UNIVERSITY OF BIRMINGHAM University of Birmingham Research at Birmingham

Open-Source Genomic Analysis of Shiga-Toxin-Producing E. coli O104:H4

Loman, Nicholas; Pallen, Mark; Rohde, Holger; Qin, Junjie; Cui, Yujun; Li, Dongfang; Hentschke, Moritz; Chen, Wentong; Pu, Fei; Peng, Yangqing; Li, Junhua; Xi, Feng; Li, Shenghui ; Li, Yin Li; Zhang, Zhaoxi ; Yang, Xianwei ; Zhao, Meiru ; Wang, Peng ; Guan, Yuanlin ; Cen, Zhong

DOI: 10.1056/NEJMoa1107643

Document Version Peer reviewed version

Citation for published version (Harvard):

Loman, N, Pallen, M, Rohde, H, Qin, J, Cui, Y, Li, D, Hentschke, M, Chen, W, Pu, F, Peng, Y, Li, J, Xi, F, Li, S, Li, YL, Zhang, Z, Yang, X, Zhao, M, Wang, P, Guan, Y, Cen, Z, Zhao, X, Christner, M, Kobbe, R, Loos, S, Oh, J, Yang, L, Danchin, A, Gao, GF, Song, Y, Li, Y, Yang, H, Wang, J, Xu, J, Wang, J, Aepfelbacher, M & Yang, R 2011, 'Open-Source Genomic Analysis of Shiga-Toxin-Producing E. coli O104:H4', *New England Journal of Medicine*, vol. 365, no. 8, pp. 718-724. https://doi.org/10.1056/NEJMoa1107643

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Open-Source Genomic Analysis of Shiga-Toxin–Producing *E. coli* O104:H4

Holger Rohde, M.D., Junjie Qin, Ph.D., Yujun Cui, Ph.D., Dongfang Li, M.E., Nicholas J. Loman, M.B., B.S., Moritz Hentschke, M.D., Wentong Chen, B.S., Fei Pu, B.S., Yangqing Peng, B.S., Junhua Li, B.E., Feng Xi, B.E., Shenghui Li, B.S., Yin Li, B.S., Zhaoxi Zhang, B.S., Xianwei Yang, B.S., Meiru Zhao, M.S., Peng Wang, B.M., Yuanlin Guan, B.E., Zhong Cen, M.E., Xiangna Zhao, B.S., Martin Christner, M.D., Robin Kobbe, M.D., Sebastian Loos, M.D., Jun Oh, M.D., Liang Yang, Ph.D., Antoine Danchin, Ph.D., George F. Gao, Ph.D., Yajun Song, Ph.D., Yingrui Li, B.S., Huanming Yang, Ph.D., Jian Wang, Ph.D., Jianguo Xu, M.D., Ph.D., Mark J. Pallen, M.D., Ph.D, Jun Wang, Ph.D., Martin Aepfelbacher, M.D., Ruifu Yang, M.D., Ph.D., and the *E. coli* O104:H4 Genome Analysis Crowd-Sourcing Consortium*

SUMMARY

An outbreak caused by Shiga-toxin–producing *Escherichia coli* O104:H4 occurred in Germany in May and June of 2011, with more than 3000 persons infected. Here, we report a cluster of cases associated with a single family and describe an open-source genomic analysis of an isolate from one member of the family. This analysis involved the use of rapid, bench-top DNA sequencing technology, open-source data release, and prompt crowd-sourced analyses. In less than a week, these studies revealed that the outbreak strain belonged to an enteroaggregative *E. coli* lineage that had acquired genes for Shiga toxin 2 and for antibiotic resistance.

Scherichia coli IS A WIDESPREAD COMMENSAL OF THE MAMMALIAN GUT and a versatile pathogen.^{1,2} Enterovirulent strains of *E. coli* are classified into a number of overlapping pathotypes, which include Shiga-toxin–producing, enterohemorrhagic, and enteroaggregative varieties.² Enteroaggregative *E. coli* strains have been associated with sporadic and epidemic diarrhea and, in the laboratory, show a distinctive pattern of adherence to Hep-2 cells (termed aggregative, or "stacked brick").³ In Shiga-toxin–producing *E. coli*, the toxin is encoded on a prophage and inhibits protein synthesis within susceptible eukaryotic cells. Strains of enterohemorrhagic *E. coli* produce Shiga toxin and a specific protein secretion system (called a type III secretion system) that is encoded by the locus of enterocyte effacement (LEE) and that is responsible for attachment to the intestine.² Shiga-toxin–producing and enterohemorrhagic *E. coli* strains are commonly associated with the hemolytic–uremic syndrome, a combination of renal impairment, thrombocytopenia, and hemolytic anemia that is often accompanied by neurologic and myocardial damage.

The authors' affiliations are listed in the Appendix. Address reprint requests to Dr. Pallen at the Centre for Systems Biology, University of Birmingham, B15 2TT, United Kingdom, or at m.pallen@bham.ac.uk; or to Dr. Yang at BGI-Shenzhen, Shenzhen 518083, China, or at the Beijing Institute of Microbiology and Epidemiology, 20 Dongda St., Beijing 100071, China, or.

The following two groups of authors contributed equally to this article: Drs. Rohde, Qin, Cui, D. Li, and Loman; and Drs. Pallen, J. Wang, Aepfelbacher, and R. Yang.

*Members of the *E. coli* O104:H4 Genome Analysis Crowd-Sourcing Consortium are listed in the Supplementary Appendix, available at NEJM.org.

This article (10.1056/NEJMoa1107643) was published on July 27, 2011, at NEJM.org.

1

N Engl J Med 2011. Copyright © 2011 Massachusetts Medical Society.

10.1056/NEJM0a1107643 NEJM.ORG

The NEW ENGLAND JOURNAL of MEDICINE

More than 3000 cases of infection with an unusual strain of Shiga-toxin-producing E. coli O104:H4 were reported to the Robert Koch Institute in Berlin during a nationwide outbreak in Germany in May and June of 2011.4 This outbreak resulted in more than 40 deaths, and associated cases were reported in more than a dozen countries in Europe and North America (mostly in travelers returning from Germany). Household transmission was described in the Netherlands, and life-threatening colonic ischemia was reported as a complication in addition to the hemolytic-uremic syndrome and bloody diarrhea.5,6 Epidemiologic and microbiologic evidence indicated that the O104:H4 strain was distributed throughout Germany on bean sprouts.7

The outbreak was characterized by several unusual features: a high incidence in adults (especially women), a greatly increased incidence of the hemolytic-uremic syndrome (in approximately 25% of patients, as compared with 1 to 15% in previous outbreaks of Shiga-toxin-producing E. coli), a predominance of female patients among cases of the hemolytic-uremic syndrome, and a rare serotype of Shiga-toxin-producing E. coli that had been linked to only two sporadic cases of the hemolytic-uremic syndrome (one in Germany and the other in South Korea).4,8,9 Recognition of infection during the outbreak was hampered by a laboratory approach that targeted phenotypes associated with the most common lineage of enterohemorrhagic E. coli (the non-sorbitol-fermenting O157:H7 serotype) rather than one aimed at finding all strains of Shiga-toxin-producing E. coli.10 Here, we report a local cluster of cases associated with a family from northern Germany and describe an open-source genomic analysis of an isolate from the family cluster.

CASE REPORTS

On May 17, 2011, a 16-year-old girl was admitted to the pediatric emergency ward at the University Medical Center Hamburg–Eppendorf with bloody diarrhea and abdominal pain. Her laboratory values were normal. Later on the same day, her 12-year-old brother was admitted with a 2-day history of malaise and headache and a 1-day history of vomiting and nonbloody diarrhea. The boy presented with acute renal failure (serum creatinine level, 4.1 mg per deciliter [362 μ mol per liter]; and potassium level, 6 mmol per liter), thrombocytopenia (22,000

2

platelets per cubic millimeter), and hemolytic anemia (hemoglobin, 11.6 g per deciliter; bilirubin, 2.8 mg per deciliter [49 μ mol per liter]; and lactate dehydrogenase, 2297 U per liter). His hemoglobin level fell to 8.4 g per deciliter within 48 hours after admission, thereby fulfilling the case definition of the hemolytic–uremic syndrome.

The children, their parents, and a teenage friend had eaten a meal together a week earlier. The meal included a freshly prepared salad containing bean sprouts. The children's mother had no symptoms, and no Shiga-toxin–producing *E. coli* was isolated from her stool. However, the hemolytic–uremic syndrome developed in the father, and his stool sample was culture-positive for Shiga-toxin–producing *E. coli*. The teenage friend had diarrhea but was not admitted to the medical center.

Stool samples from the siblings were plated on Sorbitol-MacConkey agar and incubated in a liquid enrichment culture. The next day, supernatants from the liquid cultures tested positive for Shiga toxin on enzyme-linked immunosorbent assay. Uniformly sorbitol-positive colonies were identified as E. coli on MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry. Several single colonies were positive for the stx2 gene and negative for the stx1 and eae genes on polymerase-chain-reaction (PCR) assay. None of the isolates agglutinated with polyvalent serum samples directed against the serotypes that are most frequently associated with Shiga-toxinproducing E. coli. Subsequent analyses showed that the strain belonged to the rare serotype O104:H4 harboring an extended-spectrum beta-lactamase (ESBL) gene of the CTX-M-15 class.

Although our 16-year-old patient had a mild course of disease without the hemolytic-uremic syndrome and was discharged from the hospital on the same day, the clinical picture for her brother was much less benign. The boy's renal function, hemoglobin level, and thromobocytopenia improved after 9 days of peritoneal dialysis, but severe neurologic symptoms, including somnolence, visual impairment, speech disturbances, hemiplegia, and incontinence, developed. He underwent four cycles of plasmapheresis and therapy with the anti-C5-antibody eculizumab. After this treatment, his clinical condition improved, and he was discharged after 24 days with serum creatinine levels just above the normal range. However, he was left with neurologic sequelae and required rehabilitation.

