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Abstract

Biology is data-rich, and it is equally rich in concepts and hypotheses. Part of
trying to understand biological processes and systems is therefore to confront our ideas
and hypotheses with data using statistical methods to determine the extent to which
our hypotheses agree with reality. But doing so in a systematic way is becoming in-
creasingly challenging as our hypotheses become more detailed, and our data becomes
more complex. Mathematical methods are therefore gaining in importance across the
life- and biomedical sciences. Mathematical models allow us to test our understanding,
make testable predictions about future behaviour, and gain insights into how we can
control the behaviour of biological systems. It has been argued that mathematical
methods can be of great benefit to biologists to make sense of data. But mathematics
and mathematicians are set to benefit equally from considering the often bewildering
complexity inherent to living systems. Here we present a small selection of open prob-
lems and challenges in mathematical biology. We have chosen these open problems
because they are of both biological and mathematical interest.

1 Introduction

In 1202 Leonardo Pisano (aka Fibonacci) studied the population dynamics of rabbits in
his book Liber Abaci. By some, admittedly glib, measure mathematical biology could be
said to predate theoretical physics — which also started in Pisa with the work of Galileo
Galilei — by some 400 years. Arguably this head start has been lost and for the past
century physics and mathematics have become deeply entwined. Biology, by contrast, was
often dominated by observational or reductionist approaches and mathematical methods
have for a long time only played a negligible role. Biologists have, however, been quick to
adopt quantitative methods and tools as soon as there was a clear use for them. Biological
problems and analyses have, for example, been important drivers of statistical methodology
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development, and statistics has become a main feature — often not well liked — of biology
undergraduate and graduate education. Mathematics, less so.

The reasons why mathematics is a useful tool for many (not all) biological questions
have been superbly laid out before [1, 2, 3]. The principal reason, arguably, is that through
the lens of mathematics we can make accessible the structures and mechanisms underlying
heterogeneous and often disparate data and observations. If, for example, we can connect
two observations or measurements in one model (say the level of growth factor in a Petri
dish or well containing cells and the down-stream change in phosphorylation of nuclear
ERK [4, 5]) we have a non-trivial mechanistic hypothesis from which we initiate further
investigations. The analogy between mathematics and a microscope [2] in making the
unobserved or unobservable visible holds surprisingly often.

Our focus here is therefore different: we are interested in what are the fundamental
challenges for mathematical biology right now. Any such discussion will be subjective and
incomplete. In our case it is clearly also influenced by our respective backgrounds (pure
mathematics and theoretical/statistical physics), our past and current research interests
(which are pretty broad, but mostly concerned with cellular processes and biophysics),
and the conversations that we have had with researchers over the years. One key person
was Edmund Crampin, especially for MPHS. The selection of material here cannot claim
completeness, but we do think that all the problems touched upon here would have been
of interest to Edmund. We hope that this will also be of wider interest.

Our discussion below is broken into four parts: (i) A brief discussion as to the dif-
ferent demands on modelling and the modeller in biology and physics; (ii) A selection
of open problems in mathematical biology. These questions were partly crowd-sourced,
and we attempt to put them into the wider context of mathematical modelling in biology
and the biomedical sciences. This part contains open problems that are concerned with
making mathematical modelling more useful and relevant to biological problems, and open
problems where new mathematics will be essential to find answers to long-standing open
questions at the core of biological research. We then (iii) provide an, arguably opinion-
ated, overview of the opportunities that exist for ideas and concepts primarily from pure
mathematics, but also theoretical physics to enrich the toolbox of mathematical biologists
and study aspects that are particular to living systems.

2 Why is Modelling Biology so Difficult?

The question really refers to a comparison with physics (and parts of chemistry): why is
modelling biology apparently so much more difficult than modelling physics? There are
three aspects to our attempt at an answer: (i) physicists can often rely on first principles
to model systems of interest; (ii) in biology we often have to start from heuristic models;
and finally, (iii) differences in education between physics and biology.

Our attempts at finding an answer to this question should start by pointing out that
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not all of physics is easy to model. For many physical problems, however, it is possible to
write down the structure of a model, often starting from first principles [6, 7]. While it took
major intellectual feats to write down, for example, Kepler’s laws, Newton’s laws, Maxwell’s
equations, Einstein’s theories of relativity, and the laws of quantum mechanics and quantum
field theory, the structure of a model is typically derivable from first principles. Noether’s
Theorem [8] states that every conservation law has an associated symmetry: for example,
conservation of energy is related to invariance with respect to time. Invariance with respect
to position, or translational invariance, implies the conservation of momentum. In both a
real and an abstract sense, Noether’s theorem underlies much of what is often perceived as
the beauty of physics; and being able to rely on it (the Ward–Takahashi identities generalise
the classical picture into the domain of quantum field theory) makes the life of the working
physicist much easier.

For dissipative systems, that is for systems where energy is consumed, Noether’s theo-
rem does not apply in its simple form. Biology is replete with systems that consume and
turn over energy, a fundamental aspect of life. This fact alone suffices to account for the
profound difficulties that arise in finding mathematical descriptions of biological systems
and processes.

In practical terms the main difference between modelling physics and modelling biology
is that the mathematical form of the model is known in most physical cases. It may be
difficult to solve the many particle Dirac Equation, or the Navier–Stokes equation in 3D for
realistic viscosity, but the form or type of equations is rarely uncertain. If it is, however, for
example systems with broken symmetry [9], then it is typically of utmost physical interest
to identify and impose the correct form of the model.

