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Abstract—Similar to ballistic tests in which we match a gun to
its bullets, we can identify a given digital camera that acquired an
image under investigation. In this paper, we discuss a method for
identifying whether or not an image was captured by a specific
digital camera. The method relies on noise residual features
related to the images under investigation. Our approach considers
an “open set” recognition scenario, under which we can not rely
on the assumption of full access to all of the potential source
cameras. This is the only scenario investigators are faced with
in the real world. In this case, we model the decision space to
take advantage of a few known cameras and carve the decision
boundaries to decrease false matches increasing the reliability of
image source attribution as an aid for digital forensics in the
court of law. This approach performs favorably vs. the state-of-
the-art.

Keywords-Digital Forensics; Open Set Recognition; Camera
Attribution; Sensor Fingerprinting.

I. INTRODUCTION

As a way to represent a unique moment in space-time,

digital images are often taken as silent witnesses in the court

of law and are a crucial piece of crime evidence (e.g., in

child pornography, movie piracy cases, or insurance claims).

Verifying a digital image’s integrity and authenticity is an

important task in forensics especially considering that the

images can be digitally modified easily [1].

The authenticity of an image under investigation can be

enforced by identifying its source. In the same manner that

bullet scratches allow forensic examiners to match a bullet to

a particular gun with reliability high enough to be accepted

in courts, source attribution techniques aim at looking for

“scratches” left in an image by the source camera. These marks

can be caused by factory defects, interaction between device

components and the light, and others [2].

Currently, the forensic community has put some effort

into the identification of image sources generated by a

scanner [3, 4], printer [5, 6], or camera [7, 8, 9, 10]. A

simple way to identify an image’s source is by its EXIF header

when available for a format (e.g., JPEG and TIFF), which

contains textual information about the digital camera type and

the conditions under which the image was taken (exposure,

date and time, etc.). In the case of JPEG encoded images,

additional information about the source can be gathered from

the quantization table in the JPEG header. However, we cannot

rely on such EXIF headers because their information can be

easily destroyed or replaced [1].

Ruling out the EXIF headers, the problem of digital image

source attribution may still be approached in other ways. Some

approaches have the objective of identifying the brand/model

of the source camera [11, 12]. For this, approaches generally

analyze color interpolation algorithms. Nevertheless, many

camera brands/models use components by only a few factories,

and the color interpolation algorithm is the same (or similar)

among different models of the same brand [1, 2].

Most source attribution approaches aim at identifying the

specific camera, not just the make and model that generated

an image. This generally can be done by analyzing image

artifacts caused by factoring defects. Methods based on sensor

pattern noise (SPN) have drawn positive attention from the

forensic community due to the fact that they can identify not

only camera models of the same make, but also individual

instances of the same model. The deterministic component of

SPN is caused by many factors such as imperfections during

the sensor manufacturing process, different sensitivity of pixels

with respect to light due to the inhomogeneity of silicon

wafers, variable sensitivity of each sensel to light, and the

uniqueness of manufacturing imperfections that even sensors

of the same model would possess. These factors make SPN a

robust fingerprint for identifying and linking source cameras

and verifying the integrity of images [1, 2, 9].

Although previous approaches have been effective for image

source attribution, many of them were investigated in a

Closed Set scenario, with the assumption that an image under

investigation was generated by one of n known cameras

available during training. Unfortunately, we cannot always

be sure that an image was generated by one of the cameras

under investigation. Hence, it is important to model the source

camera attribution problem in an Open Set scenario, in which

we only have access to a limited set of suspect cameras. An

Open Set scenario mimics a realistic situation much better than

a Closed Set one. We need a classification model according

to the few available classes while trying to take the unknown

variables into consideration.

Contributions:

• We discuss our technique to match an image to its specific

source by using SPN features in an Open Set scenario,

in which we have access to a limited set of cameras for

training, and an image can be generated by any camera,

including cameras to which we never had access.

• We account for the unknown cameras by optimizing

the decision boundary hyperplane found by a traditional
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Support Vector Machine (SVM) classifier and minimizing

the training data error associated with it.

