tools can be divided in 2 groups: bBOXRT (average rank 4.6) and RestTestGen (average rank 3.9) with similar
coverage 41.6-45.4%, and then RESTler (average rank 5.1), RESTest (average rank 5.0) and RestCT (average rank
5.8) with similar coverage 33.6-35.4%. These results confirm a previous study [44] showing that RestTestGen
gives better results (in terms of black-box criteria) than RESTler and RESTest, as well as RestCT being better
than RESTler [68] (although in this case the difference in average coverage is small, only 0.8%). Compared to the
analyses in [54], interestingly the ranking of the tools is exactly the same (recall that, out of the combined 29
APIs between our and their study, only 10 APIs used in these empirical studies are the same).

On all APIs but 1, either EvoMaster or Schemathesis gives the best results. The exception is the industrial
API, where 5 tools achieve the same coverage of 8.2%, on all their 10 runs. We will discuss this interesting case in
more details in Section 4.7. In 12 APIs, either EvoMaster is the best followed by Schemathesis, or the other
way round. There is no single API in which EvoMaster and Schemathesis were not at least the third best.

The other 7 APIs (including the industrial one) show some interesting behavior for the other 5 tools. For
example, for js-rest-scs, RestTestGen gives the second-best results, with an average 86.4%, compared to the 86.1%
of Schemathesis. The interesting aspect here is that, out of the 10 runs, RestTestGen has worse minimum
coverage (85.4% vs. 85.9%) and worse maximum coverage (87.1% vs. 87.4%), although the average is higher (86.4%
vs. 86.1%). This can happen when randomized algorithms are used. In gestaohospital-rest, RestTestGen and
Schemathesis have similar performance (i.e., 57.2% and 58.7%), whereas EvoMaster is quite behind (i.e., 50.8%).
Similarly, the performance of RestTestGen and Schemathesis are very similar on rest-scs (65.3% and 64.8%) and
restcountries (75.4% and 73.9%), where EvoMaster is better only by a small amount (66.9% on rest-scs and 76.1%
on restcountries). In languagetool, RESTest is better than Schemathesis, but the difference is minimal (only 0.3%).
In rest-ncs, there is large gap in performance between EvoMaster (64.5%) and Schemathesis (94.1%), where the
second best results are given by RestCT (85.5%). Finally, on scout-api, RESTler is better than Schemathesis

(26.5% vs. 23.0%), although it is way behind EvoMaster (36.7%).
Another interesting observation is that there is quite a bit variability in the results of these fuzzers, as they use

randomized algorithms to generate test cases. Let us highlight some of the most extreme cases in Table 2, for
EvoMaster and Schemathesis. On languagetool, out of the 10 runs, EvoMaster has a gap of 9.1% between the
best (35.1%) and worst (26.0%) runs. On scout-api, the gap is 8.3%. For Schemathesis, the gap on features-service
is 10.5%, and 6.4% on gestaohospital-rest. This is yet another reminder of the peculiar nature of randomized

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 11

algorithms, and the importance of how to properly analyze them. For example, doing comparisons based on a
single run is unwise.

Table 3. �-values of the Mann-Whitney-Wilcoxon U-Test of EvoMaster’s results compared to all the other tools, on each

SUT (114 pairwise comparisons in total). Values lower than the � = 0.05 threshold are reported in bold. NaN values happen

when there is no difference in the compared datasets (they are exactly the same). They can be interpreted as �-value equal

to 1.

SUT bBOXRT RestCT RESTler RESTest RestTestGen Schemathesis

cyclotron 0.001 0.001 0.001 0.001 0.001 0.001

disease-sh-api 0.001 0.001 0.001 0.001 0.001 0.001

js-rest-ncs 0.001 0.721 0.001 0.001 0.003 0.001

js-rest-scs 0.001 0.001 0.001 0.001 0.001 0.001

realworld-app 0.001 0.001 0.001 0.001 0.001 0.001

spacex-api 0.001 0.001 0.001 0.001 0.001 0.001

catwatch 0.001 0.001 0.001 0.001 0.001 0.909
cwa-verification 0.001 0.001 0.001 0.001 0.001 0.434
features-service 0.001 0.001 0.001 0.001 0.001 0.001

gestaohospital-rest 0.001 0.001 0.001 0.001 0.001 0.001

ind0 NaN 0.001 0.001 NaN NaN NaN
languagetool 0.001 0.001 0.001 0.001 0.001 0.001

ocvn-rest 0.001 0.001 0.001 0.001 0.001 0.033

proxyprint 0.001 0.001 0.001 0.001 0.001 0.001

rest-ncs 0.001 0.001 0.001 0.001 0.179 0.001

rest-news 0.001 0.001 0.001 0.001 0.001 0.069
rest-scs 0.001 0.001 0.001 0.001 0.039 0.007

restcountries 0.001 0.001 0.001 0.001 0.417 0.001

scout-api 0.001 0.001 0.001 0.001 0.001 0.001

Statistical tests [32] are needed when claiming with high confidence that one algorithm/tool is better than
another one. In this particular case, EvoMaster BB achieved the overall best performance based on the significant
�-value (i.e., less than 0.05) with Friedman test and the best average rank over all of the 19 APIs (i.e., 1.6) as
shown in Table 2. In addition, we compare EvoMaster’s performance with all the other tools, one at a time
on each SUT (so 6 × 19 = 114 comparisons), and report the �-values of the Mann-Whitney-Wilcoxon U-Test in
Table 3. Apart from very few cases, the large majority of comparisons are statistically significant at level � = 0.05.
Often, 10 repetitions might not be enough to detect statistically significant differences, and higher repetition
values like 30 and 100 are recommended in the literature [32]. However, here the performance gaps are large
enough that 10 repetitions were more than enough in most cases. Note that, as explained in more details in [32],
we have not applied any �-value correction on these multiple comparisons (as they are controversial). We rather
report the raw values (rounded up to 0.001 for readability), in case readers still want to apply such corrections
when analyzing such data. For completeness, as Schemathesis achieves the best results on few APIs, Table 4
reports the same kind of analysis, in which Schemathesis is pairwise compared with all the other tools.

ACM Trans. Softw. Eng. Methodol.

12 • Man Zhang and Andrea Arcuri

Table 4. �-values of the Mann-Whitney-Wilcoxon U-Test of Schemathesis’s results compared to all the other tools, on

each SUT (114 pairwise comparisons in total). Values lower than the � = 0.05 threshold are reported in bold. ��� values

happen when there is no difference in the compared datasets (they are exactly the same). They can be interpreted as �-value

equal to 1.

SUT bBOXRT EvoMaster BB RestCT RESTler RESTest RestTestGen

cyclotron 0.001 0.001 0.001 0.001 0.001 0.001

disease-sh-api 0.001 0.001 0.001 0.001 0.001 0.001

js-rest-ncs 0.001 0.001 0.001 0.001 0.001 0.001

js-rest-scs 0.001 0.001 0.001 0.001 0.001 0.081

realworld-app 0.001 0.001 0.001 0.001 0.001 0.001

spacex-api 0.001 0.001 0.001 0.001 0.001 0.001

catwatch 0.001 0.909 0.001 0.001 0.001 0.001

cwa-verification 0.001 0.434 0.001 0.001 0.001 0.001

features-service 0.001 0.001 0.001 0.001 0.001 0.001

gestaohospital-rest 0.001 0.001 0.001 0.001 0.001 0.168

ind0 NaN NaN 0.001 0.001 NaN NaN
languagetool 0.001 0.001 0.001 0.001 0.001 0.001

ocvn-rest 0.001 0.033 0.001 0.001 0.001 0.001

proxyprint 0.001 0.001 0.001 0.001 0.001 0.001

rest-ncs 0.001 0.001 0.001 0.001 0.001 0.001

rest-news 0.001 0.069 0.001 0.001 0.001 0.001

rest-scs 0.001 0.007 0.001 0.001 0.001 0.061
restcountries 0.001 0.001 0.001 0.001 0.014 0.019

scout-api 0.001 0.001 0.001 0.001 0.001 0.557

When looking at the obtained coverage values, all these tools achieve at least a 30% coverage on average. Only
two of them (i.e., EvoMaster and Schemathesis) achieve more than 50%. But no tool goes above 60% coverage.
This means that, although these tools might be useful for practitioners, there are still several research challenges
that need to be addressed (we will go in more details on this in Section 4.7). However, what level of coverage can
be reasonably expected from black-box tools (which have no info on the source code of the SUTs) is a question
that is hard to answer.

RQ1: all compared tools achieve at least 30% line coverage on average, but none goes above 60%. Of the 7 compared
tools, EvoMaster seems the one giving the best results, closely followed by Schemathesis.

4.4 RQ2: Time Budget

The choice of running experiments for 1 hour is arbitrary, and different results could be obtained when using
different time budgets. In the end, what to use as time budget should be based on how practitioners in industry
would actually use these fuzzers in their daily jobs. However, as far as we know, there is no scientifically sound
data in the literature on how practitioners use these tools in practice. The choice of 1 hour is based on our
anecdotal experience of collaborating and discussing with some engineers in industry.

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 13

Table 5. Results of experiment on various time budget settings (i.e., {6m, 1h, 10h}).We report average, minimum andmaximum

of coverage (i.e., mean [min, max]) achieved by the best two black-box fuzzers (i.e., EvoMaster and Schemathesis) with

each time budget setting on each of the 19 REST APIs .

SUT EvoMaster BB Schemathesis

6m 1h 10h 6m 1h 10h

cyclotron 70.1 [70.1,70.1] 70.3 [70.1,72.3] 70.1 [70.1,70.1] 68.0 [67.0,69.1] 69.1 [67.7,69.7] 68.9 [68.1,69.7]
disease-sh-api 60.8 [60.7,60.9] 60.8 [60.8,60.9] 60.8 [60.8,60.8] 61.4 [61.1,61.7] 61.5 [61.4,61.6] 61.4 [61.3,61.6]
js-rest-ncs 85.4 [82.4,90.4] 93.0 [89.8,95.8] 95.8 [95.8,95.8] 98.8 [98.4,100.0] 100.0 [100.0,100.0] 100.0 [100.0,100.0]
js-rest-scs 85.5 [85.1,86.3] 88.7 [87.5,89.5] 90.6 [90.0,91.2] 85.6 [85.2,86.1] 86.1 [85.9,87.4] 87.2 [87.1,87.4]
realworld-app 69.4 [69.4,69.4] 69.4 [69.4,69.4] 69.4 [69.4,69.4] 69.5 [68.9,69.8] 69.7 [69.1,69.8] 69.6 [69.3,69.8]
spacex-api 84.7 [84.7,84.8] 84.7 [84.7,84.8] 84.9 [84.8,84.9] 85.3 [84.8,85.6] 85.4 [85.3,85.6] 85.6 [85.6,85.7]

catwatch 32.9 [23.6,36.6] 35.9 [34.3,36.9] 40.5 [36.9,46.8] 33.1 [31.1,34.3] 35.8 [33.6,39.1] 38.8 [37.0,40.0]
cwa-verification 49.2 [49.1,49.6] 49.4 [49.1,49.6] 49.6 [49.6,49.6] 48.6 [47.3,49.5] 49.5 [49.5,49.5] 49.5 [49.5,49.5]
features-service 58.5 [58.4,59.5] 59.7 [58.4,62.1] 60.2 [59.3,61.7] 50.4 [46.4,57.5] 52.0 [46.6,57.1] 55.9 [51.4,64.3]
gestaohospital-rest 51.0 [44.8,54.5] 50.8 [44.8,54.3] 51.1 [48.8,53.5] 52.0 [48.5,57.5] 58.7 [55.9,62.3] 59.8 [59.2,60.4]
ind0 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2]
languagetool 15.6 [6.8,25.3] 32.6 [26.0,35.1] 36.1 [35.9,36.3] 2.1 [2.1,2.5] 2.2 [2.1,2.5] 2.3 [2.1,2.5]
ocvn-rest 25.7 [22.7,27.1] 27.5 [27.5,27.6] 27.6 [27.6,27.7] 19.1 [16.9,19.9] 27.5 [27.5,27.7] 27.8 [27.8,27.9]
proxyprint 32.5 [32.4,33.6] 34.0 [32.5,35.0] 35.0 [35.0,35.1] 4.4 [4.4,4.4] 4.4 [4.4,4.4] 4.4 [4.4,4.4]
rest-ncs 64.4 [64.4,64.4] 64.5 [64.4,64.7] 65.6 [64.7,66.9] 92.6 [92.4,93.8] 94.1 [93.1,94.5] 95.3 [94.5,96.7]
rest-news 69.4 [69.4,69.4] 69.4 [69.4,69.4] 69.4 [69.4,69.4] 67.8 [65.3,70.1] 68.8 [67.4,70.8] 70.8 [70.8,70.8]
rest-scs 64.3 [63.7,65.4] 66.9 [64.4,70.2] 72.9 [72.2,73.6] 64.0 [63.7,64.4] 64.8 [64.4,65.1] 66.3 [66.1,66.4]
restcountries 75.8 [74.8,76.1] 76.1 [76.1,76.1] 76.2 [76.1,76.2] 72.2 [71.1,73.8] 73.9 [72.4,75.0] 75.3 [75.1,75.5]
scout-api 35.5 [30.9,39.6] 36.7 [32.8,41.1] 35.0 [31.3,37.7] 22.2 [21.4,24.3] 23.0 [22.1,25.1] 24.0 [23.1,24.8]

Still, it is interesting to see how results would vary when using different time budgets. These would still
represent realistic scenarios, such as engineers that would like to get some results quickly (e.g., in just a few
minutes) or running fuzzing sessions on a Continuous Integration server for several hours during the night. To
address this research question, we hence ran a new set of experiments, in which we used 1/10 of the budget (i.e.,
6 minutes), and 10 times the budget (i.e., 10 hours). Unfortunately, running each experiment for 10 hours would
take a huge amount of time, even when parallelizing the running of the experiments (unless a large number of
machines can be used). For this reason, for these experiments we only used the two most performing tools (i.e.,
EvoMaster and Schemathesis), with the experiments repeated only 3 times. Still, with these reduced settings,
these experiments took 2 × 19 × ((6 × 10) + (600 × 3))� = 49 days of computational effort.

ACM Trans. Softw. Eng. Methodol.