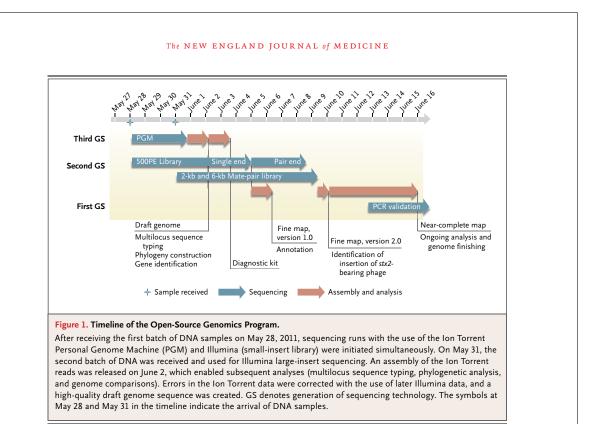
METHODS AND RESULTS

OPEN-SOURCE GENOMICS

To investigate the evolutionary origins and pathogenic potential of the outbreak strain, we set in motion an open-source genomics program of research that incorporated new high-throughput sequencing approaches, public data release, and rapid outsourcing of analyses to bioinformaticians worldwide (crowd-sourcing) (Fig. 1). Initially, we sequenced the genome of the isolate from the 16-year-old girl (TY2482), using the Ion Torrent Personal Genome Machine (PGM), and obtained an initial draft of the genome 3 days after receipt of the DNA sample. Three DNA libraries were prepared and seven sequencing runs performed, following the protocols of the manufacturer (Life Technologies), to generate 79 Mb of sequence data, with an average read length of 101 bp. (For details regarding the sequencing procedures, see the Supplementary Appendix, available with the full text of this article at NEJM.org.)

We released these data into the public domain under a Creative Commons 0 license, which elicited a burst of crowd-sourced, curiosity-driven analyses carried out by bioinformaticians on four continents.11 Twenty-four hours after the release of the genome, it had been assembled; 2 days after its dissemination, it had been assigned to an existing sequence type. Five days after the release of the sequence data, we had designed and released strain-specific diagnostic primer sequences, and within a week, two dozen reports had been filed on an open-source wiki (a Web site that facilitates collaborative effort) dedicated to analysis of the strain. These analyses provided timely information on the strain's virulence and resistance genes, in addition to its phylogenetic lineage.

We also performed sequencing on the Illumina HiSeq platform in accordance with the manufacturer's instructions. An initial single-end run was used to correct errors in the Ion Torrent sequence, principally in homopolymeric tracts. We later performed paired-end and mate-pair sequencing on this platform, exploiting libraries with insert sizes of 470 bp, 2 kb, and 6 kb, and generated enough data (1 Gb, 576 Mb, and 576 Mb from each library, respectively) to create a high-quality draft genome sequence within 2 weeks after receipt of the DNA samples. (Additional details are provided in the Supplementary Appendix.) The reads were deposited in GenBank's Short Read Archive with accession numbers SRA037315 for Ion Torrent reads and SRA039136 for Illumina platform reads.


PHYLOGENETIC ANALYSIS

The assembled Ion Torrent data provided gene sequences that could be analyzed with an existing multilocus-sequence-typing scheme for E. coli that relied on sequence comparisons for seven conserved housekeeping genes (adk, fumC, gyrB, mdh, purA, recA, and icd).12 This analysis revealed a close relationship to a strain, 01-09591, which was isolated in Germany in 2001 and which fell into sequence type ST678. The TY2482 sequences differed from the profile of the 2001 strain by a single base pair in the *adk* gene and a single-base difference in a homopolymeric sequence in the recA gene. (We subsequently discovered that the latter difference was a sequencing error generated by the PGM.) The 2001 strain, which produced Shiga toxin and was associated with the hemolytic-uremic syndrome, fell into the O104:H4 serotype but did not have the genes associated with type III secretion in typical enterohemorrhagic E. coli.13,14 Additional scrutiny of the multilocus-sequence-typing database revealed that strains with the broad O104 serotype were scattered across several sequence types, whereas strains with the narrower O104:H4 serotype appeared to be limited to ST678.10

Comparisons of the TY2482 genome with all previously sequenced complete genomes of *E. coli* isolates revealed a very close relationship to *E. coli* strain 55989, with an average nucleotide identity of 99.8% (see the Supplementary Appendix). This strain was isolated in the Central African Republic from a stool sample obtained from an adult with human immunodeficiency virus infection who had persistent watery diarrhea.¹⁵ It has been classified as an enteroaggregative *E. coli*, but unlike TY2482, it does not have Shiga toxin genes.¹⁵ However, it is worth noting that Mossoro et al.,¹⁵ who first described *E. coli* strain 55989, also described strains of enteroaggregative *E. coli* with Shiga toxin genes in the same human population.¹⁵

COMPARISON OF THE CHROMOSOMES OF TY2482 AND 55989

Isolates from the German outbreak were initially described as enterohemorrhagic *E. coli*. However, the close relationship between TY2482 and 55989 led us to consider the likelihood that TY2482 is an enteroaggregative *E. coli*. Our analysis of the gene content of TY2482 showed that it, like 01-09591,

lacked the LEE and genes encoding effectors associated with type III secretion.¹⁶ Instead, we found that the TY2482 genome encodes virulence factors that are typical of enteroaggregative *E. coli*. Other investigators working on the outbreak strain have also observed genes typically found in enteroaggregative strains on PCR assay and have noted a behavioral phenotype that is characteristic of this pathotype on cell-adherence assay.¹⁷

To identify strain-specific genes, we performed a detailed comparison of the chromosomes of TY2482 and enteroaggregative E. coli strain 55989. First, we aligned the TY2482 assembly against the 55989 chromosome (for details, see the Supplementary Appendix). We then adopted the gene predictions and annotation from the 55989 genome for these conserved sequences. Next, we identified several isolate-specific regions of difference (i.e., regions present in the TY2482 chromosome and absent from the 55989 genome or vice versa) that were more than 5 kb (Table 1 and Fig. 2, and the Supplementary Appendix). TY2482specific regions of difference included prophage remnants or apparently intact prophages, such as the stx2 prophage, which, like its close relatives in the genomes of O157:H7 strains EDL933 and

Sakai, is inserted into the *wrbA* locus. The *stx2* genes differ by only one single-nucleotide polymorphism from the *stx2* allele seen in O157 enterohemorrhagic *E. coli* strain EDL933.

TY2482 PLASMIDS

From our de novo assembly (i.e., assembly without the use of a reference genome), we concluded that the TY2482 genome contains two large conjugative plasmids, pESBL TY2482 and pAA TY2482, and a small plasmid, pG2011 TY2482 (Fig. 2). From scrutiny of copy numbers of sequence reads, it was clear that the two large plasmids were replicating at an approximate ratio of 1:1 with the chromosome, whereas the small plasmid was maintained at a copy number at least nine times that of the other replicons. No phenotype could be ascribed to the small plasmid.

The largest plasmid, pESBL TY2482, was an IncI plasmid similar to pEC_Bactec, which was found in an *E. coli* strain isolated from the joint of a horse with arthritis.¹⁸ The pESBL TY2482 plasmid encodes a CTX-M-15 ESBL, as well as a beta-lactamase from the TEM class. The second large plasmid, pAA TY2482, resembled a plasmid from strain 55989 but carried a gene cluster encoding a

4

10.1056/NEJM0a1107643 NEJM.ORG

Table 1. Genetic Elements in Strain TY2482 of Shiga-Toxin–Producing Escherichia coli O104:H4.		
Genetic Element	Notable Features or Functions	Size or 55989 Coordinates*
Plasmid		
pESBL TY2482	Incl1 plasmid, homologous to pEC_Bactec carrying <i>bla</i> CTX-M-15	88 kb
pAA TY2482	Plasmid encoding aggregative adherence fimbriae I	76 kb
pG2011 TY2482	Plasmid with no obvious phenotype	1.5 kb
Region of difference		
I-ROD1	Degenerate prophage	296227 (tRNA- <i>Thr</i>)
I-ROD2	Stx2-encoding prophage	1176265 (wrbA)
I-ROD3	Microcin gene cluster; tellurite resistance gene cluster	1207704 (tRNA- <i>Ser</i>)
I-ROD4	Prophage	1811905 (ynfG)
I-ROD5	Prophage	2102453 (yecE)
I-ROD6	Molybdate metabolism regulator; yehL	2426442 (IS1)
I-ROD7	Multidrug-resistant gene cluster (<i>dfA7, sull, sull, sull, strA, strB, tetA</i>); mercury resistance	4211244 (tRNA-Sec)
D-ROD1	Prophage	1094587-1140306
D-ROD2	Prophage	1413924-1446834
D-ROD3	Prophage	1754689-1800354
D-ROD4	Prophage	2688656-2701228
D-ROD5	Type VI secretion genes	3401720-3427357
D-ROD6	Prophage	4944269-5004333

BRIEF REPORT

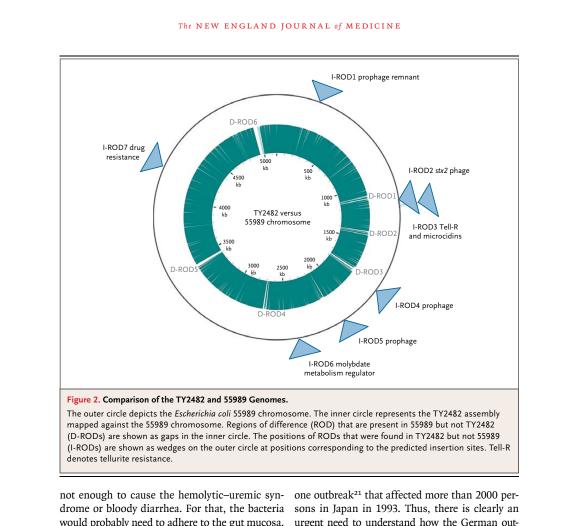
* Coordinates from the genome of *E. coli* strain 55989 are given for predicted boundaries of regions of difference, with the gene carrying the insertion site shown in parentheses for a region of difference involving an insertion into 55989 (I-ROD). D-ROD denotes a region of difference involving a deletion.

rare type of aggregative adherence fimbria (AAF/I) instead of the more common type (AAF/III) encoded by genes in the 55989 plasmid. We exploited this AAF/I cluster as a target for strainspecific PCR primers as part of a suite of primers to identify the outbreak isolate.

DISCUSSION

Our genomic analyses suggest that the German outbreak strain evolved from a progenitor that belonged to the enteroaggregative pathotype and resembled strain 55989. The emergence of the outbreak strain depended on the acquisition of a *stx2* prophage and of a plasmid encoding a CTX-M-15 ESBL. Sometime during this process, the strain also appears to have lost one gene cluster, encoding AAF/III fimbriae, and gained another, encoding the rarer AAF/I fimbriae.

