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Open Set Fingerprint Spoof Detection Across Novel

Fabrication Materials
Ajita Rattani, Walter J. Scheirer and Arun Ross

Abstract—A fingerprint spoof detector is a pattern classifier
that is used to distinguish a live finger from a fake (spoof) one in
the context of an automated fingerprint recognition system. Most
spoof detectors are learning-based and rely on a set of training
images. Consequently, the performance of any such spoof detector
significantly degrades when encountering spoofs fabricated using
novel materials not found in the training set. In real-world
applications, the problem of fingerprint spoof detection must be
treated as an open set recognition problem where incomplete
knowledge of the fabrication materials used to generate spoofs is
present at training time, and novel materials may be encountered
during system deployment. To mitigate the security risk posed
by novel spoofs, this work introduces: (a) the use of the Weibull-
calibrated SVM (W-SVM), which is relatively robust for open set
recognition, as a novel-material detector and a spoof detector,
and (b) a scheme for the automatic adaptation of the W-
SVM-based spoof detector to new spoof materials that leverages
interoperability across classifiers. Experiments conducted on new
partitions of the LivDet 2011 database designed for open set
evaluation suggest (i) a 97% increase in the error rate of existing
spoof detectors when tested using new spoof materials, and (ii)
up to 44% improvement in spoof detection performance across
spoof materials when the proposed adaptive approach is used.

Index Terms—Fingerprint Spoofing, Spoof Detection, Presen-
tation Attacks, Statistical Learning, Open Set Recognition.

I. INTRODUCTION

The history of fingerprint spoofing in the field of forensics

is almost as old as that of fingerprint classification itself. In

fact, the question of whether or not fingerprints left behind in a

crime scene could be forged was answered in the affirmative in

1924 [47], before it was even formally posed as a question in

1936 [8]. A recurring theme in the historical record is the use

of new spoofing materials and techniques to thwart methods

specifically designed to prevent fingerprint spoofing.

In the field of biometrics, a spoofing attack occurs when

an attacker mimics the biometric trait of another individual to

circumvent a biometric authentication system. For instance,

a fake finger can be fabricated using commonly available

materials such as latex, glue, and gelatin, with the finger-

print ridges of an individual engraved on the surface [26],

[48], [24], [2]. An attacker can place the fake finger on a

fingerprint sensor and claim the identity of the owner of the

actual ridges. Such attacks pose a direct threat because they

leverage commonly available materials and do not require
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Fig. 1: Illustration of the proposed scheme for automatic

detection and adaptation of a fingerprint spoof detector to new

spoof materials. Input samples detected as new spoof materials

by the novel-material detector are used to adapt the spoof

detector. Both the novel-material detector and spoof detec-

tor are implemented using the Weibull-calibrated SVM (W-

SVM) [39], an algorithm designed for open set recognition.

any knowledge of the internal functionality of the underlying

biometric authentication system. The success rate of this kind

of fingerprint spoof attack can be above 70% [26], [4].

But another danger is in emerging spoof attacks that are not

as preventable as those that take advantage of known materials.

Practical evidence of novel fingerprint spoofing attacks is

mounting up. (1) In 2008, a South Korean woman was caught

trying to pass through the immigration screening system in

Nippon, Japan by using a special tape with someone else’s

fingerprints on her fingers to fool the fingerprint recognition

machine1; (2) Similarly in 2013, a Brazilian doctor was

arrested in São Paulo for using prosthetic silicone fingers to

fool the biometric device that tracks employee attendance at

the hospital where she worked2; and (3) Shortly after the

release of Apple’s iPhone5S in 2013, the German hacker group

Chaos Computer Club spoofed its fingerprint scanner with a

hybrid combination of materials3.

It is often straightforward to create spoofs given a source

fingerprint of even modest quality. Prints can be obtained

via (a) the consensual method (i.e., with the collaboration

of the user) [48], (b) the non-consensual method [14] (a

1http://www.smh.com.au/travel/womanfools-japans-airport-security-
fingerprint-system-20090102-78rv.html.

2http://www.bbc.com/news/world-latin-america-21756709
3http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
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latent fingerprint is lifted using specialized tools), or (c) by

reverse engineering the minutiae template from a biometric

authentication system [38]. In all three cases, the fake fin-

gerprint fabrication process typically consists of the following

steps: (1) a mould is created from the source print; (2) any

liquid casting (fabrication) material suitable for contact with

a fingerprint sensor is poured on the mould; and (3) after the

liquid solidifies, the cast is lifted from the mould and is used as

a fingerprint replica or fake finger. The flexibility in material

choice afforded by step 2 is good news for an attacker intent

on evading detection, but a frustrating confound for designers

of robust anti-spoofing algorithms.

Fingerprint spoof detection algorithms are the first line

of defense against such attacks on fingerprint authentication

systems [48], [21], [24]. Existing fingerprint spoof detection

algorithms extract textural features (such as local binary

patterns [29]), coarseness features (statistics from residual

noise [27]), anatomical features (such as pore details [10])

or physiological attributes (such as perspiration [1]) from live

and fake fingerprint samples to train a binary classifier (e.g.,

a Support Vector Machine). The output of a spoof detection

algorithm consists of a label: “Live” or “Spoof”. The output

may also include a score reflecting the probability that a

fingerprint sample corresponds to a real live finger.

To evaluate the effectiveness of existing fingerprint spoof

detection algorithms, the biometrics research community has

organized a regular series of competitions (LivDet) since

2009. Despite recent advances in machine learning-based

approaches, the state-of-the-art in fingerprint spoof detection

is not mature enough to be deployed in real-world systems.

This is because existing fingerprint spoof detection algorithms

do not exhibit acceptable error rates [48], [34], [15], [35], [24]

– even when they are trained and tested on the same set of

fabrication materials, i.e., closed set recognition. In learning-

based algorithms, performance is significantly influenced by

the fabrication materials used to generate spoofs during the

training stage. Reported studies [44], [48], [22] suggest a three

fold increase in the error rates of fingerprint spoof detectors

when spoofs using new materials (not used during the training

stage) are encountered during the testing or operational stage,

i.e., open set recognition. This means the generalization capa-

bility of existing fingerprint spoof detectors is limited across

materials.

As spoofing attacks evolve, new materials will be used to

launch spoof attacks. Given that it is not possible to train the

spoof detector with spoofs generated from all possible fabrica-

tion materials [37], the problem of fingerprint spoof detection

must be treated as an open set recognition problem [42] where

spoofs generated using novel materials that are not known

during the training stage are encountered during the testing

stage. The aim of this work is to design a scheme for the

automatic detection and adaptation of the spoof detector to

novel-material spoofs. Specifically, input fingerprint samples

detected as new spoof materials (not known during the training

stage) by the novel material detector, are used to adapt the

fingerprint spoof detector. Both the novel-material and spoof

detectors are implemented using Weibull-calibrated SVM (W-

SVM) [42]. Fig. 1 shows the schema of the proposed adap-

tation scheme implemented using W-SVM. Such a scheme

should (a) significantly reduce error rates on spoof samples

in the test set that are generated using new materials, and

(b) preempt the need to perform supervised re-training of

the spoof detector to cope with the advancement of spoofing

techniques using novel materials.

A preliminary version of this article appeared at the Inter-

national Joint Conference on Biometrics (IJCB) in 2014 [36].

In [36], a novel material detector was designed using

an AdaBoost-based classifier that automatically detects and

adapts an SVM-based spoof detector to new spoof materials.

The contributions of this work over [36] are as follows:

• Unlike previous work, explicitly posing the problem as

an open set recognition problem, thereby lending itself to

a rigorous framework based on open set classifiers.

• The first application of the Weibull-calibrated SVM (W-

SVM) to the problem of novel material detection and

fingerprint spoof detection. The W-SVM makes use of

recent advances in extreme value theory statistics for

machine learning to directly address the risk of the

unknown in an open set recognition problem.

• The automatic adaptation of the W-SVM-based finger-

print spoof detectors to new spoof materials. In contrast

to [36], where AdaBoost-based classifiers were used for

novel-material detection and SVM-based classifiers were

used for spoof detection, the W-SVM can be used for both

tasks and supports interoperability between individual

detectors.

• An exhaustive experimental analysis incorporating all

four sensors (Biometrika, Italdata, DigitalPersona and

Sagem) in the LivDet 2011 dataset. Further, a baseline

comparative analysis with the performance of the spoof-

detector trained with the ground-truth (oracle test) is also

provided.

II. PRIOR WORK ON OPEN SET SPOOF DETECTION

Tan et al. [44] evaluated the impact of novel spoof ma-

terials on the performance of fingerprint spoof detection. A

fingerprint spoof detector based on ridge signal and valley

noise features was trained using play-doh, gelatin, and silicone,

and tested using latex rubber, latex caulk, and latex paint. An

equal error rate (EER) of 3.5%, 5.9% and 5.8%, respectively,

was achieved when testing on new instances of the training

materials for Identix, Crossmatch, and DigitalPersona sensors.