In biology, by contrast, we have to start from a different level of abstraction, and the
best model structure is rarely if ever known with any degree of certainty. We can make
pragmatic assumptions to develop some simplified models, and the canonical model of this
approach is clearly the Lotka–Volterra model

dx

dt
= αx− βxy,

dy

dt
= γxy − δy

where x and y denote a prey and a predator species respectively[1]. The rate parameters,
α, β, γ, and δ represent, in turn, the prey growth rate, the decline in the prey population
due to predation, the growth of the predator population, and the reduction in the predator
population due to predator death. This model has been successful in explaining many
aspects of population biology and ecology. But it is highly abstracted and idealised, and
fundamental features of reproduction, predation, and so forth are purposefully ignored in
this simple model. But this simple Lotka–Volterra model can form the basis for more
complicated descriptions, including spatially structured populations, overlapping niches,
and multiple trophic levels. We can use these simple models to obtain qualitative insights
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into fundamental aspects of biological processes and phenomena, including bet-hedging
and the evolution of virulence. The Lotka–Volterra model is sufficiently easy to allow
mathematical analysis, and simple enough to be accessible to people with little direct
modelling experience. Progress in physics has often relied on a small canon of models
that are equally relevant and accessible to theoreticians and experimentalists: the single
harmonic oscillator, Ising Model, particle in a box, H2 molecule, etc. Biology needs more
of these [10].

Finally, the training tradition in physics is different: the typical physics curriculum is
heavy on mathematics and mathematical methods (with considerable differences between
institutions and even nations) that prepare students for theoretical physics. Over the past
generation the mathematics curricula of physics degrees appear to have changed compar-
atively little in substance, but all physicists are exposed to the mathematical techniques
that are necessary to make progress in research. The situation in biology is very different:
life-scientists often receive training in qualitative and statistical methods required to make
sense of observational and experimental data, whereas there is generally no consideration
of modelling the behaviour of biological systems. The mathematical tools required by
mathematical biology, meanwhile, are still proliferating; the diversity of problems consid-
ered and the complexity of data being generated pose considerable technical and conceptual
challenges which require a broad mathematical tool-set. We pick up this point in Section 4.

3 Open Problems in Mathematical Biology: A Small Selec-
tion.

3.1 A Note on Notation

We are considering models, f(x; θ), describing the state x ∈ Ω ⊆ RN of a biological system;
the states x are confined to the state space, Ω, of the system. Here θ ∈ Θ ⊆ Rd is the
d-dimensional vector of model parameters (e.g. reaction rate parameters) in the parameter
space Θ. We denote by xi and θi the ith components of the state and parameter vectors,
respectively.

When f(x; θ) represents a dynamical system, for example an ordinary differential equa-
tion dx/dt = f(x; θ), we use x0 ∈ Ω to denote the initial conditions. Alternative models
will be represented by subscripts, j, therefore fj(x; θ).

We represent any experimental observations or data by D = {d1, d2, . . . , dm}; here di is
a vector with number of coordinates possibly less than N to account for observations that
do not capture the whole state space, therefore where dim(di) < dim(x).

3.2 Inverse Problems and Parameter Sensitivity

In many situations we have a candidate model, f(x; θ), or at least its structure. What we
then require are the parameters, θ, and on occasion initial conditions, x0 = x(0). Choice
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of parameters is crucial if we want to compare model output with observed behaviour or
data D. Often parameters are chosen from the literature, but this approach is fraught with
potential problems [11]. Literature information can be imprecise about the conditions under
which parameters were determined; if, for example, ambient pH is not comparable then
the reaction rate may differ from the conditions under consideration. Combining reaction
rate parameters from different sources is problematic if the corresponding experimental
conditions were not identical or at least comparable. So in many instances we will have to
infer parameters from data [12, 13, 14, 15, 16].

We typically have three options to delimit the range for the parameter θ. We can
identify the value of θ that produces model output that is most similar to the observed
data. The likelihood,

L(θ) = Pr(D|θ), (1)

is the probability of the data for a given parameter θ. The maximum-likelihood estimate
(MLE), θ̂ = argmaxθ(L(θ)), corresponds to the parameter that has the highest probability
of producing the observed data, and it can be obtained through optimisation. We usu-
ally use optimisation to estimate θ̂. In addition to this point-estimate we can determine
confidence intervals for the value of θ.

In a Bayesian framework we determine the posterior probability of a parameter,

Pr(θ|D) =
Pr(D|θ)π(θ)

Pr(D)
, (2)

where the prior, π(θ), represents our knowledge (or assumptions) about the parameter value
prior to looking at any data. The posterior is thus determined from both prior information
and the available data, D, via the likelihood, Pr(D|θ). The probability distribution over
parameters rather than a single estimate tends to be the focus of Bayesian inference. Both
frequentist and Bayesian inference are vast areas of research in their own right.

What really drives inference, irrespective of the framework, is the information content
of the data (assuming that the model structure, that is the functional form of f(x; θ),
is sufficiently close to the truth). One measure of this is how much varying θ changes
the probability of observing the data, therefore the likelihood or the posterior probability.
Information geometry arguably provides the most rigorous way of assessing certainty in an
estimate, especially the so called Fisher information [17]. Under mild regularity conditions
the Fisher information matrix is given by

[I(θ)]i,j = −E
[

∂2

∂θi∂θj
logL(θ) |θ

]
. (3)

The curvature of the the log-likelihood, or posterior function (or the curvature of a differ-
ent cost function), is an appropriate measure of certainty for uni-modal likelihoods. For
multi-modal likelihoods/posteriors ad-hoc measures have been proposed, but no easy or
universally satisfactory solution exists [18, 19].
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What we do find in many practical applications is that for any given dataset and model
we can only infer some of the parameters (more generally some combinations of param-
eters); the rest are simply not inferable with any precision, for example their marginal
posteriors do not differ substantially from the posteriors. Identifying which parameter
combinations can be learned [20] from prior knowledge plus data will become a crucial
part of parameterising large models, including whole cell models [21]. In the short term
sensitivity and robustness analysis — therefore varying parameters and assessing the re-
sulting differences in model output — can be used to assess which parameters can be
inferred from data [22].