14 • Man Zhang and Andrea Arcuri

020406080100

cy
cl

o
tr
o
n

d
is

e
a
se

−
sh

−
a
p
i

js
−
re

st
−
n
cs

js
−
re

st
−
sc

s

re
a
lw

o
rl
d
−
a
p
p

sp
a
ce

x−
a
p
i

ca
tw

a
tc

h

cw
a
−
ve

ri
fic

a
tio

n

fe
a
tu

re
s−

se
rv

ic
e g

e
st

a
o
h
o
sp

ita
l−

re
st

in
d
0

la
n
g
u
a
g
e
to

o
l

o
cv

n
−
re

st

p
ro

xy
p
ri
n
t

re
st

−
n
cs

re
st

−
n
ew

s

re
st

−
sc

s

re
st

co
u
n
tr
ie

s

sc
o
u
t−

a
p
i

7
0
.0

6
7
0
.3

7
0
.0

6

6
0
.7

8
6
0
.8

4
6
0
.8

1

8
5
.4

9
3
.0

3
9
5
.8

3

8
5
.5

4
8
8
.7

1
9
0
.6

4

6
9
.3

6
6
9
.3

6
6
9
.3

6

8
4
.7

4
8
4
.7

4
8
4
.8

8

3
2
.9

4
3
5
.8

7
4
0
.4

9

4
9
.1

7
4
9
.4

2
4
9
.6

5

5
8
.5

5
9
.7

4
6
0
.1

8

5
0
.9

6
5
0
.8

4
5
1
.1

4

8
.2

4
8
.2

4
8
.2

4

1
5
.6

5

3
2
.6

2
3
6
.1

2

2
5
.7

2
7
.5

2
2
7
.6

2

3
2
.5

4
3
4
.0

1
3
5
.0

2

6
4
.3

6
6
4
.4

7
6
5
.5

8
6
9
.4

4
6
9
.4

4
6
9
.4

4

6
4
.2

9
6
6
.9

5

7
2
.8

8
7
5
.8

2
7
6
.0

6
7
6
.1

8

3
5
.4

8
3
6
.6

7
3
4
.9

9

0
0
.7

0

0
.0

4
0
.0

5
0
.0

2

3
.2

3

2
.1

9
0

0
.3

8
0
.6

0
.5

8

0
0

0

0
.0

2
0
.0

2
0
.0

7

3
.0

1
1
.3

3

5
.4

9

0
.2

0
.2

9
0

0
.2

9
1
.5

2
1
.3

3

2
.9

8
2
.9

2
.3

7

0
0

0

5
.3

6

2
.5

8
0
.2

3

1
.3

6
0
.0

4
0
.0

9

0
.3

2
0
.8

3
0
.0

7

0
0
.1

8
1
.1

7

0
0

0

0
.4

3
1
.8

0
.6

8
0
.3

5
0

0
.1

1

2
.8

6
2
.6

3
3
.3

3

6
m

1
h

1
0
h

(a
)
E
v
o
M
a
st
e
r
B
B

020406080100

cy
cl

o
tr
o
n

d
is

e
a
se

−
sh

−
a
p
i

js
−
re

st
−
n
cs

js
−
re

st
−
sc

s

re
a
lw

o
rl
d
−
a
p
p

sp
a
ce

x−
a
p
i

ca
tw

a
tc

h

cw
a
−
ve

ri
fic

a
tio

n

fe
a
tu

re
s−

se
rv

ic
e g

e
st

a
o
h
o
sp

ita
l−

re
st

in
d
0

la
n
g
u
a
g
e
to

o
l

o
cv

n
−
re

st

p
ro

xy
p
ri
n
t

re
st

−
n
cs

re
st

−
n
ew

s

re
st

−
sc

s

re
st

co
u
n
tr
ie

s

sc
o
u
t−

a
p
i

6
8
.0

2
6
9
.0

8
6
8
.8

9

6
1
.4

4
6
1
.5

6
1
.3

8

9
8
.7

5
1
0
0

1
0
0

8
5
.6

1
8
6
.1

5
8
7
.2

3

6
9
.5

2
6
9
.6

9
6
9
.5

8

8
5
.3

8
5
.4

4
8
5
.6

4

3
3
.0

5
3
5
.8

5
3
8
.8

4
8
.5

6
4
9
.5

1
4
9
.5

1
5
0
.3

8
5
2
.0

2
5
5
.9

4
5
1
.9

8

5
8
.7

4
5
9
.8

5

8
.2

4
8
.2

4
8
.2

4

2
.1

4
2
.1

9
2
.3

4

1
9
.0

6

2
7
.5

2
7
.8

2

4
.3

6
4
.3

6
4
.3

6

9
2
.5

7
9
4
.1

1
9
5
.2

7

6
7
.7

6
6
8
.8

2
7
0
.8

3

6
3
.9

7
6
4
.8

1
6
6
.3

3

7
2
.1

8
7
3
.9

4
7
5
.2

6

2
2
.2

3
2
3
.0

5
2
4
.0

1

0
.8

9
0
.7

2
0
.7

7

0
.1

5
0
.0

4
0
.1

5

0
.6

6
0

0

0
.2

2
0
.4

3
0
.1

5

0
.2

8
0
.2

5
0
.2

8

0
.2

5
0
.0

8
0
.0

4

1
.1

8
1
.8

2
1
.5

9

0
.9

8
0

0
3
.7

2
2
.6

8

7
.2

7

3
.1

4

2
.1

6
0
.6

2

0
0

0

0
.1

5
0
.2

0
.2

3

0
.9

8

0
.0

8
0
.0

9

0
0

0

0
.5

3
0
.5

1
1
.2

6

1
.1

8
1
.1

1
0

0
.2

8
0
.3

1
0
.2

0
.8

7
0
.9

4
0
.2

1

0
.9

2
0
.9

3
0
.8

5

6
m

1
h

1
0
h

(b
)
S
c
h
e
m
a
t
h
e
si
s

F
ig
.1
.
A
ve
ra
g
e
(y
-a
xi
s)
a
n
d
st
a
n
d
a
rd

d
ev
ia
ti
o
n
(b
o
ld

v
a
lu
e
)
o
f
co
ve
ra
g
e
a
ch
ie
ve
d
b
y
E
v
o
M
a
st
e
r
B
B
a
n
d
S
c
h
e
m
a
t
h
e
si
s
w
it
h
va
ri
o
u
s
ti
m
e
b
u
d
g
et
s

(i
.e
.,
{6
m
,1
h
,1
0h

})
o
n
a
ll
o
f
th
e
19

R
E
S
T
A
P
Is

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 15

Table 5 shows the results of these experiments. A graphical representation is given in Figure 1. Statistical
analyses in which the results of how the different time budgets compare with each other are reported in Table 6.

From this data, a few key observations can be made:

• In most cases, increasing the time budget does increase the achieved code coverage.
• Increases in coverage can be substantial (e.g., +20.5% for EvoMaster on languagetool), or very minimal
(e.g., only +0.2% for spacex-api).

• When there is high variability in the results, experiments with longer time budgets might give worse results
by chance. It is not common, but it can happen (e.g., this is the case for EvoMaster on scout-api).

• Relatively, already with low time budget (i.e., 6 minutes), reasonable coverage results can be achieved. This
is important to take into account, considering that many faults in these REST APIs lay in the first layer of
input validation [58].

• There are cases in which there is no difference in results even when using a 100 time larger time budget (i.e.,
10 hours vs. 6 minutes). This is the case for the industrial API (i.e., ind0). Interestingly, white-box testing
does achieve much better results than black-box techniques (we will show it in Section 4.6). Although
giving more time does improve the performance of black-box fuzzers, there are cases in which it is not
enough, and more advanced techniques like white-box testing are required.

RQ2: Already with a small time budget of 6 minutes good results can be achieved. Longer time budgets can provide
better results, but the magnitude of the improvements can vary significantly among the tested APIs.

4.5 RQ3: Black-box Fault Detection

4.5.1 Issues in Measuring Fault Detection. As previously stated, each tool can self-report how many faults they
find, but how such fault numbers are calculated might be very different from tool to tool, making any comparison
nearly meaningless. Manually checking (possibly tens of) thousands of test cases is not a viable option either,
especially when they are generated in different programming languages (e.g., Java and Python).
Some authors like in [54] use the number of unique exception stack traces in the SUT’s logs as a proxy of

detected faults. On the one hand, a tool that leads the SUT to throw more exceptions could be considered better.
On the other hand, using such metric as proxy for fault detection has many shortcomings, like for example: (1)
not all exceptions reported in the logs are related to faults; (2) not all SUTs actual print any logs by default (e.g.,
this is the case for several SUTs in our study); (3) crashes (which lead to responses with HTTP status code 500)
are only one type of faults in RESTful APIs detected by these fuzzers [58], where for example all faults related to
response mismatches with the API schema would leave no trace in the logs. For all these reasons, we did not do
this kind of analysis on the logs, as we do not think they provide much more info compared to line coverage.
Especially considering that the infrastructure to do such analysis would need to be implemented, which might
not be a trivial task.
An alternative that we considered was to build a proxy HTTP server, to be used between the fuzzer and the

SUT. With such a proxy, it would be possible to record all the responses from the SUT, e.g., to log all the endpoints
returning a 500 HTTP status code, regardless of the employed fuzzer. We discarded this idea for two main reasons:
(1) it could introduce a not trivial delay to all test case evaluations, which could bias the experiments (slower
fuzzers would get a relative advantage if each HTTP call takes artificially longer to execute because going through
a proxy); (2) such an approach would not be able to distinguish between different faults triggered in the same
endpoint.
Another alternative was to use some Mutation Testing [52] tool. But we are aware of no such tool aimed at

system testing (i.e., they all seem tailored for unit testing). Furthermore, there could be major technical challenges
in using a Mutation Testing tool when the generated tests and the SUT are written in different programming

ACM Trans. Softw. Eng. Methodol.

16 • Man Zhang and Andrea Arcuri

Table 6. Results of comparison on coverage achieved by various time budget settings (i.e., {6m, 1h, 10h}) applied on the

best two black-box fuzzers (i.e., EvoMaster and Schemathesis) for all of the 19 REST APIs. To compare the settings of �

and � (i.e., a vs. b where � is longer than �, e.g., 1h vs. 6m), we report �-value using Mann-Whitney-Wilcoxon U-tests and

effect sizes (�̂12) using Vargha-Delaney statistics. Values in bold indicates that � is significantly better than � in statistics,

i.e., �-value < 0.05 and �̂12 < 0.5, and values in plain indicates that there is no significantly difference between � and � in

statistics. Note that NaN values of �-value happen when � and � are exactly the same. For each of the fuzzer, among 19 SUTs,

#Significance represents a number of the SUTs whose results are significantly improved with a greater time budget settings

(i.e., � is significantly better than �). We also report difference and relative difference between average � and average �, i.e.,

Diff%=mean(a)−mean(b) and Relative= (mean(a)−mean(b))/mean(b).

EvoMaster BB

SUT 1h vs. 6m 10h vs. 1h 10h vs. 6m

�̂12 p-value Diff% Relative �̂12 p-value Diff% Relative �̂12 p-value Diff% Relative

cyclotron 0.60 0.168 +0.24 +0.35% 0.40 0.502 -0.24 -0.35% 0.50 NaN 0.00 0.00%
disease-sh-api 0.82 0.010 +0.06 +0.10% 0.33 0.392 -0.04 -0.06% 0.77 0.176 +0.02 +0.03%
js-rest-ncs 0.99 ≤0.001 +7.63 +8.93% 0.90 0.045 +2.80 +3.01% 1.00 0.013 +10.43 +12.21%

js-rest-scs 1.00 ≤0.001 +3.17 +3.71% 1.00 0.007 +1.94 +2.18% 1.00 0.014 +5.11 +5.97%

realworld-app 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
spacex-api 0.50 1.000 0.00 0.00% 0.98 0.004 +0.14 +0.17% 0.98 0.004 +0.14 +0.17%

catwatch 0.97 ≤0.001 +2.94 +8.92% 0.98 0.013 +4.62 +12.87% 1.00 0.010 +7.55 +22.93%

cwa-verification 0.73 0.024 +0.26 +0.52% 0.70 0.246 +0.23 +0.46% 0.93 0.005 +0.48 +0.98%

features-service 0.77 0.007 +1.23 +2.11% 0.65 0.487 +0.44 +0.73% 0.96 0.001 +1.67 +2.86%

gestaohospital-rest 0.48 0.939 -0.11 -0.22% 0.50 1.000 +0.29 +0.58% 0.48 1.000 +0.18 +0.35%
ind0 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
languagetool 1.00 ≤0.001 +16.97 +108.44% 1.00 0.007 +3.50 +10.72% 1.00 0.003 +20.47 +130.79%

ocvn-rest 1.00 ≤0.001 +1.82 +7.09% 0.87 0.048 +0.10 +0.35% 1.00 0.010 +1.92 +7.46%

proxyprint 0.95 ≤0.001 +1.47 +4.52% 0.98 0.017 +1.01 +2.98% 1.00 0.010 +2.49 +7.64%

rest-ncs 0.65 0.036 +0.11 +0.17% 0.95 0.015 +1.10 +1.71% 1.00 ≤0.001 +1.21 +1.88%

rest-news 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
rest-scs 0.95 ≤0.001 +2.66 +4.14% 1.00 0.014 +5.93 +8.86% 1.00 0.008 +8.60 +13.37%

restcountries 0.75 0.011 +0.24 +0.31% 0.83 0.010 +0.12 +0.16% 0.92 0.022 +0.36 +0.47%

scout-api 0.60 0.448 +1.19 +3.35% 0.37 0.554 -1.68 -4.58% 0.50 1.000 -0.49 -1.38%

#Significance 12 10 12

Schemathesis

SUT 1h vs. 6m 10h vs. 1h 10h vs. 6m

�̂12 p-value Diff% Relative �̂12 p-value Diff% Relative �̂12 p-value Diff% Relative

cyclotron 0.86 0.007 +1.06 +1.56% 0.47 0.932 -0.19 -0.27% 0.73 0.271 +0.87 +1.28%
disease-sh-api 0.71 0.096 +0.06 +0.10% 0.32 0.380 -0.12 -0.19% 0.37 0.540 -0.06 -0.09%
js-rest-ncs 0.90 ≤0.001 +1.25 +1.27% 0.50 NaN 0.00 0.00% 0.90 0.021 +1.25 +1.27%

js-rest-scs 0.93 ≤0.001 +0.53 +0.62% 0.92 0.028 +1.08 +1.26% 1.00 0.012 +1.62 +1.89%

realworld-app 0.70 0.097 +0.17 +0.25% 0.33 0.364 -0.11 -0.16% 0.53 0.931 +0.06 +0.08%
spacex-api 0.61 0.401 +0.13 +0.16% 0.97 0.020 +0.21 +0.24% 0.97 0.022 +0.34 +0.40%

catwatch 0.96 ≤0.001 +2.80 +8.46% 0.93 0.028 +2.95 +8.24% 1.00 0.010 +5.75 +17.39%

cwa-verification 0.93 ≤0.001 +0.94 +1.94% 0.50 NaN 0.00 0.00% 0.93 0.022 +0.94 +1.94%

features-service 0.64 0.238 +1.64 +3.26% 0.56 0.814 +3.93 +7.55% 0.74 0.231 +5.57 +11.06%
gestaohospital-rest 0.94 ≤0.001 +6.76 +13.01% 0.62 0.611 +1.11 +1.89% 1.00 0.007 +7.87 +15.14%

ind0 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
languagetool 0.41 0.468 +0.05 +2.46% 0.67 0.385 +0.15 +6.77% 0.69 0.323 +0.20 +9.39%
ocvn-rest 1.00 ≤0.001 +8.44 +44.28% 1.00 0.011 +0.32 +1.17% 1.00 0.010 +8.76 +45.96%

proxyprint 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
rest-ncs 0.96 ≤0.001 +1.54 +1.66% 0.83 0.076 +1.16 +1.24% 1.00 0.001 +2.70 +2.92%

rest-news 0.76 0.032 +1.06 +1.57% 0.95 0.023 +2.01 +2.93% 1.00 0.007 +3.08 +4.54%

rest-scs 0.97 ≤0.001 +0.84 +1.32% 1.00 0.011 +1.51 +2.34% 1.00 0.007 +2.36 +3.68%

restcountries 0.94 ≤0.001 +1.76 +2.44% 1.00 0.013 +1.32 +1.78% 1.00 0.009 +3.08 +4.27%

scout-api 0.82 0.010 +0.82 +3.70% 0.83 0.112 +0.96 +4.15% 0.90 0.037 +1.78 +8.00%

#Significance 12 7 12

#TotalSignificance 24 17 24

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 17

languages (e.g., Python and Java). Designing a novel Mutation Testing tool for RESTful APIs would be useful, but
out of the scope of this paper.
Existing work on comparing fuzzers in different domains, like for example for data parsers (e.g., [42]), use

SUT crashes as oracle to detect faults. Those are easy to identify (the SUT is no longer running), although smart
techniques need to be used to distinguish possible different faults in the same SUT when it crashes. This does not
happen in RESTful APIs, as crashes in the business logic do not crash the HTTP servers they run on. The HTTP
servers catch these exceptions, and return a HTTP response with status 500. Also, as already stated, this is only
one type of faults that can be automatically detected in RESTful APIs [58]. Different kinds of automated oracles
have been defined in the literature [49]. Only focusing on that type of fault could be too restrictive.