Results showed an increase in error to 14.5%, 55.6% and

36.6%, respectively, when novel spoof materials were used

during the testing stage.

Marasco and Sansone [22] also evaluated the impact of

novel spoof materials on fingerprint spoof detection algo-

rithms based on coarseness, texture, perspiration, morphology

and various combinations of these features. Algorithms were

trained on samples generated using either gelatin, play-doh or

silicone from the LivDet 2009 database (Identix and Cross-

match sensors), and tested on the other two materials. The

accuracy of all the algorithms dropped across spoof fabrication

materials by about 24%. However, the algorithm which fused

perspiration and morphology-based features outperformed the

others.
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The two studies above evaluated the impact of novel spoof

fabrication materials on spoof detection, but they did not

propose any solution to the problem. In a recent study, Rattani

and Ross [37] devised a scheme to improve the interoperability

of spoof detectors across spoof fabrication materials. In their

study, a pre-processing scheme is proposed based on linear

and non-linear denoising in order to reduce the differences

in noise levels (surface coarseness) in fake fingerprint images

corresponding to different types of fabrication materials. In

this regard, a combination of linear filtering (gaussian filter)

as well as non-linear image denoising (symlet-based wavelet)

is employed before the fingerprint spoof detector is invoked.

The proposed denoising scheme was observed to enhance the

generalization ability of an LBP-based spoof detector across

spoof materials by up to 44% on the LivDet 2011 database [48]

Further, Rattani and Ross [36] proposed a scheme for

the automatic detection and adaptation of the spoof detector

to spoofs fabricated using novel materials that are encoun-

tered after system deployment. To this end, a novel-material

detector, implemented using AdaBoost, was developed that

detects spoofs made of new materials. Samples flagged as

new spoofs were used to automatically retrain and update an

SVM-based fingerprint spoof detector. The proposed automatic

novel-material detection scheme obtained an average correct

detection rate of up to 74% on a partition of the LivDet 2011
database (corresponding to the Biometrika sensor) designed

for open set evaluation. The performance of the fingerprint

spoof detector when retrained based on the output of the

novel material detector was observed to improve by up to

46%. However, the proposed method adds to the computational

overhead of the overall system. This is due to the use of two

different classifiers: multi-class Adaboost for novel material

detection and binary SVM for spoof detection.

III. FEATURES USED FOR SPOOF DETECTION

A fingerprint spoof detector aims to disambiguate real

live fingerprints from fake fingerprints by exploiting their

differences in textural, physiological and anatomical attributes.

Features based on these attributes are extracted from the

training set of live and fake fingerprint samples, and a binary

classifier (such as SVM) is learned. The output of the spoof

detection algorithm is often a numerical value, called a liveness

measure, indicating the probability that the input fingerprint

sample corresponds to a live finger. Table I shows fingerprint

attributes and the associated features proposed in the literature

for the task of fingerprint spoof detection.

In comparative evaluations on the LivDet 2011
database [10], [12], local textural features (such as LBP, LPQ

and BSIF) have been shown to outperform other competing

spoof measures based on anatomical features (such as

pores [25]) and perspiration [1], as well as other algorithms

anonymously submitted to that challenge whose error rates

were in the range [20%, 40%]. This suggests the efficacy of

local textural descriptors in detecting the difference in the

texture between live and fake fingerprints, which is caused

by loss of information and errors introduced during the fake

fingerprint fabrication process.

TABLE I: Examples of attributes and the associated features

used in existing studies on fingerprint spoof detection.

Attributes Associated studies and features used in fingerprint spoof detection

Coarseness

Moon et al.’s coarseness analysis using noise residue [27]
Coli et al.’s power spectrum analysis [7]
Tan and Schukers’ wavelet-based statistics [45]

Perspiration
Abhyankar and Schukers’ perspiration analysis using wavelets [1]
Marasco and Sansone’s fusion of morph. and perspiration analysis [23]

Anatomical

Marcialis et al.’s statistics related to fingerprint pore analysis [25]
Espinoza and Champod’s pore analysis for spoof detection [9]
Tan and Schukers’ fusion of ridge signal and valley noise analysis [46]

Textural

Nikam and Agarwal’s grey level co-occurence matrix (GLCM) [30]
Nikam and Agarwal’s local binary patterns (LBP) [29]
Ghiani et al.’s local phase quantization (LPQ) [13]
Jia et al.’s local ternary patterns (LTP) [18]
Sansone at al.’s weber local descriptors (WLD) [15]
Ghiani et al.’s binary statistical image features (BSIF) [11]

IV. FABRICATION MATERIALS USED FOR SPOOFING

A variety of readily available materials such as latex,

gelatin, silicone, play-doh, etc., have been used to fabricate

fake fingerprints and circumvent fingerprint sensors operating

based on optical, capacitive and other principles [19], [48].

Optical sensors are susceptible to spoof attacks when the

fabrication material used has a light reflectivity similar to

that of skin. Capacitive scanners can be fooled by the use of

inherently conductive spoof materials such as gelatin, glycerin

or wood glue4.

The casting (i.e., fabrication) material should have high

elasticity and very low shrinkage to avoid reduction in volume

as the cast cools and solidifies. In fact, more than fifty

seven materials and material variants have been identified for

fake fingerprint fabrication [31]. However, different materials

exhibit different characteristics:

• Differences in artifacts: Different fabrication materials

possess different potentials to hold a ridge and valley

pattern. This can result in fabrication errors. Further, due

to differences in the elasticity of the materials, non-linear

deformations may be introduced when pressure is applied

while presenting the fake finger to the sensor. Fig. 2

shows example of fake fingerprint samples corresponding

to five different fabrication materials (from LivDet 2011
database [48]). Fabrication errors and non-linear defor-

mations (examples indicated by the red circle and white

square) are quite evident in the case of silgum, wood glue

and ecoflex.

• Differences in contrast between ridges and valleys: Fig. 2

also shows the difference in contrast between the fake

fingerprints fabricated using five different materials for

a subject in the LivDet 2011 database. Low contrast is

evident for silgum and wood glue, while high contrast is

evident for latex and gelatin.

• Differences in surface coarseness: Due to the presence

of organic molecules in fabrication materials that tend

to agglomerate, noise components are observed in fake

fingerprint images [27]. As a consequence, the surface

of a fake fingerprint is coarser than its live counterpart.

Further, the coarseness varies across different fabrication

materials [37].

4http://nexidbiometrics.com/faq/
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(a) EcoFlex (b) Latex (c) Gelatine (d) Silgum (e) WoodGlue

Fig. 2: Examples of fake fingerprint images (from the LivDet 2011 [48] database) corresponding to five different fabrication

materials. The artifacts introduced (examples indicated by the circle and square) are typically quite prominent for silgum, wood

glue and ecoflex materials.
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Fig. 3: Quality measures computed for 200 live and 200 fake

fingerprint samples (acquired using Biometrika sensor) fabri-

cated using five different materials from LivDet 2011 [48].

• Differences in image quality: As a consequence of the

above factors, the quality of the fake fingerprint samples

may vary across fabrication materials. Fig. 3 shows the

difference in the range of quality values (computed using

the Image Quality of Fingerprint (IQF) software from

MITRE5) across spoof samples generated using different

fabrication materials. It can be seen that silgum and wood

glue produced spoofs of relatively low quality. In contrast,

the quality of latex spoofs is quite similar to that of live

fingerprint samples.

Due to the aforementioned reasons, the performance of a

spoof detection algorithm degrades when spoofs generated

using new materials are encountered during operation. This

highlights the need for dynamically adapting the spoof detector

to new spoof materials during the operational phase. Next,

we explain the proposed scheme for automatic detection and

adaptation of the spoof detector to new spoof materials,

supporting open set spoof detection.

V. INTEROPERABLE NOVEL MATERIAL DETECTION AND

SPOOF DETECTION BASED ON THE W-SVM

Prior work on spoof detection in an open set context [36]

broke the problem up into two distinct tasks, each addressed by

5http://www2.mitre.org/tech/mtf/

a different supervised learning algorithm. The task of novel-

material detection was approached via AdaBoost, while SVM

proved to be effective for spoof detection. These algorithms

were chosen for their empirical performance, rather than a

specific theoretical property related to open set recognition.

In this article, we suggest that a unified approach is more

attractive for this problem because it operates on the same

input feature space for both tasks. Moreover, by making use

of a learning approach grounded in a strong theory that directly

addresses open set recognition, we can generalize beyond the

baseline performance achieved by AdaBoost and SVM. Thus,

we turn to emerging work in machine learning on statistical

extreme value theory and its relationship to the open set

recognition problem.