Although this outbreak strain has surprised future hypothesis-driven research. Both commenthe general public and public health officials, related potential progenitor strains have been reported from three continents. The appearance of with the production of Shiga toxin, is probably


an O104:H4 strain associated with the hemolyticuremic syndrome in Korea in 2005 is unexplained, and its link to the German outbreak is unclear.⁹ Also, the O104:H4 strain 01-09591 that was isolated in Germany in 2001 urgently requires further investigation. Both strains should undergo genome sequencing and comparison with TY2482. The link to strain 55989, which was isolated in the Central African Republic in the late 1990s, is also intriguing. Genome sequencing of additional Central African isolates from the study that yielded 55989 is likely to illuminate the evolution of this lineage and of enterovirulent *E. coli* in general (see the article by Rasko et al. elsewhere in this issue of the *Journal*¹⁹).

Although the genome sequence alone cannot provide a full explanation for the high degree of virulence of this strain, it prompts a reassessment of our assumptions and provides a framework for future hypothesis-driven research. Both commensal and pathogenic varieties of *E. coli* have to survive in the gut. However, mere survival, even if twinned with the production of Shiga toxin, is probably

5

10.1056/NEJM0a1107643 NEJM.ORG

The New England Journal of Medicine

would probably need to adhere to the gut mucosa. In the past, much research has been concentrated on the adhesion systems of typical enterohemorrhagic E. coli, particularly the LEE-encoded type III secretion system.16,20 This German outbreak strain shows us that Shiga-toxin-producing E. coli can exploit alternative adhesion mechanisms, very likely including aggregative adherence fimbriae, to the same end. This strain also shows that pathotypes of E. coli can overlap and that they evolve rather than stand as fixed archetypes.

It remains unclear why this strain has proved to be so virulent. As noted, a novel suite of adhesins might provide an explanation. Alternatively, perhaps this strain exploits more efficient mechanisms for toxin release. It is worth remembering that strains of enteroaggregative E. coli have caused large sprout-associated outbreaks before, including

urgent need to understand how the German outbreak strain and other strains of enteroaggregative E. coli adhere to and colonize seeds and seedlings.

Our rapid open-source analysis of an outbreakassociated bacterial pathogen was characterized by a propitious confluence of high-throughput genomics, crowd-sourced analyses, and a liberal approach to data release. Although phenotypic or molecular analyses that exploit known virulence, resistance, or epidemiologic targets are useful in diagnostic and public health microbiology, genome sequencing offers the advantages of openendedness (revealing the "unknown unknowns"), universal applicability, and the ultimate in resolution. Our study shows how benchtop sequencing platforms can generate data with sufficient speed to have an important effect on clinical and epidemiologic problems.

6

10.1056/NEIM0a1107643 NEIM.ORG

BRIEF REPORT

Supported by grants from the State Key Development Program for Basic Research of China (2009CB522600), the National Key Program for Infectious Diseases of China (2008ZX10004-009), Shenzhen Biological Industry Development Special Foundation– Basic Research Key Projects (JC201005250088A), Key Laboratory Project Supported by Shenzhen City (2D200806180054A), the European Union Microme Program (FP7-KBBE-2007-3-2-08-222886), the Alexander von Humboldt Foundation (to Dr. L. Yang), the Medical Faculty of the University Medical Center Hamburg–Eppendorf, and the British Biotechnology and Biological Sciences Research Council (BB/E011179/1).

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank David Vallenet, Claudine Médigue, Xiaoning Wang, and Jennifer Gardy for their helpful discussions.

APPENDIX

The authors' affiliations are as follows: the Institute of Medical Microbiology, Virology and Hygiene (H.R., M.H., M.C., L.Y., M.A.) and the Department of Pediatrics (R.K., S. Loos, J.O.), University Medical Center Hamburg–Eppendorf, Hamburg, Germany; BGI-Shenzhen, Shenzhen, China (J.Q., Y.C., D.L., W.C., F.P., Y.P., J.L., F.X., S. Li, Yin Li, Z.Z., Z.C., Yingrui Li, H.Y., Jian Wang, Jun Wang, R.Y.), and the School of Bioscience and Biotechnology, South China University of Technology, Gungzhou, China (J.L.); the State Key Laboratory of Pathogen and Biosceurity, Beijing Institute of Microbiology and Epidemiology (Y.C., X.Z., Y.S., R.Y.), CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (G.F.G.), and the State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese, J.X.), and In Beijing; the Centre for Disease Control and Prevention (G.F.G., J.X.) – all in Beijing; the Centre for Systems Biology, University of Birmingham, United Kingdom (N.J.L. M.J.P.); and AMAbiotics, Evry, France (A.D.).

REFERENCES

 Hobman JL, Penn CW, Pallen MJ. Laboratory strains of Escherichia coli: model citizens or deceitful delinquents growing old disgracefully? Mol Microbiol 2007; 64:881-5.

2. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2:123-40.

3. Weintraub A. Enteroaggregative Escherichia coli: epidemiology, virulence and detection. J Med Microbiol 2007;56:4-8.

 Frank C, Werber D, Cramer JP, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany — preliminary report. N Engl J Med 2011. DOI: 10.1056/NEJMoa1106483.

 Kuijper E, Soonawala D, Vermont C, van Dissel J. Household transmission of haemolytic uraemic syndrome associated with Escherichia coli O104:H4 in the Netherlands. Euro Surveill 2011;16:pii: 19897.

 Cordesmeyer S, Peitz U, Godde N, Kasper H, Hoffmann M, Allemeyer E. Colonic ischaemia as a severe Shiga toxin/ verotoxin producing Escherichia coli 0104:H4 complication in a patient without haemolytic uraemic syndrome, Germany, June 2011. Euro Surveill 2011;16: pii:19895.

A. Robert Koch Institute. Information update on EHEC/HUS outbreak, 2011. (http:// www.rki.de/nn_217400/EN/Home/ PM082011.html.)

8. Scheutz F, Moller Nielsen E, Frimodt-Moller J, et al. Characteristics of the enteroaggregative Shiga toxin/verotoxinproducing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill 2011;16:pii:19889.

9. Bae WK, Lee YK, Cho MS, et al. A case of hemolytic uremic syndrome caused by Escherichia coli O104:H4. Yonsei Med J 2006;47:437-9.

 Chattaway MA, Dallman T, Okeke IN, Wain J. Enteroaggregative E. coli O104 from an outbreak of HUS in Germany 2011, could it happen again? J Infect Dev Crries 2011;5:425-36.

11. GitHub. E. coli O104:H4 genome analysis crowd sourcing, 2011. (https://github .com/ehec-outbreak-crowdsourced/ BGI-data-analysis/wiki.)

12. University College Cork. Escherichia coli MLST Database, 2011. (http://mlst.ucc.ie/ mlst/dbs/Ecoli.)

 Mellmann A, Bielaszewska M, Kock R, et al. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg Infect Dis 2008;14:1287-90.

14. Creuzburg K, Middendorf B, Mellmann A, et al. Evolutionary analysis and distribution of type III effector genes in pathogenic Escherichia coli from human, animal and food sources. Environ Microbiol 2011;13:439-52.

15. Mossoro C, Glaziou P, Yassibanda S, et al. Chronic diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome associated with HEp-2 adherent Escherichia coli in adults infected with human immunodeficiency virus in Bangui, Central African Republic. J Clin Microbiol 2002;40: 3086-8.

16. Tobe T, Beatson SA, Taniguchi H, et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 2006;103:14941-6.

17. Bielaszewska M, Mellmann A, Zhang W, et al. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 2011 June 22 (Epub ahead of print).

 Smet A, Van Nieuwerburgh FV, Vandekerckhove TTM, et al. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. PLoS ONE 2010;5(6):e11202.

 Rasko DA, Webster DR, Sahl JW, et al. Origins of the *E. oli* strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med 2011. DOI: 10.1056/ NEJM031106920.

20. Schmidt MA. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol 2010;12: 1544-52.

21. Itoh Y, Nagano I, Kunishima M, Ezaki T. Laboratory investigation of enteroaggregative Escherichia coli O untypeable:H10 associated with a massive outbreak of gastrointestinal illness. J Clin Microbiol 1997;35:2546-50.

Copyright © 2011 Massachusetts Medical Society

10.1056/NEJM0a1107643 NEJM.ORG

The New England Journal of Medicine Downloaded from nejm.org on July 27, 2011. For personal use only. No other uses without permission. Copyright © 2011 Massachusetts Medical Society. All rights reserved.

7

Supplementary Appendix: Open-source genomics of a Shiga-toxin-producing Escherichia coli O104:H4

Crowd-sourcing consortium

The following members of the *E. coli* O104:H4 Genome Analysis Crowd-sourcing consortium made contributions that influenced the analyses reported here: Kathryn E. Holt, David J. Studholme, Michael Feldgarden and Marina Manrique.

A full account of crowd-sourcing efforts can be accessed here: <u>https://github.com/ehec-</u> outbreak-crowdsourced/BGI-data-analysis/wiki/

Methods and Results

Ion Torrent library construction and sequencing

Genomic DNA was extracted and purified using a conventional SDS lysis and phenolchloroform method. $5\mu g$ of DNA (OD260/OD280 = 1.85) was dissolved in TE buffer to a total volume of 100 µl and fragmented by sonication (Covaris S2, Massachusetts, USA) to a size distribution of 50-300 bp. Library preparation and template preparation of live Ion SphereTM Particles was performed according to the manufacturer's protocol (Ion Torrent, USA). During the library preparation, nick-translation was followed by 5 cycles of PCR amplification. Finally the sequencing was performed on the PGM Sequencer. Seven 314 chips were run to generate 79.1 Mb of sequence, with average length of 101 bp.

Illumina library construction and sequencing

Whole-genome sequencing was performed using Illumina HiSeq 2000 (Illumina Inc. U.S.A) by generating paired-end libraries with an average insert size of 470 bp, 2 kbp and 6 kbp

following the manufacturer's instruction. The read lengths were 90bp, 50bp, 50bp and 1Gb, 576Mb and 576Mb high quality data were generated from each library respectively.

Creation of a draft genome assembly using Ion Torrent PGM data (2nd June 2011)

An assembly was performed using MIRA 3.2.1.17_dev using command-line parameters -*job=denovo,genome,accurate,iontor -GE:not=1*. The Ion Torrent PGM assembly from 5 chips of Ion Torrent 314 data produced an assembly of 3,057 contigs, total bases: 5,491,032 with an N50 value of 3,675.

