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Abstract: Open-set signal recognition provides a new approach for verifying the robustness of models
by introducing novel unknown signal classes into the model testing and breaking the conventional
closed-set assumption, which has become very popular in real-world scenarios. In the present work,
we propose an efficient open-set signal recognition algorithm, which contains three key sub-modules:
the signal representation sub-module based on a vision transformer (ViT) structure, a set distance
metric sub-module based on Wasserstein distance, and a class space compression sub-module based
on reciprocal point separation and central loss. In this algorithm, the representing features of signals
are established based on transformer-based neural networks, i.e., ViT, in order to extract global
information about time series-related data. The employed reciprocal point is used in modeling
the potential unknown space without using the corresponding samples, while the distance metric
between different class spaces is mathematically modeled in terms of the Wasserstein distance instead
of the classical Euclidean distance. Numerical experiments on different open-set signal recognition
tasks show that the proposed algorithm can significantly improve the recognition efficiency in both
known and unknown categories.

Keywords: open-set classification; signal recognition; transformer; ViT; Wasserstein distance

1. Introduction

Deep learning (DL), represented by the convolutional neural network (CNN), has
recently made remarkable achievements in the field of signal recognition [1–6]. However,
the over-reliance on massive labeled training data significantly limits its ability to solve
practical signal recognition problems. Due to the assumption that the test classes are
consistent with the classes from the training set, DL-based signal recognition models
often fail in real-world scenarios if any unexplored and unknown class appears during
the inference stage [3,7]. The key issue is whether, without having enough knowledge
about the world with open space risk, our models can still perform well if any unseen and
challenging scenario is encountered. This is termed the open-set signal recognition problem,
which can be considered as the practical application of open-set recognition (OSR) [7–10]
on signal processing.

The open-set signal recognition (OSSR) provides a new evaluation criterion to verify
the robustness of models by introducing novel, unknown signal classes into the model
testing and breaking the conventional closed-set assumption. For instance, the DL-based
signal recognition methods are typically trained on signals observed from known objec-
tives. But users usually receive signals from unknown objectives and expect the model
to distinguish those “outside” signals simultaneously. More specifically, under the open-
set assumption, signals can be split into four basic categories of known-known classes
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(KKCs), known-unknown classes (KUCs), unknown-known classes (UKCs), and unknown-
unknown classes (UUCs) [7]. The goal of OSSR is to ensure that the model can successfully
distinguish all the known signal classes received from the training set and reject all the
unknown signal classes in the inference phase.

The traditional machine learning-based (TML-based) methods were proposed for
solving open-set recognition problems (not limited to the OSSR problem), e.g., the compact
abating probability (CAP) method to explicitly reduce the open space risk [10,11]. Some
TML-based methods were proposed with various schemes, such as the sparse represen-
tation, extreme value, or hashing, to separate known and unknown classes [12–18]. In
addition to the TML-based methods, the DL-based methods employ various deep learning
models with well-designed losses and recognition functions to handle the open-set recog-
nition. For example, the early typical DL-based open-set recognition method calibrates
softmax scores and uses the extreme value theorem to detect outliers [19]. Furthermore,
the DL-based methods have become the mainstream methods for the open-set recogni-
tion problem with a series of works [20–26]. More details can be found in the recent
survey papers [7,27].

In the case of signal recognition problems, the premise of the DL-based method is to
collect sufficient types and numerous quantities of signal data. However, it is difficult to
collect enough samples for some signals, especially in the military field. Open set recogni-
tion has become more popular in real-world scenarios, where an incomplete knowledge
of modulation types exists at the training time, and unknown classes are required to be
classified during the testing. Unknown signals will appear in the testing set. However, the
DL model can only classify them into the known classes with the highest probability score
rather than treating them as unknowns. It becomes necessary to apply the open set theory
to the OSSR problem in order to overcome the limitation of deep learning.