A naı̈ve way to solve an open set problem like novel-

material detection or spoof detection is to simply set an

empirically estimated threshold over a distance, calculated by

a Nearest Neighbor (NN) algorithm, between an input print

and the closest matching print in a database. However, such

thresholds estimated over training or validation data do not

generalize well, since sufficiently dense samples in training

are not always available, and for multi-class open set problems

like novel-material detection, the distance space is inconsistent

across classes. AdaBoost and SVM are typically more pow-

erful that NN approaches, in that they learn decision models

over many labeled training points using more sophisticated

statistical strategies (combinations of weak learners in the case

of AdaBoost, and maximum margin in the case of SVM). But

this again returns to the problem of estimating a threshold over

inconsistent score spaces in order to use these algorithms.

Calibration is one possible solution to this problem. By

enforcing consistency between all distances or scores across

all spoof material classes and the live class, better decision

models can be deployed (e.g., a threshold over interpretable

probabilities). Most commonly, models that fit all of the scores

derived from the training data are used for this purpose [33],

[49], [28]. However, algorithms like SVM produce models that

are composed of a subset of the training data (the support vec-

tors), which leads to a strongly discriminative representation

for recognition that is just the edge of the class distribution.

As an alternative to fitting all of the training data, distributions

from the statistical extreme value theory (EVT) [6] family can

be used to only fit data near the decision boundary. Theoretical
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work on recognition algorithms has shown that the recognition

problem itself is consistent with the assumptions of EVT [41],

yielding a useful tool to generate probabilities, regardless of

the overall distribution of data.

Scheirer et al. have proposed several techniques for EVT-

based SVM calibration [40], [17], [39]. Out of these, the best

performing algorithm for open set recognition problems is

currently the W-SVM [39], a Weibull-calibrated formulation

that combines a 1-Class SVM with a binary SVM, both with

non-linear kernels. Why does such an algorithm help for open

set problems like novel-material detection and spoof detection?

First, when Weibull modeling is coupled with a 1-Class SVM

using a radial basis function kernel, it can be proved that

the probability of class membership decreases in value as

points move from known data toward open space. Second, the

Weibull distribution provides better modeling at the decision

boundaries for a binary SVM, resulting in good generalization

even in the presence of many unknown classes. Novel material

detection and spoof detection are difficult problems because

there are often small inter-class distances in the feature space

– effective spoofs are designed to mimic live skin. The W-

SVM ensures that the probability models do not treat data at

the decision boundaries as low probability members of a class,

where separation between spoof material classes and the live

class in a raw distance sense may be limited. In the rest of

this section, we will describe the operation of the W-SVM

algorithm specifically for novel-material detection and spoof

detection.

A. Training a W-SVM for Novel-Material Detection and Spoof

Detection

The W-SVM training algorithm consists of four distinct

steps split into two different classification regimes: 1-Class

and Binary. The base formulation applies to multi-class classi-

fication problems such as novel material detection, and binary

classification problems such as spoof detection. Source code

for the implementation described below is publicly available

on GitHub6.

1) 1-Class RBF SVM Training: The first step of W-SVM

training is to train a 1-Class SVM [43]. With the absence of a

second class in the training data, the origin defined by a kernel

function Ψ serves as the only member of a “second class.”

The objective of the 1-Class SVM is to find the best margin

with respect to the origin. The resulting binary classification

function fo after training takes the value +1 in a region

capturing most of the training data points, and �1 elsewhere.

For a multi-class problem like novel-material detection, an

individual classifier can be trained for each known labeled

spoof material and the live skin class, yielding a set of

classifiers fo
1 , . . . , f

o
n.

Let p(x) be the probability density function estimated from

the training data {x1, x2, . . . , xm | xi 2 X}, where X is a

single class. A mapping function Φ : X ! H transforms the

training data into a different space. To separate the training

data from the origin, the algorithm solves the following

6https://github.com/ljain2/libsvm-openset

quadratic programming problem for w and ρ to learn f :

min
1

2
kwk2 +

1

νm

lX

i=1

ξi � ρ (1)

subject to

(w · Φ(xi)) � ρ� ξi i = 1, 2, . . . ,m ξi � 0 (2)

where ρ is an offset that parameterizes the hyperplane in

the feature space defined by the mapping Φ, and ξi are

slack variables. The inner product in the image of Φ can be

computed by evaluating a kernel Ψ.

Ψ(x,x0) = (Φ(x) · Φ(x0)) (3)

For the W-SVM, Ψ is a radial basis function, which impacts

density estimation and smoothness in a parameterized fashion:

Ψ(x,x0) = exp(�γ||x� x
0||2), γ > 0 (4)

The regularization parameter ν 2 (0, 1] controls the trade-off

between training classification accuracy and the smoothness

term kwk, and also impacts the choice and number of support

vectors. In the 1-Class SVM, p(x) is cut by the margin plane

minimizing Eq. 1 and satisfying Eq. 2. Regions of p(x) above

the margin plane define positive classification and capture most

of the training data.

In effect, the margin plane serves as a de facto threshold,

which partially addresses the problem of threshold estimation

described above. The effectiveness of fo is dependent on how

the 1-Class parameter ν and RBF parameter γ are set. In

plain language, ν is an upper bound on training error, while γ

controls the extent of influence for a single training example.

The higher the value is for ν, the more tolerance there is for

misclassification during training. The lower the value is for γ,

the larger the positive decision region will be. Importantly, a

non-linear kernel like RBF limits our open space risk (i.e., the

risk of the unknown) by eliminating the half-space problem

for linear classifiers [39], where space far from the support of

known positive training samples is always assigned a positive

class label. This is illustrated in Figs. 4 & 5, where it can be

seen that the positive decision space is finite.

2) 1-Class RBF SVM EVT Calibration: Turning to calibra-

tion in the second step of W-SVM training, the probability

of class inclusion for a 1-Class SVM can be modeled by

fitting a Weibull distribution to scores generated by classifying

the training data {x1, x2, . . . , xm} using the corresponding

trained model fo. This provides a set of scores S However, the

extrema from the overall score distribution are of interest for

modeling. Thus, let O ⇢ S be the lower tail of the scores,

not exceeding 50% of the overall number of scores; [39]

recommends choosing a tail size of 0.5⇥ or 1.5⇥ the number

of support vectors defining fo, depending on the problem.

A Weibull is the expected distribution for the lower tail

because it is bounded from below. A Weibull distribution has

three parameters: location ς , scale λ, and shape κ. Maximum

Likelihood Estimation (MLE) can be applied to estimate the

ςo,λo,κo that best fit O. To calculate the probability of class
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inclusion for a particular SVM decision fo(x), the CDF

defined by the parameters is used:

PO(y|f
o(x)) = 1� e�(

fo(x)�ςo
λo

)κo

. (5)

This calibration model serves as a conditioner: if the 1-Class

SVM predicts PO(y|f
o(x)) > δτ , even with a very low

threshold δτ , that a given input x is a member of class y, then

we will consider the binary classifier’s estimates. A rejection

at this step is the first way we can detect a novel spoof.

3) Binary RBF SVM Training: The 1-Class SVM reduces

the open set risk of any problem to 0 (see the proofs in

Sec. 3 of [39]). However, it is well known that the 1-Class

formulation tends to overfit the training data from the positive

class [20], [51], [42]. Some knowledge of known negative

classes during training improves discrimination by enforcing

separation between known classes. For the application of novel

material detection, this means that when a spoof detector

is trained with positive samples from the live class, and

negative samples from multiple spoof material classes, it can

generalize to unseen samples from the known classes much

more effectively than the 1-Class SVM.

Binary SVMs attempt to learn a margin that maximizes the

separation between two classes. Let α be a set of Lagrange

multipliers. To separate the data in the non-linear case, the

following (dual) optimization problem for the C-SVM [5]

formulation can be solved:

max
αi�0

X

i

αi �
1

2

X

j,k

αjαkyjykΨ(xj , xk)

subject to 0  αi  C, 8i;
X

i

αiyi

(6)

where xi is the i-th training example from the data

{x1, x2, . . . , xm | xi 2 X}, X contains positive and negative

samples, C is the soft margin parameter, and yi 2 {�1,+1}
is, for the i-th training example, the correct output label. As in

the 1-Class case discussed above, Ψ is the RBF kernel defined

in Eq. 4. The resulting binary SVM function is denoted as f .

4) Binary RBF SVM EVT Calibration: We also require

calibration at the decision boundary in the binary case. How-

ever, different from the 1-Class case, EVT distributions are

fit separately to the positive and the negative scores from

the binary SVM. The positive class modeling proceeds as it

did above with a Weibull distribution, but a reverse Weibull

is used for the largest scores from the negative examples

because they are bounded from above. In the context of

novel material detection or liveness detection, binary SVM

calibration can be formulated as follows. For the purpose of

demonstration, assume the training examples are separated into

positive examples of a live skin class, x 2 K+, and negative

examples from all other known spoof materials, x 2 K�.