Creation of a hybrid assembly using Ion Torrent PGM data and Illumina single-end data (6th June 2011)

Ion Torrent and Illumina read data were quality filtered before assembly including removal of adapter contamination. The Ion Torrent PGM assembly from 7 chips of Ion Torrent 314 data were assembled with Newbler 2.0.00.22. Illumina single-end data (taken from the in-progress paired-end run) were assembled using SOAPdenovo 1.06¹ (with *k*-mer of 51 and parameters "-d 1, -R". Assemblies were combined using AMOS minimus2 1.59 with parameters REFCOUNT=0, OVERLAP=50, MINID=94, MAXTRIM=10². The resulting assembly consisted of 451 contigs greater than 200bp with an N50 of 53266bp. The largest contig was 204342bp.

Creation of a draft genome scaffold assembly using Illumina paired-end and mate-pair reads

A draft *de novo* assembly was produced using SOAPdenovo version 1.05. Contigs were first assembled using the 470bp paired-end library initially using a *k*-mer value of 45 for de Bruijn graph construction. These were subsequently scaffolded in a hierarchical fashion using 2kb followed by 6kb mate-pair libraries by way of the rank parameter in the SOAPdenovo configuration file. Other parameters supplied to SOAPdenovo included -F to attempt to fill

gaps in scaffolds. Where possible, in order to fill remaining scaffold gaps, local information available from the abundant mate-pair data was utilised by the GapCloser utility which was run over the assembly output with a *k*-mer size of 23. Both scaffolds and un-scaffolded contigs were used in further analysis, with the exception of contigs smaller than 200bp which were excluded.

De novo assembly produced 24 scaffolds plus 75 un-scaffolded contigs. The largest scaffold was 757969bp, the smallest was 552bp. Scaffold N50 was 403980bp. After gap filling the scaffolds contained 143 distinct stretches of gaps (represented as ambiguous 'N' bases) comprising 94491bp of sequence.

Insert sizes

The estimated insert size with standard deviations predicted by SOAPdenovo are demonstrated in Table S1.

Table S1. The estimated insert size determined by the *de novo* assembly process.

Library	Estimated insert size	Standard deviation
470bp	468	31
2kb	2548	246
6kb	6193	566

Determination of closest reference by average nucleotide identity (ANI)

Average nucleotide identity with all complete *E. coli* genomes available in GenBank was calculated using the ANIb algorithm which uses BLAST as the underlying alignment method³⁻⁴. Scrutiny of results (Table S2) revealed that *E. coli* 55989 showed the highest nucleotide identity with an ANI of 99.8% between the TY2482 draft chromosome and *E. coli*

55989. The ANIb algorithm shreds sequences into 1kb segments. BLAST alignments needed to be longer than 700bp and have >70% nucleotide identity to count towards ANIb calculation. ANIb parameters to BLAST were "-F F -e 0.001 -v 1 -b 1 -X 150 -q -1".

Table S2. Average nucleotide identities for TY2482 compared against all complete *E*.

coli genomes

TY2482 vs	ANIb
Escherichia coli 55989	99.84
Escherichia coli IAI1	99.2
Escherichia coli W	99.14
Escherichia coli E24377A	99.09
Escherichia coli SE11	99.09
Escherichia coli O103:H2 str. 12009	98.95
Escherichia coli O26:H11 str. 11368	98.98
Escherichia coli O111:H- str. 11128	98.85
Escherichia coli HS	98.67
Escherichia coli ATCC 8739	98.55
Escherichia coli str. K-12 substr. W3110	98.54
Escherichia coli str. K-12 substr. MG1655	98.54
Escherichia coli DH1	98.54
Escherichia coli BL21-Gold(DE3)plyss AG	98.53
Escherichia coli BL21(DE3)	98.53
Escherichia coli BL21(DE3)	98.53
Escherichia coli B str. REL606	98.53
Escherichia coli BW2952	98.49
Escherichia coli str. K-12 substr. DH10B	98.5
Escherichia coli H10407	98.5
Escherichia coli ETEC H10407	98.5
Escherichia coli O55:H7 str. CB9615	97.92
Escherichia coli O157:H7 str. TW14359	97.86
Escherichia coli O157:H7 str. Sakai	97.87
Escherichia coli O157:H7 str. EC4115	97.86
Escherichia coli O157:H7 str. EDL933	97.82
Escherichia coli 042	97.45
Escherichia coli UMN026	97.39
Escherichia coli IAI39	97.3
Escherichia coli SMS-3-5	97.21
Escherichia coli SE15	97.06
Escherichia coli CFT073	97.02
Escherichia coli S88	96.97

Escherichia coli O83:H1 str. NRG 857C	96.99
Escherichia coli O127:H6 str. E2348/69	96.95
Escherichia coli UM146	96.94
Escherichia coli 536	96.95
Escherichia coli UTI89	96.93
Escherichia coli APEC O1	96.98
Escherichia coli ED1a	96.82

Annotation of putative regions of difference between TY2482 and 59989

The TY2482 scaffold assembly was aligned against *E. coli 55989* using progressiveMauve³ (part of Mauve 2.3.1) using default settings. For ease of viewing, scaffolds were moved and where necessary reverse complemented to fit the order of the *E. coli 55989* chromosome using the Mauve contig mover, again run with default parameters. Unaligned regions of the TY2482 >= 5kb were examined as putative regions of difference. Gene prediction within these regions was performed using Glimmer 3.02⁶ using the g3-iterated.sh workflow with default options. Genes with a raw score of >= 1.0 were extracted for further analysis. Due to Glimmer mis-predictions when run on the plasmid sequences, plasmids pESBL and pAA instead used Heuristic GeneMark.hmm⁷ PROKARYOTIC (version 2.8a) for gene calling. This was run with default settings and model file "heuristic_no_rbs.mat" (http://opal.biology.gatech.edu/GeneMark/heuristic_hmm2.cgi). Putative protein products >= 50 aa in length were searched against the Genbank non-redundant protein database using PHMMER using HMMER (http://hmmer.janelia.org/). Genome visualisation plots were generated using CGview⁸.

Manual inspection of scaffolds revealed each plasmid was contained within a single scaffold. Manual curation of pG2011 demonstrated an ~1.5kb plasmid with >99% nucleotide identity to *E. coli* strain H30 plasmid pO26-S1. This plasmid sequence was present as a 2-copy tandem repeat in the assembly, likely an artefact of the mate-pair assembly process (as insert sizes longer than the plasmid were used) and has been manually edited to form a single copy. The location of the plasmids in the assembly are as follows: pESBL-TY2482 = scaffold19, pAA-TY2482 = scaffold16, pG2011 = scaffold21.

Accession numbers

The sequencing reads have been deposited into NCBI's Short Read Archive with accession numbers SRR227300, SRR227337, SRR227338, SRR227339, SRR227340, SRR231653, SRR231654 (Ion Torrent) and SRX079806 (Illumina mate-pair), SRX079805 (Illumina mate-pair), SRX079804 (Illumina paired-end).

The scaffolded assembly and annotation has been deposited to Genbank, accession number AFVR00000000 (draft Illumina scaffold assembly), AFVS00000000 (Ion Torrent assembly) and AFOG01000000 (hybrid Ion Torrent and Illumina single-end assembly).

References

- Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20:265-72.
- Sommer DD, Delcher AL, Salzberg SL, Pop M. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics. 2007;8:64.
- Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81-91.
- Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126-31.
- Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010;5:e11147.

- Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673-679
- Besemer J, Borodovsky M. Heuristic approach to deriving models for gene finding. Nucleic Acids Res 1999;27:3911-20.
- Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005;21:537-9.

ROD_ID	CDS_ID	Best hit (NR)	Curated annotation	Best hit (species)
I-ROD1	irod1_orf00001	conserved domain protein		Escherichia coli MS 84-1
I-ROD1	irod1_orf00002	hypothetical protein ERKG_00886		Escherichia coli H252
I-ROD1	irod1_orf00003	transposon Tn21 resolvase		Escherichia coli B7A
I-ROD1	irod1_orf00005	hypothetical protein ECoL_00180		Escherichia coli EC4100B
I-ROD1	irod1_orf00007	conserved domain protein		Escherichia coli MS 187-1
I-ROD1	irod1_orf00008	conserved domain protein		Escherichia coli MS 187-1
I-ROD1	irod1_orf00009	hypothetical protein HMPREF9550_01817		Escherichia coli MS 187-1
I-ROD1	irod1_orf00011	putative acyl-carrier-protein S-malonyltransferase		Escherichia coli B7A
I-ROD1	irod1_orf00012	hypothetical protein EcB7A_3346		Escherichia coli B7A
I-ROD1	irod1_orf00013	hypothetical protein HMPREF9550_01813		Escherichia coli MS 187-1
I-ROD1	irod1_orf00015	hypothetical protein ECoL_00172		Escherichia coli EC4100B
I-ROD1	irod1_orf00016	hypothetical protein HMPREF9542_01440		Escherichia coli MS 117-3
I-ROD1	irod1_orf00017	phage integrase		Escherichia coli H252
I-ROD2	irod2_orf00001	integrase		Escherichia coli O26:H11 str. 11368
I-ROD2	irod2_orf00002	hypothetical bacteriophage protein		Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00004	conserved hypothetical protein		Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00006	putative antirepressor		Escherichia coli O103:H2 str. 12009
I-ROD2	irod2_orf00007	hypothetical protein ECO26_1566		Escherichia coli O26:H11 str. 11368
I-ROD2	irod2_orf00008	hypothetical protein ECO26_1570		Escherichia coli O26:H11 str. 11368
I-ROD2	irod2_orf00009	gp43		Escherichia coli B171
I-ROD2	irod2_orf00010	conserved hypothetical protein		Escherichia coli O157:H7 str. EC508
I-ROD2	irod2_orf00011	conserved hypothetical protein		Escherichia coli O157:H7 str. EC508
I-ROD2	irod2_orf00012	hypothetical protein ECO103_2866		Escherichia coli O103:H2 str. 12009
I-ROD2	irod2_orf00013	hypothetical protein ECO103_2865		Escherichia coli O103:H2 str. 12009
I-ROD2	irod2_orf00014	putative exonuclease		Escherichia coli O103:H2 str. 12009
I-ROD2	irod2_orf00015	RecT protein		Escherichia coli O157:H7 str. EC508
I-ROD2	irod2_orf00016	conserved hypothetical protein		Escherichia coli O157:H7 str. EC4501