3.3 Model Selection

Parameter estimation is already a formidable problem. But generally, as we have shown
above and will argue further below, the structure and nature of the correct model are un-
known. Choosing which model Mi from a set of models,M = {M1, . . . ,MN}, does the best
job of explaining data has therefore become a central focus in some areas of mathematical
biology. A host of methods are available to enforce something akin to Ockham’s razor:
generating a model that is as complex as required but not more so. These methods have
been reviewed extensively elsewhere [23]. When parameters can be estimated from the
data using likelihood or Bayesian methods, information criteria such as the Akaike infor-
mation criterion (AIC) and the Bayesian information criterion (BIC) are popular because
they explicitly penalise against models with more parameters:

AICi = −2 logL(θi;Mi) + 2ki, (4)

BICi = −2 logL(θi;Mi) + ki log n, (5)

where ki is the number of parameters of model i and n is the size of the dataset. They are
both, however, approximations (and in the case of the AIC biased towards overly complex
models as the amount of data increases) to the marginal likelihood of a model,

Pr(D|Mi) =

∫
Ω

Pr(θ|Mi)Pr(D|θ,Mi)dθ, (6)

and the model posterior probability,

Pr(Mi|D) =
Pr(D|Mi)π(Mi)

Pr(D)
. (7)

Here the number of model parameters is implicitly penalised.
Model selection is challenging because of the high-dimensional integration problem in

Equation (6). Any advances in constraining and guiding parameter inference — such as
by identifying subspaces of the full parameter space Θ containing parameters that do not
affect the model fit to data — will potentially help, but these subspaces will differ between
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alternative models [24]. Specifying the prior probability of models is notoriously difficult:
in principle there is no clear a priori bound on the number of models, which could be (and
arguably ought to be) infinite. This is a fundamental problem of, and a recurring theme
in, Bayesian model selection.

As a general rule, problems encountered in parameter estimation tend to be exacerbated
in the context of model selection. Computational demands obviously increase with the
number of models. Perhaps not so obvious is that many computational schemes that
apply straightforwardly in the context of parameter estimation — such as Markov Chain
Monte Carlo sampling [25], or approximate Bayesian computation (ABC) [26, 27] — require
significant modification and adaptation for model selection.

As in the case of parameter estimation, appropriate robustness analysis can help. This
often involves extending analysis over many related models [28, 29]. In topological sensitiv-
ity analysis [30], for example, the structure of the model is perturbed by adding, deleting,
or otherwise changing one or more terms in the equations. That is, we go from candidate
model M to another model M ′. We then fit model M ′, or in reality many alternative
models with perturbed structures, to the data to see if alternative models can explain the
data. The results of such an analysis can often be sobering, with many alternative model
structures being virtually indistinguishable. This level of topological robustness could im-
ply two very different things: (i) the observed behaviour is robust to variation in the model
structure; or (ii) the large number of models may simply reflect that the data are not
sufficient to discriminate between models.

3.4 Design Principles

Even for mathematical modellers in biology the model should be of subsidiary interest
compared with the biological phenomena under investigation. Model comparison methods,
including model selection, multi-model averaging, and topological sensitivity analysis can
be used to group models that provide comparable descriptions of a certain type of biological
behaviour, henceforth denoted by Q. For biological systems, instances of a behaviour Q
could be oscillations, switch-like characteristics [31], signal filtering [32], robust perfect
adaptation [33, 34], or Turing pattern behaviour [35, 36].

For some types of behaviour, Q, it is possible to derive precise mathematical statements
that express either the necessary or sufficient conditions (ideally both) for a system to
exhibit Q. For example, we know that: (i) multi-stability depends on the presence of
positive feedback [37]; (ii) for robust perfect adaptation (RPA), algebraic conditions have
been derived that establish the existence of RPA [34]; (iii) a Turing instability is required
for spontaneous pattern formation in reaction diffusion systems [35]. But generally we still
have to validate whether a given model M exhibits behaviour Q or not. Further, for many
behaviours Q we may not even have easy criteria to consider.

Given a model universe, M, we can use simulations to identify a subset, M̃ ⊆ M, of
models that exhibit a particular behaviour Q. From the subset M̃ we may be able to distill
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the design principles using a comparative analysis of the models M ∈ M̃. This process,
however, is not without difficulties: structural properties, of for example the reaction
network, do not always suffice to guarantee the behaviour Q; boundary conditions and
parameter regimes shape the model output, dynamics, and behaviour, so must also be
considered within the comparison methodology. Visual inspection is prohibitive, unreliable,
and unrigorous.

The necessity for more flexible, universal, and automatable methodologies to compare
models is evident. With this objective in mind, employing simplicial complexes (which are
a generalisation of combinatorial graphs) has allowed us to develop flexible representations
of both quantitative and qualitative models that are described with any formalism [38, 39].
Comparison of the simplicial complexes, by our notions of distance or equivalence, provides
a meaningful conceptual comparison for the corresponding models. Our model comparison
methodology allows for clustering of models according to flexible conceptual considerations,
which can lead to the discovery of novel design principles for biological systems.

3.5 Model Development

When we cannot rely on first principles for model development we have to use heuristics
or intuition to construct models. As we have shown above, this can work but is in no
way guaranteed. Considering large model universes,M, and model selection or topological
sensitivity analysis offers a potential solution. But every model M ∈ M still has to be
written down and translated into code to be executed by the computer. When this has to
happen for many models, or for very large models, the potential for errors is considerable. If
basic properties of models (number and types of interactions, structural properties, kinetics,
and so forth) can be specified it is often possible to construct these models automatically, for
example by exhaustive enumeration. Metaprogramming provides particularly elegant ways
of automatically and on the fly developing and analysing mathematical model structures
[40]. In metaprogramming, software is considered as part of the data and can therefore be
manipulated during run-time and on the fly.