Letting si = f(xi) be the SVM decision score for xi, scores

are collected into live skin and spoof material sets where scores

for live skin are sj 2 S+ if xj 2 K+ and scores for spoof

materials are sj 2 S� if xj 2 K�. Let ψ be the upper

extremes of the scores S� from the spoof material classes,

W-SVM Novel Material Detector 

Known Class:

Live

Known Class:

Gelatine

Known Class:

Latex

1-Class Decision Boundary

Binary Decision Boundary

Novel Materials in

Open Space

?

?

?

?

?

?

?

?

?

?

Fig. 4: The W-SVM algorithm is by design a multi-class

supervised learning method [39], making it amenable to the

task of novel-material detection. The objective of this task is

to determine whether or not a fingerprint image belongs to a

known class (e.g., Live, Gelatine or Latex), or is a novel point

in open space (i.e., belongs to class “other”). The detection

of novel spoofing materials is useful for adapting liveness

detectors to prevent new attacks. Notice that the algorithm es-

tablishes two decision boundaries for each known class model:

a 1-Class decision boundary to reduce open space risk, and

a binary decision boundary to improve classification accuracy

via generalization. Both decision models are calibrated via the

statistical extreme value theory.

and let η be the lower extremes of the scores S+ from the

live skin class.

MLE can be used to estimate the ςη,λη,κη that best fit

η and the ςψ,λψ,κψ that best fit ψ. To produce a probability

score for a particular SVM decision f(x), the CDF defined by

the parameters is used. Given a test sample x, two independent

estimates for P (y|f(x)) are possible: Pη based on the Weibull

CDF derived from the live skin class scores:

Pη(y|f(x)) = 1� e
�(

f(x)�ςη
λη

)κη

(7)

and Pψ based on the reverse Weibull CDF derived from the

spoof material scores, which is equivalent to rejecting the

Weibull fitting on the spoof material scores:

Pψ(y|f(x)) = e
�(

f(x)�ςψ
λψ

)κψ

. (8)

This same process can be applied for any combination of

known live and spoof material classes. While Pη is not

formally related to any 1-Class estimation, its use of only

positive data means it shares some of the characteristics of

1-Class SVMs [17], including the ability to detect a novel

spoof material. However, since the underlying classifier f is

a one-vs-all binary SVM, the resulting estimates are more

discriminative.

B. Novel-Material Detection with the W-SVM

To support novel-material detection, a multi-class W-SVM

(Fig. 4) that is an ensemble of pairs of 1-Class and binary

SVMs must be trained, where each pair detects a specific live
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skin or known spoof material class. A thresholding strategy

that will allow for the rejection of unknown spoof materials is

also required. Letting PO(y|x) be the probability from Eq. 5

for the RBF 1-Class SVM trained on positive examples of class

y, an indicator variable can be defined as follows: ιy = 1 if

PO(y|x) > δτ and ιy = 0 otherwise. Novel material detection

for all known classes Y is then:

y⇤ =argmax
y2Y

Pη,y(x)⇥ Pψ,y(x)⇥ ιy (9)

subject to Pη,y⇤(x)⇥ Pψ,y⇤(x) � δR.

Notice that the novel-material detector has two parameters:

δτ , which is generally very small (fixed to 0.001 for all

experiments in this article) and is used to adjust what data

the 1-Class SVM considers to be even remotely related to the

positive class, and δR, which is the level of confidence needed

in the W-SVM estimate itself. If both of these probabilities

are not exceeded, a fingerprint sample is considered to be

novel spoof. For the experiments in Sec. VI, The threshold

δR is varied across the entire probability range to find the

Equal Error Rate (EER) points for each classifier. The 1-Class

parameter ν and RBF parameter γ for the 1-Class and binary

SVMs are tuned to facilitate EER calculation, i.e., values

resulting in a smooth score space that contains an EER.

C. Spoof Detection with the W-SVM

To support spoof detection, we need to train a binary W-

SVM (Fig. 5) that is able to discriminate between live skin

and known spoof material classes. In this scenario, we again

require a thresholding strategy that will allow us to reject

unknown spoof materials. Assume that the live skin class is

assigned the label “+1”, and that any spoof class, known or

unknown, is assigned the label “�1”. Letting PO(+1|x) be the

probability from Eq. 5 for the RBF 1-Class SVM trained on

positive examples of the live skin class, we define an indicator

variable: ι+1 = 1 if PO(+1|x) > δτ and ι+1 = 0 otherwise.

spoof detection is then:

y =+ 1 () Pη,+1(x)⇥ Pψ,+1(x)⇥ ι+1 � δR. (10)

If the above condition isn’t satisfied, y = �1. Similar to the

novel material detector, δτ is set to a very low probability

(0.001 for all experiments in this article) for spoof detection,

and δR is again varied across the entire probability range to

find the EER points for each classifier. The ν and γ parameters

are tuned to produce a smooth score space.

D. Retraining a Spoof Detector Based on the Results of a

Novel Material Detector

In a combined mode of operation, a spoof detector can be

retrained based on the results of a novel material detector,

ideally adapting to reject newly identified spoof materials.

Since both algorithms are W-SVMs operating in the same

feature space, the procedure is straightforward. For a set of

feature vectors T from a collection of fingerprint images,

feature vectors deemed by the novel material detector to not

be members of any known classes (i.e., fingerprint images

receiving a probability score  δR) are identified. These

W-SVM Spoof Detector 

Known Positive

Class: Live
Known Negative

Material: Gelatine

Known Negative 

Material: Latex

1-Class Decision Boundary

Binary Decision Boundary

Known and Unknown 

Materials in Open Space

?

?

?

?

?

?
?

?

?

?

?

Fig. 5: The W-SVM is also effective for the task of spoof

detection, which unifies both components of our proposed

spoof detection system. In this mode of operation, a binary

classifier is trained with live prints as the positive class,

and known spoofs as members of a single negative class.

The classifier is able to reject prints created by both known

and unknown spoof materials, which exist in the open space

outside of the feature space of the live prints.

vectors are then added to the original set of training images

as known negatives for the spoof detector, which is retrained

using the procedure in Sec. V-A.

VI. EXPERIMENTAL ANALYSIS

For all experiments, the LivDet 2011 [48] competition

database was used. This database consist of 2, 000 live and

2, 000 spoof images from different subjects for four different

acquisition sensors: Biometrika, Italdata, Sagem and Digi-

talPersona. The spoof images in the LivDet 2011 database

were fabricated using the consensual method. Seven different

spoof materials are available in the database: Latex, EcoFlex,

Wood Glue, Gelatin, Silgum, Silicone and Play-Doh. However,

not every sensor has corresponding images for the complete

set.

Two other editions of LivDet are available (2009 and 2013),

but LivDet 2011 is of particular interest for this experimental

analysis because:

• It consists of a larger number of materials and sensors

compared to LivDet 2009. Further, the quality of spoofs

is higher in LivDet 2011, thus making open set spoof

detection a more challenging task.

• As the spoofs are fabricated using the consensual method,

it allows for the analysis of a difficult scenario in which

high quality spoofs are fabricated via the help of a

legitimate user and distributed among multiple users for

illegitimate access. Spoofs in LivDet 2013 are fabricated

using a non-consensual method for the Biometrika and

Italdata sensors.

• Importantly, a number of spoof detection algorithms

and comparative evaluations [10], [12], [13], [11] have

been reported on LivDet 2011 in comparison to LivDet

2009 and the recently introduced LivDet 2013. In these

evaluations and studies, error rates of the proposed spoof
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detection algorithms are compared against the existing

algorithms and those submitted (anonymously) to the

LivDet 2011 competition. Thus, we have chosen the set

which has attracted the most attention within the research

community.

Protocol: The protocol used for the implementation and

assessment of the proposed adaptive spoof detection scheme

incorporating the W-SVM procedures of Sec. V is as follows.

Note that the original protocol for LivDet 2011 has been

modified to facilitate open set evaluation.

1) Training: For known class training data, the LivDet 2011
database is partitioned into 1, 000 live and 400 spoof

images corresponding to two fabrication materials. Such

sets are created for all combinations of materials for

a sensor. Each binary classifier in a multi-class novel

material detector M and each spoof detector L is trained

from this data.

