
Open Source Enterprise Systems: Towards a Viable Alternative

Alexander Dreiling, Helmut Klaus, Michael Rosemann, Boris Wyssusek

Queensland University of Technology, Australia

{a.dreiling | h.klaus | m.rosemann | b.wyssusek}@qut.edu.au

Abstract

Enterprise systems are located within the antinomy of

appearing as generic product, while being means of

multiple integrations for the user through configuration

and customisation. Technological and organisational

integrations are defined by architectures and

standardised interfaces. Until recently, technological

integration of enterprise systems has been supported

largely by monolithic architectures that were designed,

and maintained by the respective developers. From a

technical perspective, this approach had been challenged

by the suggestion of component-based enterprise systems

that would allow for a more user-focused system through

strict modularisation. Lately, the product nature of

software as proprietary item has been questioned through

the rapid increase of open source programs that are

being used in business computing in general, and also

within the overall portfolio that makes up enterprise

systems. This suggests the potential for altered

technological and commercial constellations for the

design of enterprise systems, which are presented in

different scenarios. The technological and commercial

decomposition of enterprise software and systems may

also address some concerns emerging from the users’

experience of those systems, and which may have arisen

from their proprietary or product nature.

1. Introduction

Preliminary remarks: This paper is about the future of

enterprise systems. Consequently, we assume that there is

a future for enterprise systems and do not question the

concept of enterprise systems in general, although we are

aware of some substantial criticism [e.g., 1–3].

The argument of the paper is structured as follows:

Reflecting upon the historical development of integrated

enterprise information systems we identify the proprietary

paradigm of contemporary enterprise systems

development as a major obstacle that prevents enterprise

systems from ever meeting the promisses made by their

proponents as well as meeting the expectations of the

companies implementing these kinds of systems. Looking

for an alternative to the proprietary paradigm we identify

the paradigm of open source software development. After

outlining its distinct features we argue—while drawing on

various successful open source development initiatives—

that open source software development provides us with a

viable alternative to the proprietary development of

enterprise systems. In our closing discussion we point to

some limitations of our exploratory study. We focus on

neglected aspects that question some fundamental

assumptions underlying the concept of enterprise systems.

2. Enterprise system integration —

architecture between developer and user

Enterprise system software is being written by large-

scale developers and licensed and implemented by

consultants. Despite being called software, these packages

have nothing to do with ‘shrink-wrapped’, ‘off-the-shelf’

items that can be used instantaneously, rather

“[implementing] complex packages such as those offered

by SAP, for example, requires a tremendous configuration

and customization effort” [4], and “involves the

development and utilization of large amounts of specialist

knowledge and expertise” [5]. In other words, offerings of

software tagged as enterprise resource planning (ERP) or

enterprise systems (ES) and regarded as ‘solution’, i.e., as

an item with pre-specified attributes that holds a potential

of improvement of business operations and management,

are “commodified forms of technical knowledge” [6].

The distinct characteristic of enterprise systems is

therefore inseparable from the transactions between

developers and user organisations. This suggests that the

commodity form of large-scale computer applications

should be accounted for, when their ‘match’ with

‘business needs’ is contemplated, which means nothing

more and nothing less than that enterprise systems

packages contain their own rationale against which they

are assessed by the purchasing organisation, excluding

simultaneously any other criteria to judge its promoted

capabilities [3]. Even, when accepting that logic, the

complaints about the shortcomings of those systems seem

to be endless.

One of the capabilities that remains a contentious issue

is the leading concept of enterprise systems: integration—

which had already been the “holy grail of MIS” since the

1960s [4, 7], when the vision of the totally integrated

information system for the whole corporation was put

forward by Stafford Beer [8].

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

On the level of software, integration has meant for a

long time that enterprise system software by nature had a

“monolithic architecture” [7, 9]. It could be argued that

the innovation of enterprise systems is just that, namely an

architecture that provides information processing

functionality as well as business functionality through

‘inter-functional’ or process support. In other words,

enterprise systems architectures integrate various

subsystems, subsumed under the objectives of the entire

enterprise.