The zero-shot learning (ZSL) framework was proposed in [3] to address the OSSR
problems, where the key idea is to learn a representation of the signal semantic feature
space with the CNN structure, as well as to learn the well-designed losses and Mahalanobis
distance metric. The learning with an emerging new class seems relevant to zero-shot
learning, which is a hot topic in image classification and aims to classify those visual classes
which did not appear the in the training data set. The zero-shot learning is assumed to work
with side information, i.e., external knowledge, such as the class definitions, descriptions,
or properties, that can help to associate the seen and unseen classes, and, hence, it can be
treated as a kind of transfer learning. In contrast, learning with an emerging new class is a
general machine learning setting that does not assume such external knowledge.

In this work, we propose an efficient open-set signal recognition algorithm named
open-set signal recognition based on the transformer and Wasserstein distance (OSSGTW).
It contains three key sub-modules including signal representation, which is a sub-module
based on ViT structure, the set distance metric sub-module based on Wasserstein distance,
and the class space compression sub-module based on reciprocal point separation and central
loss. In this algorithm, the representing features of signals are established based on the
transformer-based neural networks, i.e., ViT, in order to extract the global information
about the time series-related data. The employed reciprocal point is used to model the
potential unknown space without the corresponding samples, and the distance metric
between different class spaces is mathematically modeled in terms of the Wasserstein
distance instead of the classical Euclidean distance. The main contributions of this work
are as follows:

(1). An efficient open-set signal recognition algorithm is proposed, which employs a recip-
rocal point and central loss to establish the signal classification procedure, especially
for unknown categories;

(2). Transformer-based structure and Wasserstein distance, which are creatively used to
extract features and measure category distances, respectively;
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(3). Numerical experiments on different open-set signal recognition tasks are performed,
which show that the proposed algorithm can significantly improve the recognition
efficiency on both known and unknown categories.

The following is the roadmap of this paper. Section 2 summarizes the major related
works on the open-set learning and signal recognition methods. Section 3 presents the
preliminary knowledge for our work, followed by the proposed open-set signal recog-
nition algorithm in Section 4. Comprehensive experiments on real signals are presented
in Section 5.

2. Related Work

Recently, signal recognition via deep learning has achieved a series of successes. The
convolutional radio modulation recognition network was proposed in [28], which can
adapt itself to the complex temporal radio signal domain and also works well at low
signal-to-noise ratios (SNRs). The residual neural network was employed in [2] to perform
the signal recognition tasks across a range of configurations and channel impairments,
offering referable statistics. Two convolutional neural networks, AlexNet and GoogLeNet,
were used in [29] to address the modulation classification tasks by demonstrating the
significant advantage of the deep learning-based approach in this field. Another deep
learning-based big data processing architecture for the end-to-end signal processing task
was proposed in [30] to obtain important information from radio signals. The adversarial
evasion attacks, which lead to misclassification in the context of wireless communications,
were evaluated in [31]. Further, an automatic multiple multicarrier waveform classification
was introduced in [32], which can use the principal component analysis to suppress the
additive white Gaussian noise and reduce the input dimensions of CNNs. Some other
CNN-based signal recognition algorithms were also proposed to demonstrate the efficient
recognition ability [33–35].

In summary, deep learning-based open-set recognition methods can be categorized
into two groups: discriminative model-based methods and generative model-based meth-
ods. The discriminative model-based methods calibrate the classification logistics to detect
UUCs. The typical OpenMax [19] employed an OpenMax layer and output probabili-
ties with Weibull distributions. On the basis of OpenMax, CROSR [23] performed more
encoding processing on the original sample x by rebuilding the sample to improve the
performance of the method in the open set scenarios. In addition, there are some methods to
improve on OpenMax, such as DOC [23], COOL [36], C2AE [37], etc. The generative model-
based methods, on the other hand, learn distributions of known classes. G-OpenMax [38]
introduced a conditional GAN to synthesize the mixtures of unknown classes and pre-
dict explicit probability estimations over unknown classes. OSRCI [37] does not generate
unknown class samples through the confrontation generation network but generates un-
known class samples that are close to the known class to improve the performance of
the method. ASG [39] can generate not only data samples of unknown classes but also
data samples of known classes. After generating the samples, we can distinguish between
known and unknown classes by the supervised learning proposed in GCM-CF [40], which
can disentangle sample attributes and class attributes. However, none of these methods
focused on designing new networks for open-set problems but used some existing popular
networks for closed-set problems.