2) Adaptation and Testing: The test set of the LivDet 2011
database is divided into two non-overlapping partitions:

T1 and T2. Each Ti consists of 500 live and 500 spoof

samples. For the spoofs, 200 samples are from materials

used during the training stage (known materials)7 and 300
samples are from materials that were not used during the

training stage (novel materials). First, the performance of

a spoof detector trained on the training set is evaluated

on T1 and T2. Next, the spoof detector is re-trained on

those images in T1 that are deemed to be a “novel spoof

material” by an automatic novel material detector. Finally,

the re-trained spoof detector is tested on T2. In order

to facilitate cross-validation, the roles of T1 and T2 are

interchanged and the performance recomputed.

Performance assessment metrics:

1) Novel material detector: The performance of the novel

material detector M is assessed using the following two

metrics: (a) Correct detection rate (CDR), which is the

proportion of spoof samples from novel materials that

are correctly classified as novel materials, and (b) False

detection rate (FDR), which is the proportion of live as

well as spoof samples generated using known materials

that are incorrectly classified as novel materials. The

overall performance is summarized using the Equal Error

Rate (EERM), which is the rate at which FDR = 1 - CDR.

2) Fingerprint spoof detector: The SVM output score from

a spoof detector L is compared against a threshold to as-

certain whether the input fingerprint is “Live” or “Spoof”.

The performance of the spoof detector is assessed again

using EER. Here, EER is the rate at which the proportion

of live samples incorrectly classified as fake is equal to

the proportion of fake samples incorrectly classified as

live.

Experiment #1: Performance of the spoof detector on

previously known and novel materials: The goal of this

7Samples and subjects used in the training and test sets of LivDet 2011
do not overlap. Further, samples are not switched between training and test
sets during performance evaluation in order to maintain the repeatability of
the experiments.

experiment is to quantify the degradation in the performance of

a W-SVM-based spoof detector when tested on spoof samples

generated using novel materials. First, three different sets of

spoof detectors are trained based on LBP, LPQ and BSIF

features, respectively, extracted from 400 fake fingerprints

corresponding to two materials and 1, 000 live fingerprint

samples. The resulting sets of spoof detectors are denoted as

LLBP , LLPQ and LBSIF , respectively. The trained classifiers

are tested on T1 and T2 consisting of a combined 400 spoof

samples from known materials and 600 spoof samples from

novel materials. Table II shows the EER of each spoof detector

when tested using spoof samples from previously known

(EERknown) and novel (EERnovel) materials.

The following observations can be made from Table II: (a)

Different combinations of training materials exhibit different

generalization performance. Often the combination of latex

with other materials resulted in reduced error on the known as

well as novel materials. (b) The average increase in the error

rate of the spoof detector when tested on the set of novel

materials is 93.6%, 78.1% and 237.9%, for BSIF, LBP and

LPQ, respectively, averaged over four sensors: Biometrika,

Italdata, DigitalPersona and Sagem. Training materials that

tend to produce low quality spoofs, such as silgum and wood

glue, lead to higher error rates when new spoof materials are

encountered. (c) The average increase in the error rate when

all three spoof detectors (LBP, LPQ and BSIF) are tested on

new spoof materials is 51.9%, 49.0%, 156.2% and 182.9%

on Biometrika, Italdata, DigitalPersona and Sagem sensors,

respectively. This clearly conveys the need for designing

a spoof detection scheme that is robust across fabrication

materials.

Further, in comparison to results reported in [36] for

the Biometrika sensor for nine material combinations, the

average increase in error of the LBP- and LPQ-based

spoof detectors is lower by 3.8% and 14.2%, respectively.

For the BSIF-based spoof detector, average increase

in the error on new spoof materials increased by 11.0%.

Experiment #2: Detection of new spoofs using a novel-

material detector: This experiment evaluates the performance

of the W-SVM-based novel material detection approach. In

Table III, performance of the various textural descriptors used

in the W-SVM framework (see Sec. V) for implementing the

novel-material detector M is listed. These descriptors were

extracted from live and spoof samples corresponding to two

training materials; hence, |Y| = 3 classes for each multi-class

detector M. Novel material detection is implemented via the

procedure described in Sec. V-B.

Table III reports EER, which is averaged over ten com-

binations of two training materials each. It can be seen that

all the texture descriptors resulted in a high error rate, which

can be attributed to the challenging nature of the open set

recognition problem. LBP and BGP performed better than the

other descriptors. The W-SVM-based novel material detector

faired equally with the AdaBoost-based novel material detector

proposed in [36]. The combination of LBP+BGP (two W-SVM

classifiers were trained independently for the LBP and BGP

descriptors, and their output was combined using the sum rule)
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TABLE II: Performance of the BSIF-, LBP- and LPQ-based spoof detectors when tested on previously known materials

(EERknown) and on novel materials (EERnovel). The overall average increase in the error rate when encountering novel

materials is 97.3%. This motivates the need for an adaptive algorithm. Full DET curves for the Biometrika + LBP combination

can be found in the supplemental material.

Biometrika

Training materials
LBSIF LLBP LLPQ Average

EERknown EERnovel EERknown EERnovel EERknown EERnovel EERknown EERnovel

[%] [%] [%] [%] [%] [%] [%] [%]

Skin+Latex+EcoFlex 6.0 16.3 6.5 13.2 9.8 18.4 7.4 16.0
Skin+WoodGlue+Latex 15.0 15.0 10.0 13.8 14.4 16.8 13.1 15.2
Skin+Gelatine+Latex 11.0 16.5 12.0 11.2 8.9 17.7 10.6 15.1
Skin+Silgum+Latex 10.5 20.8 12.3 19.7 10.8 16.3 11.2 18.9
Skin+EcoFlex+Silgum 14.0 29.5 9.3 30.2 12.3 23.0 11.9 27.6
Skin+Gelatine+EcoFlex 13.3 23.3 9.7 15.2 14.0 22.4 12.3 20.3
Skin+Silgum+Gelatine 13.3 23.8 11.5 23.3 14.8 19.5 13.2 22.2
Skin+WoodGlue+Silgum 18.3 23.0 18.0 32.3 13.5 19.0 16.6 24.8
Skin+Gelatine+WoodGlue 16.8 17.2 12.3 11.0 15.8 17.3 15.0 15.2
Skin+WoodGlue+EcoFlex 16.3 17.2 21.7 26.7 17.4 17.3 18.5 20.4

Average EER ± STDERROR: 13.5 ± 1.1 20.3 ± 1.5 12.3 ± 1.4 19.7 ± 2.5 13.2 ± 0.9 18.8 ± 0.7 12.9 ± 1.0 19.6 ± 1.4

Italdata

Training materials
LBSIF LLBP LLPQ Average

EERknown EERnovel EERknown EERnovel EERknown EERnovel EERknown EERnovel

[%] [%] [%] [%] [%] [%] [%] [%]

Skin+Latex+EcoFlex 12.4 17.5 16.9 24.6 27.6 34.7 19.0 25.6
Skin+WoodGlue+Latex 13.3 17.8 17.5 24.4 23.0 33.1 17.9 25.1
Skin+Gelatine+Latex 12.7 17.9 17.2 28.8 18.3 29.4 16.1 25.4
Skin+Silgum+Latex 13.2 24.6 14.8 33.2 20.6 31.5 16.2 29.8
Skin+EcoFlex+Silgum 22.5 36.0 23.3 39.4 26.7 43.6 24.2 39.7
Skin+Gelatine+EcoFlex 17.4 27.6 25.0 38.1 22.5 35.8 21.6 33.8
Skin+Silgum+Gelatine 18.1 31.1 23.5 35.5 21.7 27.6 21.1 31.4
Skin+WoodGlue+Silgum 22.7 29.6 23.3 27.6 27.7 42.2 24.6 33.1
Skin+Gelatine+WoodGlue 15.9 22.1 20.2 31.7 18.3 31.1 18.1 28.3
Skin+WoodGlue+EcoFlex 18.8 24.5 21.3 31.3 29.1 30.5 23.1 28.8

Average EER ± STDERROR: 16.7 ± 1.2 24.9 ± 2.0 20.3 ± 1.1 31.7 ± 1.7 23.6 ± 1.3 34.0 ± 1.7 20.2 ± 1.0 30.1 ± 1.4

DigitalPersona

Training materials
LBSIF LLBP LLPQ Average

EERknown EERnovel EERknown EERnovel EERknown EERnovel EERknown EERnovel

[%] [%] [%] [%] [%] [%] [%] [%]