As commercial products, enterprise systems have

striven to cover the requirements of different users within

one and the same environment. Developers dealt with the

problem of variety and complexity of user organisations

by designing software that could be adapted through

configurations, with the consequence that ever more

options and parameters entered the code. Thus, through

incremental evolution, specialised applications, such as

Finance, Human Resources, or Logistics, became large

applications, called modules [9]. Integration became an

issue in that interfaces had to be developed that made

possible to combine enterprise systems software with in-

house and legacy applications, and add-ons by third-party

developers (ibid). However, it might have been against the

interests of the large developers to offer truly open

interfaces that would allow for combining their products

with that of a competitor; third-party developers overcame

these obstacles by designing enterprise application

integration software [9].

The integration dilemma and the perceived imposition

of developers’ business models on users [10] occasioned

the proposal of an “alternate minimalist strategy … [that]

relies on composing large systems from largely

independent components that are assembled to meet

situation-specific requirements” [7]. The new software

‘paradigms’ of object orientation and distributed

computing, combined with concern for user organisations’

‘actual’ requirements provided the arguments, or

‘technology and business imperatives’ for a reversal of the

architectural, and necessarily commercial conditions of

enterprise computing applications [11].

The architecture that should deliver the desired fit

between technology and business, firstly meant changing

the current fundamentals in terms of hardware: client-

server technology was supposed to be supplanted by

distributed object architecture [11]. Next, the monolithic

modules were supposed to be abandoned in favour of

components that covered specialised processes, and were

held to be synonymous with high adaptability, both in

terms of current and future special requirements.

Components were envisaged as entities that could be

assembled with ease into applications. The integration of

components within the distributed system was to be

accomplished by middleware, as logical layer between

components, providing the coordination between them.

Component development should become the domain of

specialised developers that were close to their clients and

the processes in their industries [11].

The accomplishment of the distributed architecture,

both in terms of software as well as in terms of the

software industry structure, relied heavily on

standardisation that ensured interoperability of

components and middleware [11]. This kind of integration

spawned a plethora of standards, categorised as

component interface protocols, integration standards, and

semantic agreements [9]. Component interface protocols

were CORBA, COM and Enterprise Java Beans, examples

of integration standards were XML and EDIFACT, while

Microsoft’s BizTalk stands for a schema for using XML.

The vision for a new kind of enterprise systems was

based on the premise that “[the] monopoly model where a

company provides a bundled, monolithic package will not

work in the future” [11]. It would have entailed a swift re-

orientation of the computer and services industries,

including hardware manufacturers. The promise of the

“component model of software engineering […]

introducing the market-mechanism to software

engineering”, and by that providing “better products, and

lower costs [… and] breaking large monopolies and

generating high efficiencies” (ibid), remained unfulfilled

from today’s perspective. The (relative) openness of

application interfaces, since being a strategy by large

developers to increase usage of their products, was

certainly not a suitable means to shake-up the structure of

an industry that is dominated by a handful of ‘global

players’. The latter could also control either through

cooperation or through rivalry the development of the

crucial standards that would have allowed or disallowed

software engineering principles to be mirrored in industry

structure. For users the implications of a turning from big

packages from big developers to components from a

diverse market would have been a strengthening of the

internal IT-expertise, as informed purchaser and wise

manager of a tailored portfolio of applications [7].

However, the increased interest in outsourcing, not only

information technology, but also business processes, has

reduced this expectation to another ambition unfulfilled.

The developments of the past five years thus give

ample indication that integration in enterprise systems

appears to be only viable by accommodating with the

circumstance that systems development remains in the

hands of a few ‘global players’. Standards that supposedly

open development by ensuring interoperability tend to be

interpreted by those ‘global players’ according to their

interest. This might be incongruent with the interests of

the software industry at large, those of the user

organsations, and may also have effects on local and

national economies. And, despite control of interfaces and

standards by few software developers, even integration of

the information infrastructure of one single company with

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

one brand of enterprise system cannot be consolidated

over time [12–16]. In short, managing complexity from a

central control perspective has too many trade-offs to be

acceptable for good.