3. Preliminaries

Before introducing our proposed open-set signal recognition algorithm, some prelim-
inaries are discussed as follows, including the settings of the fundamental model of the
OSSR problem and the popular benchmark algorithm APRL [26].

In this paper, we denote the training and testing datasets as Dtrain and Dtest, respec-
tively. The training dataset is expressed as:

Dtrain := {(x1, y1), · · · , (xi, yi), · · · , (xn, yn)},
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With n as the number of training samples, xi ∈ Rd and yi are the features and labels
of the i-th sample, respectively. We assume that there are ` known classes in the training
dataset labeled as yi ∈ {1, · · · , `}. On the other hand, the testing dataset Dtest contains u
samples and it can be expressed as:

Dtest :=
{

x̂1, · · · , x̂j, · · · , x̂u
}

,

where the label space of the testing procedure is {1, · · · , `} ∪ {`+ 1, · · · , `+ `u}, i.e., there
are `u unknown classes. Following the work in [26], the deep embedding space of category
k is denoted by Sk and its corresponding open space is denoted byOk. In order to formalize
and manage the risk of the open space effectively, Ok is separated into two subspaces,
namely the positive open space from other known classes Opositive

k and the remaining

infinite unknown space as the negative open space Onegative
k with

Ok = O
positive
k ∪Onegative

k .

We can define Dk
train ∈ Sk from category k as the positive training data samples,

D 6=k
train ∈ O

positive
k from other known classes except category k as the negative training data

samples, and DU ∈ O
negative
k from Rd as the potential unknown data samples. The function

h : Rd → N denotes the prediction function from embedding x to label y. The overall
open-set classification problem can be formulated as:

min
f

`

∑
k=1
Lknown

(
f ,Sk ∪O

positive
k

)
︸ ︷︷ ︸

Lknown( f ,Dtrain)

+α
`

∑
k=1
Lo

(
f ,Onegative

k

)
︸ ︷︷ ︸

Lo( f ,DU )

, (1)

where Lknown denotes the empirical classification risk on the known data, and Lo denotes
the open space risk considered in the measurement of the uncertainty of labeling the
unknown samples under the known or unknown class. To emphasise, the objective function
can be considered a combination of known classes and unknown classes, while the model
needed to solve Problem (1) can minimize the combination of the empirical classification
risk on the labeled known data and the open space risk on the potential unknown data
simultaneously, over the space of the allowable recognition functions. This makes the
embedding function more distinguishable between the known and unknown spaces.

The adversarial reciprocal point learning algorithm (ARPL) [26] is one of the typical
methods for open set recognition, which also follows the scheme to minimize the overlap-
ping of the known and unknown distributions without any loss in the known classification
accuracy. In this paper, our proposed algorithm follows the basic structure of ARPL, while
a series of improvements were introduced, not only to increase its recognition efficiency
but also to improve its adaptability to signal data. In ARPL, the reciprocal point of each
category plays an important role, while the reciprocal point pk for category k is designed to
denote the latent representation of the sub-dataset D 6=k

train ∪DU . The key constraint on the
reciprocal point pk is that the samples of Ok should be closer to pk than the samples of Sk,
which can be expressed mathematically as [26]

max
(
∑ d

(
D 6=k

train ∪DU , pk
))

< d, ∀d < ∑ d
(
Dk

train, pk
)

, (2)

where the distance d(·, ·) is typically calculated by combining the Euclidean distance and
dot product. For efficient and tractable computation, this constraint can be relaxed and
further used in designing the open space risk function. To summarize, Lknown and Lo can
be expressed in detail as:
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 Lknown( f ,Dtrain) := Lknown

(
θ,
{

pk
})