4.5.2 Experiment Setup. In the end, for a more fair comparison on fault detection among the different fuzzers
for RESTful APIs, we created an artificial API, with 10 distinctive types of artificial faults in it (as mentioned in
Section 4.1). We then ran each black-box fuzzer on it, and manually evaluated their generated test cases to check
if the faults were identified.

The API is designed in a way that triggering faults in it should be trivial. In other words, just calling an endpoint
would trigger a fault, regardless of any input. The goal here is to check if the fuzzers are able to identify if the
obtained responses are indeed faulty. In other words, we are empirically checking which range of automated
oracles each fuzzer does employ.
Regardless of the achieved code coverage, a fuzzer could be extended with more automated oracles from the

literature. But how to integrate them is not necessarily trivial. For example, consider robustness faults, in which
wrong data (according to the schema) is sent, and a fuzzer then verifies if the HTTP response has status code
in the 4xx family (i.e., representing a user error). Sending invalid data might negatively impact the efforts on
maximizing code coverage in the SUT, as input validation is done in the first layer of the API. How often and
when to send invalid inputs to check this type of automated oracle is hence a non-trivial design decision in a
fuzzer.

In our artificial API, we have injected the following 10 different types of faults for which an automated oracle
can be defined. Note, this is not meant to be an exhaustive list of all possible faults that can be automatically
detected with an oracle. For example, we have not considered security related faults (e.g., based on access policies).
This selection is only meant as a starting point, to shed more light on this important issue.

The 10 fault types are:

(1) Thrown exception in the business logic of the API, which results in a returned 500 HTTP status code.
(2) An endpoint returns a payload, where a field has wrong type, based on the schema.
(3) An endpoint returns a success status code (i.e., in the 2xx family) that is not declared in the schema.
(4) A payload requires a numeric field to be constrained within a certain maximum value, but this constraint is

ignored in the API.
(5) A payload requires a string field to be constrained within a certain enumeration of values, but this constraint

is ignored in the API.
(6) A payload requires a boolean field to be present, but this constraint is ignored in the API.
(7) A POST endpoint returns a location header (pointing to the newly created resource) which is invalid,

resulting in a 404 status code if it is used in a GET call.
(8) A DELETE endpoint returns status code 200, but it does not delete anything (i.e., a GET on the same URL

would still return the non-deleted resource).
(9) A PUT endpoint wrongly applies a partial update (with similar semantics to RFC 7396 JSON Merge Patch),

instead of doing a full resource replacement (which can be detected by fetching the modified resource with
a GET), as per HTTP semantics.

ACM Trans. Softw. Eng. Methodol.

18 • Man Zhang and Andrea Arcuri

(10) A PUT endpoint wrongly applies a non-idempotent modification. Therefore, calling the same endpoint
more than once leads to different results, which can be checked by fetching the modified resource with a
GET. Recall that all HTTP verbs are idempotent, but POST and PATCH.

We ran each of the seven black-box fuzzers on the artificial API. As the endpoints of such API are trivial to
cover, we ran each tool only once, for just 6 minutes. Then, we manually checked all the generated test cases, to
see which of the 10 faults were correctly identified.

4.5.3 Experiment Results. Table 7 shows the results of these experiments. On this API, RestCT did not manage
to generate any test case, as it seems like it has issues when dealing with endpoints not having query or path
parameters. Although the API is trivial, RESTest and RestTestGen did not manage to achieve full coverage, in
contrast to the other four fuzzers.
Of the 10 faults, only #1 is reliable found by most tools. Fault #2 was found only by bBOXRT. For fault #3, it

was found only by EvoMaster and Schemathesis. None of the other 7 faults was properly identified by any of
the fuzzers. However, there are some clarifications to make:

bBOXRT: according to [55], it should be able to find robustness testing faults, i.e., #4, #5 and #6, but it did not.
It seems that it tried to send different kinds of faulty inputs, but with wrong payload types, where all these
HTTP requests ended up with a 415 status code (i.e., Unsupported Media Type). However, it was the only
fuzzer correctly identifying fault #2.

RESTler: according to [39], it should be able to find #8, but it did not.
RESTest: we were not able to determine if it finds any fault. It generated 121 JUnit files, containing 968 test

cases. But none of the test cases shows what faults it detects in its source code. They need to be run, where
faults are checked via custom log statements in the used HTTP library (i.e., RestAssured). Running such
tests requires a library from RESTest, which is released on Maven Central. But such library, at the time
of this writing, seems missing some transitive dependencies, and so it was not possible to run any of the
generated tests.

RestTestGen: as bBOXRT, according to [45] it should be able to detect faults #4, #5 and #6. It might had, but
it is unclear which faults it finds. For example, it can generate test sequences with 20 HTTP calls, with a
final comment stating ‘‘The erroneous test sequence was accepted as valid by the server’’. But there is no info
on what makes the test sequence ‘‘erroneous’’.

The results of this experiment clearly show that current fuzzers only detect a small subset of possible fault
types in RESTful APIs. Most fuzzers have been reported in the literature [49] finding hundreds/thousands of
faults in existing APIs. This is typically done by detecting 500 HTTP status codes (i.e., like in fault #1). However,
not all faults have the same severity. For example, many cases of 500 status code is simply wrong handling of
invalid inputs [58]. Returning a 500 instead of 400 on wrong inputs is not as serious as a fault like #10. In this
case, this latter type of fault can have catastrophic consequences, as it not only can corrupt the data of the API,
but also it would be hard to reproduce and debug due to the non-determinism and low frequency of re-executing
idempotent methods on the HTTP stack.

RQ3: Existing fuzzers detect only a small number of types of faults in RESTful APIs.

4.6 RQ4: White-Box Testing Experiments

Out of the seven compared tools, only EvoMaster supports white-box testing. EvoMaster uses evolutionary
computation techniques, where the bytecode of the SUTs is instrumented to compute different kinds of heuristics.
Due to possible conflicts with JaCoCo and c8 instrumentation, and due to the fact that EvoMaster uses its
own driver classes (which need to be written manually) to start and stop the instrumented SUTs, this set of
experiments was run differently compared to the black-box ones.

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 19

Table 7. Results of the experiment on fault detection using all selected black-box fuzzers on rest-faults. For each fuzzer, we

report the achieved line coverage and the type of detected faults.

Fuzzer Line Coverage % #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

bBOXRT 100.0 ✓ ✓

EvoMaster BB 100.0 ✓ ✓

RestCT 26.9

RESTler 100.0 ✓

RESTest 61.5

RestTestGen 92.3 ✓ ? ? ?

Schemathesis 100.0 ✓ ✓

Table 8. Experiment results for white-box evolutionary search (WB) and and grey-box random search (RS), using EvoMaster

on the 19 RESTful APIs. We report the average line coverage measured with EvoMaster itself (not JaCoCo, nor c8), as well as

the number of faults detected in these APIs. When the differences are statically significant at � = 0.05 level, the effect-sizes

�̂12 are reported in bold.

SUT Line Coverage % # Detected Faults

RS WB �̂12 �-value RS WB �̂12 �-value

cyclotron 31.2 31.3 0.69 0.158 32.2 30.9 0.13 0.004

disease-sh-api 18.1 19.5 1.00 0.001 30.0 36.2 1.00 0.001

js-rest-ncs 60.7 83.2 1.00 0.001 6.0 6.0 0.50 1.000

js-rest-scs 60.9 76.2 1.00 0.001 1.0 1.0 0.50 1.000

realworld-app 24.6 24.4 0.03 0.001 25.0 30.5 1.00 0.001

spacex-api 41.5 41.5 0.58 0.540 52.2 50.9 0.32 0.170

catwatch 41.1 50.0 1.00 0.001 18.0 23.7 1.00 0.001

cwa-verification 40.4 46.9 1.00 0.001 4.0 4.0 0.50 1.000

features-service 68.8 81.8 1.00 0.001 22.2 31.4 1.00 0.001

gestaohospital-rest 39.4 39.5 0.72 0.024 15.0 22.0 1.00 0.001

ind0 8.4 18.8 1.00 0.001 1.0 48.1 1.00 0.001

languagetool 28.9 39.5 0.93 0.001 16.6 12.8 0.55 0.731

ocvn-rest 35.3 24.8 0.00 0.001 279.9 257.9 0.00 0.001

proxyprint 53.3 51.6 0.28 0.120 84.1 86.3 0.59 0.531

rest-ncs 61.9 93.0 1.00 0.001 5.0 6.0 1.00 0.001

rest-news 55.4 66.5 1.00 0.001 5.0 7.8 1.00 0.001

rest-scs 63.3 86.2 1.00 0.001 1.0 12.0 1.00 0.001

restcountries 74.9 77.1 1.00 0.001 2.0 2.0 0.50 1.000

scout-api 54.7 53.4 0.37 0.346 94.0 88.6 0.14 0.008

Average 45.4 52.9 0.77 36.5 39.9 0.67

We ran EvoMaster on each SUT for 10 repetitions (so, 190 runs), each one for 1 hour (like for the black-box
experiments). However, JaCoCo and c8 are not activated. After each run, EvoMaster generates statistic files,
including information on code coverage and fault detection. However, as there can be differences on how line
coverage is computed between EvoMaster and JaCoCo/c8, it would be difficult to reliably compare with the

ACM Trans. Softw. Eng. Methodol.

20 • Man Zhang and Andrea Arcuri

results in Table 2. Therefore, for the comparisons, we ran EvoMaster as well in grey-box mode (for another 190
runs). This mode generates test cases in exactly the same way as black-box mode, with difference that the SUT is
instrumented, and coverage metrics are computed at each test execution. A further benefit is that, besides code
coverage, we can reliably compare fault detection as well, as this metric is computed in exactly the same way (as
it is the same tool). As EvoMaster is the black-box fuzzer that gives the highest code coverage (Section 4.3), it is
not a major validity threat to compare white-box results only with EvoMaster. These 380 runs added a further
15.8 days of computational effort.

Table 8 shows these results. Few things appear quite clearly. First, on average, line coverage goes up by 7.5%
(from 45.4% to 52.9%). Even with just 10 runs per API, results are statistically significant in most cases.

For APIs like rest-ncs, average coverage can go even higher than 90%. For other APIs like features-service
improvements are more than 13% (e.g., from 68.8% to max 81.1%). In the case of ind0, although achieved coverage
is relative low (i.e., less than 20%), it still more than double (i.e., from 8.4% to 18.8%).

Although results are significantly improved compared to black-box testing, for nearly half of these SUTs it was
still not possible to achieve more than 50% line coverage. Also, there are two interesting cases in which results
with white-box testing are actually significantly worse, i.e., for realworld-app and ocvn-rest. In the former case,
the difference is minimal, just 0.2%. In the latter case, though, the difference is substantial, as it is 10.5% (from
35.3% down to 24.8%). This is not an unusual behavior for search algorithms, as it all depends on the quality of
the fitness function and the properties of the search landscape [43]. If a fitness function gives no gradient to the
search algorithm, it can easily get stuck in local optima. In such cases, a random search can give better results.
EvoMaster uses several heuristics in its fitness function to try to maximize code coverage, but those do not
work for ocvn-rest, as we will discuss in more details in Section 4.7. However, improving the fitness function in
this case can be done (which we will address in future versions of EvoMaster).

Regarding fault detection, white-box testing leads to detect more faults. In the context of REST API testing, a
500 status code is regarded as potential fault occurred in the SUT, which can be identified by both black-box
and white-box approaches, by extracting info from the HTTP responses. It is not unexpected that a white-box
approach achieves better performance, as usually there is a strong correlation between code coverage and fault
detection [42]. For example, you cannot detect a fault if the code it hides in is never executed. However, it also
relies on the employed fitness functions and heuristics, e.g., whether they focuses more on fault detection than
on other test criteria (such as code coverage and schema related coverage [?]) . The interesting aspect here is
that the improvement is not much, just 3.4 more faults on average. In these experiments, random testing can
find 36.5 faults on average, and so the relative improvement is less than 10%. For the problem domain of fuzzing
RESTful APIs (and likely Web APIs in general), this is not surprising [58]. Many of these APIs do crash as soon
as an invalid input is provided, instead of returning a proper user error response (e.g., with HTTP status code
in the 4xx family). And random search is quite good at generating invalid input values. So, many faults can be
easily found this way with a fuzzer at the very first layer of input validation in the SUT’s code, even when the
achieved code coverage is relatively low.

RQ4: White-box fuzzing leads to significantly higher results compared to black-box fuzzing, up to 7.5% more code
coverage and 3.4 more detected faults on average. But, still, for many APIs coverage results were less than 50%.

4.7 RQ5: Open Problems

To identify open problems, we performed detailed analysis based on results of existing fuzzers on real APIs
(18 open source and one industrial). We ran seven tools/configurations on 19 RESTful APIs, with a budget of
1 hour per experiment. However, only in one single case it was possible to achieve 100% line coverage (i.e.,
Schemathesis on js-rest-ncs, recall Table 2). In general, it might not be possible to achieve 100% line coverage, as
some code can be unreachable. This is for example a common case for constructors in static-method-only classes,

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 21

and catch blocks for exceptions that cannot be triggered with a test. However, for several of these SUTs it was
not even possible to reach 50% line coverage.
It is not in the scope of this paper to define what would be a good coverage target to aim for (80%? 90%?).

However, clearly the higher the code coverage the better it would be for practitioners using these fuzzers. So, to
improve those fuzzers, it is of paramount importance to understand what are their current limitations. To answer
this question, we studied in detail the logs of the tools in Section 4.7.1, and large parts of the source code of the
SUTs in Section 4.7.2 (recall that those are more than 280 thousand LOCs, see Table 1). An in-depth analysis of
the current open-problems in fuzzing RESTful APIs is an essential scientific step to get more insight into this
problem. This is needed to be able to design novel, more effective techniques.
Here, we do two different types of analyses. First, we look at the logs generated by the tools (Section 4.7.1),

which helps in pointing out possible major issues in these fuzzers (e.g., when they crash they might generate
log messages with stack traces). Second, we run the generated tests and manually check the code they execute
(Section 4.7.2), to analyze what was not covered. This helps to provide hypotheses to explain why that was the
case, which is needed to be able to design new techniques to achieve higher coverage. Finally, we summarize all
these findings (Section 4.7.3).
It is important to stress out that the goal of these analyses is to identify general problems, or instances of

problems that are likely going to be present in other SUTs as well. Designing novel techniques that just overfit for
a specific benchmark is of little to no use. Ultimately, what is important will be the results that the practitioners
can obtain when using these fuzzers on their APIs.

4.7.1 Analysis Of The Logs. From the tool logs, at least four common issues are worth to discuss. First, Ope-
nAPI/Swagger schemas might have some errors (e.g., this is the case for cyclotron, disease-sh-api, cwa-verification,
features-service proxyprint, and ocvn-rest). This might happen when schemas are manually written, as well as
when they are automatically derived from the code with some tools/libraries (as those tools might have faults). In
these cases, most fuzzers just crash, without making any HTTP call or generating any test case. It is important to
warn the users of these issues with their schema, but likely fuzzers should be more robust and not crash, e.g.,
endpoints with schema issues could be simply skipped.
The second issue can be seen in languagetool. Most fuzzers for RESTful APIs support HTTP body payloads

only in JSON format. But, in HTTP, any kind of payload type can be sent. JSON is the most common format for
RESTful APIs [64], but there are others as well like XML and the application/x-www-form-urlencoded used
in languagetool. From the results in Table 2, it looks like only EvoMaster supports this format. On this API,
EvoMaster achieves between 26% and 35.1% code coverage, whereas no other fuzzer achieves more than 2.5%.