We may conclude that software engineering principles

and open standards are a necessary but not sufficient

condition for enterprise software development becoming

less constrained by the politics of ‘global players’,

responsive to user interests, and for ensuring a healthy

software industry that can cater for regional markets.

In the 1950s and 1960s, the entire product of business

computing could be controlled by one company:

Hardware and software used to be bought and experts

used to be hired—all en bloc—from vendors such as IBM.

Software became a commodity on its own only after

IBM’s monopoly power had been legally challenged, and

software and hardware had to be unbundled [17].

Subsequently, diversity (and incompatibility) of hard- and

software prevailed for some time, yet this situation was

soon superseded by large-scale developers controlling

architectures [18], while taking advantage of some

common standards, e.g., internet protocols. Controlling

architectures by means of proprietary software and open

standards in the enterprise application industry appears to

actually preclude innovation that could be of benefit for

many users of enterprise systems.

As the first step of commodifying software was a legal

matter, attempting to dissolve the proprietary nature of

contemporary enterprise systems development may open

an opportunity to level the ‘playing field’ again, and by

that seek to address some deficiencies of enterprise

systems. A successful example of the abandonment of

proprietary software development is open source

development. Thus, in the remainder of the paper we will

outline major differences between proprietary ‘closed

source’ and open source software development and look

at possible consequences of a change in the legal status of

enterprise systems software.

3. Open Source vs. ‘Closed Source’

In the early days of computing software was not a

commodity and developers readily shared the source code

of the programs they developed. It was only after IBM

was forced to unbundle hardware and software that the

latter became a subject of property rights and turned into a

commodity. With the source code no longer available to

the public, commercial software became ‘closed source’

software.

3.1. Linux and beyond

Today, Linux is the best known example of open

source software development. After initially being

considered as immature product of immature nerds, Linux

has established itself in the marketplace—faster and more

successful than anyone ever has anticipated. Some

illustrative examples: the biggest computer hardware

manufacture sells its computer hardware with Linux

installed, provides professional support and actively

participates in the further development of Linux; the

largest enterprise systems developer has ported its

enterprise systems software so that it can be installed

ontop of a Linux platform; the city of Munich is about to

switch 15.000 users from Microsoft Windows to Linux;

the French government contemplates switching about

500.000 of its computers from Microsoft Windows to

Linux. See your daily newspaper for ever more examples.

Yet the success of open source software development

is not confined to the operating system Linux. In a

recently revised online article—“Why Open Source

Software / Free Software (OSS/FS)? Look at the

Numbers!”—David Wheeler provides us with a

comprehensive overview on open source software

development outcomes [19]: the Apache web server has a

market share of about 67 percent; Sendmail is the leading

e-mail server with a market share of above 40 percent;

more than 75 percent of domain name server (DNS) are

serviced by BIND; OpenSSH, a secure shell application,

has a market share well above 65 percent. But it is not

only the impressive market share of some open source

products that illustrates the viability of open source

software development. Wheeler also provides us with data

regarding reliability, performance, scalability, security,

and total cost of ownership—all in favour of open source

software products. Besides these quantitative data,

Wheeler also outlines a number of qualitative issues such

as freedom of control by single source, freedom from

licensing management, greater flexibility, and encouraging

innovation (ibid)—again, all in favour of open source

software products.

Despite the success and the popularity of open source

software (development), the common understanding of

“open source” does barely reflect its very nature. Yet this

is true for the termini “proprietary software” and “free

software” as well. In the next section we will highlight

some distinct features that can be used to differentiate

between major categories of software and paradigms of

software development.

3.2. Categories of software: free vs. non-free,

open source vs. ‘closed source’

Open source and ‘closed source’ software are

commonly differentiated based on the belief that the

former comes free of charge whereas the latter does not.

Actually, free in the context of open source rather refers

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

primarily to its legal status than to the fact that a charge is

asked for its use.