= ∑`
k=1 ∑x∈Sk∪O

positive
k

{
− log

[
p
(

y = k
∣∣ x, f ,

{
pk
})]}

,

Lo( f ,DU ) := Lo

(
θ,
{

pk
}

,R
)
= ∑`

k=1 ∑D 6=k
train∪DU

{
max

(
d
(

x, pk
)
−R, 0

)}
,

(3)

where θ denotes the parameter of the embedding and prediction functions, and the function
p(·) is defined as follows with a hyperparameter γ:

p
(

y = k
∣∣ x, f ,

{
pk
})

=
eγd(x,pk)

∑`
j=1 eγd(x,pj)

.

The empirical classification risk has a close relationship with the classification loss of
the reciprocal points. The parameter R can be considered as a learnable margin. Based
on the above assumptions and well-defined loss functions, the typical ARPL algorithm
involves the following scheme:

(1) Initialize the parameters θ,
{

pk
}

,R respectively; set
the hyperparameters α, γ and the learning rate µ; the iteration number is t;
(2) Do t→ t + 1;
(3) Calculate the loss by Lt = Lt

known + αLt
o;

(4) Update the parameters
{

pk
}

by(
pk
)t+1

=
(

pk
)t
− µ ∂Lt

∂pk

(
θt,
{(

pk
)t
}

,Rt
)

;

(5) Update the parametersR by

Rt+1 = Rt − µ ∂Lt

∂R

(
θt,
{(

pk
)t
}

,Rt
)

;

(6) Update the parameters θ by

θt+1 = θt − µ ∂Lt

∂θ

(
θt,
{(

pk
)t
}

,Rt
)

.

The scheme can be considered the key to the ARPL algorithm. The method proposed
in this paper will also follow this general scheme. More modifications and improvements
are discussed below, especially for the open-set signal recognition.

4. The Proposed Algorithm

In the present work, we propose an efficient open-set signal recognition algorithm
named the open-set signal recognition based on the transformer and Wasserstein distance
(OSSGTW). The algorithm contains three key sub-modules: the signal representation sub-
module based on the ViT structure; the set distance metric sub-module based on Wasserstein
distance; and the class space compression sub-module based on reciprocal point separation
and central loss. In OSSGTW , the representing features of the signals are established based
on the transformer-based neural networks, i.e., ViT, in order to extract global information
about time series-related data. The three sub-modules of OSSGTW are summarized below:

- The signal representation sub-module: For signal recognition, the signal sequence is
typically transformed into time-frequency matrices through energy detection and the
short-time fast Fourier transform (FFT). However, although a sequential relationship
structure must exist among the columns of the time-frequency matrix, the traditional
convolution neural network-based (CNN-based) feature extraction technique lacks
the information vision of the global feature. The transformer-based model with
the ability to extract the global feature is more suitable for the feature extraction of
signal sequences. We employed the transformer-based ViT model as the basic feature
extraction scheme to obtain more efficient features of the original signal data.

- The set distance metric sub-module: The distance of the reciprocal point to the cor-
responding dataset was determined by combining the Euclidean distance and dot
product in the classical ARPL. In order to calculate a better distance to a dataset, the
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Wasserstein distance could be employed, which is usually used to reflect the distance
between distributions (a dataset can be considered as a uniform distribution defined
in data samples). Furthermore, the use of the Wasserstein distance could be beneficial
in determining the reciprocal point for each category.

- The class space compression sub-module: In order to realize the recognition of un-
known electromagnetic signals by separating the known and unknown electromag-
netic signal category feature spaces more accurately, we introduced the center loss to
compress the feature space of the known electromagnetic signal target, and expanded
the feature space of the unknown electromagnetic signal target based on the well-
established feature center of known categories. The feature space range of unknown
electromagnetic signal categories can be improved by constraining the inter-class
dispersion and intra-class compactness, which could be beneficial in improving the
classification performance.

The overall algorithm framework is shown in Figure 1. The details of the above
improvements will be discussed in the following sub-sections.