The third issue is specific to scout-api, which displays a special case of the JSON payloads. Most tools assume a
JSON payload to be a tree: e.g., a root object A that can have fields that are object themselves (e.g., A.B), and so on
recursively (e.g., A.B.C.D and A.F.C), in a tree-like structure. However, an OpenAPI/Swagger schema can define
objects that are graphs, as it is the case for scout-api. For example, an object A can have a field of type B, but B
itself can have a field of type A. This recursive relation creates a graph, that needs to be handled carefully when
instantiating A (e.g., optional field entries can be skipped to avoid an infinite recursion, which otherwise would
lead the fuzzers to crash).

The fourth issue is related to the execution of HTTP requests towards the SUTs. To test a REST API, the fuzzers
build HTTP requests based on the schema, and then use different HTTP libraries to send the requests toward the
SUT, e.g., JerseyClient is used in EvoMaster. By analyzing the logs, we found that for several case studies,
some fuzzers seem to not have problems in parsing schemas, but they failed to execute the HTTP requests. For
instance, javax.net.ssl.SSLException: Unsupported or unrecognized SSL message was thrown when
RestTestGen processed realworld-app with OkHttpClient. For js-rest-ncs, js-rest-scs and ind0, we found that
404 Not Found responses were always returned when fuzzing them with RESTler v8.5.0. By checking the logs

ACM Trans. Softw. Eng. Methodol.

22 • Man Zhang and Andrea Arcuri

1 2022 -06 -12 12:30:28.112: Sending: 'GET //api/fisher /1/1/1.23 HTTP /1.1\r\nAccept: application/json\r\

nHost: localhost :25900\r\nContent -Length: 0\r\nUser -Agent: restler /8.5.0\r\n\r\n'

2

3 2022 -06 -12 12:30:28.126: Received: 'HTTP /1.1 404 Not Found\r\nX-Powered -By: Express\r\nContent -

Security -Policy: default -src \'none\'\r\nX-Content -Type -Options: nosniff\r\nContent -Type: text/

html; charset=utf -8\r\nContent -Length: 159\r\nDate: Sun , 12 Jun 2022 10:30:28 GMT\r\nConnection:

keep -alive\r\nKeep -Alive: timeout =5\r\n\r\n<! DOCTYPE html >\n<html lang="en">\n<head >\n<meta

charset ="utf -8">\n<title >Error </title >\n</head >\n<body >\n<pre >Cannot GET //api/fisher /1/1/1.23 </

pre >\n</body >\n</html >\n'

(a) RESTler on js-rest-ncs built with NodeJS and Express. By default, a path with extra slash will not match the correct

endpoint.

1 2022 -06 -11 22:55:56.651: Sending: 'GET //api/fisher /1/1/1.23 HTTP /1.1\r\nAccept: application/json\r\

nHost: localhost :24850\r\nContent -Length: 0\r\nUser -Agent: restler /8.5.0\r\n\r\n'

2

3 2022 -06 -11 22:55:56.697: Received: 'HTTP /1.1 200 \r\nContent -Disposition: inline;filename=f.txt\r\

nContent -Type: application/json;charset=UTF -8\r\nTransfer -Encoding: chunked\r\nDate: Sat , 11 Jun

2022 20:55:55 GMT\r\n\r\n38\r\n{" resultAsInt ":null ," resultAsDouble ":0.5328886540720141}\r\n0\r\n\

r\n'

(b) RESTler on rest-ncs built with Spring Boot 2.0.3 whose default path matching strategy allows the double slash.

Fig. 2. Different handling of requests with different techniques

obtained by RESTler, we found that it might be due to a problem in generating the right URLs for making the
HTTP requests. For the SUT whose basePath is /, RESTler seems to generate double slash (i.e., //) in the URL
of the requests. However, whether to accept the double slash to match a real path depends on the SUTs, i.e.,
js-rest-ncs, js-rest-scs and ind0 do not allow it. In Figure 2, we provide the logs obtained by RESTler, representing
the processed requests which contain the double slash and responses returned by js-rest-ncs (Figure 2a) and
rest-ncs (Figure 2b).

4.7.2 Analysis Of the Source Code. For each SUT, we manually ran the best (i.e., highest code coverage) test
suite (which are the ones generated by EvoMaster) with code coverage activated. Then, in an IDE, we manually
looked at which branches (e.g., if statements) were reached by the test case execution, but not covered. As
well as looking at the cases in which the test execution is halted in the middle of a code block due to thrown
exceptions. This is done to try to understand what are the current issues and challenges that these fuzzers need
to overcome to get better results.

To be useful for researchers, these analyses need to be ‘‘low-level’’, with concrete discussions about the source
code of these APIs. No general theories can be derived without first looking at and analyzing the single instances
of a scientific/engineering phenomenon. As such software engineering discussions might depend on different
groups of readers who might target different levels of detail in the software, or considering readers that might
not be currently active in the development of a fuzzer, here we provide only a summary. Full analyses for each
SUT are provided in Appendix A.
Table 9 summarizes all the identified main issues, for each SUT. There can be many reasons for why higher

coverage was not achieved. Here, based on our analyses, we have categorized 6 main issues, namely:

Authentication. In some cases, there is the need to provide authentication info with specific roles, using
specific types of authentication (e.g., an API can provide different ways to authenticate).

Databases. The execution might depend on the data returned by database queries, but those return nothing,
as constraints are not satisfied (e.g., the content of WHERE clauses in SQL SELECT queries). It might be hard
to generate the right data to satisfy those constraints.

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 23

Table 9. Main issues preventing higher coverage, reported for each SUT.

SUT A
ut
he
nt
ic
at
io
n

D
at
ab
as
es

Ex
te
rn
al
Se
rv
ic
es

Sc
he
m
a
In
co
ns
ist
en
ci
es

St
rin
g
Co
ns
tra
in
ts

Un
re
ac
ha
bl
e
Co
de

catwatch ✓

cwa-verification ✓ ✓

cyclotron ✓ ✓ ✓

disease-sh-api ✓

features-service ✓

gestaohospital-rest ✓

ind0 ✓

js-rest-ncs

js-rest-scs ✓

languagetool ✓

ocvn-rest ✓ ✓ ✓

proxyprint ✓ ✓ ✓ ✓

realworld-app ✓

rest-ncs

rest-news ✓ ✓

rest-scs ✓

restcountries ✓

scout-api ✓ ✓ ✓

spacex-api ✓ ✓

Total 3 6 1 5 7 7

External Services. The API depends on specific interactions with external services (e.g., other APIs on the
internet). But, from the point of view of the fuzzers, there is no way to control what those external services
return.

Schema Inconsistencies. The schema of the API might be underspecified (e.g., some data constraints are
missing, and some query parameters used in the API might not be described), or also providing wrong info
(e.g., wrong types for input parameters).

String Constraints. String input data might need to match specific formats (e.g., based on regular expres-
sions), which is not simple to infer.

Unreachable Code. Some code can be simply unreachable via the entry-points of the API. It might be
dead-code, or code executed by other scripts or functionality (e.g., a GUI and background threads).

Note that these are only the main issues we currently face. Solving them does not imply maximizing code
coverage. As more code is executed, more issues could be identified. A concrete example is cwa-verification. Such
API does connect to an external service, but the code doing this is currently not executed by any of the fuzzers.
Dealing with external services would hence currently give no improvement on cwa-verification. However, when
the other issues in cwa-verification are solved (recall Table 9), then dealing with external services will be needed
to improve coverage results further.

ACM Trans. Softw. Eng. Methodol.

24 • Man Zhang and Andrea Arcuri

4.7.3 Discussion. Based on the analyses of the logs and tests generated for the 19 APIs, some general observations
can be made:

• Many research prototypes are not particularly robust, and can crash when applied on new SUTs. For
example, we have faced this issue with EvoMaster many times, like when adding a new API to EMB [7].
Although we add new APIs to EMB each year, EMB has been available as open-source since 2017, and
anyone can use it for their empirical studies and make sure their tools do not crash on it. However, it is
important to stress out that, in this paper, we have compared tool implementations rather than techniques.
For example, a tool with low performance (e.g., due to crashes) could still feature novel techniques that
could be very useful, e.g., if integrated or re-implemented in a more mature tool.

• Like software, also schemas can have faults, and/or omissions (e.g., constraints on some inputs might be
missing). And this issue seems quite common, especially when schemas are written manually. Although this
problem could be addressed by white-box testing (currently supported only by EvoMaster) by analyzing
the source code of the SUTs, it looks like a major issue for black-box testing, which might not have a viable
solution.

• Interactions with databases are common in RESTful APIs. To execute the code to fetch some data, such
data should be first present in the database. The data could be created with endpoints of the API itself (e.g.,
POST requests), as well as inserted directly into the database with SQL commands. Both approaches have
challenges: e.g., how to properly link different endpoints that work on the same resources, and how to deal
with data constraints that are specified in the code of the API and not in the SQL schema of the database.
The compared fuzzers provide different solutions to address this problem, but it is clear that more still need
to be done.

• Currently, no fuzzer deals with the mocking of external web services (e.g., using libraries such asWireMock).
Testing with external live services has many shortcomings (e.g., the generated tests can become flaky), but
it might be the only option for black-box strategies. For white-box strategies, mocking of web services will
be essential when testing industrial enterprise systems developed with a microservice architecture (as in
this class of software interactions between web services are very common).

• Authentication information needs to be provided when fuzzing APIs that require different users to login.
Even with a white-box fuzzer, it might not be feasible to automatically create different users with different
roles. For example, typically passwords in databases are hashed, and reverse engineering how to create
valid hashed passwords (e.g., when creating data into the database as part of the tests [33]) is out of reach
from current fuzzers. To reach specific parts of the code, there might be the need of specific users with
specific roles. If those are not provided/setup before the fuzzing is done, then such code cannot be executed.
A tester might provide different user profiles for fuzzing, but some important roles/setups might be missing
from these manual configurations.

• Constraints on strings input seem quite common in RESTful APIs. Those constraints might be missing in
the schema (e.g., a specific string input needs to satisfy a given regular expression). White-box fuzzers can
analyze the code to see how such strings are manipulated, but it is not trivial. Black-box fuzzers could try
to infer these constraints with natural language processing (e.g., based on the names of these inputs, and
possibly their description, if any is provided).

Many of the challenges we have identified (e.g., dealing with databases and underspecified schemas) are specific
for RESTful APIs, although they would likely apply to the fuzzing of other types of web services as well (e.g.,
GraphQL [40, 41] and RPC [73, 74]). These challenges would not be meaningful in different testing contexts, e.g.,
unit test generation or fuzzing of parser libraries.

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 25

Issues with providing manual auth configurations would likely apply to any kind of software that needs
authentication information. Dealing with constraints on string data is likely the most general challenge, as it
applies as well for example to unit testing.
This means that solving these challenges would not only help the testing of RESTful APIs, but likely it can

have positive effects on other testing domains as well.

RQ5: There are several open challenges in fuzzing RESTful APIs, including for example how to deal with
underspecified schemas, and how to deal with interactions with their environment (e.g., databases and other

external APIs).

5 THREATS TO VALIDITY

Internal Validity. Besides writing the scaffolding to run and analyze the experiments, before running the
experiments we did not make code modifications in any existing tool for this study. Although we are the authors
of EvoMaster, to try to be fair, we used the latest release before running these experiments, without re-running
them after fixing any new issues. However, as we have used all these APIs in our previous studies, EvoMaster

did not crash on any of them.
The use of EMB [7] as case study might bias the results towards EvoMaster. To avoid EvoMaster overfit on

it, EMB has been extended each year with new APIs, of different size and complexity. Furthermore, as EMB has
been open-source for a few years, anyone can use it as case study to evaluate the effectiveness of their fuzzers.

We used seven existing tools, with their latest release versions when possible. However, there is a possibility
that we might have misconfigured them, especially considering that some of those tools have minimal documen-
tation. To avoid such possibility, we carefully look at their execution logs, to see if there was any clear case of
misconfiguration. Furthermore, we release all our scripts as open-source in the repository of EvoMaster, so
anyone can review them, and replicate the study if needed.

Any comparison of tools made by the authors of one of these tools is bound to be potentially biased, especially
if such tool turns out to give the best results (as in our case with EvoMaster). However, the relative performance
of the other six tools among them would be not affected by this issue. Likewise, the in-depth analysis of the SUTs
is not affected by this issue either.

All the compared fuzzers use randomized algorithms. To take this into account, each experiment was repeated
either 3 times (10 hour budget) or 10 times (6 minutes and 1 hour budgets), and we analyzed them with the
appropriate statistical tests.

External Validity. The chosen seven fuzzers are arguably representing the state-of-the-art in testing RESTful
APIs. However, results on 19 APIs might not generalize to other APIs as well, although we selected different
programming runtimes (e.g., JVM and NodeJS) as well including one industrial API. This kind of system testing
experiments are expensive (more than 120 days of computational effort in our case), which makes using more APIs
challenging. Furthermore, finding RESTful APIs in open-source repositories is not so simple, and considerable
effort might then be needed to configure them (e.g., setup external dependencies like databases and find out
how/if they use any form of authentication).

6 CONCLUSIONS

RESTful APIs are widely used in industry, and so several techniques have been developed in the research
community to automatically test them [?]. Several reports in the literature show the usefulness in practice of
these techniques, by reporting actual faults automatically found with these fuzzers. However, not much has been
reported on how the different techniques compare, nor on how effective they are at covering different parts of
the code of these APIs. This latter is usually the case due to the testing of remote APIs, for which researchers do
not have access to their source code.

ACM Trans. Softw. Eng. Methodol.

26 • Man Zhang and Andrea Arcuri

To address these issues, in this paper we have compared the state-of-the-art in fuzzing RESTful APIs, using
seven fuzzers to test 20 APIs (18 open-source, 1 industrial, and 1 artificial used only for fault analysis). This
totaled more than 280 thousands of lines of code (for their business logic, but not including the millions of lines of
code of all the third-party libraries they use). Each fuzzer was run for 1 hour, and each experiment was repeated
10 times, to take into account the randomness of these tools. To get a better understanding of the results, the best
fuzzers were also run for 6 minutes and 10 hours (but this latter repeated only 3 times).
The results show different degrees of coverage for the different black-box testing tools, where EvoMaster

seems the tool giving the best results (i.e., highest code coverage on average) on this case study, closely followed
by Schemathesis. However, no black-box fuzzer was able to achieve more than 60% line coverage on average.
Furthermore, the experiments show that white-box testing gives better results than black-box testing. Still, large
parts of these APIs are left uncovered, as the fuzzers do not manage to generate the right data to maximize code
coverage. Also, only a small number of types of faults were detected by these fuzzers. Although these fuzzers are
already useful for practitioners in industry, more needs to be done to achieve better results.

To address this issue, this large empirical analysis has then be followed by an in-depth analysis of the source
code of each of these 19 APIs, to understand what are the main issues that prevent the fuzzers from achieving
better results. Several issues were identified, including for example how to deal with underspecified schemas,
and how to deal with interactions with external services (e.g., other APIs and databases). This provides a useful
list of common problems that researchers can use to drive new research effort in improving performance on this
problem domain.