• In addition, we also have a minor contribution in the

feature characterization part of the problem since we

extend upon Lukas et al.’s approach [9] based on SPN

source camera attribution.

To our knowledge, this is a first step towards robust source

camera attribution approaches, analyzing images with different

resolutions and acquisition conditions with high classification

results through machine learning techniques.

Finally, we organized this paper in five sections: Section II

presents some related work about camera source attribution.

Section III shows details about the Open Set recognition

problem. Section IV presents our approach for the problem

of source attribution. Section V presents the experiments and

results of this work.

II. FORENSIC RELATED WORK

For specific device source attribution, we aim at identifying

the exact camera that produced the image in question. It can

be done considering hardware and component imperfections,

effects of operational conditions, environment, noise, sensor

dust on lens, etc. It is important to observe that these features

may be temporal by nature, and thus, not reliable in certain

circumstances [1].

There is some previous work that analyzes device defects

for image source identification. Kurosawa et al. [7] propose an

approach to identify an image’s source by using fixed pattern

noise (FPN). FPN is caused by dark currents, which refers

to the accumulation of electrons in each sensel of the device

due to thermal action. The approach proposed in [7] is limited

because not all cameras have these defects. Furthermore, this

kind of noise is not robust and can be destroyed when the final

image is being generated, considering modern cameras.

The approach proposed by Geradts et al. [13] aims at

identifying the specific camera that generated one image by

analyzing pixel defects. The authors considered hot pixels

(individual pixels on the sensors with higher than normal

charge leakage), cold pixels (pixels with lower than normal

charge) and pixel traps (clusters of hot or cold pixels). The

authors did not report quantitative results about the approach’s

effectiveness. The major problem of this technique is the

fact that some cameras do not contain any defects and other

cameras eliminate defective pixels by post-processing their

images on-board.

Dirik et al. [8] proposed a method that analyzed artifacts

caused by dust on the lens at the time the image was taken.

The authors consider that the dust on the lens generates a

pattern of artifacts that can be extracted from images. They

report visual results, considering a scenario with two different

cameras. However, this approach is also limited, because these

artifacts are temporal by nature and can be easily destroyed

(the lens may be cleaned, for instance).

Approaches based on sensor pattern noise (SPN) for image

source attribution have drawn positive attention from the

forensic community due to the fact that they are a robust way

to identify the specific camera, including individual instances

of the same model, and not just the brand/model of the

device. As Fig. 1 shows, we can consider two types of noise

patterns: Fixed Pattern Noise (FPN) and Photo Response Non-

Uniformity Noise (PRNU). FPN is caused by dark currents, as

discussed by Kurosawa et al. [7]. The PRNU is divided into

low-frequency defects noise (LFD) and pixel non-uniformity

noise (PNU). LFD is usually caused by light refraction on

particles near the camera and zoom configurations. This kind

of noise is not considered for camera attribution because of

its unstable nature. PNU is caused by the interaction between

the light and each sensel of the sensor array.

Fig. 1. Sensor pattern noise hierarchy [1].

Lukas et al. [9] have proposed an approach to identify

the specific source of one image using PNU. The authors

formulate the problem as a detection of the camera sensor

pattern noise. The approach works as follows: for each image

Ij contained in a set of images K, calculate the residual noise

RIj using a filter F based on the Discrete Wavelet Transform

(DWT) [14].

RIj = Ij � F (Ij) (1)

Then, they calculate the reference pattern Pc of sensor pattern

noise as the average of residual noise of the set. The residual

noise is used in this step to reduce the influence of scene

details.

Pc =
1

k

k
X

i=1

RIi ,where k = |K|. (2)

Finally, they calculate the correlation value ρc between the

residual noise RJ of one image J under investigation and the

SPN Pc of a set of images of a given camera.