Figure 1. Main algorithm framework containing three key sub-modules: the signal representation
sub-module based on tansformer-based ViT structure; the set distance metric sub-module based on
Wasserstein distance; abd the class space compression sub-module based on reciprocal point separation
and central loss.

4.1. Signal Representation Sub-Module

The original one-dimensional electromagnetic signal needs to be processed as a fixed
time-frequency matrix through energy detection, short-time Fourier transform, and other
operations. The short-time Fourier transform usually aims to use a fixed-size window to
intercept a small signal sequentially and convert each small signal into a one-dimensional
matrix by discrete Fourier transform. Further, all the obtained matrices are spliced into
a time-frequency matrix of a well-designed size. The problem of signal recognition can
be considered as the task of image classification. From the generation process of a signal
sequence as a time-frequency matrix, it can be found that the sequential relationship
naturally exists between each column of the matrix. It has been proven that the model
with a high recognition rate in the closed set scene has a high positive correlation with
the recognition rate in the open set scene. As a result, it would be better to employ some
feature extraction models with the global feature extraction ability for open-set scenarios.
The transformer [41] was first proposed in natural language processing, which uses the
self-attention mechanism to encode global information about the sequence data. The vision
transformer, i.e., ViT [42], can be considered the first transformer-based model for computer
vision. ViT has a strong global feature extraction ability to extract the features of time-
frequency matrices. However, the ViT model network has extreme structural parameters in
the training process, requiring data enhancement and regularization techniques to prevent
over-fitting with relatively low computational efficiency. In this signal representation sub-
module, we employ the lightweight mobile ViT model [43], instead of typical CNN-based
models, as the important feature extractor to extract the global features. The mobile ViT
combines both the traditional convolution layer and transformer model to learn local and
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global features, respectively. On the basis of the reduction in parameters to facilitate the
training, it has the ability to extract global information.

4.2. Set Distance Metric Sub-Module

Instead of comparing two datasets with respect to the Euclidean metric, we intro-
duced the popular Wasserstein distance. For the given two datasets {ai, i = 1, · · · , m} and{

bj, j = 1, · · · , n
}

, which can be considered as two uniform distributions defined on these
two datasets respectively. The corresponding measures can be expressed as:

u =
m

∑
i=1

1
m

δxi , v =
n

∑
j=1

1
n

δyj ,

where δ is the function defined in each data sample. The distance between {ai, i = 1, · · · , m}
and

{
bj, j = 1, · · · , n

}
can be defined as the Wasserstein distance between u and v. We first

introduced the formulation of the Kantorovich optimal transport problem as follows:

LC(u, v) def.
= min

P∈U( 1
m , 1

n )
〈C, P〉 def.

= ∑
i,j

Ci,jPi,j, (4)

where, the constraint set U( 1
m , 1

n ) is defined as:

U(
1
m

,
1
n
)

def.
=

{
P ∈ Rn×m

+ : P1m =
1
m

, PT1n =
1
n

}
, (5)

And matrix C is the cost matrix while each element Ci,j is determined by the corre-
sponding data samples (ai and bj). The Kantorovich optimal transport problem (4) is a
linear programming problem with n + m equality constraints. The Wasserstein distance
between {ai, i = 1, · · · , m} and

{
bj, j = 1, · · · , n

}
can further be defined as:

W
(
{ai},

{
bj
})

:= LDp(u, v), (6)

where the distance matrix Dp is used to represent the cost matrix with 0 ≤ p ≤ 1. In this
paper, the Wasserstein distance is used to improve both the empirical classification risk
Lknown and open space risk Lo, i.e.,

p
(

y = k
∣∣ x, f ,

{
pk
})

= eγW({x},pk)

∑`
j=1 eγW({x},pj)

in Lknown,

Lo

(
θ,
{

pk
}

,R
)
= ∑`

k=1 ∑D 6=k
train∪DU

{
max

(
W
(
{x}, pk

)
−R, 0

)}
.