Following the definition of the Free Software

Foundation, “free software is a matter of the users’

freedom to run, copy, distribute, study, change and

improve the software” [20]. Consequently, “free” does not

preclude that free software or open source software can be

commercial products. Software that comes free of charge

may still be protected by intellectual property rights, and

thus not be free—in the sense of the Free Software

Foundation. Similarly, the general availability of source

code does not imply that it can be used by everyone, and

hence is no criterion for “free” either.

If we draw a distinction between open source and

‘closed source’ (proprietary) software we address certain

features of the software development process. These

features were outlined by Eric S. Raymond [21]. He

contrasts the open source software development model

with the classical model of proprietary software

development, referring to the former as “bazaar” and to

the latter as “cathedral”. The bazaar model is

characterized by the openness of the source code which

allows basically everyone to participate in the

development of open source software. The cathedral

model is characterized by a limited number of people

having exclusive access to the software under

development (ibid). Therefore we speak about “closed

source”. Yet, even if the general public has access to the

source code of proprietary software, it does not mean that

it is free, since the public does not have the right to “run,

copy, distribute, study, change and improve the software”

[20]. In short, software is only open source software, if it

is also free (FSF definition) software. Again, this does not

preclude that open source software can be commercial

software.

Due to its distinct characteristics, open source software

development (OSSD) has major consequences on the

outcome of the development process. Some examples:

• OSSD supports the development of open standards.

Based on open standards it is possible for other parties

to provide—even proprietary—extensions to existing

software.

• OSSD implies open data formats. Users can access data

without being bound to proprietary software that may

not be available in the future.

• OSSD supports customizability. Users can modify open

source software in order to make it meet their specific

requirements. One major issue with respect to

customizability is localization. Since most proprietary

software has been developed in order to make profit, its

features address only the needs of profitable markets.

• OSSD supports improved quality. Since the

development of the source code is not bound to a

limited group of developers it becomes easier to detect

bugs, conceptual errors, and the like. Also, users can

participate in the debugging and (further) development

of the software.

• OSSD can help to speed up development processes,

since the number of developers involved in an open

source software development project is not limited. As

we could see from the development of Linux, it is

possible to develop even complex systems in a

relatively short time.

From the effects of the ‘bazaar style’ software

development process on its outcome, it is easy to derive

major deficiencies of the ‘cathedral style’ software

development process. We address some of these

deficiencies in the next section, where we use enterprise

systems development as an illustrative example.

3.3. Consequences of ‘cathedral style’ software

development for enterprise systems development

Enterprise systems have been touted as the solution to

the following problem: “if a company’s systems are

fragmented, its business is fragmented” [10]. Thus,

enterprise systems aim at the integration of all data and

data processing functions within the scope of an

enterprise, and more recently even beyond [e.g., 22]. The

latter may even shift processes within a vertical

integration arrangement, such as Vendor Managed

Inventory (VMI), where stock replenishment is outsourced

to the vendor of an organisation, including demand

forecasting [23].

Success stories about enterprise systems report

tremendous positive economic effects, e.g., cutting down

the time required to fulfil an order, to re-prize products or

to complete a credit check—all by huge numbers [e.g.,

10]. These gains come at the price of a costly and lengthy

implementation process, and, while once in operation,

users attribute limited functionality, lack of decision

support, lack of extended enterprise support, upgrade

difficulties, and high total cost of ownership to their

enterprise system infrastructures [22]. Certainly, the

blame for these shortcomings can be put easily on the

developers and consultants performing the

implementation. This can be corroborated by pointing to

the acknowledgement by many economists that dominant

companies, such as those in the enterprise software

industry, are less disposed to respond to articulated

customer requirements, and that monopolies as well as

oligopolies tend to stifle product and service innovation.