Skin+Latex+Playdoh 18.9 16.6 19.9 38.2 3.7 69.4 14.2 41.4
Skin+WoodGlue+Latex 9.4 49.5 19.2 38.5 9.0 50.3 12.5 46.1
Skin+Gelatine+Latex 12.8 19.4 30.4 41.6 7.8 56.3 17.0 39.1
Skin+Silicone+Latex 18.5 22.3 31.4 36.7 12.5 32.1 20.8 30.4
Skin+Playdoh+Silicone 15.3 23.6 18.6 31.9 7.4 32.7 13.8 29.4
Skin+Gelatine+Playdoh 12.1 35.7 18.5 33.1 3.1 66.9 11.2 45.2
Skin+Silicone+Gelatine 13.4 29.4 25.3 40.8 5.7 50.3 14.8 40.2
Skin+WoodGlue+Silicone 12.5 22.9 20.2 32.1 0.6 67.6 11.1 40.9
Skin+Gelatine+WoodGlue 14.1 22.8 22.9 38.2 7.4 45.4 14.8 35.5
Skin+Playdoh+WoodGlue 15.2 17.5 22.1 37.9 9.5 21.6 15.6 25.7

Average EER ± STDERROR: 14.2 ± 0.9 26.0 ± 3.2 22.9 ± 1.5 36.9 ± 1.1 6.7 ± 1.1 49.3 ± 5.2 14.6 ± 0.9 37.4 ± 2.2

Sagem

Training materials
LBSIF LLBP LLPQ Average

EERknown EERnovel EERknown EERnovel EERknown EERnovel EERknown EERnovel

[%] [%] [%] [%] [%] [%] [%] [%]

Skin+Latex+Playdoh 11.7 23.4 15.3 23.5 8.7 25.5 11.9 24.1
Skin+WoodGlue+Latex 6.6 50.8 7.1 35.7 3.9 45.4 5.9 44.0
Skin+Gelatine+Latex 12.2 24.2 15.6 16.6 19.6 22.1 15.8 21.0
Skin+Silicone+Latex 11.5 28.6 12.5 36.0 13.5 35.7 12.5 33.4
Skin+Playdoh+Silicone 10.5 29.3 11.3 29.6 10.4 51.6 10.7 36.8
Skin+Gelatine+Playdoh 12.1 39.6 13.9 34.2 12.4 51.3 12.8 41.7
Skin+Silicone+Gelatine 9.3 22.8 10.6 19.9 13.0 51.5 11.0 31.4
Skin+WoodGlue+Silicone 7.0 28.0 10.8 39.5 8.2 34.3 8.7 33.9
Skin+Gelatine+WoodGlue 10.9 25.7 10.8 17.0 17.4 25.9 13.0 22.9
Skin+Playdoh+WoodGlue 8.9 22.6 10.1 24.8 4.5 25.9 7.8 24.4

Average EER ± STDERROR: 10.1 ± 0.7 29.5 ± 2.9 11.8 ± 0.8 27.7 ± 2.7 11.2 ± 1.6 36.9 ± 3.8 11.1 ± 0.9 31.4 ± 2.6
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TABLE III: Average EER, on the test set T1, of the novel material detector (M) corresponding to various texture descriptors.

This is the average over ten different combinations of two materials each that were used for training the novel material detector.

The combination of LBP and BGP features resulted in the lowest error rate (which is still very high). In spite of this high

error rate, re-training the spoof detector based on the output of the novel material detector improves performance.

Texture descriptors used EERM ± STDERROR [%]
Biometrika Italdata Digital Persona Sagem

Grey Level Co-occurence Matrix (GLCM) [16] 44.6 ± 1.7 52.3 ± 2.3 43.7 ± 2.6 43.6 ± 3.4
Binary Statistical Image Features (BSIF) [11] 33.2 ± 1.2 36.9 ± 1.3 34.2± 2.1 38.5± 2.7
Local Phase Quantization (LPQ) [13] 34.3 ± 1.3 36.7 ± 1.4 44.9 ± 5.3 40.3 ± 3.4
Binary Gabor Patterns (BGP) [50] 30.3 ± 1.0 36.8 ± 1.4 34.2 ± 2.3 40.6 ± 2.2
Local Binary Patterns (LBP) [32] 32.5± 2.0 37.3±1.4 36.6± 2.1 31.8± 1.7

Local Binary Patterns (LBP) +
Binary Gabor Patterns (BGP) 28.5 ± 1.2 34.1 ± 1.4 31.1 ± 2.3 32.5 ± 2.2

gave the best performance. Thus this configuration was used

in subsequent experiments.

Experiment #3: Performance of the spoof detector re-

trained on samples flagged by the novel-material detector:

The goal of this experiment is to evaluate the performance

of the spoof detector when retrained based on the output

of the novel-material detector. Tables IV, V, VI and VII

show the EER of the retrained spoof detector for the LBP

(LLBP 0

), LPQ (LLPQ0

) and BSIF features (LBSIF 0

), for

the Biometrika, Italdata, DigitalPersona and Sagem sensors,

respectively. These are the error rates when the spoof detector

is retrained using samples that are identified as new spoofs

in T1 and the retrained spoof detector is evaluated on T2,

and vice-versa. In order to detect spoofs made from a novel

material, the threshold of the novel material detector was set to

the EER point. The novel material detector based on the fused

combination LBP+BGP (MLBP+BGP ) was used (this com-

bination resulted in the lowest error rate in Experiment #2).

Comparison has been made with the performance of the spoof

detector (LLBP , LLPQ and LBSIF ) that is not retrained.

The average error reduction was 25.3%, 35.2% and 21.0%
for the LBP-, LPQ- and BSIF-based spoof detectors, respec-

tively, averaged over T1 and T2 and all four sensors, i.e.,

Biometrika, Italdata, DigitalPersona and Sagem. For instance,

EER of the LBP-based spoof detector reduced from 14.0% to

7.7% when retrained using new spoofs from T2 and evaluated

on T1 for the Biometrika sensor. To highlight this effect, Fig. 6

shows full DET curves reflecting all performance points for

the Skin+Silgum+Latex combination from that experiment.

Additional curves can be found in the supplemental material.

Further, the average error reduction for the LBP-, LPQ- and

BSIF-based spoof detectors was 31.4%, 14.8%, 35.5% and

27.1% for the Biometrika, Italdata, DigitalPersona and Sagem

sensors, respectively. Furthermore, in comparison to the results

reported in [36], average reduction in the error rate of the

retrained LPQ and BSIF-based spoof detectors increased by

2.6% and 14.8%, respectively, for the Biometrika sensor.

Equivalent performance is reported for the LBP-based spoof

detector.

Experiment #4: Performance of the spoof detector re-

trained using ground-truth (Oracle test):

The goal of this experiment is to evaluate the performance

of the spoof detector when retrained using ground-truth. To

TABLE IV: EER of the Biometrika-based spoof de-

tectors retrained using images detected as new spoofs

(LLBP 0

,LLPQ0

,LBSIF 0

) in T1 and evaluated on T2. Cross-

validation is performed by interchanging the role of T1 and T2.

Comparative assessment has been made with the spoof detec-

tor that is not automatically retrained (LLBP ,LLPQ,LBSIF ).

Training materials
Tested on T2 Tested on T1

LLBP LLBP 0

LLBP LLBP 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+EcoFlex 14.6 13.4 7.0 5.0
Skin+WoodGlue+Latex 12.8 9.6 9.8 6.0
Skin+Gelatine+Latex 13.8 13.4 10.2 7.8
Skin+Silgum+Latex 18.2 14.0 14.2 9.0
Skin+EcoFlex+Silgum 29.6 18.0 21.0 9.0
Skin+Gelatine+EcoFlex 15.2 14.2 10.4 7.2
Skin+Silgum+Gelatine 22.2 15.8 18.2 10.0
Skin+WoodGlue+Silgum 30.4 14.4 27.2 9.2
Skin+Gelatine+WoodGlue 12.2 10.8 10.0 8.2
Skin+WoodGlue+EcoFlex 19.8 12.8 12.2 6.0

Average EER ± STDERROR : 18.9 ± 2.1 13.6 ± 0.7 14.0 ± 2.0 7.7 ± 0.5

Training materials
Tested on T2 Tested on T1

LLPQ LLPQ0

LLPQ LLPQ0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+EcoFlex 19.8 13.0 9.4 6.8
Skin+WoodGlue+Latex 21.6 14.8 9.8 7.6
Skin+Gelatine+Latex 18.6 15.6 10.0 8.8
Skin+Silgum+Latex 18.2 15.8 10.8 9.4
Skin+EcoFlex+Silgum 22.6 16.2 16.2 10.2
Skin+Gelatine+EcoFlex 22.4 16.8 14.2 10.0
Skin+Silgum+Gelatine 20.4 15.6 13.8 10.8
Skin+WoodGlue+Silgum 19.2 15.6 13.6 9.2
Skin+Gelatine+WoodGlue 18.6 12.8 14.0 12.2
Skin+WoodGlue+EcoFlex 22.0 15.4 13.0 9.8

Average EER ± STDERROR : 20.3 ± 0.5 15.2 ± 0.4 12.5 ± 0.7 9.5 ± 0.5

Training materials
Tested on T2 Tested on T1

LBSIF LBSIF 0

LBSIF LBSIF 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+EcoFlex 15.8 11.6 7.8 5.4
Skin+WoodGlue+Latex 17.4 12.4 11.2 6.2
Skin+Gelatine+Latex 18.4 14.6 9.4 6.2
Skin+Silgum+Latex 21.4 17.8 11.8 6.8
Skin+EcoFlex+Silgum 28.2 18.6 16.2 9.2
Skin+Gelatine+EcoFlex 24.0 16.0 16.0 10.0
Skin+Silgum+Gelatine 25.2 19.0 15.6 9.8
Skin+WoodGlue+Silgum 25.0 19.4 16.0 8.6
Skin+Gelatine+WoodGlue 19.4 14.0 13.8 9.2
Skin+WoodGlue+EcoFlex 19.8 13.4 13.0 8.2

Average EER ± STDERROR : 21.5 ± 1.3 15.7 ± 0.9 13.1 ± 0.9 8.0 ± 0.5
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Fig. 6: Full DET curves for the Skin+Silgum+Latex combina-

tion for the Biometrika sensor and LBP features from Table IV.