If we can guide the way in which software ‘writes and rewrites itself’, for example
by combining it with model selection or robustness analysis, we could take steps towards
developing larger and larger, including whole cell, models. In this framework we would
start from a model seed, M (0), and propose a new model according to

M (i) G(M(i))−−−−−→M (i+1), (8)

where G(M (i)) is used to propose an update to the model that results in a new model
M (i+1); this could, for example, be a stochastic context-free grammar.

In addition to being, we would argue, less prone to errors than manual curation, this
would also facilitate reproducible model development. We already have the ability to
share models between groups using file exchange formats [41, 42]. But SBML and CellML
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model specifications do not allow us to deduce how and on what basis certain modelling
choices were made; even reading the original publications rarely suffices. If models are
created algorithmically then the choices that go into a model-development pipeline can be
summarised and communicated efficiently. The development of the model thus becomes
reproducible if the updating mechanism and the initial model, M (0), are known.

The procedure in Equation (8) can be interpreted as constituting a type of random
walk through model space. The process needs to be guided by model selection after every
iteration of Equation (8), or every few iterations. The statistical challenges are consider-
able: (i) conventional parameter estimation at each step would quickly become prohibitive;
and (ii) the dimension of the model space can change at each step which makes model se-
lection — the statistical comparison of successive models, M (i) and M (i+1) — challenging.
Techniques such as reversible jump Markov chain Monte Carlo are required to construct
appropriate samplers that can explore varying dimensional spaces.

3.6 Multiscale, Hierarchical, and Spatio-Temporal Models

Most biological problems intrinsically span scales: from molecules to cells; from cells to
tissues and whole organisms; from species to ecosystems; from genetic variants to popu-
lations. Dynamics at one scale have repercussions at other scales, both higher and lower.
Sometimes we can only observe data at a higher level and have to draw inferences at the
lower level: molecular dynamics drive cell-fate decisions; cellular processes lead to tissue
formation; within-host dynamics drive population-level epidemics. The literature in this
field is enormous and rapidly growing; we therefore limit the discussion in this section to
two aspects: (i) mathematical and statistical challenges related to development and analy-
sis of multiscale models; and (ii) a brief outline of bond graphs as a flexible framework for
thermodynamically correct models.

The joint consideration of biological processes across scales opens up new possibilities
to capture complex processes. Often we can take a pragmatic approach and use coarse
descriptions of the lower-scale dynamics to explore the resulting behaviour at a higher
scale. For example, we can use simplified cellular dynamics to model the formation of
patterns in tissues. In this manner, agent-based models, for example, allow us to test
our hypotheses about intra-cellular dynamics by comparisons with the behaviour observed
at the tissue level. The critical evaluation of agreement between multiscale models and
biological reality requires careful consideration: just like for models at the same scale there
may be many alternative model realisations that give rise to the same behaviour. Testing
the sensitivity to model details, a multiscale modelling equivalent of topological sensitivity
analysis, does not seem to be widely used. Agent-based models can be computationally
prohibitively expensive — this is already a problem for parameter estimation for agent-
based models. Here there is room for the development of emulation methods that replace
expensive simulation by statistical models.

One of the challenges of multi-scale and hierarchical models is to describe the interfaces
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between levels or modules correctly; here thermodynamics imposes tight constrains [43]
that are generally not incorporated in mathematical biology. Bond graphs have been
conceived with that in mind [44]; they are also an area to which Edmund Crampin made
major contributions [45, 46, 47, 48, 49, 50, 51].

In the bond graph formalism, energy and energy flow are tracked explicitly to ensure
that reactions are commensurate with the laws of thermodynamics. This has two advan-
tages: (i) resulting models incorporate stoichiometry, conservation of energy, and molecule
numbers (mass) from the outset; (ii) thermodynamic constraints lead to models that are
automatically modular, like real biological systems. Therefore bond graphs offer a rigorous
and well defined framework to develop biophysically and thermodynamically consistent
models of molecular processes. Here we will build on this work and extend it to develop
whole cell models.

The critical point in model development is to link up sub-models of, for example,
gene regulation, metabolism, and the cell cycle. This modularity turns out to be a natural
consequence when thermodynamic conservation laws are applied to the component models.
Furthermore, the bond graph formalism provides a straightforward pathway for modelling
processes at different levels of complexity, according to available knowledge and data. It can
be combined with both multi-physics and multiscale approaches to aid model construction.
Here multi-physics refers to models that can capture different physical processes — such
as heat transfer, dynamics of biochemical reactions over space and time, and transport
phenomena inside the cells as well as between the cell and the extracellular environment
— in a consistent manner. Bond graphs allow for this, and therefore provide a natural
framework to consider situations where cell mechanics, electrophysiology, and metabolic
processes need to be considered jointly.

3.7 Stochastic Nonlinear Dynamics

The theories of stochastic processes and dynamical systems have developed largely indepen-
dently and in parallel. Many investigations in mathematical biology have also considered
deterministic dynamics with scant reference to stochasticity. Classical work by Wadding-
ton, for example, does not consider noise and random dynamics, with the exception of
fluctuating environments. Many important processes in ecology, population biology, epi-
demiology, cell and developmental biology, and physiology, have been studied with great
success using purely deterministic descriptions. Stability analysis and bifurcation theory
can give us qualitative, even global qualitative, insights into the complex dynamics under-
lying ecological dynamics or cell cycle regulation.

Often the average of a stochastic process can be described adequately using determin-
istic models. Diffusion and reaction-diffusion systems are good examples for which the
underlying stochastic dynamics are sufficiently simple and deterministic partial differential
equations can model the system sufficiently: solutions to the diffusion equation have been
used, for example, to describe ecological migration, tumour growth, and biological pattern
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formation.
In population and evolutionary genetics, by contrast, stochasticity — random sampling

of alleles/individuals — has generally provided the accepted null model. The neutral model
of evolution, for example, assumes that most genetic variation has no effect on fitness, the
expected number of offspring. Historically, the development of statistics, probability theory,
and population genetics are tightly linked. But in ecology and cell biology, for example,
stochastic analyses have sometimes been conducted as ad hoc additions to deterministic
analyses.