Table S3. Annotated genes on the RODs and plasmids of TY2482

-ROD2	irod2_orf00017	hypothetical protein ECH7EC4501_4934	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00019	conserved domain protein	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00020	conserved hypothetical protein	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00021	phage regulatory protein, Rha family	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00022	type II restriction enzyme BsuBI	Escherichia coli O157:H7 str. TW14588
I-ROD2	irod2_orf00023	modification methylase BsuBI	Escherichia coli O157:H7 str. TW14588
I-ROD2	irod2_orf00025	repressor protein CI	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00026	hypothetical protein SDY_1924	Shigella dysenteriae Sd197
I-ROD2	irod2_orf00027	helicase domain protein	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00028	hypothetical protein ECOK1180_4044	Escherichia coli 1180
I-ROD2	irod2_orf00029	hypothetical protein ECO103_2848	Escherichia coli O103:H2 str. 12009
I-ROD2	irod2_orf00030	protein ninG	Escherichia coli 1180
I-ROD2	irod2_orf00033	DNA modification methylase	Stx2-converting phage 86
I-ROD2	irod2_orf00034	Shiga toxin 2 subunit A	Enterobacteria phage 933W
I-ROD2	irod2_orf00036	Shiga toxin 2 subunit B	Enterobacteria phage 933W
I-ROD2	irod2_orf00037	hypothetical protein	Shigella phage 7888
I-ROD2	irod2_orf00038	hypothetical protein ECs2970	Escherichia coli O157:H7 str. Sakai
I-ROD2	irod2_orf00039	conserved domain protein	Escherichia coli O157:H7 str. EC4113
I-ROD2	irod2_orf00040	lysozyme	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00041	anti-repressor protein Ant	Enterobacteria phage VT2phi_272
I-ROD2	irod2_orf00044	endopeptidase (Protein gp15)	Escherichia coli S88
I-ROD2	irod2_orf00045	Rha protein	Escherichia coli O157:H7 str. TW14588
I-ROD2	irod2_orf00048	putative terminase small subunit	Stx2-converting phage 86
I-ROD2	irod2_orf00049	hypothetical protein ECOK1180_4067	Escherichia coli 1180
I-ROD2	irod2_orf00050	large subunit terminase	Escherichia coli O157:H7 str. EC4113
I-ROD2	irod2_orf00051	putative phage portal protein	Stx2-converting phage 86
I-ROD2	irod2_orf00052	hypothetical protein 933Wp53	Enterobacteria phage 933W
I-ROD2	irod2_orf00053	hypothetical protein 933Wp54	Enterobacteria phage 933W
I-ROD2	irod2_orf00054	hypothetical protein 933Wp55	Enterobacteria phage 933W
I-ROD2	irod2_orf00055	hypothetical protein 933Wp56	Enterobacteria phage 933W
I-ROD2	irod2_orf00056	hypothetical protein ECs1226	Escherichia coli O157:H7 str. Sakai
I-ROD2	irod2_orf00057	hypothetical protein ECO103_2826	Escherichia coli O103:H2 str. 12009

-ROD2	irod2_orf00059	tail fiber protein	Escherichia coli O157:H7 str. EC4113
I-ROD2	irod2_orf00061	hypothetical protein Stx2-86_gp25	Stx2-converting phage 86
I-ROD2	irod2_orf00063	conserved hypothetical protein	Escherichia coli O157:H7 str. EC4196
I-ROD2	irod2_orf00065	outer membrane protein Lom precursor	Enterobacteria phage 933W
I-ROD2	irod2_orf00066	conserved hypothetical protein	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00067	hypothetical protein 933Wp68	Enterobacteria phage 933W
I-ROD2	irod2_orf00068	conserved hypothetical protein	Escherichia coli O157:H7 str. EC4501
I-ROD2	irod2_orf00069	hypothetical protein 933Wp70	Enterobacteria phage 933W
I-ROD2	irod2_orf00071	hypothetical protein 933Wp71	Enterobacteria phage 933W
I-ROD2	irod2_orf00072	hypothetical protein Stx2-86_gp35	Stx2-converting phage 86
I-ROD2	irod2_orf00073	hypothetical protein	Enterobacteria phage Min27
I-ROD3	irod3_orf00001	predicted integrase	Escherichia sp. 4_1_40B
I-ROD3	irod3_orf00002	unknown	Shigella flexneri 2a
I-ROD3	irod3_orf00003	prophage CP4-57 regulatory protein alpA	Escherichia coli 3431
I-ROD3	irod3_orf00004	unknown	Shigella flexneri 2a
I-ROD3	irod3_orf00005	type III restriction enzyme, res subunit	Pelobacter propionicus DSM 2379
I-ROD3	irod3_orf00006	hypothetical protein E4_08923	Escherichia sp. 4_1_40B
I-ROD3	irod3_orf00007	Transposase	Shigella dysenteriae CDC 74-1112
I-ROD3	irod3_orf00008	IS66 family element, orf2	Shigella boydii CDC 3083-94
I-ROD3	irod3_orf00011	hypothetical protein	Escherichia coli
I-ROD3	irod3_orf00012	hypothetical protein HMPREF9552_03072	Escherichia coli MS 198-1
I-ROD3	irod3_orf00013	hypothetical protein E4_08823	Escherichia sp. 4_1_40B
I-ROD3	irod3_orf00014	hypothetical protein Z1185	Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00015	conserved hypothetical protein	Escherichia coli O157:H7 str. TW14588
I-ROD3	irod3_orf00016	hypothetical protein Z1188	Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00017	putative glucosyltransferase	Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00018	putative ferric enterochelin esterase McmK	Escherichia coli
I-ROD3	irod3_orf00019	MchS2 protein	Escherichia coli
I-ROD3	irod3_orf00020	hypothetical protein p1ECUMN_0112	Escherichia coli UMN026
I-ROD3	irod3_orf00022	MchC protein	Escherichia coli CFT073
I-ROD3	irod3_orf00023	microcin H47 secretion protein	Escherichia coli 042
I-ROD3	irod3_orf00024	MtfB	Escherichia coli

-ROD3	irod3_orf00025	conserved hypothetical protein		Escherichia coli O157:H7 str. EC4196
I-ROD3	irod3_orf00026	hypothetical protein ECDG_03856		Escherichia coli B185
I-ROD3	irod3_orf00027	hypothetical protein ROD_49891		Citrobacter rodentium ICC168
I-ROD3	irod3_orf00028	hypothetical protein ROD_49911		Citrobacter rodentium ICC168
I-ROD3	irod3_orf00029	ImpA-related N- superfamily		Escherichia coli M605
I-ROD3	irod3_orf00030	hypothetical protein AHA_1063		Aeromonas hydrophila subsp. hydrophila ATCC 7966
I-ROD3	irod3_orf00031	immunoglobulin-binding regulator A		Escherichia coli M605
I-ROD3	irod3_orf00032	insertion element IS1 7 protein insA		Shigella dysenteriae 1617
I-ROD3	irod3_orf00034	hypothetical protein ECNA114_2538		Escherichia coli NA114
I-ROD3	irod3_orf00035	putative transposase		Shigella flexneri K-671
I-ROD3	irod3_orf00036	putative ATP synthase F0, A subunit		Escherichia coli MS 116-1
I-ROD3	irod3_orf00037	aspartate racemase		Shigella flexneri K-272
I-ROD3	irod3_orf00038	hypothetical protein HMPREF9541_00362		Escherichia coli MS 116-1
I-ROD3	irod3_orf00039	putative transcriptional regulator		Shigella flexneri 2a
I-ROD3	irod3_orf00042	conserved domain protein		Escherichia coli MS 116-1
I-ROD3	irod3_orf00043	predicted protein		Nematostella vectensis
I-ROD3	irod3_orf00044	protein kinase		Yersinia pseudotuberculosis IP 31758
I-ROD3	irod3_orf00045	hypothetical protein ESA_01782		Cronobacter sakazakii ATCC BAA-894
I-ROD3	irod3_orf00046	putative tellurium resistance protein	TerY3	Serratia marcescens
I-ROD3	irod3_orf00047	putative tellurium resistance protein	TerY2	Serratia marcescens
I-ROD3	irod3_orf00049	tellurium resistance protein	TerX	Serratia marcescens
I-ROD3	irod3_orf00050	putative tellurium resistance protein TerY	TerY1	Enterobacter cloacae subsp. cloacae ATCC 13047
I-ROD3	irod3_orf00051	terW	TerW	Citrobacter sp. 30_2
I-ROD3	irod3_orf00052	hypothetical protein SMR0069		Serratia marcescens
I-ROD3	irod3_orf00053	hypothetical protein Z1166		Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00054	putative ATP-binding protein		Escherichia coli APEC O1
I-ROD3	irod3_orf00055	hypothetical protein APECO1_O1R65		Escherichia coli APEC O1
I-ROD3	irod3_orf00056	hypothetical protein APECO1_O1R66		Escherichia coli APEC O1
I-ROD3	irod3_orf00057	hypothetical protein APECO1_O1R67		Escherichia coli APEC O1
I-ROD3	irod3_orf00058	putative phage inhibition, colicin resistance and tellurite resistance protein	TerZ	Escherichia coli O157:H7 EDL933