ρc(J) = corr(RJ , Pc) =
(RJ � R̄J).(Pc � P̄c)

||RJ � R̄J ||.||Pc � P̄c||
, (3)

where the bar above the symbol denotes a mean value. A

threshold T is calculated using the Neyman-Pearson approach

to minimize the false rejection rate (FRR) while imposing

a bound on the false acceptance rate (FAR). If the value

of this correlation is higher than T , the authors consider

that the suspect image was generated by the camera under

investigation. High accuracy rates were reported in [9] while

testing with nine cameras, and the results are confirmed in

[15, 16]. Fig. 2 depicts a representation of Lukas et al.’s [9]

approach.



Fig. 2. Lukas et al. [9] approach.

Li [10] proposed an enhancement for the method of Lukas

et. al. [9]. The author examined the influence of scene details

in the reference pattern noise. According to the author, the

high frequencies (e.g., object edges) existing in an image can

contaminate its PRNU component, and lead to unsatisfactory

camera identification results through sensor pattern noise. The

author proposed a sensor pattern noise enhancement method

to reduce the influence of the scene content in the noise

component. Considering one image Ip 2 I, after extracting

its noise n = RIp according to Eq. 1, the authors applied a

normalization in each pixel n(x, y), generating the enhanced

noise ne(x, y). The model which yielded the best results is

defined by

ne(x, y) =

⇢

e−0.5n2(x,y)/α2

, if 0 ≤ n2(x, y);

−e−0.5n2(x,y)/α2

, otherwise;
(4)

where α is defined by the user. The best value reported in

that work for this normalization is α = 7. Fig. 3 shows the

original image (a), its sensor pattern noise (b) and its enhanced

sensor pattern noise (c). The author reports accuracy of 94%

in a scenario with six cameras, considering a center 512⇥512
region of the image.

(a) (b) (c)

Fig. 3. (a) An input image. (b) Its noise residual calculated as in [9]. (c)
Noise residual enhancement calculated as in Li’s work [10].

The approach presented by Lukas et al. [9] and its

enhancement proposed by Li [10] allowed the development of

other approaches based on their concepts, as approaches that

aim at identifying the common source of image pairs [17] or

clustering of image sets [18, 19]. Considering source camera

identification by sensor noise, there are some approaches

whose objective is to discover inconsistencies in camera

identification methods and explore how these inconsistencies

can make the source camera identification task difficult [20,

21]. These approaches are called counter-forensic techniques,

and are also important in a forensic research field because they

can help improve the resilience of existing forensic methods.

However, we do not consider the existence of counter-forensic

techniques in the present work.

Although the approaches presented in [9] and [10] are

effective for source camera attribution, it is important to note

that, for estimating the threshold T , the authors assumed they

had examples from all the cameras, and have subsequently

labelled the entire space in a binary fashion as either positive

(generated by the camera under investigation) or negative

(otherwise). Considering that T is linear, this approach may

not be so effective if we need to analyze images generated

by an unknown camera at training time. When we do not

have access to all cameras in an investigation, we believe (and

give evidence supporting our belief) that machine learning

techniques are better suited to calculate a hyperplane to

separate the positive and negative classes in such a scenario,

and that is the main subject of this paper.

III. OPEN SET CLASSIFICATION AND RELATED WORK

A Closed Set scenario assumes that the camera that

generated the image under investigation is among the set of

cameras available during training. The Open Set approach,

on the other hand, does not assume that the image under

investigation was generated by an available camera. Some

available cameras are considered, but not all images come

from these cameras, thereby optimizing the solution for the

unknowns as well as the known. The important difference

is that all positive examples are similar, but each negative

example has its own particularities [22]. Fig. 4 depicts an

example of Open Set classification.

In machine learning, most of the time we do not need, do

not have access to, or do not know all possible classes to

consider. For instance, when classifying whether or not an

image contains a hidden message [1] we might have training

examples of only pristine images (with no hidden messages)

and perhaps some images of only one or two algorithms for

hiding messages. A robust classifier must consider all other

possible types algorithms for hiding messages as relevant

features as a negative class. In many cases, to model this

negative class is non-viable or impossible (for instance,

considering all existent algorithms for hiding messages).