In both test cases, the curves shift to the left after adaptation,

indicating an improvement in spoof detection performance.

Curves for other combinations of materials can be found in

the supplemental material.

TABLE V: EER of the Italdata-based spoof detec-

tors retrained using images detected as new spoofs

(LLBP 0

,LLPQ0

,LBSIF 0

) in T1 and evaluated on T2. Cross-

validation is performed by interchanging the role of T1 and T2.

Comparative assessment has been made with the spoof detec-

tor that is not automatically retrained (LLBP ,LLPQ,LBSIF ).

Training materials
Tested on T2 Tested on T1

LLBP LLBP 0

LLBP LLBP 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+EcoFlex 30.3 26.5 26.9 20.4
Skin+WoodGlue+Latex 21.2 25.5 19.7 21.2
Skin+Gelatine+Latex 27.8 24.2 25.3 18.0
Skin+Silgum+Latex 28.8 26.8 26.5 22.0
Skin+EcoFlex+Silgum 31.9 26.8 30.0 23.1
Skin+Gelatine+EcoFlex 37.3 30.0 35.1 25.2
Skin+Silgum+Gelatine 32.2 27.0 29.4 20.1
Skin+WoodGlue+Silgum 36.0 32.6 33.4 30.9
Skin+Gelatine+WoodGlue 27.1 25.8 25.8 20.4
Skin+WoodGlue+EcoFlex 29.0 24.2 31.0 20.0

Average EER ± STDERROR : 30.2 ± 1.5 26.9 ± 0.8 28.3 ± 1.4 22.1 ± 1.2

Training materials
Tested on T2 Tested on T1

LLPQ LLPQ0

LLPQ LLPQ0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+EcoFlex 21.5 17.0 17.5 17.2
Skin+WoodGlue+Latex 20.6 14.1 20.4 14.9
Skin+Gelatine+Latex 18.6 16.3 14.9 15.1
Skin+Silgum+Latex 24.0 16.1 20.8 15.0
Skin+EcoFlex+Silgum 30.3 25.7 25.0 18.8
Skin+Gelatine+EcoFlex 26.9 21.9 20.3 19.3
Skin+Silgum+Gelatine 22.3 17.0 16.8 17.1
Skin+WoodGlue+Silgum 23.2 18.0 21.7 14.4
Skin+Gelatine+WoodGlue 23.9 16.6 21.1 17.1
Skin+WoodGlue+EcoFlex 24.4 20.2 22.0 16.8

Average EER ± STDERROR : 23.6 ± 1.0 18.3 ± 1.1 20.1 ± 0.9 16.6 ± 0.5

Training materials
Tested on T2 Tested on T1

LBSIF LBSIF 0

LBSIF LBSIF 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+EcoFlex 33.7 25.8 26.3 21.9
Skin+WoodGlue+Latex 23.4 25.6 23.3 29.5
Skin+Gelatine+Latex 26.9 25.1 22.2 22.2
Skin+Silgum+Latex 27.8 27.7 27.7 26.5
Skin+EcoFlex+Silgum 37.1 31.4 32.9 27.6
Skin+Gelatine+EcoFlex 39.7 31.2 33.7 27.3
Skin+Silgum+Gelatine 34.6 29.7 28.9 25.8
Skin+WoodGlue+Silgum 35.0 32.0 34.7 35.3
Skin+Gelatine+WoodGlue 28.1 27.1 23.9 26.2
Skin+WoodGlue+EcoFlex 29.0 25.4 27.6 23.6

Average EER ± STDERROR : 31.5 ± 1.6 28.1 ± 0.9 28.1 ± 1.4 26.6 ± 1.2

TABLE VI: EER of the DigitalPersona-based spoof de-

tectors retrained using images detected as new spoofs

(LLBP 0

,LLPQ0

,LBSIF 0

) in T1 and evaluated on T2. Cross-

validation is performed by interchanging the role of T1 and T2.

Comparative assessment has been made with the spoof detec-

tor that is not automatically retrained (LLBP ,LLPQ,LBSIF ).

Training materials
Tested on T2 Tested on T1

LLBP LLBP 0

LLBP LLBP 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+Playdoh 38.9 30.6 32.4 23.4
Skin+WoodGlue+Latex 37.7 28.1 39.1 27.7
Skin+Gelatine+Latex 34.2 21.6 42.9 28.9
Skin+Silicone+Latex 44.0 24.6 47.5 24.8
Skin+Playdoh+Silicone 39.6 29.4 36.5 20.6
Skin+Gelatine+Playdoh 27.4 23.6 30.9 21.9
Skin+Silicone+Gelatine 38.0 30.9 48.7 39.5
Skin+WoodGlue+Silicone 38.3 23.6 40.4 21.3
Skin+Gelatine+WoodGlue 28.8 20.6 36.8 24.6
Skin+Playdoh+WoodGlue 36.9 32.9 30.9 23.0

Average EER ± STDERROR : 36.4 ± 1.6 26.6 ± 1.4 38.6 ± 2.0 25.6 ± 1.8

Training materials
Tested on T2 Tested on T1

LLPQ LLPQ0

LLPQ LLPQ0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+Playdoh 44.1 17.4 43.8 10.1
Skin+WoodGlue+Latex 42.9 19.0 37.1 11.9
Skin+Gelatine+Latex 33.2 17.1 32.4 10.0
Skin+Silicone+Latex 42.6 18.9 36.0 8.1
Skin+Playdoh+Silicone 27.1 18.9 26.3 8.8
Skin+Gelatine+Playdoh 50.1 23.8 54.0 15.4
Skin+Silicone+Gelatine 38.5 24.1 44.5 14.1
Skin+WoodGlue+Silicone 47.8 20.3 42.4 9.0
Skin+Gelatine+WoodGlue 38.8 20.5 37.8 11.2
Skin+Playdoh+WoodGlue 32.5 16.4 25.4 9.5

Average EER ± STDERROR : 39.8 ± 2.3 19.6 ± 0.8 38.0 ± 2.8 10.8 ± 0.8

Training materials
Tested on T2 Tested on T1

LBSIF LBSIF 0

LBSIF LBSIF 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+Playdoh 26.4 22.4 22.7 18.0
Skin+WoodGlue+Latex 36.9 32.0 32.6 26.6
Skin+Gelatine+Latex 21.9 20.4 21.5 18.1
Skin+Silicone+Latex 29.5 24.3 23.5 18.2
Skin+Playdoh+Silicone 24.6 21.3 21.0 16.5
Skin+Gelatine+Playdoh 29.3 29.4 30.0 21.8
Skin+Silicone+Gelatine 26.1 23.1 27.5 19.8
Skin+WoodGlue+Silicone 27.7 21.2 21.8 18.0
Skin+Gelatine+WoodGlue 21.8 21.8 21.6 19.7
Skin+Playdoh+WoodGlue 23.0 22.4 19.3 18.7

Average EER ± STDERROR : 26.7 ± 1.4 23.8 ± 1.2 24.2 ± 1.4 19.5 ± 0.9

this aim, the LBP-, LPQ- and BSIF- based spoof detectors are

retrained using all the samples in test sets together with the

class label.

Table VIII show the EER of the oracle test for the LBP

(LLBP 0

), LPQ (LLPQ0

) and BSIF features (LBSIF 0

), for

Biometrika, Italdata, DigitalPersona and Sagem sensors, re-

spectively. These are the error rates when the spoof detector

is retrained using samples that are identified as new spoofs in

T1 and the retrained spoof detector is evaluated on T2, and

vice-versa. Comparison has been made with the performance

of the spoof detector automatically retrained using the output

of the novel-material detector (see Experiment #3).