Thus, we want to argue that dissatisfaction with

enterprise systems can be explained by the constellation

between developers and users, which is in favour of the

developers, and that a significant cornerstone for that is

the proprietary nature of software licensed to

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

organisations. Positing the proprietary nature of software

as determinant of the dissatisfaction with enterprise

systems simply means to shift the attention to the mode of

production, rather than being focussed on the point of

application. Considering the interests of developers and

their control of production allows for recasting client

dissatisfaction according to the following examples:

• Insufficient standardisation of enterprise systems

functionality: Standardisation of enterprise systems

functionality would enable easy creation of, e.g.,

enterprise systems web services and the establishment

of enterprise systems web service providers. However,

why would an enterprise systems developer be

interested in functionality standards if this meant

opening his client-base to competition?

• Insufficient differentiation of technical and business

expertise: Separation of technical expertise (e.g.

database technology or workflow technology) from

business expertise (e.g. balance sheet creation or

payroll) would enable smaller companies to enter the

market by offering business expertise for existing

technical expertise or the other way around. However,

if a large proprietary company offers both in an

integrated way and implementing consultants operate

accordingly, why would they foster such a development

of technology and expertise?

• Insufficiently opened architecture: Open architectures

would allow for easy integration between business

partners. However, if a proprietary enterprise systems

developer developed an entirely open architecture,

migration would be facilitated and he would make it

simpler to replace his product components.

• Cultural misfit of enterprise resource planning (ERP)

packages: Different cultures certainly need enterprise

systems with different functionality. Some of these

problems are obvious (Sarbanes-Oxley requirements

for SEC-listed companies, BASEL II for company

loans in Europe, or US-GAAP for US-compliant

balance sheet creation) and even if problems with

cultural fit have been reported [24], how can an

enterprise systems developer solve a particular issue of

a region if he does not operate there?

3.4. Consolidation

The preceding two sections have indicated that open

source ‘bazaar style’ software development can

successfully address a number of deficits of contemporary

enterprise systems. Neither are these deficiencies of

enterprise systems unknown to developers nor are they

insurmountable in principle. Rather the problem is the

way how software is developed within the constraints of

the proprietary ‘closed source’ model. If the legal status of

software developed changes, the unwanted consequences

of the ‘cathedral style’ development process will most

likely disappear as well. Thus, transferring enterprise

software into the legal status of open source software

gives developers the opportunity to address a range of

concerns regarding the deficiencies of contemporary

enterprise systems. Enterprise systems developed in

‘bazaar style,’ might also tip the balance of power in

favour of the users.

4. Enterprise Systems and Open Source

Software Development

Our intention is not to predict the future but rather to

contemplate about possibly viable alternatives to the

contemporary prevailing mode of enterprise system

development. We seek to make these alternatives

apprehensible by proposing scenarios that show potential

constellations of ‘cathedral style’ (i.e., proprietary) and

‘bazaar style’ (i.e., open source) software development for

enterprise systems.

4.1. Scenarios including Open Source Enterprise

Systems

The decomposition of enterprise systems into an

architecture layer and a business application layer

combined with the ‘cathedral style’ and ‘bazaar style’

development paradigms leads to four different scenarios

of interaction between enterprise systems components (in

addition to the status quo of enterprise systems as a

monolithic block without evident separation between

architecture and business applications). Similar

decompositions took place with computer systems into

hardware and software, or software into operating systems

and application systems. The separation shown in Figure 1

is only one of several possibilities and depicts only a set

of possible scenarios including open source enterprise

systems. Again, we do not aim to predict the future as to

how a separation will take place, but given the fact that

enterprise systems developed into what they are today it

seems likely that any kind of separation will take place.

All scenarios except for the first one require open

interfaces between the architecture and business

application layers and we argued above that it is highly

unlikely that they will emerge under the ‘cathedral style’

development process.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

Figure 1: Possible development scenarios based on a decomposition of contemporary enterprise systems including open source

components

The monolithic ES scenario is the status quo. There

are many examples of such enterprise systems on the

market and we have elaborated on the implications and

consequences of these packages.

The solely proprietary scenario separates architecture

and business applications. Both component types are

proprietary but the architecture does not necessarily

have to be open for third parties which would still imply

a ‘cathedral style’. An enterprise systems vendor (or an

alliance of such vendors) may be interested in this clear

separation in order to develop different modules more

efficiently. A similar separation of architecture from

applications outside the enterprise systems domain is

Microsoft’s separation of operating systems and

applications.