In many biological problems chance plays an important role, as do nonlinearity and
feedback. The analysis of these systems is fraught with challenges. For illustration let us
consider stochastic differential equations. Because random processes are not differentiable,
we write this in the form,

dX = f(X; θ)dt+ g(X; η)dWt, (9)

where the first term, f(X; θ), captures the deterministic dynamics and the second term,
g(X; η), the stochastic contributions to the dynamics; dWt denotes the Wiener process in-
crement; and θ and η are the parameters of deterministic and noisy dynamics, respectively.
For most biological systems, especially biochemical reaction systems, f(X; θ) and g(X; η)
are not independent but related. This relationship can be derived from the microscopic
dynamics; frequently, however, g(X; η) is chosen for convenience alone, and then typically
in the form of white noise, therefore g(X; η) = σ2 = constant; this type of noise, which is
independent of the state variable X is often referred to as “additive noise”, in contrast to
noise that depends explicitly on the state, which we refer to as “multiplicative noise”.

The extent to which qualitative features of the deterministic dynamics affect the be-
haviour of a model once noise enters the equations requires careful consideration and de-
pends a lot on the type and form of the noise function, g(X; η). For example, the fact
that the deterministic system is bi-stable in no way guarantees that the corresponding
stochastic system has a bi-modal distribution over state space. This lack of conservation
of qualitative features of dynamical systems — including number and nature of stationary
states, existence of bifurcations, etc, — as noise is introduced, or more precisely our inabil-
ity to predict a priori if qualitative features are conserved upon the introduction of noise,
is becoming a limiting factor in many analyses. In the 1970, for example, René Thom and
colleagues introduced catastrophe theory[52], which describes the types of sudden change
(catastrophes) that can be encountered in dynamical systems. This found applications in
population and developmental biology, but fell quickly out of favour [53]. The past two
years have experienced renewed interest in catastrophe theory[54, 55, 56] and stochastic
dynamics, if accounted for correctly, can change the qualitative behaviour [57].

In short, we do not understand anywhere near enough how to model, analyse, and
understand complex dynamical systems that are subject to stochastic effects. Conceptually
there are many problems that need to be considered: for example, we would really like to
understand how the effects of noise are mitigated or attenuated in order to give rise to highly
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stable and predictive phenotypes. Computationally, there are also a host of important and
worthwhile problems to consider. Simulating stochastic dynamics is challenging and costly.
Powerful approximations to exact simulation methods exist, and continue to proliferate
[58], but ultimately we lack reliable approximations that continue to work when dynamics
become nonlinear.

3.8 Natural Selection

Evolution provides the organising principle for the life sciences. Dobzhansky’s statement
“Nothing in biology makes sense except in the light of evolution” has become a rallying
cry for biologists. The more recent version by Michael Lynch [59], “Nothing in evolution
makes sense except in light of population genetics”, makes this more precise as genetic
change and selection on new variants occurs at the population level. Where, when and
how selection operates has been at the core of evolutionary analyses and discussions [60].
Here, as in the previous section, there is a tension between deterministic and stochastic
drivers, which need to be considered jointly to understand. The deterministic dynamics
reflect the effects of natural selection, and the stochastic dynamics are due to the inherent
randomness in the demographic and genealogical dynamics [61].

Probabilistic arguments have been dominant in the population genetics literature [61,
62]: random sampling of gametes appears to be remarkably effective at describing many real
population genetic diversity patterns. Even the neutral model, which assumes that most
genetic variants are not subject to natural selection (or, in its modified form, that most
genetic variation is neutral or mildly deleterious), has underpinned the bulk of population
genetic analysis. Neutrality makes the problem of studying evolutionary processes and
data much easier. Most importantly, neutrality is a powerful null model against which we
can test our hypotheses on experimental data.

In population dynamics, deterministic approaches have been used to study, for example,
pathogen evolution and early pre-biotic evolutionary processes. One argument that has
been put forward is that for sufficiently large population sizes the random evolutionary
(demographic sampling) effects become less important. The effects of finite population size
have also been largely ignored in game theoretic approaches to evolution.

The discussion of the previous section is, of course, relevant here as well. The tension
between, and combined effects of, deterministic and stochastic dynamics are clearly impor-
tant in understanding evolutionary dynamics. Simple models are useful, but not always
enough [62]; as evolutionary arguments continue to increase in importance in very applied
and data-rich areas, such as oncology and host-pathogen evolution, there is a need for both
nuance and increased precision. In cancer biology the evolutionary characteristics and the
disease aetiology have been shown to be tightly linked [63, 64, 65, 66, 67]. These studies
have shown how complicated evolutionary processes are, and there are some salient lessons
for evolutionary analysis more generally. Other evidence for the diverse molecular factors
affecting evolution come from long term evolution experiments [68, 69, 70, 71, 72].
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The upshot of the wealth of data, and the complicated interplay between deterministic
and stochastic effects in driving evolution, is that we need more sophisticated maps from
genotype to phenotype, especially if the view of omnigenic inheritance persists [73, 74, 75].
Having better understanding of how genes, their expression, and their interactions affect
phenotypes may help in resolving long standing questions in both fundamental biology,
but also in understanding the causes and mechanisms of complex diseases. Developing
mathematical models for whole cells, and linking these in multi-scale models of organisms,
is likely to form an important step in that direction.