The average error reduction was 33.5%, 40.6% and 27.4%
for the LBP-, LPQ- and BSIF-based spoof detectors retrained

using ground-truth, respectively, averaged over T1 and T2

and all four sensors, i.e., Biometrika, Italdata, DigitalPersona

and Sagem. The difference in the average error reduction in

comparison to Experiment #3 was 8.2%, 5.4% and 6.5%.

Further, the average error reduction for the LBP-, LPQ-

and BSIF-based spoof detectors was 34.1%, 21.2%, 43.8%
and 36.5% for the Biometrika, Italdata, DigitalPersona and
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TABLE VII: EER of the Sagem-based spoof detec-

tors retrained using images detected as new spoofs

(LLBP 0

,LLPQ0

,LBSIF 0

) in T1 and evaluated on T2. Cross-

validation is performed by interchanging the role of T1 and T2.

Comparative assessment has been made with the spoof detec-

tor that is not automatically retrained (LLBP ,LLPQ,LBSIF ).

Training materials
Tested on T2 Tested on T1

LLBP LLBP 0

LLBP LLBP 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+Playdoh 21.8 17.9 18.0 17.9
Skin+WoodGlue+Latex 30.6 19.4 23.1 21.0
Skin+Gelatine+Latex 14.8 13.0 15.8 16.5
Skin+Silicone+Latex 26.7 19.9 22.7 21.0
Skin+Playdoh+Silicone 28.6 21.9 21.1 16.3
Skin+Gelatine+Playdoh 21.9 18.6 30.2 20.2
Skin+Silicone+Gelatine 14.5 12.4 19.3 16.6
Skin+WoodGlue+Silicone 31.4 16.5 25.4 19.5
Skin+Gelatine+WoodGlue 13.9 12.7 15.6 15.3
Skin+Playdoh+WoodGlue 21.9 19.3 18.5 16.8

Average EER ± STDERROR : 22.6 ± 2.1 17.2 ± 1.1 21.0 ± 1.4 18.1 ± 0.7

Training materials
Tested on T2 Tested on T1

LLPQ LLPQ0

LLPQ LLPQ0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+Playdoh 17.9 15.9 20.2 16.5
Skin+WoodGlue+Latex 39.2 19.8 30.6 17.9
Skin+Gelatine+Latex 19.2 12.0 16.6 15.2
Skin+Silicone+Latex 28.0 19.6 21.8 18.3
Skin+Playdoh+Silicone 34.3 20.4 35.7 16.7
Skin+Gelatine+Playdoh 32.3 16.8 36.1 20.3
Skin+Silicone+Gelatine 34.0 15.0 31.4 17.3
Skin+WoodGlue+Silicone 28.9 19.5 22.5 16.6
Skin+Gelatine+WoodGlue 20.9 13.5 19.6 16.1
Skin+Playdoh+WoodGlue 17.8 16.9 19.3 16.4

Average EER ± STDERROR : 27.3 ± 2.5 16.9 ± 0.9 25.4 ± 2.3 17.1 ± 0.4

Training materials
Tested on T2 Tested on T1

LBSIF LBSIF 0

LBSIF LBSIF 0

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Skin+Latex+Playdoh 20.7 14.3 21.4 20.0
Skin+WoodGlue+Latex 46.6 18.1 39.4 19.1
Skin+Gelatine+Latex 18.5 12.7 22.3 19.6
Skin+Silicone+Latex 24.7 18.2 22.7 20.0
Skin+Playdoh+Silicone 25.0 21.1 29.6 21.9
Skin+Gelatine+Playdoh 23.6 20.6 35.0 27.2
Skin+Silicone+Gelatine 21.8 14.2 26.3 18.5
Skin+WoodGlue+Silicone 23.2 16.9 20.4 18.2
Skin+Gelatine+WoodGlue 18.2 12.0 25.8 21.2
Skin+Playdoh+WoodGlue 19.5 14.3 23.9 21.1

Average EER ± STDERROR : 24.2 ± 2.6 16.2 ± 1.0 26.7 ± 2.0 20.7 ± 0.8

Sagem sensors, respectively. The difference in the average

error reduction in comparison to Experiment #3 was 2.7%,

6.4%, 8.3% and 9.4%. The marginal difference in the error

reduction between the spoof detector retrained using ground-

truth and output of the novel material detector shows the

efficacy of the proposed automatic adaptation scheme based

on the W-SVM while indicating that more research is needed

on this topic.

VII. CONCLUSION

Recent studies suggest a threefold increase in the error

rate of a fingerprint spoof detector when encountering spoofs

generated using materials that were not observed during the

training stage. In this article, we proposed a scheme for the au-

tomatic detection and adaptation of a spoof detector to spoofs

fabricated using novel materials that are encountered during

the operational phase, thus addressing the underlying open set

recognition problem. To this end, a W-SVM-based [39] novel-

material detector was developed to detect spoofs made of new

TABLE VIII: Average EER of the Biometrika, Italdata, Dig-

italPersona, Sagem-based spoof detector retrained using the

ground-truth (LLBP 0

,LLPQ0

,LBSIF 0

), i.e., retrained using all

of the samples in T1 and evaluated on T2. Cross-validation is

performed by interchanging the role of T1 and T2. Compar-

ative assessment has been made with the spoof detector that

is not automatically retrained (LLBP ,LLPQ,LBSIF ). Tables

with the complete data used to build this summary can be

found in the supplemental material, along with full DET curves

for the Biometrika + LBP combination.

Sensors
Tested on T2 Tested on T1

(not (adapted (not (adapted
adapted) using T1) adapted) using T2)

[%] [%] [%] [%]

Biometrika

LLBP LLBP 0

LLBP LLBP 0

Average EER STDERROR : 18.9 ± 2.1 13.5 ± 0.6 14.0 ± 2.0 7.7 ± 0.4

LLPQ LLPQ0

LLPQ LLPQ0

Average EER ± STDERROR: 20.3 ± 0.5 14.6 ± 0.5 12.5 ± 0.7 9.0 ± 0.5

LBSIF LBSIF 0

LBSIF LBSIF 0

Average EER ± STDERROR: 21.5 ± 1.3 15.4 ± 0.6 13.1 ± 0.9 7.0 ± 0.4

Italdata

LLBP LLBP 0

LLBP LLBP 0

Average EER ± STDERROR: 30.2 ± 1.5 24.6 ± 0.4 28.3 ± 1.4 18.9 ± 0.7

LLPQ LLPQ0

LLPQ LLPQ0

Average EER ± STDERROR : 23.6 ± 1.0 17.6 ± 0.9 20.0 ± 0.9 15.8 ± 0.6

LBSIF LBSIF 0

LBSIF LBSIF 0

Average EER ± STDERROR : 31.5 ± 1.6 26.7 ± 0.6 28.1 ± 1.4 24.3 ± 1.0

DigitalPersona

LLBP LLBP 0

LLBP LLBP 0

Average EER ± STDERROR : 36.4 ± 1.7 22.1 ± 0.9 38.6 ± 2.1 23.6 ± 1.5

LLPQ LLPQ0

LLPQ LLPQ0

Average EER ± STDERROR : 39.8 ± 2.3 14.8 ± 0.3 38.0 ± 2.8 9.2 ± 0.3

LBSIF LBSIF 0

LBSIF LBSIF 0

Average EER ± STDERROR : 26.7 ± 1.4 21.2 ± 0.2 24.2 ± 1.4 18.1 ± 0.3

Sagem

LLBP LLBP 0

LLBP LLBP 0

Average EER ± STDERROR : 22.6 ± 2.2 14.6 ± 0.5 21.0 ± 1.5 14.8 ± 0.3

LLPQ LLPQ0

LLPQ LLPQ0

Average EER ± STDERROR : 27.3 ± 2.5 14.6 ± 0.7 25.4 ± 2.3 15.9 ± 0.6

LBSIF LBSIF 0

LBSIF LBSIF 0

Average EER ± STDERROR : 24.2 ± 2.6 14.7 ± 0.4 26.7 ± 2.0 18.5 ± 0.6

materials. Detected samples are used to automatically retrain

and update a W-SVM-based spoof detector. The performance

of the fingerprint spoof detector when retrained based on the

output of the novel material detector improves by up to 44%.

As the proposed adaptation scheme is offline, any retraining

overhead does not affect the throughput of the spoof detector.

One weakness of this approach is the potential to misclassify

lower quality live prints as novel spoofs. The cumulative effect

of retraining the spoof detector using live samples, which

are incorrectly detected as new spoofs by the novel material

detector, will be counter-productive over a period of time.

A future direction that may prove to be fruitful is feature

learning [3], whereby strongly invariant representations can

be learned for each known class, thus improving the detection

rate of low-quality live samples. Coupled with approaches that

are tailored to open set recognition like the W-SVM, this could

be a powerful solution to the overall problem.
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