Open Set recognition has received only limited treatment

in the pattern recognition literature. For instance, in a study

of face recognition evaluation methods outlined by Phillips

et al. [23], the authors define a threshold T where all face

identifications necessarily must be higher than this value to

be considered a match. However, being greater than T is not

sufficient to be considered a match therefore possible unknown

impostors are considered even though the system is not trained

with all possible impostors.

Considering problems with source attribution, Wang et

al. [24] perform the camera model identification that generated

one image through Color Filter Array (CFA) coefficients

estimation as is done in [12, 11], and use a combination of two

classification approaches: Two-class SVMs (TC-SVM) [25]
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Fig. 4. Example of Open Set classification. In essence, open set recognition
explicitly presumes not all classes are known a priori. The above diagram
shows a known class of interest (“pentagon”), surrounded by other classes
that are not of interest, which can be known (“triangle”, “circle”, “square”),
or unknown (“?”).

and One-class SVMs (OC-SVM) [26]. The second approach

might be considered a solution for Open Set as it uses one-

class classifiers. For that, the authors use only two of 17

available cameras for training (one class of interest and one for

outlier definition, which can be seen as a form of accounting

for the unknown) and all 17 cameras for testing. The work

reported results of approximately 91% correct matches. The

disadvantage of this approach is the fact that, considering

CFA coefficients, we can identify the brand/model of the

camera that generated one image, but we can not identify

the specific device, considering that different cameras of the

same brand/model probably have the same CFA components.

Their solution is also different than ours given that we propose

a way to automatically find a new position for the decision

hyperplane based on minimizing the training data error in the

case of a binary SVM classifier.

Li [18] and Caldelli et al. [19] proposed different approaches

to separate a set of images into clusters according to their

source devices. In both works, the authors consider that they

do not have any information about the cameras that generated

such images. Although they use unsupervised classification

for the cluster definition, in this case, the works do not

consider an Open Set recognition application because the

authors used a Closed Set of cameras for validation, and one

image necessarily was generated by one of the cameras (that

is, they do not consider any unknown class during training).

IV. OUR APPROACH

Our approach for source camera attribution considering an

Open Set scenario works as follows:

A. Definition of Regions of Interest;

B. Feature Characterization;

C. Source Camera Attribution in an Open Set scenario.

A. Definition of Regions of Interest

Lukas et al. [9] consider a central region of the image

to determine the source of an image. Li’s [10] approach

is also performed considering a central region and in other

experiments, the whole image. However, Li [10] performed

the experiments in a scenario where the author has six suspect

cameras with the same native resolutions (that is, all the

1 

3 

4 5 

2 

6 7 

8 9 

Fig. 5. Regions of interest of 512× 512 pixels each.

images used in those experiments have the same dimensions).

When we have images with different sizes, to consider a

common region of all images (for example, the central region)

may be better for image source camera attribution.

According to [27], different regions of the image can have

different information about the source camera fingerprint. In

our approach for source camera attribution in an Open Set

scenario, we aim at considering many regions of one image

instead of using just the central region as is done in [9] [10].

We take, for each image, nine regions of interest (ROI) of

512 ⇥ 512 pixels according to Fig. 5. For ROIs 1-5 (in the

center), we are assuming that these regions coincide with the

principal axis of the lens and should have more scene details

because amateur photographers usually focus the object of

interest in the center of the lens. These regions tend to have

more scene details and, consequently, may have more noise

information. The ROIs 6-9 (in the periphery of the picture)

are also important because some cameras have effects caused

by vignetting, that is a radial falloff of intensity from the center

of the image, causing a reduction of an image’s brightness or

saturation at the periphery [27, 28].

B. Feature Characterization

As we discussed on Section II, defining a linear threshold

to separate positive and negative samples may be not so

effective if we need to analyze images in an Open Set scenario,

when an image can be generated by an unknown device.

In our approach, we aim at performing the source camera

attribution by machine learning techniques. One contribution

of our approach is the definition of some features that can well

represent the source camera fingerprint.