3.9 Hybrid and Data Driven Modelling

Uncertainty about the correct model structure has been a common theme to many of
the instances touched upon above. We often lack the knowledge to construct meaning-
ful mathematical models; model selection can help to rule out some models. Automated
model development and multi-scale models are opening up new opportunities to increase
our universe of mathematical models for biological systems. Hybrid models [76, 77], see
Figure 1, offer another route towards building better models. These models contain mech-

Figure 1: (A) We are used to modelling biological systems as, for example, systems of
coupled ordinary differential equations. (B) Hybrid models combine statistical models
with mechanistic models, and allow investigation of complex systems where only part of
the mechanistic relationship is sufficiently well developed to be modelled mechanistcially.
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anistic elements that interface with purely data driven, statistical, or black-box models, to
combine the benefits of both approaches. Purely data driven statistical models can provide
a baseline against which we compare — using for example information-theoretic measures
such as the Kullback–Leibler divergence [78] — mechanistic and hybrid models. Further,
we can develop data driven (or deductive) modelling approaches as potential emulators
to feed back into, for example, the statistical inference approaches where computationally
costly simulation is replaced by statistical (“black box”) models [79].

Flexibility in choosing between mechanistic and data-driven modelling approaches, and
the ability to combine them can open up powerful new ways to study, explain, and predict
the behaviour of biological systems. Statistical “black-box” and machine learning mod-
els, by themselves, provide little direct insight into the underlying causal mechanisms that
link genetic components to organismic behaviour. Analysing the resulting models with
“white box” approaches including saliency maps or input-masked gradients provide im-
portant mechanistic, testable, and predictive insights into the critical regulatory regions
and their interactions. Knowing the statistical dependencies should ultimately serve as a
guide towards generating causal hypotheses for mechanistic/mathematical/functional re-
lationships. We can use hybrid models to test the robustness of learned design principles:
the mechanistic model embeds the inferred design principle, and the statistical model the
physiological or environmental context (akin to, for example, extrinsic noise in gene ex-
pression).

The concept of neural differential equations [80, 81], where the right-hand side of the
differential equation, dx/dt = f(x; θ) is replaced by a neural network,

dx

dt
= NN, (10)

holds the potential to develop new forms of hybrid models, all from within the same
dynamical systems perspective.

Both mechanistic modelling and data-driven/machine learning modelling are well de-
veloped in their own right. Hybrid modelling, by contrast, is still in its infancy and the
particular combination of hypothesis-driven and data-driven modelling required to develop
useful models is only beginning to be studied. There are, however, exciting opportunities
to bring methods from, for example, control engineering [82, 83, 84] to bear on hybrid
modelling attempts. The use of a hybrid-Ansatz in modelling may also resolve some of the
outstanding issues in parameter and model identifiability [13, 85], where the non-identifiable
parts could, or should, perhaps be modelled using a machine learning approach.

4 A New Mathematical Biology

In this section we change pace and consider some broad mathematical and theoretical
ideas for new approaches to mathematical biology. While this discussion is largely from
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the perspective of pure mathematics, it provides a reflective analysis of the possibilities for
the role of mathematics in biology.

4.1 Overview

Mathematical biology has predominantly avoided the explicit consideration of life. This
paradoxical situation reflects a fundamental deficiency not only of mathematical biology
but also, though perhaps to a lesser extent, of theoretical and experimental biology. Of
primary concern here is the absence of a general theoretical definition of life and consequent
realisation within an appropriate mathematical framework. While progress has been made,
including the relational biology by theoretical physicist Nicolas Rashevsky [86] and theo-
retical biologist Robert Rosen [87], the hypercycle by biophysical chemist Manfred Eigen
[88], and the chemoton by theoretical biologist Tibor Gánti [89], such a key concern is
inexplicably the province of only a select few.

Definitions serve to identify and provide the foundation for explanation and knowledge.
That a general definition of life is wanting is attendant to the complexity of the emergent
phenomenon of life, though arguably more so to the methodological reductionism that
has dominated scientific practice, particularly within biology and related fields, in recent
decades. Reductionism has been preeminent in experimental biology, and consequently
biologists collect enormous quantities of experimental data often without an integrated
perspective of the living organism, thus without progression towards knowledge of the
phenomenon of life [90].

While the ultimate ambition of biology is a general theory of life, this remains an
open problem: even general concepts and principles are absent [91]. Mathematical biology,
along with theoretical biology, can assume a fundamental role in developing a theory of
life. Much of current mathematical biology, however, is subject to the same shortcomings
as experimental biology. To make progress mathematical biology may need to consider
three main aspects, namely emergent behaviour, mathematical maturity, and unification,
which together form a basis for a more functional and effective approach to the study of
living organisms with mathematics.

4.2 More is different

In 1972, Philip W. Anderson1 published his article “More is different” [9], which became
a highly influential exposition on the limitations of methodological reductionism and the
importance of emergence in understanding complex phenomena. Anderson relates the hi-
erarchical progression from simplicity to complexity with the progression from reduction
to emergence [92, Chapter II, page 110]. New levels of system complexity are then asso-
ciated with the emergence of novel phenomena, concepts, principles, and functions that

1In 1977 P.W. Anderson shared the Nobel Prize in Physics with Edmund’s maternal grand father, Sir
Nevill F. Mott, and J.H. Van Vleck.

15



are consistent with, though not readily explained by, the lower levels of the system. While
emergent properties are often associated with the hierarchical, or multiscale, structure of
a system [92, Chapter III, page 139], there are alternative perspectives that attempt to
avoid any potential circularity arising from this association [93].

Reductionism, where the intention is to explain phenomena via upward causation in
relation to underlying processes, has been very effective in science. The limitations of
reductionism, however, are readily apparent for both simple and complex systems. For
example, copper metal has the properties of being red, shiny, malleable, ductile, and con-
ductive, while individual copper atoms exhibit none of these properties that emerge when
many copper atoms form the metal structure [92, Chapter III, page 143]. Superconduc-
tivity provides an example of emergence in a more complex system: detailed computation
of the motions of all electrons and ions in a superconducting material could describe the
known phenomenology of superconductivity, however the computation cannot reveal the
cause of superconductivity, namely the phenomenon of symmetry breaking. This is simply
not captured by the framework at this lower physical level [92, Chapter III, page 136].
At much greater complexity, the behaviour of a living cell is an emergent property of the
enormous number of molecules of which it consists [94]. Cells are regarded as the smallest
functional unit of life, a property not associated with, and not readily predictable from,
their constituent molecules.