For few of these issues, we discussed possible solutions, but those will need to be empirically validated. Future
work will aim at using the new knowledge and insight provided in this paper to design new variants of these
tools, to be able to achieve better results (in terms of code coverage and fault detection). In particular, the insight
provided in this study is shaping the current research efforts in EvoMaster, pointing to clear research issues
that need to be prioritized.
Comparing existing tools provides insight on the current limitations of fuzzing RESTful APIs. Although

comparing results on code coverage is not particularly complex, there are major issues when trying to do fair
comparisons based on fault detection, especially in an automated way. Future work will be needed to design
automated code infrastructure and scaffolding to run experiments based on fault detection.
All the tools and APIs used in this study are available online. To enable the replicability of this study, all our

scripts used in our experiments are published as open-source, available online in the repository of EvoMaster, at
www.evomaster.org. Documentation is provided to specify how to use them (e.g., ‘‘Replicating studies’’ section).
These scripts get automatically stored on Zenodo at each new release (e.g., version 1.5.0 [36]).

ACKNOWLEDGMENTS

This work is funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (EAST project, grant agreement No. 864972).

APPENDIX

A SOURCE-CODE ANALYSIS

In this Appendix, we will discuss the execution of test cases on each SUT, in alphabetic order, one at a time.
Hypotheses are then provided to explain why higher coverage was not achieved.
Note that, when we refer to the code coverage achieved by white-box EvoMaster, we refer to the results in

Table 8. These coverage values are computed with the instrumentation of EvoMaster itself, and they are not
exactly the same as what other coverage tools like JaCoCo and c8 would report (as there can be differences on
how coverage is computed). For example, coverage results reported by c8 might be significantly higher, as those

ACM Trans. Softw. Eng. Methodol.

www.evomaster.org

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 27

1 @PostMapping (va l u e = TAN_ROUTE ,

2 consumes = MediaType . APPLICATION_JSON_VALUE ,

3 produces = MediaType . APPLICATION_JSON_VALUE

4)

5 public De f e r r e dRe su l t <ResponseEn t i t y <Tan>> genera teTan (

6 @Valid @RequestBody Reg i s t r a t i o nTok en r e g i s t r a t i o nTok en ,

7 @RequestHeader (v a l u e = " cwa− f a ke " , r e q u i r e d = f a l s e) S t r i n g f ake) {

8 i f ((f a k e != null) && (f ake . e qu a l s (" 1 "))) {

9 return f a k eR e qu e s t S e r v i c e . genera teTan (r e g i s t r a t i o nT o k e n) ;

10 }

11 StopWatch stopWatch = new StopWatch () ;

12 stopWatch . s t a r t () ;

13 Opt iona l < Ve r i f i c a t i o nAppS e s s i o n > a c t u a l

14 = app S e s s i o n S e r v i c e . getAppSess ionByToken (r e g i s t r a t i o nT o k e n . g e t R e g i s t r a t i o nTok en ()) ;

15 i f (a c t u a l . i s P r e s e n t ()) {

Fig. 3. A function snippet from the ExternalTanController class in the API cwa-verification.

are computed only on the script files that are loaded (based on all the experiments), whereas for EvoMaster all
source files were considered. In other words, if on each run � a tool cover �� lines out of �� total reported, then
the coverage percentage �� is computed as �� = ��/� , where � =��� (��). Furthermore, a current limitation of
EvoMaster for JavaScript is that the recorded coverage does not include the coverage achieved at boot-time, but
only from when the search starts. This was an issue that has been fixed for the JVM, but not for JavaScript yet.
Therefore, the numbers in Table 8 are not directly comparable with the numbers in Table 2.

A.1 catwatch

With an average line coverage of 50%, this can be considered a non-trivial API. The main issue is that this SUT
makes a call to an external service (more specifically, to the GitHub APIs to fetch project info). But such call
seems to get stuck for a long time (and possibly timeout), which leads to none of the code parsing the responses
(and do different kind of analyses) being executed. Calling external services is a problem for fuzzers. External
services can go down or change at any time. They can return different data at each call, making assertions in the
generated tests become flaky. Although testing with the actual external services is useful and should be done, the
generated tests would likely not be suitable for regression testing. This is a known problem in industry, and there
are different solutions to address it, likemocking the external services (e.g., in the JVM ecosystem, WireMock [24]
is a popular library to do that). Enhancing fuzzers to deal with mocked services (e.g., to setup the mock data they
should return) is going to be an important venue of future research.

A.2 cwa-verification

On this API, achieved coverage is less than 50% (i.e., 46.9%). There are two interesting cases to discuss here,
which have major impact on the achieved coverage.

First, Figure 3 shows a snippet of code for one of the endpoint handlers (i.e., ExternalTanController, but
the same issue happens as well in ExternalTestStateController and InternalTanController). Here, the
condition actual.isPresent() is never satisfied, which leads to miss large part of the code. A token is given
as input as part of the body payload, and then a record matching such token in the database is searched for.
However, none is found, and EvoMaster is unable to create it directly. In theory, such case should be trivial to

ACM Trans. Softw. Eng. Methodol.

28 • Man Zhang and Andrea Arcuri

1 @PostMapping (va l u e = TELE_TAN_ROUTE ,

2 produces = MediaType . APPLICATION_JSON_VALUE

3)

4 public ResponseEn t i t y <TeleTan > c r e a t eTe l eTan (

5 @RequestHeader (Jw t S e r v i c e . HEADER_NAME_AUTHORIZATION) @Valid Author i z a t i onToken

a u t h o r i z a t i o n ,

6 @RequestHeader (v a l u e = TELE_TAN_TYPE_HEADER , r e q u i r e d = f a l s e) @Valid TeleTanType

te l eTanType) {

7

8 L i s t <Au tho r i z a t i onRo l e > r e q u i r e dRo l e s = new ArrayL i s t < >() ;

9

10 i f (t e l eTanType == null) {

11 t e l eTanType = TeleTanType . TEST ;

12 r e q u i r e dRo l e s . add (Au t h o r i z a t i o nRo l e . AUTH_C19_HOTLINE) ;

13 } e l se i f (t e l eTanType == TeleTanType . EVENT) {

14 r e q u i r e dRo l e s . add (Au t h o r i z a t i o nRo l e . AUTH_C19_HOTLINE_EVENT) ;

15 }

Fig. 4. A function snippet from the InternalTanController class in the API cwa-verification.

handle with SQL support [33], but it was not the case. The reason is the peculiar properties of such token. Such
token has the given constraint in the OpenAPI schema:

1 " r e g i s t r a t i o nT o k e n " : {

2 " p a t t e r n " : " ^[a− f0 − 9] { 8 } − [a− f0 − 9] { 4 } − 4 [a− f0 − 9] { 3 } − [8 9 aAbB] [a− f0 − 9] { 3 } − [a− f0 − 9] { 1 2 } $ " ,

3 " type " : " s t r i n g "

4 }

This results in the token having a length of 36 characters. EvoMaster has no problem in sampling strings that
match such a regular expression, like for example: bfe8b80b-dca1-458d-B312-96ecae446be0. However, such
constraint is not present in the SQL database, where the column for these tokens is simply declared with:

1 − column :

2 name : r e g i s t r a t i o n _ t o k e n _ h a s h

3 type : v a r cha r (6 4)

When EvoMaster generates data directly into the database, they would be random strings that do not satisfy
such regular expression. Again, this should not a problem thanks to taint analysis [34]. The reason it is not
working is due to the length of the string, which is 36 characters. By default, EvoMaster does not generate
random strings with more than 16 characters. Even if with taint analysis we could inject the right string into the
database, currently this does not happen due to 36 being greater than 16.
Note that having a constraint on the length of strings is essential. Sampling unbound random strings with

billions of characters would have too many negative side effects. The choice of the value 16 is arbitrary: could
had been higher, or lower. Still, whatever limit is chosen, an SUT could need strings longer than such limit, as it
happens in this case for cwa-verification.

A solution to address this issue is to distinguish between 2 different max-length limits: an hard one that should
never be violated (e.g., a constraint in the OpenAPI or SQL schemas), and a soft one (e.g., 16). The soft limit would
be used when sampling random strings, but could be violated in some specific circumstances (like for example in
taint analysis).

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 29

The second interesting case to discuss is present in the endpoint handler InternalTanController, shown in
Figure 4. Here, an HTTP header with value TELE_TAN_TYPE_HEADER="X-CWA-TELETAN-TYPE" can be provided
as input. However, such info is missing from the OpenAPI schema. Therefore, the object teleTanType is always
null. This is an example of underspecified schema.

A.3 cyclotron

On this API, there is not much difference between white-box and grey-box testing. There are at least 3 major
issues that are worth to discuss.

First, a non-negligible amount of code is executed only if some configuration settings are on. But those are off
by default (like for example config.analytics.enable and config.enableAuth in config.js). All the code
related to these functionality cannot be tested via the RESTful endpoints.

1 e xpo r t s . up s e r tDa t a = f un c t i o n (req , r e s) {

2 i f (r eq . body == null) {

3 return r e s . s t a t u s (4 0 0) . send (' Miss ing da t a . ') ;

4 }

5

6 var up s e r tDa t a = req . body . da t a ;

7 var keys = req . body . keys ;

8

9 i f (up s e r tDa t a == null) {

10 return r e s . s t a t u s (4 0 0) . send (' Miss ing da t a . ') ;

11 }

12 i f (keys == null) {

13 return r e s . s t a t u s (4 0 0) . send (' Miss ing keys . ') ;

14 }

Fig. 5. A function snippet from the api.data.js file in the API cyclotron, for the endpoint /data/{key}/upsert.

Second, like for several other APIs in this study, the schema here is not fully correct/complete. For example,
Figure 5 shows a snippet for the handler of the endpoint /data/{key}/upsert, where the two fields data and
keys are read from the input object in the HTTP body payload of the request. However, the schema has no formal
definition about those fields, as they are just mentioned as a comment (see Line 17 in Figure 6).

Third, the API does several accesses to a MongoDB database. Several endpoints start by retrieving data from
the database, like for example with commands like Dashboards.findOne({ name: dashboardName }). If the
data is missing, no following code is then executed. But it is hard to get the right id (e.g., dashboardName in this
example) by chance. Although EvoMaster has support for SQL databases (i.e., to analyze all executed queries at
runtime), it does not for MongoDB, and not for NodeJS (i.e., SQL support is currently only implemented for the
JVM).

A.4 disease-sh-api

On this API, there is not much difference between EvoMaster (both black-box and white-box) and Schemathesis.
After an analysis of the generated tests, practically all achievable coverage is obtained, as the remaining code is
not reachable through the REST endpoints in the API.

First, the schema refers only to version v3 of the API, but in the source code there is still all the implementation
of the endpoints for version v2. Those endpoints are not executable based on the info in the schema. Second,

ACM Trans. Softw. Eng. Methodol.

30 • Man Zhang and Andrea Arcuri

1 " / da t a / { key } / u p s e r t " : {

2 " po s t " : {

3 " summary " : " Up s e r t s an o b j e c t in the Data Bucket Data " ,

4 " d e s c r i p t i o n " : " Up s e r t s (i n s e r t s or upda t e s) an o b j e c t in the da t a f o r a g iven Data Bucket

. The rev p rope r t y w i l l be inc remented . " ,

5 " t a g s " : [

6 " Data "

7] ,

8 " pa r ame te r s " : [{

9 " name " : " key " ,

10 " i n " : " pa th " ,

11 " d e s c r i p t i o n " : " The Data Bucket key . " ,

12 " r e q u i r e d " : true ,

13 " type " : " s t r i n g "

14 } , {

15 " name " : " d a t a " ,

16 " i n " : " body " ,

17 " d e s c r i p t i o n " : "An o b j e c t c on t a i n i n g ' keys ' and ' da t a ' . " ,

18 " r e q u i r e d " : true

19 }] ,

Fig. 6. Snippet of the OpenAPI schema for the API cyclotron.

1 pr ivate Ev a l u a t i o nR e s u l t a d dEva l u a t i on sToRe su l t (

2 Ev a l u a t i o nR e s u l t r e s u l t ,

3 P rodu c tCon f i g u r a t i o n c on f i g u r a t i o n ,

4 Set < F e a t u r eCon s t r a i n t > f e a t u r e C o n s t r a i n t s) {

5 for (F e a t u r eCon s t r a i n t f e a t u r e C o n s t r a i n t

6 : f e a t u r e C o n s t r a i n t s) {

7 r e s u l t = f e a t u r e C o n s t r a i n t . e v a l u a t eCon f i g u r a t i o n (

8 r e s u l t , c o n f i g u r a t i o n) ;

9 }

10

11 i f (r e s u l t . i s V a l i d && ! r e s u l t . d e r i v e d F e a t u r e s . i sEmpty ()) {

12 for (S t r i n g d e r i v e d F e a t u r e : r e s u l t . d e r i v e d F e a t u r e s) {

13 c o n f i g u r a t i o n . a c t i v e (d e r i v e d F e a t u r e) ;

14 r e s u l t . d e r i v e d F e a t u r e s . remove (d e r i v e d F e a t u r e) ;

15 r e s u l t = th i s . a d dEva l u a t i on sToRe su l t (

Fig. 7. A function snippet from the ConfigurationEvaluator class in the API features-service.

large part of the code deals with the fetching of disease records from online databases, and store them in a local
Redis instance. But such code is executed only via scripts, and not from the RESTful endpoints. Note that, when
the experiments are run, the database was populated with a selection of valid data, as there is no REST endpoint
to add it.

A.5 features-service

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 31

With an average line coverage of 81.8%, features-service can be considered one of the easier APIs. Quite a bit of
code cannot be reached with any generated system test, like for example getters/setters that are never called, or
some functions that are only used by the manually written unit tests. There are still some branches that are not
covered, related to properties of data in the database. In other words, when a GET is fetching some data, some
properties are checked one at a time, but, to be able to pass all these checks, a previous POST should had created
such data. Figure 7 shows one such case, where the code inside if statement does not get executed. Tracing how
database data is impacting the control flow execution, and which operations should be first called to create such
data, is a challenge that needs to be addressed.

A.6 gestaohospital-rest

On this API, there is no much difference between white-box and grey-box EvoMaster (i.e., average coverage
39.5% vs. 39.4%, Table 8). Furthermore, RestTestGen and Schemathesis give better results than EvoMaster

(Table 2).
One specific property of this API compared to most of the other SUTs in our empirical study is that such

API uses a MongoDB database. In contrast to SQL databases, white-box EvoMaster has no support for NoSQL
databases (such as MongoDB). As this API does many interactions with the database (e.g., there is a lot of calls
like service.findByHospitalId(hospital_id)), not much coverage is achieved if such accessed data is not
present in the database, and the evolutionary search has no gradient to create it. In this regard, it seems that
RestTestGen and Schemathesis do a better job at creating resources with POST commands and use such created
data for their following GET requests. Still, although quite good, the coverage is at most 62.3% (measured with
JaCoCo for Schemathesis), which means there still some challenges to overcome.

We could not analyze in detail the output of these tools in an IDE for the Java program gestaohospital-rest (e.g.,
using a debugger), as RestTestGen generated only JSON files with the descriptions of the tests (and no JUnit
file), and the outputs of Schemathesis are in YAML for the VCR-Cassette format (which is mainly for Ruby and
Python, where the port for Java seems has not been under maintenance for several years).

A.7 ind0

This is a closed-source API provided by one of our industrial partner. Therefore, we cannot provide any code
example for it, but still we can discuss it at a high level. This API is a service in a microservice architecture.
Although in terms of size it is not particularly big (recall Table 1), it is the most challenging API in our case study.
No black-box fuzzer achieves more than 8.2% line coverage, and white-box testing goes only up to 18.8% (on
average).