(7)

4.3. Class Space Compression Sub-Module

In order to further compress the feature space of known electromagnetic signal targets,
the center loss [44] was introduced to optimize our algorithm. The center loss increases
the distance between the classes by constraining the inter-class dispersion and intra-class
compactness to improve the feature space range of unknown classes. Although it cannot
increase the inter-class distance of the class center, the increase in the inter-class edge
distance can increase the scope of the unknown class feature space when combined with
the definition of reciprocal points to further improve the performance of the method. For
each category k, we introduced a central feature ck to further define the central loss as:

Lcen :=
`

∑
k=1

∑
yx=k
‖h(x)− ck‖2, (8)

where h(·) denotes the feature embedding function based on the above signal representation
sub-module. The central feature ck of category k dynamically changes with respect to the
signal representation neural network, whose working principle is shown in Figure 2.
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However, due to the large amount of data in the training set, the characteristics of
each sample are calculated in every iteration, and the central features of each category
are updated at the same time, which leads to a large computational overhead and low
computational efficiency. Therefore, in the actual training process, the update of the feature
center is not based on the entire training set but based on batch samples. In each batch
update process, our algorithm calculated the distance between the sample feature and the
feature center, and then the calculation result was used to update the feature center. After
the establishment of the clustering centers, although the distance between them did not
increase, the intra-class space of each target was compressed. In the open set scenario, the
feature spaces of the known and unknown electromagnetic signal targets complemented
each other in the global space. So, the inclusion of the central loss could also increase the
target feature space of the unknown electromagnetic signals and effectively improve the
performance of the algorithm.

Figure 2. The principles of the proposed center loss and the central feature. The center loss drives the
embedding features of each category to accumulate to the corresponding central feature c.

Furthermore, in order to constrain the convergence direction of reciprocal points, the
distance loss between the reciprocal points of each electromagnetic signal category pk and
the cluster center of the non-target and known class targets Tk were introduced, i.e.,

Lac :=
∥∥∥Tk − pk

∥∥∥2
. (9)

The overall loss function of our proposed algorithm is expressed as:

Lall

(
θ,
{

pk
}

,R
)

:= Lknown + αLo + βLcen + ηLac, (10)

With α, β, and η as the related penalty parameters.

4.4. Algorithm Framework

In order to summarize, the overall algorithm, namely the open-set signal recognition
based on the transformer and Wasserstein distance (OSSGTW), can be proposed as:

(1) Initialize the parameters θ,
{

pk
}

,R respectively; set
α, β, η, γ, as the learning rate µ and the iteration number t;

(2) Perform t→ t + 1;

(3) Calculate the loss by Lt
all

(
θt,
{(

pk
)t
}

,Rt
)

;

(4) Update the parameters
{

pk
}

by(
pk
)t+1

=
(

pk
)t
− µ

∂Lt
all

∂pk

(
θt,
{(

pk
)t
}

,Rt
)

;

(5) Update the parametersR by

Rt+1 = Rt − µ
∂Lt

all
∂R

(
θt,
{(

pk
)t
}

,Rt
)

;

(6) Update the parameters θ by

θt+1 = θt − µ
∂Lt

all
∂θ

(
θt,
{(

pk
)t
}

,Rt
)

.
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5. Experiments

In this section, experimental verification with two collected electromagnetic signal
datasets is conducted, and four state-of-the-art open-set signal recognition methods are
compared according to some typical evaluation metrics.

5.1. Datasets

Two electromagnetic signal datasets are considered in this paper, i.e., Mobile dataset
and Radio dataset.