For each region shown in Fig. 5, we calculate the noise

pattern as discussed in [9]. Lukas et al. calculate the noise

pattern considering images in gray-scale, but this can be

trivially expanded to other color spaces. In this article, we

calculated the SPN as defined in Eqs. 1 and 2 considering

the channels R (red), G (green) and B (blue), separately. We

also calculated the SPN considering the Y channel (luminance,

from YCbCr color space) which is a combination of R, G and

B channels (as a gray-scale version of the image) [29]. We end

up with 36 reference noise patterns to represent one camera,

where, for each region, we calculated one SPN for each color

channel, as shown in Fig. 6.

It is important to note that this type of region

characterization allows us to compare images with different
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Fig. 6. Calculating SPN for one region, considering R, G, B and Y color
channels. For each ROI, we extract the noise residuals using DWT-based filter,
generating one noise residual for each channel. Then, we calculate the average
between noises of the same color channel from many images, generating the
reference noise pattern for each color channel that represents the camera under
investigation. The process comprises the nine marked regions.

resolutions without color interpolation artifacts, and it is not

necessary to do zero-padding, for instance, when comparing

images of different sizes.

For each image, we calculate its noise and form a feature

vector considering the correlation between each ROI of an

image and the corresponding noise pattern for each camera,

according to Eq. 3. With these correlation values we have

36 features for each image, considering one camera, labeling

images taken by the camera under investigation as the positive

class and the remaining available cameras as the negative class.

C. Source Camera Attribution in an Open Set Scenario

The main contribution of this paper is the use of machine

learning techniques to solve the source attribution problem in

an Open Set scenario. To solve our problem, first, we find

a classifier from the training set of examples considering the

positive and the available negative samples. Formally, given

training data (xi, yi) for i = 1 . . . N , with xi 2 <d and yi 2
{�1, 1}, we need to learn a classifier f(x) such that

f(xi) =

⇢

≥ 0, yi = +1

< 0, yi = −1.
(5)

Let X be our training data matrix in which the nth

row of X corresponds to the row vector xT
i . Consider

that the positive training class consists of feature vectors

P = {xp
1,x

p
2, . . .x

p
npos

} and the negative class(es) consists

of N = {xn
1 ,x

n
2 , . . .x

n
nneg

} where N = npos + nneg is the

total number of training examples.

We can find a maximum margin separation hyperplane

wTx+b = 0 (linear case) or wTφ(x)+b = 0 (nonlinear case)

by means of the classical support vector machine classification

algorithm [25, 30] which aims at finding a classifier able to

separate the data points from P and N , where w is the normal

to the hyperplane, b is the bias of the hyperplane such that
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Fig. 7. Example of an SVM classifier considering a linear case.

|b|/||w|| is the perpendicular distance from the origin to the

hyperplane, and φ is a mapping function from original feature

space to a higher dimensional space by means of the kernel

trick [30].

After finding a maximum margin separation hyperplane

(classifier f(·)) from the training data points X, we have a

situation as the one depicted (only for the linear case above)

in Fig. 7 in which we have one class of interest as positive

class (consisting of data points from one camera) and only

one negative class (consisting of data points from another

known camera). According to this model, each data point xi

during training is at a distance dmi to the decision boundary

given the SVM model and can be classified as of class +1 if

wTxi + b � 0 (linear case) and as �1, otherwise.

SVM uses structural risk minimization (SRM) [30] which

is an inductive principle for model selection used for learning

from finite training data sets to solve the problem of finding

the maximum margin separation hyperplane. However, it turns

out that SVM can only minimize the risk in this case based

on what it knows from the training data. In the Open Set case,

many more classes can appear as being a negative class which

could damage the operation of the classifier during tests.