Out of 20 endpoints, all but one endpoint require string inputs satisfying a complex regular expression, but such
info is not present in the OpenAPI schema. So, a random string is extremely unlikely to satisfy such constraint.
Furthermore, the constraint is expressed in a @ annotation, which is handled by the Spring framework before any
of the HTTP handlers are executed.
Thanks to taint-analysis, EvoMaster can handle these cases [34], even when constraints are evaluated in

third-party libraries (and not just in the business logic of the SUT). Still, there is quite a bit of variability in the
results, i.e., given the average coverage 18.8%, the standard variation is 7.0, with coverage going from a minimum
of 11.9% to a maximum of 32.6% (out of the 10 repeated experiment runs). EvoMaster manages to solve these
constraints, but not in all runs, as such strings not only get matched with a regular expression, but then are
farther checked with other constraints. However, as the regular expression is exactly the same for all these 19
endpoints, applied on a URL path variable with the same name, it should be possible to design strategies to re-use
such information to speed up the search, instead of resolving the same constraints each time for each endpoint.
Even with the run with highest coverage 32.6%, many endpoints are not covered due to this issue.

ACM Trans. Softw. Eng. Methodol.

32 • Man Zhang and Andrea Arcuri

1 pr ivate void hand leCheckReques t (

2 HttpExchange ht tpExchange ,

3 Map< S t r i ng , S t r i n g > parameters ,

4 E r r o r R e qu e s t L im i t e r e r r o rR e qu e s t L im i t e r ,

5 S t r i n g remoteAddress) throws Excep t i on {

6 Annota tedText aText ;

7 i f (p a r ame te r s . con t a in sKey (" t e x t ") &&

8 pa rame te r s . con t a in sKey (" da t a ")) {

9 throw new I l l e g a lA r gumen tEx c ep t i o n (

10 " S e t on ly ' t e x t ' or ' da t a ' parameter , not both ") ;

11 } e l se i f (p a r ame te r s . con t a in sKey (" t e x t ")) {

12 aText = new Anno t a t edTex tBu i l d e r ()

13 . addText (pa r ame te r s . g e t (" t e x t ")) . b u i l d () ;

14 } e l se i f (p a r ame te r s . con t a in sKey (" da t a ")) {

15 ObjectMapper mapper = new ObjectMapper () ;

16 JsonNode da t a = mapper . r e adTree (

17 pa rame te r s . g e t (" d a t a ")) ;

Fig. 8. A function snippet from the ApiV2 class in the API languagetool.

A.8 js-rest-ncs

This is an artificial API, using numerical-computation functions (e.g., Triangle Classification [26]) behind REST
endpoints. As this is a re-implementation in JavaScript of rest-ncs, we will defer to Section A.14 for the analyses.
One thing to notice though is that the coverage values are higher for a very simple reason: the fetching of

the OpenAPI schema is part of business logic of the API, and code coverage is computed for it (as the schema is
inside a JavaScript file as a string inside an HTTP endpoint declaration). On the other hand, for Java, the schema
is handled as a JSON resource.

A.9 js-rest-scs

Similarly to the case of js-rest-ncs, js-rest-scs is a JavaScript re-implementation of rest-scs, which involved string-
based computation functions. We therefore will defer to Section A.16 for the analyses.
As for js-rest-ncs, the fetching of the schema impacts the computed code coverage. However, for white-box

EvoMaster, coverage is worse for js-rest-scs than for rest-scs. The reason is rather simple: the support for
white-box testing of JavaScript code in EvoMaster is a much more recent addition [75], and not all features that
are implemented for the JVM (e.g., different forms of taint analysis [34]) are currently supported.

A.10 languagetool

On this API, coverage is up to 39.5%. This is the largest and most complex API in our study (recall Table 1). This
is a CPU bound (e.g., no database) application, doing complex text analyses. This API has only two endpoints:
/v2/languages which is a simple GET with no parameters (and so it is trivially covered by just calling it once),
and /v2/checkwhich is a POSTwith 11 input parameters. However, looking at the source code of ApiV2.handle-
Request it seems there are some more endpoints, although those are not specified in the OpenAPI/Swagger
schema. Without an extensive analysis of this SUT, it is unclear how much of its code would not be coverable
due to this issue.
Following the execution from the entry point /v2/check, there are few missed branches that are worthy

to discuss. In Figure 8, the last statement crashes due to mapper.readTree throwing an exception (and so all

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 33

statements after it cannot be executed). Here, when a form in a application/x-www-form-urlencoded payload
is received, one out of the 11 parameters is treated as JSON data (i.e., the input called data). Such info is written
in the schema as a comment, although the type is registered as a simple string. It is unlikely that a random string
would represent a valid JSON object.

Another issue is when entering in the class TextChecker. Several if statements refer to input parameters
that are undefined in the schema, such as textSessionId, noopLanguages, preferredLanguages, enableTem-
pOffRules, allowIncompleteResults, enableHiddenRules, ruleValues, sourceText, sourceLanguage and
multilingual. Dealing with underdefined schemas is a major issue with fuzzers, especially black-box ones.
Technically, these can be considered as ‘‘faults’’ in the schemas, which should be fixed by the users. However,
schemas can be considered as documentation, and issues in the documentations might receive less priority
compared to faults in the API implementation. Still, as fuzzers heavily rely on such schemas, a more widespread
use of fuzzers might lead in changes in industrial practice by giving compelling reasons to timely update and fix
those schemas.

As there are tens of thousands of line that were not covered in this SUT, there are many other missed branches
that would be interesting to discuss in detail. But it is unclear how related or independent they are from the
aforementioned issues. Once the issue of dealing of underdefined schemas is solved, it will be important to re-run
these experiments to identify which major issues are still left.

A.11 ocvn-rest

On this API, with black-box testing line coverage was up to 35.3%, which is significantly higher than the 24.8%
achieved by white-box testing. It is the second largest API in our study, following languagetool, based on number
of lines of code. But, in terms of endpoints, it is the largest with 192 of them. It would not be possible, given the
space, to discuss each single of these 192 endpoints. To analyze the achieved coverage, we hence used the test
suites generated with both white-box and black-box testing. These have hundreds of test cases. Even calling each
endpoint just once would result in at least 192 HTTP calls in the generated tests. Considering the complexity of
this SUT, maybe using a larger search budget over 1 hour could be recommended.

More than 35% of the codebase (packages org.devgateway.ocvn and org.devgateway.ocds.persistence)
deal with connections to databases such as SQL and MongoDB, but such code does not seem to be executed.
This might happen if the endpoint executions fail before writing/reading from the databases (e.g., due to input
validation). The definitions of HTTP handlers in the package org.devgateway.ocds.web.rest.controller
takes more than 30% of the codebase. But only half of it (i.e., around 15%) gets covered by the tests. Few endpoints
(e.g., in the class UserDashboardRestController) were not covered because they require admin authentication,
which was not setup for these experiments (recall the discussion about authentication in Section 4.3). The class
CorruptionRiskDashboardIndicatorsStatsController defines several HTTP endpoints, but none of them
appears in the OpenAPI/Swagger schema. So, they cannot be called by the fuzzers.

Around 5% of the codebase seems to deal with the generation of Excel charts, but that code is not covered. Out of
the 14 HTTP endpoints dealing with this functionality, they all fail on the very first line (and so a substantial part
of the codebase is not executed, possibly much higher than 5%), which is a variation of the following statement
with different string inputs as second parameter:

1 f ina l S t r i n g c h a r t T i t l e = t r a n s l a t i o n S e r v i c e . g e tVa lue (

2 f i l t e r . ge tLanguage () ,

3 " c h a r t s : c a n c e l l e d Fund i ng : t i t l e ") ;

ACM Trans. Softw. Eng. Methodol.

34 • Man Zhang and Andrea Arcuri

1 @Ap iOperation (va l u e = " Count the t e nd e r s and group the r e s u l t s by year . The year i s c a l c u l a t e d

from "

2 + " t ende r . t e n d e r P e r i o d . s t a r t D a t e . ")

3 @RequestMapping (va l u e = " / ap i / countTendersByYear " , method = { RequestMethod . POST ,

RequestMethod . GET } ,

4 produces = " a p p l i c a t i o n / j s on ")

5 public L i s t <DBObject > countTendersByYear (@ModelAt t r ibute @Valid f ina l Y e a r F i l t e r P a g i n gR e q u e s t

f i l t e r) {

Fig. 9. A function snippet from the CountPlansTendersAwardsController class in the API ocvn-rest.

Here, the language is given as input in the HTTP requests, which then gets matched with a regular expression.
This makes the translationService.getValue call crash when the regular expression is not satisfied. White-
box testing can analyze these cases, but it can be hard for black-box techniques if the info on such regular
expressions is not available in the OpenAPI/Swagger schemas.
Another large part of the code that is not covered (around another 5%) is in the package

org.devgateway.ocds.web.spring. However, most of this code seems only be called by the frontend of the
OCVN application (and the jar file for ocvn-rest does not include such module). From the point of view of the
HTTP endpoints, this can be considered dead-code, because it cannot be reached from those endpoints.

It might be surprising that white-box testing gives significantly worse results than grey-box testing, by a large
margin (i.e., 10.5%). In a combinatorial optimization problem this can happen when the fitness function provides
little to no gradient to the search, generating the so called fitness plateaus. Mutation operators that only do small
changes to the chromosome of an individual (i.e., an evolved test case in this context) would have lower chances
to escape from such local optima. EvoMaster has some advance mechanism to address these cases, like for
example adaptive hypermutation [71]. However, it was not enough to handle ocvn-rest. The problem here is that
most endpoints take a JSON object as input, with several constraints that must be satisfied. But those constraints
are not evaluated in the business logic of the SUT, but rather in a third-party library. These constraints are not
specified in the OpenAPI schema. Figure 9 shows an example, in which the JSON input is unmarshalled into
an YearFilterPagingRequest instance. Because this input is marked with the annotation @Valid, its validity
is evaluated before the method countTendersByYear() is called. If it is not valid, then the Spring framework
returns an HTTP response with status 400 (i.e., user error), without calling the method countTendersByYear().
As shown in Figure 10, the class YearFilterPagingRequest has 9 fields on which javax.validation con-

straints are declared. Only need 1 (out of 9) violated constraint to invalidate the whole object. Because the
constraints are evaluated in a third-party library, the fitness function has no gradient to guide the search to solve
all of them. Looking at the results, it seems like that generating valid instances at random is feasible, albeit with
low probability. On the other hand, small mutations on an existing invalid instance have little to no chance to
make the object valid.

To address these issues, there could be at least three strategies:

• (White-Box) Compute the fitness function to optimize the coverage (using different search heuristics) on all
the code, including third-party libraries, and not just the business logic of the SUT. In this way, there would
be gradient for generating tests in which the code that evaluates @Valid constraints returns true. Although
in theory possible, this does not sound like a very promising approach (unless only the needed code in the
third-party libraries is instrumented). In most cases, the code of the business logic of the SUT is just tiny
compared to the source code of all used third-party libraries, which includes application frameworks such
as Spring, HTTP servers such as Tomcat, and ORM libraries such as Hibernate. Instrumenting everything

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 35

1 @EachRange (min = MIN_REQ_YEAR , max = MAX_REQ_YEAR)

2 protected TreeSe t < I n t e g e r > year ;

3

4 @EachRange (min = MIN_MONTH, max = MAX_MONTH)

5 protected TreeSe t < I n t e g e r > month ;

6

7 @EachPattern (regexp = " ^[a−zA−Z0 −9] ∗ $ ")

8 pr ivate TreeSe t < S t r i ng > b idType Id ;

9

10 @EachPattern (regexp = " ^[a−zA−Z0 −9] ∗ $ ")

11 pr ivate TreeSe t < S t r i ng > notB idType Id ;

12

13 @EachPattern (regexp = " ^[a−zA−Z0 −9] ∗ $ ")

14 pr ivate TreeSe t < S t r i ng > p r o c u r i n g En t i t y I d ;

15

16 @EachPattern (regexp = " ^[a−zA−Z0 −9] ∗ $ ")

17 pr ivate TreeSe t < S t r i ng > n o t P r o c u r i n g En t i t y I d ;

18

19 @EachPattern (regexp = " ^[a−zA−Z0 −9] ∗ $ ")

20 pr ivate TreeSe t < S t r i ng > contrMethod ;

21

22@Min (0)

23 protected I n t e g e r pageNumber ;

24

25 @Range (min = 1 , max = MAX_PAGE_SIZE)

26 protected I n t e g e r p ageS i z e ;

Fig. 10. All fields with declared constraints (9 in total) in the class YearFilterPagingRequest in the API ocvn-rest.

to compute advance heuristics on all third-party libraries would likely have huge performance overhead.
This is particularly the case for all code that is executed before the business logic, e.g., the unmarshalling
of incoming HTTP requests.

• (White-Box) Natively support @Valid in the fitness function, by creating a branch distance for each
field, with the objective of minimizing the distance for all fields. Different branch distances can
be computed for the different constraints which are part of the standard javax.validation (e.g.,
javax.validation.constraints.Min). A new testing target (to optimize for) could be created for
each @Valid annotation in the business logic of the SUT. However, one major challenge here is that
javax.validation allows to create custom constraint annotations. This is for example the case for @Each-
Pattern and @EachRange used in Figure 10.

• (Black-Box) Even if the info on the field constraints are missing in the OpenAPI schema, it can be detected
in the schema that the same object type is used as input in more than one endpoint. If that is the case,
and if for an endpoint it is difficult to create a valid instance (e.g., all evaluated HTTP calls so far return a
response with HTTP status 400), then a possible strategy could be to re-use as input an instance created
for another endpoint for which a 2xx status code was returned (if any has been created so far during the
search).

A.12 realworld-app

ACM Trans. Softw. Eng. Methodol.

36 • Man Zhang and Andrea Arcuri

1 unFavo r i t e (id , s l u g) {

2 return __awa i t e r (this , void 0 , void 0 , f u n c t i o n ∗ () {

3 l e t a r t i c l e = y i e l d th i s . a r t i c l e R e p o s i t o r y . f indOne ({ s l u g }) ;

4 const use r = y i e l d th i s . u s e r R e po s i t o r y . f indOne (i d) ;

5 const d e l e t e I n d e x = use r . f a v o r i t e s . f i n d I n d e x (_ a r t i c l e => _ a r t i c l e . i d === a r t i c l e . i d) ;

6 i f (d e l e t e I n d e x >= 0) {

Fig. 11. A function snippet from the article.service.js file in the API realworld-app.

1 @Secured ({ " ROLE_USER " })

2 @RequestMapping (va l u e = " / consumer / r e q u e s t s " ,

3 method = RequestMethod . GET)

4 public S t r i n g g e tR equ e s t s (P r i n c i p a l p r i n c i p a l) {

5 J s onOb j e c t r e sponse = new J s onOb j e c t () ;

6 Consumer consumer = consumers . f indByUsername (

7 p r i n c i p a l . getName ()) ;

8 i f (consumer == null) {

9 r e sponse . addPrope r ty (" s u c c e s s " , f a l s e) ;

10 return GSON . t o J s on (r e sponse) ;

11 }

Fig. 12. Snippet of function handler for the endpoint /consumer/request in proxyprint .

On this API, there is a small difference between EvoMaster black-box and Schemathesis (c8 instrumentation:
69.4% vs. 69.7%), and between grey-box and white-box EvoMaster (EvoMaster instrumentation without
bootstrap coverage: 24.6% vs. 24.4%).
Most of the code is covered. What is left are either unfeasible branches, or branches related to fetching data

from the database (MySQL in this case) with some given properties. Figure 11 shows one such example, where 3
queries into the database are executed, based on the 2 inputs id and slug. The condition of if statement at the
end of that code snippet is never satisfied, as it depends on these 3 SQL queries. Recall that, although EvoMaster

has support for SQL query analyses (which could help in this case), it is currently only for the JVM, and not
NodeJS.