-ROD3	irod3_orf00059	putative phage inhibition, colicin resistance and tellurite resistance protein	TerA	Escherichia coli O157:H7 EDL933
-ROD3	irod3_orf00060	putative phage inhibition, colicin resistance and tellurite resistance protein	TerB	Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00061	putative phage inhibition, colicin resistance and tellurite resistance protein	TerC	Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00063	putative phage inhibition, colicin resistance and tellurite resistance protein	TerD	Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00064	putative phage inhibition, colicin resistance and tellurite resistance protein	TerE	Escherichia coli O157:H7 EDL933
I-ROD3	irod3_orf00065	putative tellurium resistance protein TerF	TerF	Escherichia coli O103:H2 str. 12009
I-ROD3	irod3_orf00067	putative GTP-binding protein		Escherichia coli 042
I-ROD3	irod3_orf00068	antigen 43 precursor		Escherichia coli
I-ROD3	irod3_orf00071	putative autotransporter		Shigella sp. D9
I-ROD3	irod3_orf00072	hypothetical protein EscherichiacoliO157_22726		Escherichia coli O157:H7 str. FRIK2000
I-ROD3	irod3_orf00073	hypothetical protein ECS88_2092		Escherichia coli S88
I-ROD3	irod3_orf00074	hypothetical protein ECS88_2092		Escherichia coli S88
I-ROD3	irod3_orf00075	conserved hypothetical protein		Escherichia coli H591
I-ROD3	irod3_orf00077	hypothetical protein SD1617_3951		Shigella dysenteriae 1617
I-ROD3	irod3_orf00078	hypothetical protein ECS88_2094		Escherichia coli S88
I-ROD3	irod3_orf00079	hypothetical protein APECO1_1098		Escherichia coli APEC O1
I-ROD3	irod3_orf00080	hypothetical protein ECO103_3758		Escherichia coli O103:H2 str. 12009
I-ROD3	irod3_orf00081	hypothetical protein ECNA114_2131		Escherichia coli NA114
I-ROD3	irod3_orf00083	toxin of the YeeV-YeeU toxin-antitoxin system		Escherichia sp. 4_1_40B
I-ROD3	irod3_orf00084	conserved hypothetical protein		Escherichia coli ETEC H10407
I-ROD3	irod3_orf00086	hypothetical protein UTI89_C4999		Escherichia coli UTI89
I-ROD3	irod3_orf00087	hypothetical protein Z1226		Escherichia coli O157:H7 EDL933
I-ROD4	irod4_orf00001	AntB		Escherichia coli
I-ROD4	irod4_orf00003	conserved hypothetical protein		Escherichia coli FVEC1302
I-ROD4	irod4_orf00004	valyl-tRNA synthetase		Escherichia coli E110019
I-ROD4	irod4_orf00006	hypothetical protein Stx2-86_gp35		Stx2-converting phage 86
I-ROD4	irod4_orf00008	hypothetical protein SDY_1670		Shigella dysenteriae Sd197
I-ROD4	irod4_orf00010	hypothetical protein ECED1_1152		Escherichia coli ED1a
I-ROD4	irod4_orf00011	hypothetical protein ECED1_1151		Escherichia coli ED1a
I-ROD4	irod4_orf00012	hypothetical protein 933Wp68		Enterobacteria phage 933W
I-ROD4	irod4_orf00013	hypothetical protein Stx2-86_gp30		Stx2-converting phage 86
I-ROD4	irod4_orf00014	putative outer membrane precursor Lom		Escherichia coli O103:H2 str. 12009

-ROD4	irod4_orf00016	hypothetical protein Stx2Ip034	Stx2 converting phage I
I-ROD4	irod4_orf00018	hypothetical protein Stx2-86_gp25	Stx2-converting phage 86
I-ROD4	irod4_orf00020	putative long tail fiber protein	Stx2-converting phage 86
I-ROD4	irod4_orf00021	hypothetical protein ECED1_1137	Escherichia coli ED1a
I-ROD4	irod4_orf00022	hypothetical protein ECED1_1136	Escherichia coli ED1a
I-ROD4	irod4_orf00023	hypothetical protein ECED1_1135	Escherichia coli ED1a
I-ROD4	irod4_orf00024	hypothetical protein Stx2-86_gp17	Stx2-converting phage 86
I-ROD4	irod4_orf00025	hypothetical protein ECED1_1133	Escherichia coli ED1a
I-ROD4	irod4_orf00026	hypothetical protein ECED1_1132	Escherichia coli ED1a
I-ROD4	irod4_orf00027	putative phage portal protein	Stx2-converting phage 86
I-ROD4	irod4_orf00028	hypothetical protein ECOK1180_4067	Escherichia coli 1180
I-ROD4	irod4_orf00029	large subunit terminase	Escherichia coli O157:H7 str. EC4113
I-ROD4	irod4_orf00030	putative terminase small subunit	Stx2-converting phage 86
I-ROD4	irod4_orf00033	bacteriophage lysis protein	Shigella dysenteriae 1012
I-ROD4	irod4_orf00036	putative endolysin	Shigella dysenteriae Sd197
I-ROD4	irod4_orf00037	protein S	Enterobacteria phage 933W
I-ROD4	irod4_orf00038	conserved hypothetical protein	Shigella dysenteriae 1617
I-ROD4	irod4_orf00039	hypothetical protein SGF_04061	Shigella flexneri CDC 796-83
I-ROD4	irod4_orf00040	YjhS	Shigella boydii CDC 3083-94
I-ROD4	irod4_orf00041	putative NinH protein	Phage BP-4795
I-ROD4	irod4_orf00042	crossover junction endodeoxyribonuclease	Escherichia coli ED1a
I-ROD4	irod4_orf00044	hypothetical protein E2348C_2522	Escherichia coli O127:H6 str. E2348/69
I-ROD4	irod4_orf00045	putative ninB protein	Escherichia coli ED1a
I-ROD4	irod4_orf00046	putative antirepressor protein Ant from prophage	Escherichia coli ED1a
I-ROD4	irod4_orf00047	hypothetical protein ECO26_2262	Escherichia coli O26:H11 str. 11368
I-ROD4	irod4_orf00048	death-on-curing family protein	Escherichia coli STEC_7v
I-ROD4	irod4_orf00049	hypothetical protein ECSTEC7V_1837	Escherichia coli STEC_7v
I-ROD4	irod4_orf00050	hypothetical protein ECO111_1061	Escherichia coli O111:H- str. 11128
I-ROD4	irod4_orf00051	hypothetical protein G2583_1712	Escherichia coli O55:H7 str. CB9615
I-ROD4	irod4_orf00052	hypothetical protein EcE24377A_1426	Escherichia coli E24377A
I-ROD4	irod4_orf00053	hypothetical protein ECO103_1369	Escherichia coli O103:H2 str. 12009
I-ROD4	irod4_orf00055	putative replication protein	Escherichia coli ED1a

-ROD4	irod4_orf00056	hypothetical protein ECED1_1103	Escherichia coli ED1a
-ROD4	irod4_orf00057	hypothetical protein ECED1_1102	Escherichia coli ED1a
I-ROD4	irod4_orf00058	regulatory protein CII from prophage	Escherichia coli ED1a
I-ROD4	irod4_orf00059	prophage repressor CI	Enterobacteria phage HK97
I-ROD4	irod4_orf00060	hypothetical protein ECED1_1098	Escherichia coli ED1a
I-ROD4	irod4_orf00061	hypothetical protein ECED1_1097	Escherichia coli ED1a
I-ROD4	irod4_orf00063	monocarboxylate transporter	Culex quinquefasciatus
I-ROD4	irod4_orf00064	hypothetical protein ECED1_1095	Escherichia coli ED1a
I-ROD4	irod4_orf00065	hypothetical protein ECED1_1094	Escherichia coli ED1a
I-ROD4	irod4_orf00067	FtsZ inhibitor protein	Escherichia coli ED1a
I-ROD4	irod4_orf00068	hypothetical protein ECED1_1091	Escherichia coli ED1a
I-ROD4	irod4_orf00069	Exodeoxyribonuclease VIII (putative partial) from phage origin	Escherichia coli ED1a
I-ROD4	irod4_orf00070	putative host-nuclease inhibitor protein Gam	Shigella dysenteriae Sd197
I-ROD4	irod4_orf00071	Recombination protein bet from phage origin	Escherichia coli ED1a
I-ROD4	irod4_orf00072	putative exonuclease encoded by prophage CP-933K	Escherichia coli O157:H7 EDL933
I-ROD4	irod4_orf00074	prophage DLP12 integrase	Escherichia coli 101-1
I-ROD5	irod5_orf00001	hypothetical protein SSON_1273	Shigella sonnei Ss046
I-ROD5	irod5_orf00002	hypothetical protein EC55989_1079	Escherichia coli 55989
I-ROD5	irod5_orf00005	triple helix repeat-containing collagen	Clostridium beijerinckii NCIMB 8052
I-ROD5	irod5_orf00006	hypothetical protein SD15574_2985	Shigella dysenteriae 155-74
I-ROD5	irod5_orf00008	hypothetical protein ECE128010_5420	Escherichia coli E128010
I-ROD5	irod5_orf00011	Putative tail component of prophage	Escherichia coli NA114
I-ROD5	irod5_orf00012	hypothetical protein ECLG_05105	Escherichia coli TA271
I-ROD5	irod5_orf00015	Superoxide dismutase (Cu-Zn)	Escherichia coli O55:H7 str. CB9615
I-ROD5	irod5_orf00019	minor tail protein	Escherichia coli UTI89
I-ROD5	irod5_orf00021	minor tail protein	Escherichia coli UTI89
I-ROD5	irod5_orf00022	putative tail fiber component H of prophage CP-933U	Escherichia coli O157:H7 EDL933
I-ROD5	irod5_orf00024	Phage minor tail protein	Escherichia coli EC4100B
I-ROD5	irod5_orf00025	Phage minor tail protein	Escherichia coli EC4100B
I-ROD5	irod5_orf00026	phage major tail protein	Escherichia coli 042
I-ROD5	irod5_orf00027	hypothetical protein DAPPUDRAFT_279812	Daphnia pulex
I-ROD5	irod5_orf00029	polysaccharide Transporter, PST family	Enterococcus faecium E1679

I-ROD5	irod5_orf00032	hypothetical protein	Arthrospira platensis NIES-39
I-ROD5	irod5_orf00034	terminase large subunit domain protein	Escherichia coli RN587/1
I-ROD5	irod5_orf00035	conserved hypothetical protein	Escherichia albertii TW07627
I-ROD5	irod5_orf00036	phage major capsid protein E	Escherichia coli H489
I-ROD5	irod5_orf00039	Hypothetical protein CBG02325	Caenorhabditis briggsae
I-ROD5	irod5_orf00041	conserved domain protein	Escherichia coli MS 153-1
I-ROD5	irod5_orf00042	hypothetical protein c1457	Escherichia coli CFT073
I-ROD5	irod5_orf00043	Phage minor tail protein	Escherichia coli EC4100B
-ROD5	irod5_orf00045	hypothetical protein MK0973	Methanopyrus kandleri AV19
I-ROD5	irod5_orf00047	hypothetical protein SCA50_1305	Salmonella enterica subsp. enterica serovar Choleraesuis str. SCSA50
I-ROD5	irod5_orf00049	hypothetical protein ECOK1_1278	Escherichia coli IHE3034
I-ROD5	irod5_orf00052	phage DNA packaging protein Nu1	Escherichia coli MS 21-1
I-ROD5	irod5_orf00053	putative phage protein	Escherichia coli 042
I-ROD5	irod5_orf00055	hypothetical protein ECS88_0566	Escherichia coli S88
I-ROD5	irod5_orf00056	endopeptidase	Escherichia coli 2362-75
I-ROD5	irod5_orf00058	hypothetical protein SBO_1923	Shigella boydii Sb227
I-ROD5	irod5_orf00059	putative membrane-associated lysozyme; Qin prophage	Escherichia coli 55989
I-ROD5	irod5_orf00061	hypothetical protein Stx2-86_gp06	Stx2-converting phage 86
I-ROD5	irod5_orf00062	hypothetical protein Stx2-86_gp05	Stx2-converting phage 86
I-ROD5	irod5_orf00063	lysis protein S	Stx2-converting phage 86
I-ROD5	irod5_orf00066	hypothetical protein DAPPUDRAFT_52038	Daphnia pulex
I-ROD5	irod5_orf00068	heterokaryon incompatibility protein	Glomerella graminicola M1.001
I-ROD5	irod5_orf00070	DNA methylase family protein	Shigella flexneri J1713
I-ROD5	irod5_orf00071	hypothetical protein HMPREF9542_00842	Escherichia coli MS 117-3
I-ROD5	irod5_orf00072	hypothetical protein EcF11_4284	Escherichia coli F11
I-ROD5	irod5_orf00075	hypothetical protein ECRN5871_4170	Escherichia coli RN587/1
I-ROD5	irod5_orf00076	hypothetical protein E4_10746	Escherichia sp. 4_1_40B
I-ROD5	irod5_orf00077	endodeoxyribonuclease RusA family protein	Escherichia coli STEC_7v
I-ROD5	irod5_orf00078	LexA repressor	Escherichia coli S88
I-ROD5	irod5_orf00079	DNA adenine methylase	Escherichia coli UTI89
I-ROD5	irod5_orf00080	hypothetical protein ECS88_0547	Escherichia coli S88