Therefore, in this paper we define a policy of minimizing the

risk for the unknown for the Open Set case by minimizing the

data error D during training after the hyperplane is calculated

by SVM. We define the data error D as the inverse of the

normalized classification accuracy A(X) during training

A(X) =

✓
P

npos

i=1
θ(pi)

npos
+

P

nneg

j=1
ω(nj)

nneg

◆

2
(6)

where

θ(pn) =

⇢

1, if f(pi) ≥ 0

0, otherwise.
(7)

ω(kl) =

⇢

1, if f(kj) < 0

0, otherwise.
(8)



Equation 6 means we analyze the classification values of

all training samples to find its classification accuracy A(X).
Considering the calculated hyperplane in the training step,

we propose to account for unknown classes by moving the

decision hyperplane by a value ε inwards the positive class or

outwards in the direction of the negative known class(es). The

rationale is that by moving the plane we can be more strict

to what we know as positive examples and therefore classify

any other “too different” data point as negative or we can be

less strict about what we know with respect to the positive

class and accept more distant data points as possible positive

ones. As a first step towards solving the camera attribution

problem in an Open Set scenario, we consider ε to move in the

interval given by the most positive example (farthest from the

decision hyperplane) and the most negative example (farthest

from the decision hyperplane). For simplification, we might

constrain the interval, as we do in this paper, to be tighter such

as 2 [�1, 1] to do not drastically change the initial hyperplane

found by SVM.

The ε value represents a movement on the decision

hyperplane wTx+b+ε = 0 (linear case) or wTφ(x)+b+ε = 0
(nonlinear case). Fig. 8 depicts an example for a nonlinear

case.

In this paper, we loosely call this process as Decision

Boundary Carving (DBC). The value of ε is defined by

an exhaustive search to minimize the training data error,

which we accomplish by minimizing 1
A(X) and altering

Equations 7 and 8 to:

θ(pn) =

⇢

1, if f(pi) ≥ ε

0, otherwise.
(9)

ω(kl) =

⇢

1, if f(kj) < ε

0, otherwise.
(10)

Given any data point z during testing, it is classified as a

positive example if f(z) > ε.

V. EXPERIMENTS AND RESULTS

To validate the ideas discussed in this paper, we created

a dataset with 25 digital cameras. Table I shows the

cameras’ details. For each camera, we generated 150

images with different configurations of light (indoor and

outdoor), zoom and flash1. All images were taken in native

resolution and JPEG quality compression. These images were

randomly separated into five sets to perform a 5-fold cross-

validation [30]. For each run, we consider three of these sets

to generate the camera sensor pattern noise, one for the SVM

training (considering only images for the available cameras for

training) and the last one for testing (considering images from

all cameras). The process is repeated five times, changing the

sets.

We use the LibSVM library [31] for SVM classification

and only consider the nonlinear case here with a radial basis

function kernel (RBF).

1The dataset will be freely available upon acceptance.

TABLE I
CAMERAS USED IN THE EXPERIMENTS.

Camera Native Resolution

1 Canon PowerShot SX1-LS 3840 × 2160
2 Kodak EasyShare c743 3072 × 2304
3 Sony Cybershot DSC-H55 4320 × 3240
4 Sony Cybershot DSC-S730 2592 × 1944
5 Sony Cybershot DSC-W50 2816 × 2112
6 Sony Cybershot DSC-W125 3072 × 2304
7 Samsung Omnia 2560 × 1920
8 Apple iPhone 4 (1) 2592 × 1936
9 Kodak EasyShare M340 3664 × 2748

10 Sony Cybershot DSC-H20 3648 × 2736
11 HP PhotoSmart R727 2048 × 2144
12 Canon EOS 50d 4752 × 3168
13 Kodak EasyShare Z981 4288 × 3216
14 Nikon D40 3008 × 2000
15 Olympus SP570UZ 3968 × 2976
16 Panasonic Lumix DMC-FZ35 4000 × 3000
17 Sony Alpha DSLRA 500L 4272 × 2848
18 Olympus Camedia D395 2048 × 1536
19 Sony Cybershot DSC-W120 3072 × 2304
20 Nikon Coolpix S8100 4000 × 3000
21 Sony Cybershot DSC-W330 4320 × 3240
22 Apple iPhone 4(2) 2592 × 1936
23 Canon Powershot A520 1600 × 1200
24 Apple iPhone 3 1600 × 1200
25 Samsung Star 2048 × 1536

After calculating the relative accuracy for each camera

according to

AR =
AP +AN

2
, (11)

which is the number of correct classifications during testing

for positive (AP ) and negative (AN ) data points for a

given camera, the average accuracy AM for each camera is

calculated as

AM =
1

z

z
X

i=1

Ai
R, (12)

where z = 5 runs of the cross-validation.