A.13 proxyprint

With a line coverage of up to 53.3%, this is an API in which reasonable results are achieved, but more could be
done. Several functions in this API are never called, and so they are impossible to cover, like for example the
methods sendEmailFinishedPrintRequest and sendEmailCancelledPrintRequest in the class MailBox, and
the private methods singleFileHandle and calcBudgetsForPrintShops in the class ConsumerController.
So, 100% coverage is not possible on this API.
This API provides a selection of various branches that are not covered. However, it is not straightforward to

find out the interesting challenges here. One problem is that the number of HTTP calls on this API is low, and so
not much search is actually carried out compared to the other SUTs when using a 1 hour budget. For example,
the generated statistic files of EvoMaster report an average of 37 393 HTTP calls per experiment on proxyprint,
whereas for example for rest-news it is 372 733, i.e., nearly 10 times as more. So, many of these missed branches
could be covered if running EvoMaster for longer. Still, some of these branches seem quite unlikely to be covered
even with larger search budgets. Let us discuss a few of them. Some are related to authentication. For example,

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 37

1 @RequestMapping (va l u e = " paypa l / ipn / consumer / { consumerID } " ,

2 method=RequestMethod . POST)

3 protected void consumerLoadUpConf irmat ion (

4 @PathVar iab le (v a l u e = " consumerID ") long c id ,

5 Ht t p S e r v l e t R e qu e s t r eque s t ,

6 Ht t pS e r v l e t R e s pon s e r e sponse

7) throws S e r v l e t E x c e p t i o n , IOExcep t i on {

8 Map< S t r i ng , S t r i n g > con f i gu ra t i onMap =

9 Con f i g u r a t i o n . g e tCon f i g () ;

10 IPNMessage i p n l i s t e n e r = new IPNMessage (

11 r eque s t ,

12 con f i gu ra t i onMap) ;

13 boolean i s I p n V e r i f i e d = i p n l i s t e n e r . v a l i d a t e () ;

14 S t r i n g t r a n s a c t i o nTyp e = i p n l i s t e n e r

15 . g e tT r an s a c t i onType () ;

16 Map< S t r i ng , S t r i n g > map = i p n l i s t e n e r . getIpnMap () ;

17

18 S t r i n g payerEma i l = map . g e t (" paye r_ema i l ") ;

19 Double q u an t i t y = Double . va lueOf (map . g e t (" mc_gross ")) ;

Fig. 13. Snippet of function handler for the endpoint /paypal/ipn/consumer/{consumerID} in proxyprint .

in Figure 12, the code inside the if statement is never executed. To reach that statement, an HTTP call with
valid authentication information needs to be provided. Such authentication info is validated with the database
when the Principal object is instantiated by the framework (Spring Security in this case). Authentication
information needs to be available when the SUT starts (unless the API has some way to register new users directly
on-the-fly from the API itself). Therefore, to deal with security (especially when involving hashed passwords),
some initialization script is required, e.g., to register a set of users with valid username/password information. In
the case of proxyprint, also some other data in other tables is created as well, e.g., in the Consumer table. To be
able to cover such branch, either a fuzzer should find a way to create new valid users, or modify the existing data
in the database (e.g., EvoMaster can add new data, but not modify the existing one [33]).
Figure 13 shows an example in which the line defining the variable quantity throws an exception, due to

Double.valueOf being called on a null input. Here, an HTTP object request is passed as input to the constructor
of IPNMessage, which is part of PayPal SDK library. Inside such library, request.getParameterMap() is called
to extract all the parameters of the HTTP request, which are used to populate the map object returned by ipn-

listener.getIpnMap(). However, as such parameters are read dynamically at runtime, the OpenAPI/Swagger
schema has no knowledge of them (as for this SUT the schema is created automatically with a library when
the API starts). Therefore, there is no info to use an HTTP parameter called mc_gross of type double. As such
parameter is used directly without being transformed, testability transformations with taint analysis might be
able to address this problem [34], but such techniques would need to be extended to support getParameterMap()
and Map.get.
Figure 14 shows another interesting example, where the value of a string field in a JSON payload is used

directly to instantiate an enum value, i.e., the statement Item.RingType.valueOf(rti.getRingType()). This
fails, as a random string is extremely unlikely to represent a valid value from a restricted set. This might be
handled by providing such info in the OpenAPI/Swagger schema (which supports defining enumerations on
string fields), or also by handling valueOf() in enumeration by extending the techniques in [34] to support it.

ACM Trans. Softw. Eng. Methodol.

38 • Man Zhang and Andrea Arcuri

1 @Secured ("ROLE_MANAGER")

2 @RequestMapping (va l u e = " / p r i n t s h op s / { i d } / p r i c e t a b l e / r i n g s " , method=RequestMethod . PUT)

3 public S t r i n g e d i t R i n g s I t em (

4 @PathVar iab le (v a l u e = " i d ") long id ,

5 @RequestBody R ingTab l e I t em r t i) {

6 Pr in t Shop pshop = p r i n t s h op s . f indOne (i d) ;

7 J s onOb j e c t r e sponse = new J s onOb j e c t () ;

8

9 i f (pshop != null) {

10 Bind ing I t em newBi = new Bind ing I t em (

11 I tem . RingType . va lueOf (

12 r t i . ge tR ingType ()) ,

13 r t i . g e t I n f L im () ,

14 r t i . getSupLim ()) ;

Fig. 14. Snippet of function handler for the endpoint /printshops/id/pricetable/rings in proxyprint .

The handler calcBudgetForPrintRequest for the endpoint /consumer/budget is never called (and so all the
business logic related to this endpoint remains uncovered by the tests). Such endpoint requires as input a payload
with type multipart/form-data, but the schema wrongly specifies the application/json type. A fuzzer might
be able to handle this case automatically, but it could be considered as a major issue in the schema, that should
be fixed by the users like a fault in the SUT. In other words, there is a big difference between not providing all
information (e.g., missing enum value constraints like in the case of /printshops/{id}/pricetable/rings)
and providing wrong information (i.e., wrong payload type as in the case of /consumer/budget).

A.14 rest-ncs

On this SUT, white-box testing with EvoMaster achieves an average of 93%. An analysis of the non-covered
lines shows that those are not possible to reach, i.e., dead-code. An example is checking twice if a variable is
lower than 0, and return an error if so. In such case, it is impossible to make the second check true. Therefore, as
the maximum achievable coverage is obtained in each single run, this can be considered as a solved problem.
Regarding black-box testing, all but 2 fuzzers achieve more than 50% line coverage, with Schemathesis

achieving 94.1% coverage (computed with JaCoCo), followed by RestCT achieving 85.5% average coverage. On
this API, black-box EvoMaster gives worse results, i.e., 64.4%.
This is a rather interesting phenomenon, which is strongly dependent on some design choices these fuzzers

make. For example, some branches in this API depend on whether 2 or more integer inputs are equal (e.g., in the
case of Triangle Classification). Given two 32-bit integers � and � , there is only a 1/232 chance that � = � . On
average, it will need to sample more than 2 billion values before obtaining � = � . With such constraints, it will
be very difficult for a black-box fuzzer to cover this kind of branches if integer inputs are sampled at random.
However, a fuzzer does not need to sample from the whole spectrum of all possible integers. For example, it could
sample from a restricted range, e.g., [−100, 100]. On the one hand, the shorter the range, the highest chances to
sample � = � . On the other hand, a short range could make impossible to cover branches that require values
outside such range (e.g., 12345). This is a tradeoff that needs to be made.

A.15 rest-news

On this API, it was possible to achieve up to 66.5% line coverage. As for the other SUTs, most of the missing
coverage is due to dead-code, which is impossible to execute. However, there are some branches that should be

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 39

1 public s t a t i c S t r i n g s u b j e c t (S t r i n g d i r e c t o r y , S t r i n g f i l e) {

2 in t r e s u l t = 0 ;

3 S t r i n g [] f i l e p a r t s = null ;

4 in t l a s t p a r t = 0 ;

5 S t r i n g s u f f i x = null ;

6 f i l e p a r t s = f i l e . s p l i t (" . ") ;

7 l a s t p a r t = f i l e p a r t s . l e ng t h − 1 ;

8 i f (l a s t p a r t > 0) {

Fig. 15. Snippet of subject function from the FileSuffix class in the API rest-scs.

1 L i s t <Country > c o u n t r i e s = Coun t rySe rv i c e . g e t I n s t a n c e () . g e tByCodeL i s t (codes) ;

2 i f (! c o u n t r i e s . i sEmpty ()) {

3 return pa r s e dCoun t r i e s (c oun t r i e s , f i e l d s) ;

4 }

5 return ge tResponse (Response . S t a t u s . NOT_FOUND) ;

Fig. 16. Code snippet from the CountryRestV2 class in the API restcountries.

possible to cover, but they were not. These seem all related to the same issue, which is the update of existing
data in the database. Databases allow to define constraints on their data (e.g., a number should be within a
certain range), using SQL commands such as CHECK. White-box EvoMaster can generated test data directly
into SQL databases [33], taking into account all these constraints (as all this info is available in the schema of
the database). If any constraint is not satisfied, then the INSERT SQL commands will fail. The problem here
is that the SUT might define further constraints on such data. In JVM projects, this is commonly done with
javax.validation annotations when using ORM libraries such as Hibernate [9]. But EvoMaster does not seem
to handle this, and generates data that is valid for the database (as all the CHECK operations pass and the INSERTs
do not fail), but not for these further constraints. So, in an update endpoint, invalid (from the point of view of
javax.validation constraints) data can be read from the database, which then the SUT fails to write it back (as
these javax.validation constraints are check on each write operation) when the update endpoint has done its
computations.

A.16 rest-scs

With a line coverage of up to 86.2%, this is an API in which white-box testing is highly effective. There were
two types of branches that were not covered: the ones involving regex checks with Pattern.matches, and the
other involving the dot character ‘‘.’’. In this latter case, it is due to EvoMaster not using such character when
sampling random strings, which make the if statement in Figure 15 impossible to cover. This might sound like
something rather simple to fix. However, as soon as having special characters used in random strings, extra care
needs to be taken into consideration when outputting test cases (e.g., the character ‘$’ has special meaning in
Kotlin, and would need to be escaped when used in strings, which is not the case for Java). Character escaping
rules can be very different based on the context in which they are used in a test case (e.g., inside a URL, inside
a JSON object passed as HTTP body payload or data injected into a SQL database). All these cases have to be
handled, otherwise the tools would end up generating test cases that do not compile.

A.17 restcountries

ACM Trans. Softw. Eng. Methodol.

40 • Man Zhang and Andrea Arcuri

1@POST @Timed @UnitOfWork

2 @Consumes (MediaType . APPLICATION_JSON)

3 public Med i a F i l e c r e a t e (

4 @Auth @ApiParam (hidden = true) Au thResu l t au thRe su l t ,

5 @Context H t t p S e r v l e t R e s pon s e response ,

6 Med i a F i l e med i a F i l e) {

7 doAuth (au thRe su l t , r e sponse , P e rm i s s i on . med i a i t em_c r e a t e) ;

8 try {

9 URI u r i = new URI (med i a F i l e . g e tU r i ()) ;

10 i f (" d a t a " . e qu a l s (u r i . getScheme ())) {

Fig. 17. Snippet of create function from the MediaFileResource class in the API scout-api.

On this API, high coverage is achieved (i.e., 77.1%). Like the other SUTs, there is quite a bit of dead-code due to
getters/setters that are never called and catch blocks for exceptions that might not be possible to throw via test
cases. The class StripeRest presents an interesting case, as it defines the endpoint /contribute, but its info is
not in the schema (and so such endpoint is never called).

Figure 16 shows a code snippet which is repeated several times with small variations in few endpoints. Here,
this API returns a list of countries based on different filtering criteria, like for example the country codes. However,
the response with NOT_FOUND is never returned. The problem is that, even if the HTTP requests provide invalid
inputs (e.g., a country code that does not exist), the countries list is wrongly populated with null values, and so
the list is never empty. This is an interesting bug in the API, which then result in a crash (i.e., a returned 500
status code), as parsedCountries throws an exception. However, until this fault in the API is fixed, all these
statements with NOT_FOUND are technically dead-code that cannot be reached with the tests.
Similarly to rest-ncs, the fuzzing of this API might be considered as a solved problem, at least for its current

faulty version.

A.18 scout-api

On this API, white-box EvoMaster achieves slightly worse results (53.4% vs. 54.7%), although the difference is
not statistically significant (based on 10 runs). Large part of its codebase (more than a third) cannot be executed.
For example, scout-api can start in the background a thread to fetch and analyse some data, independently from
the RESTful endpoints (i.e., the whole module data-batch-jobs). Such thread is deactivated by default, and so
nearly 30% of the whole codebase is not executed. Another non-negligible part of the codebase (around 5%) is
related to authentication using OAuth via Google APIs (scout-api provides different ways to authenticate).

There is a large part of the codebase that could be executed, but it is not due to an if statement at the beginning
of one of the HTTP endpoints. This is shown in Figure 17. Here an incoming JSON payload is unmarshalled into
a MediaFile object, which has a string field that is treated as a URI. Most random strings are a valid URI, as a
URI can just be a name. But, it is extremely unlikely that a random string would represent a URI with a valid
scheme component, and so uri.getScheme() returns null. However, this is a case that likely would be trivial to
solve with taint analysis, e.g., by extending the techniques in [34] to support URI objects. This does not mean
though that much higher coverage would be achieved, it depends on all the remaining code that is executed once
that predicate is satisfied.
Even without code analyses, this type of challenge could also be addressed with black-box techniques. For

example, in this API the string field representing the URI is called uri. An analysis of the names of the fields can
be used to possibly infer their expected type. For example, any field whose name starts or ends with uri could be
treated as an actual URI when data is generated. Also, some types are quite common in RESTful APIs, like strings

ACM Trans. Softw. Eng. Methodol.

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 41

1 r o u t e r . g e t (' / : i d ' , cache (3 0 0) , async (c t x) => {

2 const r e s u l t = awa i t Core . f i n dBy I d (c t x . params . i d) ;

3 i f (! r e s u l t) {

4 c t x . throw (4 0 4) ;

5 }

6 c t x . s t a t u s = 2 0 0 ;

7 c t x . body = r e s u l t ;

8 }) ;

Fig. 18. Snippet of the handle for the GET /cores/:id endpoint in the API spacex-api.

1 r o u t e r . po s t (' / ' , auth , au thz (' co re : c r e a t e ') , async (c t x) => {

2 try {

3 const co re = new Core (c t x . r e q u e s t . body) ;

4 awa i t co r e . save () ;

5 c t x . s t a t u s = 2 0 1 ;

6 } catch (e r r o r) {

7 c t x . throw (4 0 0 , e r r o r . message) ;

8 }

9 }) ;

Fig. 19. Snippet of the handle for the POST /cores endpoint in the API spacex-api.

representing URLs and dates. Instead of sampling strings completely at random, it could make sense to sample
with some probability strings with given types that are commonly used. This might now work in all cases, but it
is something worth to investigate.

A.19 spacex-api

Similarly to realworld-app, in this API there is only a small difference between EvoMaster black-box and
Schemathesis (c8 instrumentation: 84.7% vs. 85.4%), and between grey-box and white-box EvoMaster (Evo-

Master instrumentation without bootstrap coverage: 41.5% vs. 41.5%, but with �̂12 = 0.58). There are two main
issues affecting the coverage results here.
First, this API requires authentication, where each API endpoint requires specific authorization roles to be

able to be executed. For these experiments, a user with the right credentials was created in the database, and
the fuzzers were given the authorization info to send HTTP messages on behalf of this user. The setting up of
this user was done manually, in a script. However, after running the experiments and analyzing the generated
tests, we realized that some authorization roles were missing (e.g., capsule:create). So, few endpoints were
not covered due to misconfigured authentication.