Different types of emergence have been defined, including pragmatic, nominal, weak,
and strong emergence. Strong emergence describes the appearance of an emergent phe-
nomenon that cannot be described with a reductive account, and may be associated with
downward causation and emergent forces or physical laws. Weaker forms of emergence are
not necessarily associated with novel forces or physical laws. In particular, weak emer-
gence describes a phenomenon that arises in an unexpected or very complicated manner
at a higher level of complexity, and would not likely be evident without direct observation,
even though a reductive understanding of the physics of the lower levels is in principle
sufficient to describe the phenomenon [95]. A proposition for the existence of an emer-
gent phenomenon must be accompanied by a rigorous explanation, via a detailed physical
mechanism at the level of emergence, for the qualitative difference between the emergent
phenomenon and the underlying levels. In Figure 2 we illustrate the complementary per-
spectives of methodological reductionism and weak emergence.

A fundamentally important reason for identifying weak emergence is that it may allow
for the explanation of a phenomenon without the need to consider the reductive understand-
ing of the lower levels, thereby allowing for a much simplified mathematical description or
simulation. Identifying emergence thereby provides for potential flexibility and simplifica-
tion in describing a complex system. For example, we can consider the motility of a living
cell without knowing the movements of all constituent molecules.

While the concept of emergence has been incorporated into many areas of physics, the
same cannot be said for biology and related fields, notably mathematical biology. Biologists
generally believe that, given a sufficient understanding of chemistry, molecular biology, and
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Figure 2: Illustration of methodological reductionism and weak emergence. Reductionism
assumes that all complex behaviour can be described from knowledge of the underlying
constituents. While weak emergence is consistent with the properties of the underlying
constituents the emergent behaviour, which may correspond to novel principles of struc-
ture, organisation, or function, is not readily described from knowledge of the individual
constituents.

cell biology, a complete explanation of living organisms will be achieved through reductive
investigation. This is particularly evident in genetics and related areas where the tendency
is to believe that understanding gene or protein sequences will lead to a complete expla-
nation of life. To the contrary, the biologist Lynn J. Rothschild illustrates the numerous
examples of form and function in biological systems for which the concept of emergence
may, if not should, be employed [96, Chapter 6, page 151]. Moreover, the evolutionary biol-
ogist Ernst Mayr recognised the ubiquity of emergent behaviour in biological systems, and
therefore included emergence as one of six reasons underlying the difficulties in predicting
the behaviour of biological systems [97, Chapter 2, pages 58–59].

While reductionism has been very successful in yielding knowledge of many biochem-
ical and cellular processes underlying biological systems, the limitations of reductionism
are now apparent from the seemingly underestimated complexity of these systems [98].
By identifying emergent phenomena we can explain the properties of a biological system
without the limitations of accounting for the complexity of the underlying constituents.
Whether or not living organisms can be explained in principle from biochemistry, and
thereby the laws of physics, is not of concern from the pragmatic perspective of utilising
emergence to simplify and expedite the process of understanding biological systems.

Embracing emergence in biology does not dispel the need for much of current mathemat-
ical biology, but requires the additional consideration of identifying emergent phenomena at
higher levels of system complexity. The latter is a very difficult program that requires new
theoretical and mathematical ideas, some of which we have outlined above. The result,
however, will be a much more sophisticated understanding and description of biological
systems that yields mathematical models which avert prohibitively complicated computa-
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tions. For this, rigorous mathematical definitions of emergence and emergent properties are
required, and while there are some initial considerations [99, 93], further work is required.

To summarise with the words of Anderson on the “triumph of emergence over reduc-
tionism”: “... large objects such as ourselves are, in myriad ways, the product of principles
of organization and of collective behavior which in no meaningful sense can be reduced to
the behavior of our elementary constituents. Large objects are often more constrained by
those principles than by what the principles act upon.” [92, Chapter 4, Pages 195–196].

4.3 Mathematical Maturity

The list of articles in any issue of the Journal of Mathematical Physics illustrates the
mathematical maturity enjoyed by theoretical physics, notably the tendency for mathe-
matical rigour including the use of the definition-theorem-proof style of pure mathematics
[100], and the use of sophisticated mathematical theory. Currently, only a relatively small
proportion of the research literature in mathematical biology exhibits such maturity.

Nicolas Rashevsky, one of the pioneers of mathematical biology, envisioned that the
relationship between mathematical biology and experimental biology would correspond to
that between mathematical physics and experimental physics [101]. That the vision of Ra-
shevsky has been realised in such limited ways is probably due to several reasons, which we
have already touched on above: biological systems are generally more complex than inan-
imate systems; avoidance by mathematicians who regard biology as unsophisticated and
lacking rigorous definitions; strictly reductionist approaches, possibly influenced by exper-
imental biology; insufficiency of deep theorising about living organisms, and in particular
the formation of rigorous definitions; imprudent importation of mathematical models from
other fields, such as physics and engineering; complacency with modelling simple biologi-
cal systems with simple models and simple mathematics; indifference, or inability, toward
applying more sophisticated mathematics or developing new mathematics.

The complexity of living organisms relative to physical systems suggests the need for
the application of mathematical theory that is even more sophisticated, as well as the
need for new mathematical ideas leading to new areas of mathematics [2, 102, 103]. For
this, rigorous definitions of biological concepts are a necessity, and without such rigour
the progression of mathematical biology, and how it supports experimental biology, is
clearly limited. Mathematical biology requires new mathematical theory [103], and the
passive importation of mathematical models from other fields, particularly physics and
engineering, and their application in superficial ways to biological systems runs counter
to the constructive progression of mathematical and theoretical biology. Capturing the
intricacies of living systems, especially their emergent properties, will require but also
inspire such new mathematics.