The open source business applications on

proprietary architecture scenario offers a highly

standardised open architecture acting as a

communication and integration medium between open

source components. A popular example for such this

constellation of proprietary and open source software

would be freeware based on Microsoft operating systems

such as Open Office. However, open source software in

this constellation is highly depended on the vendor of

the proprietary architecture. Control of sophisticated

proprietary open architectures in the first scenarios

would most probably lead to considerable success for

their vendors [18]. However, this success is not the

focus of this paper as we explore the effects of a

different software development paradigm of enterprise

systems.

The proprietary business applications on open

source architecture scenario were possible if, e.g., an

initiative of enterprise systems vendors defined an

architecture in order to focus on an efficient provision of

business applications. Popular examples for this

constellation outside the enterprise systems domain

would be proprietary software such as SAP’s R/3 on the

operating systems Linux. For the argument made in this

paper so far, this scenario would be more preferable than

the last one, because the market power of a strong

vendor of a proprietary architecture cannot be abused

and some of the discussed limitations resulting from the

proprietary software development paradigm of

enterprise systems could be avoided.

The solely open source scenario could be in the

interest of a party offering services on top of enterprise

systems such as implementation services (or a joint

initiative of a set of such parties), which in fact is a huge

market in itself. Given the specificity of different

industries and companies within these industries, it is

highly unlikely that enterprise systems especially for

large companies will ever be implemented without

configuration. Thus an initiative of consulting

companies may be interested in jointly developing an

open source architecture and open source business

applications to sell configuration on top of the software.

Architecture Layer

Business Application Layer
Open Source

Business

Applications

Proprietary

Architecture

Proprietary

Business

Applications

Open Source

Architecture

Open Source

Business

Applications

Open Source

Architecture

Proprietary

Business

Applications

Proprietary

Architecture

Monolithic ES

Package

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

5. Conclusions and Outlook

Enterprise systems have been discussed in academia

for several years. It appears, as if the perspective of

industry analysts is prevailing in considering the

development of enterprise systems as an extension of

their status quo into the future, based on assumptions

how companies can position themselves in relation to

their customers and competitors. However, as Gartner

Group missed out to predict the industry leadership of

SAP, it may be questioned whether this view on the

development of enterprise systems was meaningful. We

have suggested proceeding rather by questioning

whether the enterprise system’s underlying integration

concept and development paradigm are dimensions that

due to their inherent antinomies might be susceptible to

change.

Technical possibilities for novel constellations of

integration and development are inherent in the

architecture for enterprise systems, where the emergent

vertical split of enterprise systems into architecture and

business applications can be observed. Simultaneously,

the open source paradigm suggests a novel approach to

development, coexisting with the proprietary one. The

vertical split of enterprise systems may show some

potential for the extension of open source into that area.

Given the central tenets of enterprise systems, we have

suggested several reasons for an open source enterprise

systems development being preferable over its

proprietary counterpart.

In fact, proprietary software has emerged only forty

years ago. The product nature of software and its

promises have often been unfulfilled in that large

developer companies disappeared as quickly as they had

boomed. On the other hand, proprietary software can

also be held to be a significant factor contributing to the

quasi-monopoly of Microsoft on the office systems and

operating systems market, with its concomitant severe

security threats due to viruses and worms and alleged

monopoly abuse in several cases. Proprietary software

also raises the barriers for less developed economies to

become users of information technology, or to

participate in the software industry.

Thus, a range of themes addressed in this paper

warrant further investigation. Especially the forms of co-

existence of open source and conventional development

may yield some further insights into the shifting grounds

of systems development and the actions of its ‘global

players’.

6. References

[1] B. Robinson and F. A. Wilson, “Planning for the

market? Enterprise resource planning systems and the

contradictions of capital”, The DATA BASE for

Advances in Information Systems, vol. 32, pp. 21–33,

2001.