The second main issue is related to the database. Figure 18 shows an example in which a record is search by id.
No test generated by EvoMaster was able to make a call that returned a 200 HTTP status code. For white-box
testing, EvoMaster fails to do this because it is not able to analyze queries on MongoDB databases. Even with
black-box testing, it could be possible to create a new record with a POST, and use its id for a following GET.
Fuzzers can exploit this kind of information to create sequences of HTTP calls where ids are linked. But, this
all depends on how the link is defined. Figure 19 shows the implementation of the POST endpoint to create
such record. EvoMaster has no issue to fully cover the code of such endpoint, and create valid records. Also,
EvoMaster uses different strategies to link endpoints that manipulate the same resources [30, 76]. But those

ACM Trans. Softw. Eng. Methodol.

42 • Man Zhang and Andrea Arcuri

are based on the recorded interactions with the database (not done here for NodeJS and MongoDB), and on
best practices in RESTful API design. For example, it is a recommended practice that POSTs on collections of
resources (e.g., /cores) create a new resource, whose id (chosen on the server, to guarantee it is unique, unless
it is a UUID) is present in the location HTTP header of the response (e.g., location: /cores/42). EvoMaster

can use these location headers to create POST requests followed with the appropriate linked GET. However, on
this API, the POST implementation in Figure 19 does not seem to follow best practices in REST API design. For
example, it does not setup the location header in the response, and neither it returns the generated id (e.g., in
the body payload). However, it could still be possible to test this kind of API by doing the following: create a new
resource with POST /cores, followed by a GET of the whole collection (i.e., GET /cores), and then extract the id
fields from this response to call GET /cores/:id with a valid id. Note: this is assuming that the collection is
empty. If it is not, then the first POST is not even necessary. However, this also assumes that the name of the field
representing the id is the same (or at least very similar) in both the body payload and endpoint path parameter
(so they can be matched).

REFERENCES

[1] [n.d.]. Amazon Gateway API. https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html. Online,

Accessed May 20, 2022.

[2] [n.d.]. APIFuzzer — HTTP API Testing Framework. https://github.com/KissPeter/APIFuzzer.

[3] [n.d.]. ApiTester. https://github.com/opendata-for-all/api-tester. Online, Accessed May 20, 2022.

[4] [n.d.]. bBOXRT. https://git.dei.uc.pt/cnl/bBOXRT.

[5] [n.d.]. C8. https://github.com/bcoe/c8. Online, Accessed May 20, 2022.

[6] [n.d.]. EvoMaster. https://github.com/EMResearch/EvoMaster.

[7] [n.d.]. EvoMaster Benchmark (EMB). https://github.com/EMResearch/EMB. Online, Accessed May 20, 2022.

[8] [n.d.]. Google Drive API. https://developers.google.com/drive/api/v3/about-sdk. Online, Accessed May 20, 2022.

[9] [n.d.]. Hibernate. http://hibernate.org. Online, Accessed May 20, 2022.

[10] [n.d.]. JaCoCo. https://www.jacoco.org/. Online, Accessed May 20, 2022.

[11] [n.d.]. Language-agnostic HTTP API Testing Tool. https://github.com/apiaryio/dredd.

[12] [n.d.]. LinkedIn API. https://docs.microsoft.com/en-us/linkedin/. Online, Accessed May 20, 2022.

[13] [n.d.]. OpenAPI/Swagger. https://swagger.io/.

[14] [n.d.]. Programmable Web. https://www.programmableweb.com/. Online, Accessed May 20, 2022.

[15] [n.d.]. Reddit API. https://www.reddit.com/dev/api. Online, Accessed May 20, 2022.

[16] [n.d.]. RestCT. https://github.com/GIST-NJU/RestCT.

[17] [n.d.]. RESTest. https://github.com/isa-group/RESTest.

[18] [n.d.]. RESTler. https://github.com/microsoft/restler-fuzzer.

[19] [n.d.]. RestTestGen. https://github.com/SeUniVr/RestTestGen.

[20] [n.d.]. Schemathesi - Command Line Interface. https://schemathesis.readthedocs.io/en/stable/cli.html.

[21] [n.d.]. Schemathesis: Property-based testing for API schemas. https://schemathesis.readthedocs.io/.

[22] [n.d.]. Tcases for OpenAPI: From REST-ful to Test-ful. https://github.com/Cornutum/tcases/tree/master/tcases-openapi.

[23] [n.d.]. Twitter API. https://developer.twitter.com/en/docs/twitter-api. Online, Accessed May 20, 2022.

[24] [n.d.]. WireMock. https://wiremock.org/. Online, Accessed May 20, 2022.

[25] Nasser Albunian, Gordon Fraser, and Dirk Sudholt. 2020. Causes and effects of fitness landscapes in unit test generation. In Proceedings

of the 2020 Genetic and Evolutionary Computation Conference. 1204--1212.

[26] A. Arcuri. 2009. Full Theoretical Runtime Analysis of Alternating Variable Method on the Triangle Classification Problem. In International

Symposium on Search Based Software Engineering (SSBSE). 113--121.

[27] A. Arcuri. 2009. Insight Knowledge in Search Based Software Testing. In Genetic and Evolutionary Computation Conference (GECCO).

1649--1656.

[28] Andrea Arcuri. 2017. RESTful API Automated Test Case Generation. In IEEE International Conference on Software Quality, Reliability

and Security (QRS). IEEE, 9--20.

[29] Andrea Arcuri. 2018. EvoMaster: Evolutionary Multi-context Automated System Test Generation. In IEEE International Conference on

Software Testing, Verification and Validation (ICST). IEEE.

[30] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with EvoMaster. ACM Transactions on Software Engineering and

Methodology (TOSEM) 28, 1 (2019), 3.

ACM Trans. Softw. Eng. Methodol.

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://github.com/bcoe/c8
https://github.com/EMResearch/EMB

Open Problems in Fuzzing RESTful APIs: A Comparison of Tools • 43

[31] Andrea Arcuri. 2020. Automated Black-and White-Box Testing of RESTful APIs With EvoMaster. IEEE Software 38, 3 (2020), 72--78.

[32] A. Arcuri and L. Briand. 2014. A Hitchhiker’s Guide to Statistical Tests for Assessing Randomized Algorithms in Software Engineering.

Software Testing, Verification and Reliability (STVR) 24, 3 (2014), 219--250.

[33] Andrea Arcuri and Juan P Galeotti. 2020. Handling SQL databases in automated system test generation. ACM Transactions on Software

Engineering and Methodology (TOSEM) 29, 4 (2020), 1--31.

[34] Andrea Arcuri and Juan P Galeotti. 2021. Enhancing Search-based Testing with Testability Transformations for Existing APIs. ACM

Transactions on Software Engineering and Methodology (TOSEM) 31, 1 (2021), 1--34.

[35] Andrea Arcuri, Juan Pablo Galeotti, Bogdan Marculescu, and Man Zhang. 2021. EvoMaster: A Search-Based System Test Generation

Tool. Journal of Open Source Software 6, 57 (2021), 2153.

[36] Andrea Arcuri, ZhangMan, asmab89, Bogdan, Amid Golmohammadi, Juan Pablo Galeotti, Seran, Alberto Martín López, Agustina

Aldasoro, Annibale Panichella, and Kyle Niemeyer. 2022. EMResearch/EvoMaster:. https://doi.org/10.5281/zenodo.6651631

[37] Andrea Arcuri, ZhangMan, Amid Golmohammadi, and asmab89. 2022. EMResearch/EMB:. https://doi.org/10.5281/zenodo.6106830

[38] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler: Stateful REST API Fuzzing. In ACM/IEEE International

Conference on Software Engineering (ICSE). 748–758.

[39] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking security properties of cloud service rest apis. In IEEE

International Conference on Software Testing, Verification and Validation (ICST). IEEE, 387--397.

[40] Asma Belhadi, Man Zhang, and Andrea Arcuri. 2022. Evolutionary-based Automated Testing for GraphQL APIs. In Genetic and

Evolutionary Computation Conference (GECCO).

[41] Asma Belhadi, Man Zhang, and Andrea Arcuri. 2022. White-Box and Black-Box Fuzzing for GraphQL APIs. https://doi.org/10.48550/

ARXIV.2209.05833

[42] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Reliability of Coverage-Based Fuzzer Benchmarking. In 44th

IEEE/ACM International Conference on Software Engineering, ser. ICSE, Vol. 22.

[43] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. 2018. An empirical evaluation of evolutionary

algorithms for unit test suite generation. Information and Software Technology (IST) 104 (2018), 207--235.

[44] Davide Corradini, Amedeo Zampieri, Michele Pasqua, andMariano Ceccato. 2021. Empirical comparison of black-box test case generation

tools for RESTful APIs. In 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,

226--236.

[45] Davide Corradini, Amedeo Zampieri, Michele Pasqua, Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2022. Automated

black-box testing of nominal and error scenarios in RESTful APIs. Software Testing, Verification and Reliability (2022), e1808.

[46] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Automatic Generation of Test Cases for REST APIs: A

Specification-Based Approach. In 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC). 181--190.

[47] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent REST API Data Fuzzing. In ACM Symposium on the

Foundations of Software Engineering (FSE) (ESEC/FSE 2020). ACM, 725–736.

[48] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential regression testing for REST APIs. In Proceedings of the

29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 312--323.

[49] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2022. Testing RESTful APIs: A Survey. https://doi.org/10.48550/ARXIV.2212.

14604

[50] M. Harman and P. McMinn. 2010. A Theoretical and Empirical Study of Search Based Testing: Local, Global and Hybrid Search. IEEE

Transactions on Software Engineering (TSE) 36, 2 (2010), 226--247.

[51] Zac Hatfield-Dodds and Dmitry Dygalo. 2022. Deriving Semantics-Aware Fuzzers from Web API Schemas. In 2022 IEEE/ACM 44th

International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 345--346.

[52] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of mutation testing. IEEE Transactions on Software

Engineering (TSE) 37, 5 (2011), 649--678.

[53] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST: Property-based Test Generation of OpenAPI Described

RESTful APIs. In IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.

[54] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated Test Generation for REST APIs: No Time to Rest Yet.

https://doi.org/10.48550/ARXIV.2204.08348

[55] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. 2021. A black box tool for robustness testing of REST services. IEEE Access 9

(2021), 24738--24754.

[56] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan Ji, Shiheng Xu, and Minli Bao. 2022. Morest: Model-based

RESTful API Testing with Execution Feedback. In ACM/IEEE International Conference on Software Engineering (ICSE).

[57] David R MacIver, Zac Hatfield-Dodds, et al. 2019. Hypothesis: A new approach to property-based testing. Journal of Open Source

Software 4, 43 (2019), 1891.

[58] Bogdan Marculescu, Man Zhang, and Andrea Arcuri. 2022. On the Faults Found in REST APIs by Automated Test Generation. ACM

Transactions on Software Engineering and Methodology (TOSEM) 31, 3 (2022), 1--43.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.5281/zenodo.6651631
https://doi.org/10.5281/zenodo.6106830
https://doi.org/10.48550/ARXIV.2209.05833
https://doi.org/10.48550/ARXIV.2209.05833
https://doi.org/10.48550/ARXIV.2212.14604
https://doi.org/10.48550/ARXIV.2212.14604
https://doi.org/10.48550/ARXIV.2204.08348

44 • Man Zhang and Andrea Arcuri

[59] Alberto Martin-Lopez, Andrea Arcuri, Sergio Segura, and Antonio Ruiz-Cortés. 2021. Black-Box and White-Box Test Case Generation

for RESTful APIs: Enemies or Allies?. In 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE). IEEE,

231--241.

[60] Alberto Martin-Lopez, Sergio Segura, Carlos Muller, and Antonio Ruiz-Cortés. 2021. Specification and automated analysis of inter-

parameter dependencies in web APIs. IEEE Transactions on Services Computing (2021).

[61] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest: Black-Box Constraint-Based Testing of RESTful Web

APIs. In International Conference on Service-Oriented Computing.

[62] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest: Automated Black-Box Testing of RESTful Web APIs. In

ACM Int. Symposium on Software Testing and Analysis (ISSTA). ACM, 682--685.

[63] A Giuliano Mirabella, Alberto Martin-Lopez, Sergio Segura, Luis Valencia-Cabrera, and Antonio Ruiz-Cortés. 2021. Deep Learning-Based

Prediction of Test Input Validity for RESTful APIs. In 2021 IEEE/ACM Third International Workshop on Deep Learning for Testing and

Testing for Deep Learning (DeepTest). IEEE, 9--16.

[64] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. 2018. An analysis of public REST web service APIs. IEEE Transactions on

Services Computing (2018).

[65] Sam Newman. 2015. Building Microservices. " O’Reilly Media, Inc.".

[66] Juan Carlos Alonso Valenzuela, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and Antonio Ruiz-Cortes. 2022. ARTE:

Automated Generation of Realistic Test Inputs for Web APIs. IEEE Transactions on Software Engineering (2022).

[67] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RESTTESTGEN: Automated Black-Box Testing of RESTful APIs. In

IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.

[68] Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial Testing of RESTful APIs. In ACM/IEEE International

Conference on Software Engineering (ICSE).

[69] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. 2013. Characteristic studies of loop problems for structural test generation via

symbolic execution. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 246--256.

[70] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. 2011. Precise identification of problems for structural test generation.

In Proceeding of the 33rd International Conference on Software Engineering (ICSE ’11). ACM, New York, NY, USA, 611--620.

[71] Man Zhang and Andrea Arcuri. 2021. Adaptive Hypermutation for Search-Based System Test Generation: A Study on REST APIs with

EvoMaster. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 1 (2021).

[72] Man Zhang and Andrea Arcuri. 2022. Open Problems in Fuzzing RESTful APIs: A Comparison of Tools. arXiv preprint arXiv:2205.05325

(2022).

[73] Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. 2022. White-box Fuzzing RPC-based APIs with EvoMaster: An

Industrial Case Study. https://doi.org/10.48550/ARXIV.2208.12743

[74] Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. 2023. White-Box Fuzzing RPC-Based APIs with EvoMaster: An

Industrial Case Study. ACM Transactions on Software Engineering and Methodology (TOSEM) (feb 2023). https://doi.org/10.1145/3585009

Just Accepted.

[75] Man Zhang, Asma Belhadi, and Andrea Arcuri. 2022. JavaScript Instrumentation for Search-Based Software Testing: A Study with

RESTful APIs. In IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.

[76] Man Zhang, Bogdan Marculescu, and Andrea Arcuri. 2021. Resource and dependency based test case generation for RESTful Web

services. Empirical Software Engineering 26, 4 (2021), 1--61.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.48550/ARXIV.2208.12743
https://doi.org/10.1145/3585009

	Abstract
	1 Introduction
	2 Background: Used Tools
	3 Related Work
	4 Empirical Analysis
	4.1 Case Study
	4.2 Black-Box Testing Experiment Settings: Code Coverage
	4.3 RQ1: Black-Box Testing Experiments
	4.4 RQ2: Time Budget
	4.5 RQ3: Black-box Fault Detection
	4.6 RQ4: White-Box Testing Experiments
	4.7 RQ5: Open Problems

	5 Threats To Validity
	6 Conclusions
	A Source-Code Analysis
	A.1 catwatch
	A.2 cwa-verification
	A.3 cyclotron
	A.4 disease-sh-api
	A.5 features-service
	A.6 gestaohospital-rest
	A.7 ind0
	A.8 js-rest-ncs
	A.9 js-rest-scs
	A.10 languagetool
	A.11 ocvn-rest
	A.12 realworld-app
	A.13 proxyprint
	A.14 rest-ncs
	A.15 rest-news
	A.16 rest-scs
	A.17 restcountries
	A.18 scout-api
	A.19 spacex-api

	References