There is, we feel, increasing need of employing the definition-theorem-proof style of
mathematics in mathematical biology. The general lack of rigorous definitions in biology is
of fundamental concern for mathematical biology since all mathematical assertions origi-

18



nate from definitions, and the requirement to state clear definitions in mathematical biology
would stimulate much needed theoretical thought regarding biological concepts. Further,
a theorem asserts a general principle, and formulating a mathematical result as a theorem
encourages the discovery of more general ideas rather than individual cases, demonstrates
rigour, allows for immediate connection with other mathematical theory, simplifies the
exposition, and may occasion a deeper understanding of the mathematics and the corre-
sponding system. Rigorous mathematics, consisting of the definition-theorem-proof style
is indubitably of importance for the success of mathematical biology [104].

4.4 Unification

Given the lack of general theoretical frameworks in biology [105] it is of no surprise that
biological knowledge is fragmented, even to the extent that different subfields routinely use
distinct terms for the same concept [106, 107]. In principle, mathematical and theoretical
biology should be placed to remedy this situation, however they are arguably in a similar
position which may only serve to further this fragmentation. The fundamental need for
unification, or integration, within mathematical biology has long been realised, however
little progress has been made. Here we discuss three particular areas associated with
mathematical biology for which unification is imperative: biological data, mathematical
models, and system perspective.

In his 2002 Nobel lecture, molecular biologist Sydney Brenner said that “We are all
conscious today that we are drowning in a sea of data and starving for knowledge” [108].
Rather than mere descriptions and routine analysis of biological data, deep theorising and
integration of the often heterogeneous data is required to yield knowledge [109]. Mathe-
matical modelling can be of much assistance here, particularly regarding the assessment
of consistency between a hypothesis and the experimental data, or for the identification of
design principles. Mathematical models are fundamental for developing knowledge of an
observed biological phenomenon, such as the identification of design principles. Given a
causative hypothesis for a phenomenon we can construct a mathematical model that repre-
sents the hypothesis explicitly, and then compare model predictions with experimental data
to determine whether the hypothesis is consistent, or not, with the evidence. In opposition
to much of current practice in mathematical biology, however, integration of heterogeneous
data requires the consideration of multiple insightful hypotheses, and therefore multiple
models, or the consideration of a single hypothesis for consistency with a broad range of
experimental data. Consideration of a single hypothesis/model within the context of a
single data set, or multiple data sets that are closely related, achieves little toward data
integration and novel biological theory. The objective is the development of new theoret-
ical knowledge: being able to simulate a phenomenon does not in itself correspond to an
explanation of the phenomenon.

The unification of mathematical models is at the frontier of mathematical biology,
and general methodologies for comparing the underlying conceptual structure of models,
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irrespective of mathematical formalism, provide essential facilitation for the process [38, 39].
Model comparison can partition a set of models into categories where similar models,
regarded as sharing an essential qualitative characteristic, belong to the same category.
Similar models may simply be incremental variations of each other, or may originally
appear distinct and unrelated. Discovering similarities between seemingly distinct models
can lead to novel theoretical insights into biological phenomena [38], and ultimately to
a unified mathematical description of a biological system. A perspective of unification
can encourage the avoidance of excessive incrementalism in model development and, along
with a rigorous definition-theorem-proof style, yield general mathematical frameworks for
biological systems, rather than the essentially algorithmic approach of developing simple
models of simple systems.

It is widely recognised that to understand a biological phenomenon it must be perceived
as an integrated whole [86]. For example, a biological function has meaning for an organism
at the level at which the function is integrated, and below this level the function does not
exist [110, 111, 112]. Ecology has, of course, long recognised this. Comprehending the
integration is particularly difficult since at a given level of organisation in a biological system
the biological constituents are generally heterogeneous [2], and naturally span several scales.
Most of current mathematical biology is either concerned with “life-less” systems such as
biochemical networks, or considers living organisms (such as a cell) as inanimate objects.
The latter is a pragmatic and justified choice when the aim is to develop models that
replicate, rather than explain, the behaviour of living systems, for example cell migration
in response to gradients. But it falls way short of describing essential hallmarks of life.
Here there appears to be genuine scope for a new mathematical biology that captures such
hallmarks, including life as an emergent phenomenon.

5 Conclusion

Open problems in research can be interpreted as gaping holes in our understanding, or
as exciting opportunities for future research. Most of the problems discussed here have
aspects of both. There are considerable technical and computational challenges, but also
some conceptual challenges of a mathematical nature, related to model development and
model calibration. There is a definite appeal of using and combining methods from dynam-
ical systems theory, computer science, statistical inference and machine learning to develop
better, more reproducible methods of model development. Multiscale modelling, hybrid
models, model selection, and automated generation of models individually, but especially
when taken together, offer enormous potential to expand the scope of mathematical biol-
ogy. We believe that the ability to explain, predict and control living systems requires a
broadening of the toolbox of mathematical biologists.

In our view the appeal of combining hypothesis-driven and data-driven modelling frame-
works is considerable. The technical challenges in doing so are also considerable. Data-
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driven modelling has seen a rapid rise over the past decade and deep neural networks have
become powerful tools in biology [113, 114, 115]; and their predictive performance is per-
haps more immediately persuasive than are the mechanistic insights that modelling can
provide. But both are needed [109].

We believe that a new mathematical biology will be required to understand life at the
fundamental level we discussed in the previous section. Since this requires the substantial
development of new biological and mathematical theory, we have little concrete idea of what
this will look like. Anderson’s work [9], maybe coupled to thermodynamic considerations
[43], provides a starting perspective: emergent phenomena, including life itself, are not
readily explained from principles that are detected by reductionist approaches.
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