-ROD5	irod5_orf00081	hypothetical protein PcdtI_gp46	Phage cdtI
I-ROD5	irod5_orf00082	putative antirepressor	Escherichia coli EC4100B
I-ROD5	irod5_orf00083	nucleic acid-binding protein; e14 prophage	Escherichia coli S88
I-ROD5	irod5_orf00084	hypothetical protein ECD227_2469	Escherichia fergusonii ECD227
I-ROD5	irod5_orf00085	regulatory protein cI	Escherichia coli EC4100B
I-ROD5	irod5_orf00086	hypothetical protein ECoL_03975	Escherichia coli EC4100B
I-ROD5	irod5_orf00087	hypothetical protein ECoL_03976	Escherichia coli EC4100B
I-ROD5	irod5_orf00089	Hypothetical protein yfdR	Escherichia coli EC4100B
I-ROD5	irod5_orf00090	hypothetical protein ShiD9_12075	Shigella sp. D9
I-ROD5	irod5_orf00091	conserved hypothetical protein	Escherichia coli E22
I-ROD5	irod5_orf00093	conserved hypothetical protein	Escherichia coli E22
I-ROD5	irod5_orf00095	Phage EaA protein	Escherichia coli EC4100B
I-ROD5	irod5_orf00096	Phage EaA protein	Escherichia coli EC4100B
I-ROD5	irod5_orf00097	Integrase	Escherichia coli EC4100B
I-ROD6	irod6_orf00001	molybdate metabolism regulator	Escherichia coli 536
I-ROD6	irod6_orf00003	hypothetical protein ECP_2154	Escherichia coli 536
I-ROD6	irod6_orf00005	yehL protein	Escherichia coli B088
I-ROD6	irod6_orf00006	hypothetical protein ECP_2157	Escherichia coli 536
I-ROD6	irod6_orf00007	hypothetical protein ECIAI1_2197	Escherichia coli IAI1
I-ROD6	irod6_orf00008	hypothetical protein ECP_2159	Escherichia coli 536
I-ROD7	irod7_orf00001	integrase	Escherichia coli
I-ROD7	irod7_orf00002	Evolved beta-D-galactosidase, beta subunit	Shigella dysenteriae CDC 74-1112
I-ROD7	irod7_orf00003	transposase TnpA	Corynebacterium glutamicum
I-ROD7	irod7_orf00004	resolvase for Tn21	Plasmid R100
I-ROD7	irod7_orf00006	Urf2 protein	Escherichia fergusonii ECD227
I-ROD7	irod7_orf00007	integrase	Plasmid R100
I-ROD7	irod7_orf00008	dihydrofolate reductase type A7	Salmonella enterica subsp. enterica serovar Weltevreden
I-ROD7	irod7_orf00010	putative transposase	Klebsiella pneumoniae subsp. pneumoniae MGH 78578
I-ROD7	irod7_orf00014	3-hydroxyisobutyrate dehydrogenase	Mycobacterium tuberculosis 210
I-ROD7	irod7_orf00016	protein RepC	Salmonella enterica subsp. enterica serovar Enteritidis

I-ROD7	irod7_orf00017	dihydropteroate synthase	Salmonella enterica subsp. enterica serovar Typhi str. CT18
I-ROD7	irod7_orf00018	aminoglycoside/hydroxyurea antibiotic resistance kinase	Escherichia coli MS 200-1
I-ROD7	irod7_orf00019	beta-lactamase	Escherichia coli 3431
I-ROD7	irod7_orf00021	hypothetical protein R100p008	Plasmid R100
I-ROD7	irod7_orf00022	putative mercury resistance protein	Plasmid R100
I-ROD7	irod7_orf00023	transcriptional regulator MerD	Plasmid R100
I-ROD7	irod7_orf00026	RecName: Full=Mercuric reductase; AltName: Full=Hg(II) reductase	
I-ROD7	irod7_orf00027	putative mercury transport protein MerC	Aeromonas salmonicida subsp. salmonicida A449
I-ROD7	irod7_orf00029	Tn501 orf, hypotheical	Shigella flexneri 5a
I-ROD7	irod7_orf00033	InsL	Escherichia coli 53638
I-ROD7	irod7_orf00034	hypothetical protein pFL129_4	Escherichia coli
I-ROD7	irod7_orf00036	TetA	Salmonella enterica subsp. enterica serovar Choleraesuis
I-ROD7	irod7_orf00037	integral membrane protein DUF6	Escherichia coli MS 78-1
I-ROD7	irod7_orf00038	hypothetical protein HMPREF9544_05491	Escherichia coli MS 153-1
I-ROD7	irod7_orf00039	conserved hypothetical protein	Escherichia coli ETEC H10407
I-ROD7	irod7_orf00040	conserved hypothetical protein	Escherichia coli SE15
I-ROD7	irod7_orf00042	hypothetical protein HMPREF9553_03865	Escherichia coli MS 200-1
I-ROD7	irod7_orf00044	putative regulatory protein	Escherichia coli 536
I-ROD7	irod7_orf00045	conserved hypothetical protein	Escherichia coli SE15
I-ROD7	irod7_orf00046	transposase	Escherichia coli SE15
I-ROD7	irod7_orf00048	hypothetical protein	Escherichia coli SE15
I-ROD7	irod7_orf00049	hypothetical protein ECUMN_4880	Escherichia coli UMN026
I-ROD7	irod7_orf00051	putative autotransporter	Escherichia coli 536
I-ROD7	irod7_orf00052	antigen 43 domain protein	Escherichia coli LT-68
I-ROD7	irod7_orf00053	hypothetical protein EcE24377A_4893	Escherichia coli E24377A
I-ROD7	irod7_orf00054	hypothetical protein ECNA114_2131	Escherichia coli NA114
I-ROD7	irod7_orf00056	conserved domain protein	Escherichia coli MS 187-1
I-ROD7	irod7_orf00058	conserved hypothetical protein	Escherichia coli SE15
I-ROD7	irod7_orf00059	putative radC-like protein yeeS	Escherichia coli CFT073
I-ROD7	irod7_orf00060	hypothetical protein c0272	Escherichia coli CFT073

-ROD7	irod7_orf00061	unknown	Escherichia coli
I-ROD7	irod7_orf00063	DNA repair protein	Escherichia coli MS 78-1
I-ROD7	irod7_orf00064	hypothetical protein c4574	Escherichia coli CFT073
I-ROD7	irod7_orf00065	conserved hypothetical protein	Shigella dysenteriae 1617
I-ROD7	irod7_orf00067	hypothetical protein APECO1_3486	Escherichia coli APEC O1
I-ROD7	irod7_orf00068	hypothetical protein SF3000	Shigella flexneri 2a str. 301
I-ROD7	irod7_orf00069	hypothetical protein ECO103_3594	Escherichia coli O103:H2 str. 12009
I-ROD7	irod7_orf00070	hypothetical protein ECED1_4984	Escherichia coli ED1a
pESBL	scaffold19_orf0002	YciB	Escherichia coli
pESBL	scaffold19_orf0003	hypothetical protein pECBactecp21	Escherichia coli
pESBL	scaffold19_orf0004	hypothetical protein SC121	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
pESBL	scaffold19_orf0005	single-stranded DNA-binding protein	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
pESBL	scaffold19_orf0006	hypothetical protein pO157p50	Escherichia coli O157:H7 str. Sakai
pESBL	scaffold19_orf0007	plasmid SOS inhibition protein B	Escherichia coli
pESBL	scaffold19_orf0008	plasmid SOS inhibition protein A	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
pESBL	scaffold19_orf0009	hypothetical protein SC115	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
pESBL	scaffold19_orf0010	antirestriction protein	Escherichia coli MS 107-1
pESBL	scaffold19_orf0011	hypothetical protein ECSE_P1-0063	Escherichia coli SE11
pESBL	scaffold19_orf0012	hypothetical protein HMPREF9542_03988	Escherichia coli MS 117-3
pESBL	scaffold19_orf0013	hypothetical protein SeHA_A0062	Salmonella enterica subsp. enterica serovar Heidelberg str. SL476
pESBL	scaffold19_orf0014	hypothetical protein EcE22_3665	Escherichia coli E22
pESBL	scaffold19_orf0015	CcgAII protein	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
pESBL	scaffold19_orf0016	putative transposase	Escherichia coli E22
pESBL	scaffold19_orf0018	hypothetical protein SC107	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
pESBL	scaffold19_orf0019	hypothetical protein R64_p076	Salmonella enterica subsp. enterica serovar Typhimurium
pESBL	scaffold19_orf0020	hypothetical protein SC105	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67