The results we report correspond to the final accuracy AccF ,

calculated as the average over all cameras

AF =
1

NC

NC
X

i=1

AcciM , (13)

where NC is the number of available cameras during training.

We analyze the Open Set image source attribution

considering that we have access to 15, 10, 5 and 2 suspect

cameras, but the images can be generated by any of the 25

cameras shown in Table 1. In these scenarios, we consider

that we never have access to cameras 16–25 except during

testing. In the first case, we consider that we have access to

cameras 1–15 which means we train with cameras 1–15 as

suspect cameras but the images under investigation can come

from any of the 25 cameras of Table 1. Two experiments

with 10 cameras were performed (cameras 1–10 and cameras

6–15). The experiments with five cameras were performed

considering three different combinations of five cameras (1–

5, 6–10, 11–15). The experiments with two available cameras

were performed with seven different combinations (1–2, 3–4,

and so forth).
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Fig. 8. Our Open Set implementation for source camera attribution using Decision Boundary Carving (DBC). (a) shows the calculated separation hyperplane,
considering the blue and green data points as the known positive (1) and negative (2) classes, respectively, and the red data points represent the unknown
classes (3). The orange region represents the distance between the margins of the positive and negative support vectors. (b) shows the DBC over the calculated
hyperplane, represented by the blue region. Note that the process of carving the decision boundary seeks the minimization of the risk of the unknown via
minimizing the data error D which is implemented as the misclassification during training (1/A(x)).

To analyze the effectiveness of our implementation for Open

Set source camera attribution, we performed some experiments

with and without this technique. To analyze the importance of

the choice of ROIs shown in Fig. 5, we performed experiments

with our approach considering just the central ROI (ROI #1)

similar to existing techniques in the literature as well as

experiments considering all of the ROIs.

The result, for each case, is the average of the results for

tests considering each combination of cameras. Table II shows

the comparison of the proposed methods to Lukas et al.’s [9]

and Li’s [10] approaches in an Open Set scenario. We refer to

our approach considering only the ROI #1 as T1, with ROI #1

plus the Open Set decision boundary carving solution as T2,

our approach considering all ROIs without DBC as T3 and

the complete solution with all regions plus DBC as T4.

TABLE II
RESULTS (AF ± σ, IN (%)) FOR 15, 10, 5, AND 2 AVAILABLE CAMERAS

DURING TRAINING. FOR EXAMPLE, AN OPEN SET WITH 15/25 CAMERAS

CONSISTS OF TRAINING ON 15 CAMERAS BUT TESTING ON IMAGES THAT

CAN COME FROM ANY OF THE 15 CAMERAS AS WELL AS 10 OTHER

UNKNOWN CAMERAS (450 + 300 TEST IMAGES PER ROUND).

Open Set Cameras – Results in Percentage

15 10 5 2

LUKAS ET AL. [9] 94.54 93.93 94.45 93.08

± 2.10 ± 2.09 ± 2.17 ± 2.56

LI. [10] 94.07 93.49 93.94 92.82

± 2.31 ± 2.35 ± 2.35 ± 2.94

OURS – T1 91.01 91.22 93.40 94.16

Only central ROI ± 3.13 ± 2.61 ± 2.58 ± 2.66

OURS – T2 95.57 94.95 95.11 94.34

Central ROI + DBC ± 1.52 ± 1.78 ± 1.62 ± 2.05

OURS – T3 95.89 96.63 95.65 96.43

All ROIs without DBC ± 1.97 ± 1.38 ± 1.76 ± 2.16

OURS – T4 98.10 97.53 96.77 94.49

All ROIs + DBC ± 1.15 ± 0.47 ± 0.89 ± 2.76

Table II shows a statistically significant improvement in the

overall performance when comparing the methods we propose

and the baseline of Lukas et al. [9] and Li [10]. It also shows

that it is possible to reliably identify image sources in an Open

Set scenario. The results show that our implementation of the

Open Set by means of Decision Boundary Carving is not worth

employing when we have access to only two suspect cameras,

but it can be useful when we have more suspect cameras.