The mobile dataset contained electromagnetic signals from 10 mobile phones, including
three Glory-10 mobile phones, one Huawei-P9 mobile phone, three Apple-6s mobile phones,
one Meizu-X8 mobile phone, and two OPPO-R11 mobile phones. The Radio dataset was
taken from the electromagnetic signals collected from 10 radio stations, including three
MESHs_1UE radio stations, three MESHs_2UE large radio stations, three round small radio
stations, and one round large radio station. After implementing the filter, energy detection,
slice, and STFT operations on the original signals, a series of 224× 224 labeled complex
matrices were generated. By separating the real and imaginary parts, the time-frequency
matrix samples of the dimension of 2× 224× 224 could be established. Finally, the dataset
with the signal samples of the 3× 224× 224 dimension could be constructed with some
splicing operations (the corresponding mean values of the first and second dimensions were
set to be the third dimension). In order to reflect universality, we conducted five experiments
for each algorithm. Each experiment randomly selected six out of the ten targets as the
known electromagnetic signals, such as targets (labeled 0–5), and the remaining four targets
as the unknown electromagnetic signals, such as targets (labeled 6).

5.2. Evaluation Metric

In order to more comprehensively evaluate the performance of the method, we evalu-
ated all the algorithms on the AUC, Accuracy and PRE indicators for both the known and
unknown signals.

AUC: The AUC index indicates the probability of the model scores, where the ran-
domly selected positive category is higher than the negative category. The AUC index
was obtained by calculating the area under the ROC curve, which is calculated by two
parameters (namely, TPR and FPR). The ROC curve is established with FPR as the X-axis
and TPR as the Y-axis, which can be expressed as:

TPR :=
TP

TP + FN
, FPR :=

FP
FP + TN

. (11)

Accuracy: The basic accuracy index refers to the ratio of the number of correctly
predicted samples over the total number of predicted samples, which can be expressed as:

Accuracy := ∑i(TPi + TNi)

∑i(TPi + TNi + FPi + FNi)
. (12)

PRE: The PRE index refers to the ratio of the number of positive samples that are
predicted correctly to the number of all positive samples predicted. Different from the
accuracy index, the PRE index focuses only on the part predicted as the positive samples,
which can be expressed as:

PRE := ∑i TPi

∑i(TPi + FPi)
. (13)

In order to reflect the difference between the identification performances of the open-
set recognition methods, all the experimental indicators were calculated for both the known
and unknown categories.
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5.3. Baseline Algorithms

Many state-of-the-art open-set recognition methods are compared below, including
OpenMax [21], G-OpenMax [38], CROSR [23], ARPL [26], and SARPL [26]. Furthermore,
we compared our proposed algorithm with some ablation versions in order to show the
efficiency of the introduced sub-modules. Those methods are briefly introduced below:

(1) OpenMax [21]: A typical discriminative model-based method with OpenMax layer;
(2) G-OpenMax [38]: A generative model-based method extended from OpenMax, which

employs the conditional generation countermeasure network (GAN) to generate
unknown class samples;

(3) CROSR [23]: An improved version of OpenMax, which is obtained through recon-
structing samples and encoding more original samples to improve the performance in
open set scenarios;

(4) ARPL [26]: The reciprocal points are introduced to separate the feature spaces of the
known and unknown classes, and the classification is determined by a threshold method.

(5) SARPL [26]: Based on the classical ARPL method, we introduced the proposed Lac
loss function to constrain the convergence direction of the reciprocal points. This
SARPL can be considered as an ablation version of our proposed algorithm OSSGTW
without the ViT, Wasserstein distance, and central loss techniques.

(6) Ablation versions: OSSGTW(w/o CL) and OSSGTW(w/o W/CL) are the versions with-
out central loss, and without both Wasserstein distance and central loss, respectively.

5.4. Comparisons

Tables 1–3 contain the main results on the mobile and radio datasets, respectively. It was
found that the proposed OSSGTW significantly improved the results of all the indicators
on both the mobile and radio datasets. Compared with the classical APRL algorithm, the
accuracy indicator on the known classes was improved by 5.18%, while the AUC indicator
was improved by 3.26%. As for the unknown categories, the accuracy index was increased by
3.13%. The most significant improvements included the increase of up to 4.26% in the PRE
index and up to 5.37% in the AUC index with respect to the known and unknown datasets,
respectively. The proposed OSSGTW algorithm was compared with some ablation versions,
which also shows the efficiency of the proposed three basic sub-modules. It was found that the
effect of using the ViT model to extract the features and employing the center loss to reduce the
distance within the target feature classes produced a 1–2% improvement in each index, while
the Wasserstein distance produced less than a 1% improvement due to the overall effect.