[2] T. Haigh, “The chromium-plated tabulator:

institutionalizing an electronic revolution, 1954–1958”,

IEEE Annals of the History of Computing, vol. 23, pp.

75–104, 2001.

[3] J. Kallinikos, “Deconstructing information packages:

organizational and behavioural implications of ERP

systems”, Information Technology & People, vol. 17,

pp. 8–30, 2004.

[4] T. Haigh, “Software in the 1960s as concept, service,

and product”, IEEE Annals of the History of Computing,

vol. 24, pp. 5–13, 2002.

[5] S. Newell, J. Swan, and R. D. Galliers, “A

knowledge-focused perspective on the diffusion and

adoption of complex information technologies: the BPR

example”, Information Systems Journal, vol. 10, pp.

239–259, 2000.

[6] H. Scarbrough, “Blackboxes, hostages and

prisoners”, Organization Studies, vol. 16, pp. 991–1019,

1995.

[7] K. Kumar and J. v. Hillegersberg, “ERP experiences

and evolution”, Communications of the ACM, vol. 43,

pp. 22–26, 2000.

[8] S. Beer, Decision and control: the meaning of

operational research and management cybernetics.

London: Wiley, 1966.

[9] D. Sprott, “Componentizing the enterprise

application packages”, Communications of the ACM,

vol. 43, pp. 63–69, 2000.

[10] T. H. Davenport, “Putting the Enterprise into the

Enterprise System”, Harvard Business Review, vol. 76,

pp. 121–131, 1998.

[11] M. Fan, J. Stallaert, and A. B. Whinston, “The

adoption and design methodologies of component-based

enterprise systems”, European Journal of Information

Systems, vol. 9, pp. 25–35, 2000.

[12] C. U. Ciborra, “Notes on improvisation and time in

organizations”, Accounting, Management and

Information Technologies, vol. 9, pp. 77–94, 1999.

[13] C. U. Ciborra and O. Hanseth, “From tool to

Gestell: agendas for managing the information

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

infrastructure”, Information Technology & People, vol.

11, pp. 305–327, 1998.

[14] O. Hanseth and K. Braa, “Who’s in control:

designers, managers – or technology? Infrastructures at

Norsk Hydro”, in From control to drift: the dynamic of

corporate information infrastructures, C. U. Ciborra,

Ed. Oxford: Oxford University Press, 2000, pp. 126–

147.

[15] O. Hanseth and K. Braa, “Technology as traitor:

emergent SAP infrastructure in a global organization”,

presented at 19th International Conference on

Information Systems, Helsinki, 1998.

[16] O. Hanseth, C. U. Ciborra, and K. Braa, “The

control devolution: ERP and the side effects of

globalization”, ACM SIGMIS Database, vol. 32, pp. 34–

46, 2001.

[17] H. Scarbrough, “Problem-solutions in the

management of information systems expertise”, Journal

of Management Studies, vol. 30, pp. 939–955, 1993.

[18] C. R. Morris and C. H. Ferguson, “How

Architecture Wins Technology Wars”, Harvard

Business Review, pp. 86–96, 1993.

[19] D. A. Wheeler, “Why Open Source Software / Free

Software (OSS/FS)? Look at the Numbers!”

http://www.dwheeler.com/, 2004.

[20] Free Software Foundation, “The Free Software

Definition”, http://www.gnu.org/, 2004.

[21] E. Raymond, “The Cathedral and the Bazaar”,

Knowledge, Technology & Policy, vol. 12, pp. 23–49,

1999.

[22] M. L. Markus, D. Petrie, and S. Axline, “Bucking

the Trends: What the Future May Hold for ERP

Packages”, Information Systems Frontiers, vol. 2, pp.

181–193, 2000.

[23] SAP AG, “Collaborative Business Scenario

‘Vendor Managed Inventory’”, http://www.sap.com/,

2004.

[24] C. Soh, S. S. Kien, and J. Tay-Yap, “Enterprise

resource planning: cultural fits and misfits: is ERP a

universal solution?” Communications of the ACM, vol.

43, pp. 47–51, 2000.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