Furthermore, it is easy to see the improvement in results

when we consider more ROIs for this identification. The

approach proposed by Li [10] does not statistically improve

the characterization part (considering the dataset used in this

work).

Table III shows results for the experiments considering

we have two available cameras with the same brand/model

(iPhone 4; cameras 8 and 22), but an image can be generated

by any of the 25 cameras. In this experiment we consider our

approach in all ROIs. The results show the average of five

tests per camera (5-fold).

TABLE III
RESULTS CONSIDERING CAMERAS WITH SAME BRAND AND MODEL

(APPLE IPHONE 4).

Lukas et al. [9] 94.29 ± 2.20

Li [10] 93.90 ± 2.55

OURS – T3 95.54 ± 0.72

OURS – T4 95.17 ± 1.17

Table III shows that our approach is also effective in

scenarios in which we have cameras of the same brand/model

(in this case an Apple iPhone 4). Interestingly, in this case, the

accounting for unknown via decision boundary carving, does

not provide a result statistically different than the one without

the optimization.

Table IV shows a breakdown for the case with 15 known

cameras and 25 for testing (10 unknown). It shows the true

positives, as well as the true negatives with results in X%
± σ (standard deviation), and in raw numbers considering

the average of a 5-fold cross validation protocol. Note that

the proposed method shows higher performance than Lukas

et al.’s [9] and Li’s [10] approaches considerably reducing the



risk for the unknown as we can see in the high number of true

negatives (consequently low false positives) with a very low

standard deviation and an increase in the true positives.

TABLE IV
BREAKDOWN FOR THE OPEN SET SETUP WITH 15 CAMERAS FOR

TRAINING AND 25 FOR TESTING. RESULTS CONSIDERING THE AVERAGE

OF A 5-FOLD CROSS-VALIDATION PROTOCOL. 450 + 300 TEST IMAGES

PER ROUND.

Lukas et al. [9] Li [10] Ours – T4

TP 92.5% ± 5.15 91.6% ± 5.70 97.9% ± 0.84

(27.75 / 30) (27.48 / 30) (29.37 / 30)

TN 96.5% ± 2.25 96.5% ± 2.41 98.3% ± 0.24

(694.8 / 720) (694.8 / 720) (707.8 / 720)

VI. CONCLUSION

In this work, we explained that solving the image source

attribution problem in an Open Set scenario is important

because it is closer to a real environment, in which an image

can be taken by any unknown camera unavailable in the seized

set of cameras during an investigation. This is just a first

step to robust source camera attribution techniques. With the

approach discussed herein, it is possible to analyze images

with different resolutions. Furthermore, we can identify source

cameras considering complementary characterization methods

taking advantage of all of the potential of machine learning

classification techniques.

Expanding upon the work of Lukas et al. [9], our

experiments report high accuracy results. The next step of

this work is tuning the classification model for one class

classification, in which we train the classifier with a given class

of interest only. This can be useful in an Open Set scenario,

when we have access to only one camera.

Furthermore, this work can be improved to help to

combat against counter-forensic approaches, as presented

in [32]. Future work includes analyzing some counter-forensic

techniques to this work and the application of this technique to

other pattern recognition and vision problems as it is general

enough and we envision other applications for it.

Finally, we believe that efforts like the ones presented

by [9], [10] and the one in this paper will move source

attribution approaches toward meeting the strong standards

of the Daubert trilogy [33] which establishes a high bar for

acceptance of forensic evidence (analog and digital) in courts

in the US and possibly in other countries.
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