Table 1. The results of the phones.

Method
Accuracy (%) PRE (%) AUC (%)

Known Unknown Known Unknown Knonw Unknow

OpenMax 82.62
(±2.11)

86.31
(±1.38)

81.70
(±2.91)

85.07
(±2.53)

89.57
(±1.97)

89.79
(±3.10)

G-OpenMax 84.84
(±3.12)

87.98
(±2.53)

83.29
(±2.56)

84.74
(±1.01)

90.90
(±2.47)

90.84
(±2.01)

CROSR 87.29
(±2.91)

90.62
(±1.76)

88.01
(±2.32)

89.62
(±2.77)

92.37
(±2.21)

92.18
(±1.34)

ARPL 88.64
(±2.83)

91.70
(±2.14)

89.38
(±2.23)

91.21
(±1.65)

93.18
(±1.92)

91.41
(±1.71)

SARPL 88.94
(±2.16)

92.18
(±2.05)

89.55
(±1.93)

91.98
(±1.44)

93.36
(±2.19)

92.98
(±1.75)

OSSGTW
(w/o

W/CL)

91.58
(±1.34)

93.01
(±1.28)

92.93
(±1.19)

92.29
(±1.12)

94.75
(±1.23)

93.12
(±1.38)

OSSGTW
(w/o CL)

92.01
(±2.24)

93.29
(±1.23)

92.45
(±1.02)

92.77
(±1.43)

95.21
(±1.38)

93.53
(±1.48)

OSSGTW
93.82

(±1.94)
94.83

(±1.73)
94.21

(±1.12)
94.62

(±2.26)
96.44

(±1.65)
95.32

(±1.76)
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Table 2. The results of the radios.

Method
Accuracy (%) PRE (%) AUC (%)

Known Unknown Known Unknown Known Unknow

OpenMax 78.52
(±1.38)

80.16
(±1.11)

78.24
(±1.62)

77.84
(±1.34)

87.11
(±1.31)

81.84
(±1.34)

G-OpenMax 80.34
(±2.10)

81.90
(±2.81)

82.21
(±3.31)

78.56
(±2.46)

88.20
(±2.55)

83.48
(±1.34)

CROSR 81.35
(±1.70)

85.10
(±1.42)

81.98
(±3.13)

83.92
(±3.39)

88.81
(±1.09)

86.02
(±2.65)

ARPL 82.83
(±2.40)

88.09
(±2.83)

81.99
(±1.25)

87.04
(±2.13)

89.70
(±1.19)

87.56
(±1.06)

SARPL 83.54
(±1.74)

88.84
(±1.11)

82.98
(±2.37)

87.72
(±1.19)

90.13
(±2.98)

88.40
(±1.41)

OSSGTW
(w/o

W/CL)

84.78
(±1.81)

90.39
(±1.11)

84.82
(±1.39)

89.82
(±1.94)

90.89
(±2.02)

90.03
(±1.49)

OSSGTW
(w/o CL)

85.15
(±2.03)

91.02
(±1.39)

85.92
(±1.92)

90.23
(±1.58)

91.28
(±1.30)

90.37
(±1.58)

OSSGTW
86.24

(±1.13)
92.62

(±1.27)
86.25

(±1.18)
91.63

(±1.89)
91.74

(±1.39)
92.93

(±2.96)

Table 3. The definition of some fundamental metrics.

Actual
Predicted

Positive Negative

Positive TP FN

Negative FP TN

6. Conclusions

In this work, we proposed an efficient open-set signal recognition algorithm called
OSSGTW , which contains three key sub-modules: the signal representation sub-module
based on the ViT structure, the set distance metric sub-module based on Wasserstein
distance, and the class space compression sub-module based on reciprocal point separation
and central loss. Numerical experiments on different open-set signal recognition tasks
show that the proposed algorithm can significantly improve the recognition efficiency of
both known and unknown categories.
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