DESBL	scaffold19_orf0021	hypothetical protein pECBactecp14	Escherichia coli
pESBL	scaffold19_orf0022	hypothetical protein LH0067	Escherichia coli
pESBL	scaffold19_orf0023	relaxosome component	Plasmid ColIb-P9
pESBL	scaffold19_orf0024	NikB	Escherichia coli O157:H7 str. Sakai
pESBL	scaffold19_orf0025	hypothetical protein EcE24377A_D0057	Escherichia coli E24377A
pESBL	scaffold19_orf0026	hypothetical protein pECBactecp09	Escherichia coli
pESBL	scaffold19_orf0027	hypothetical protein pECBactecp08	Escherichia coli
pESBL	scaffold19_orf0028	putative protein FinQ	Escherichia coli MS 84-1
pESBL	scaffold19_orf0029	counter protein for PndA	Escherichia coli
pESBL	scaffold19_orf0030	hypothetical protein SC084	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
pESBL	scaffold19_orf0031	conserved hypothetical protein	Escherichia coli MS 107-1
pESBL	scaffold19_orf0032	hypothetical protein ECSE_P1-0081	Escherichia coli SE11
pESBL	scaffold19_orf0033	putative regulator protein	Escherichia coli SE11
pESBL	scaffold19_orf0034	exclusion-determining family protein	Escherichia coli MS 84-1
pESBL	scaffold19_orf0035	TraY	Escherichia coli O157:H7 str. EC4486
pESBL	scaffold19_orf0036	F pilin acetylation protein	Escherichia coli
pESBL	scaffold19_orf0037	F pilus assembly	Escherichia coli
pESBL	scaffold19_orf0038	F pilus assembly	Escherichia coli
pESBL	scaffold19_orf0039	TraU	Escherichia coli O157:H7 str. EC4401
pESBL	scaffold19_orf0040	hypothetical protein HMPREF9542_01329	Escherichia coli MS 117-3
pESBL	scaffold19_orf0041	TraR protein	Escherichia coli
pESBL	scaffold19_orf0042	hypothetical protein ColIb-P9_p070	Plasmid ColIb-P9
pESBL	scaffold19_orf0043	hypothetical protein ColIb-P9_p071	Plasmid ColIb-P9
pESBL	scaffold19_orf0044	hypothetical protein ColIb-P9_p072	Plasmid ColIb-P9
pESBL	scaffold19_orf0045	hypothetical protein ColIb-P9_p073	Plasmid ColIb-P9
pESBL	scaffold19_orf0046		Plasmid ColIb-P9
pESBL	scaffold19_orf0047	thick pilus signal peptide	Escherichia coli W
pESBL	scaffold19_orf0048	DNA primase	Escherichia coli O157:H7 str. EC4401
pESBL	scaffold19_orf0049	EDTA-resistant nuclease	Escherichia coli
pESBL	scaffold19_orf0051	ATP-binding protein	Plasmid ColIb-P9
pESBL	scaffold19_orf0052	lipoprotein	Salmonella enterica subsp. enterica serovar

			Typhimurium
pESBL	scaffold19_orf0053	hypothetical protein ColIb-P9_p082	Plasmid ColIb-P9
pESBL	scaffold19_orf0054	hypothetical protein ColIb-P9_p083	Plasmid ColIb-P9
pESBL	scaffold19_orf0055	F pilus assembly	Escherichia coli
pESBL	scaffold19_orf0056	TraE protein	Escherichia coli
pESBL	scaffold19_orf0057	shufflon-specific DNA recombinase	Escherichia coli AA86
pESBL	scaffold19_orf0058	hypothetical protein HMPREF9536_01879	Escherichia coli MS 84-1
pESBL	scaffold19_orf0059	conserved hypothetical protein	Escherichia coli MS 107-1
pESBL	scaffold19_orf0060	hypothetical protein R64_p118	Salmonella enterica subsp. enterica serovar Typhimurium
pESBL	scaffold19_orf0061	shufflon protein C'	Escherichia coli O157:H7 str. EC4486
pESBL	scaffold19_orf0062	conserved hypothetical protein	Escherichia coli MS 107-1
pESBL	scaffold19_orf0063	shufflon protein A	Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188
pESBL	scaffold19_orf0064	peptidase A24A prepilin type IV	Escherichia coli W
pESBL	scaffold19_orf0065	type IV prepilin cluster	Escherichia coli
pESBL	scaffold19_orf0066	type IV prepilin cluster; prepilin	Escherichia coli
pESBL	scaffold19_orf0067	integral membrane protein	Escherichia coli E22
pESBL	scaffold19_orf0068	ATP-binding protein PilQ	Escherichia coli SE11
pESBL	scaffold19_orf0069	IncI1 conjugal transfer protein PilP	Escherichia coli
pESBL	scaffold19_orf0070	IncI1 conjugal transfer protein PilO	Escherichia coli
pESBL	scaffold19_orf0071	lipoprotein PilN	Escherichia coli SE11
pESBL	scaffold19_orf0072	hypothetical protein ColIb-P9_p101	Plasmid Collb-P9
pESBL	scaffold19_orf0073	IncI1 conjugal transfer protein PilL	Escherichia coli
pESBL	scaffold19_orf0074	predicted protein	Nematostella vectensis
pESBL	scaffold19_orf0075	IncI1 conjugal transfer protein TraC	Escherichia coli
pESBL	scaffold19_orf0076	transcription termination factor NusG	Escherichia coli MS 84-1
pESBL	scaffold19_orf0077	TraA protein	Escherichia coli SE11
pESBL	scaffold19_orf0078	replication initiation protein	Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188
pESBL	scaffold19_orf0079	hypothetical protein ND12IncI1_3	Escherichia coli
pESBL	scaffold19_orf0080	hypothetical protein pECBactecp34	Escherichia coli
pESBL	scaffold19_orf0081	YagA	Escherichia coli O157:H7 str. EC4486

pESBL	scaffold19_orf0082	transposase		Salmonella enterica subsp. enterica serovar Infantis
pESBL	scaffold19_orf0083	conserved hypothetical protein		Escherichia coli MS 21-1
pESBL	scaffold19_orf0084	hypothetical protein		Escherichia coli
pESBL	scaffold19_orf0085	hypothetical protein pC15-1a_016	blaCTX- M-15	Escherichia coli
pESBL	scaffold19_orf0086	ISEcp1 transposase		Escherichia coli
pESBL	scaffold19_orf0087	transposase for transposon Tn3		Escherichia coli
pESBL	scaffold19_orf0088	hypothetical protein pC15-1a_019		Escherichia coli
pESBL	scaffold19_orf0089	TEM-1 beta-lactamase	blaTEM-1	Salmonella enterica subsp. enterica serovar Montevideo
pESBL	scaffold19_orf0090	conserved domain protein		Escherichia coli MS 21-1
pESBL	scaffold19_orf0091	cobyrinic acid a,c-diamide synthase		Escherichia coli
pESBL	scaffold19_orf0093	protein impB domain protein		Escherichia coli 1357
pESBL	scaffold19_orf0094	hypothetical protein ColIb-P9_p029		Plasmid ColIb-P9
pESBL	scaffold19_orf0095	DinI-like family protein		Escherichia coli MS 21-1
pESBL	scaffold19_orf0096	hypothetical protein p026VIR_p092		Escherichia coli
pESBL	scaffold19_orf0097	hypothetical protein ECO103_p71		Escherichia coli O103:H2 str. 12009
pESBL	scaffold19_orf0098	conserved hypothetical protein		Escherichia coli H299
pESBL	scaffold19_orf0099	hypothetical protein ND12IncI1_24		Escherichia coli
pESBL	scaffold19_orf0100	conserved hypothetical protein		Escherichia coli W
pAA	scaffold16_orf0001	putative secreted protein		Streptomyces hygroscopicus ATCC 53653
pAA	scaffold16_orf0002	hypothetical protein c3579		Escherichia coli CFT073
pAA	scaffold16_orf0003	unknown protein encoded in ISEc8		Escherichia coli O157:H7 EDL933
pAA	scaffold16_orf0004	hypothetical protein SbBS512_A0019		Shigella boydii CDC 3083-94
pAA	scaffold16_orf0005	AggA457 protein	AggA	Escherichia coli
pAA	scaffold16_orf0006	RecName: Full=Protein AggB; Flags: Precursor	AggB	
pAA	scaffold16_orf0007	HdaC, HUS-associated diffuse adherence	AggC	Escherichia coli
pAA	scaffold16_orf0008	RecName: Full=Chaperone protein AggD; Flags: Precursor	AggD	
pAA	scaffold16_orf0010	putative resolvase		Escherichia coli
pAA	scaffold16_orf0011	3-hydroxyisobutyrate dehydrogenase		Mycobacterium tuberculosis 210
pAA	scaffold16_orf0012	hypothetical protein ColIb-P9_p027		Plasmid ColIb-P9
pAA	scaffold16_orf0013	StbA protein		Escherichia coli MS 84-1

pAA	scaffold16_orf0015	putative 60 kDa chaperonin	Escherichia coli E24377A
pAA	scaffold16_orf0016	hypothetical protein ColIb-P9_p024	Plasmid ColIb-P9
pAA	scaffold16_orf0017	resolvase	Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188
pAA	scaffold16_orf0018	plasmid maintenance protein CcdB	Escherichia coli
pAA	scaffold16_orf0019	plasmid maintenance protein CcdA	Escherichia coli
pAA	scaffold16_orf0021	hypothetical protein E4_23171	Escherichia sp. 4_1_40B
pAA	scaffold16_orf0022	hypothetical protein p1ECUMN_0160	Escherichia coli UMN026
pAA	scaffold16_orf0024	orf906	Escherichia coli
pAA	scaffold16_orf0026	phage integrase	Escherichia coli M863
pAA	scaffold16_orf0027	COG1506: Dipeptidyl aminopeptidases/acylaminoacyl-peptidases	Magnetospirillum magnetotacticum MS-1
pAA	scaffold16_orf0028	hypothetical protein pECL46p020	Escherichia coli
pAA	scaffold16_orf0029	hypothetical protein pEC55989_0007	Escherichia coli 55989
pAA	scaffold16_orf0030	hypothetical protein IPF_103	Escherichia coli 1520
pAA	scaffold16_orf0031	incFII family plasmid replication initiator RepA	Escherichia coli MS 78-1
pAA	scaffold16_orf0032	replication initiation protein	Escherichia coli E128010
pAA	scaffold16_orf0033	replication protein	Escherichia sp. 4_1_40B
pAA	scaffold16_orf0034	conjugal transfer pilus acetylation protein TraX	Shigella flexneri 2a str. 301
pAA	scaffold16_orf0035	hypothetical protein pYT1_p113	Salmonella enterica subsp. enterica serovar Typhimurium
pAA	scaffold16_orf0036	DNA helicase TraI	Escherichia coli MS 57-2
pAA	scaffold16_orf0037	conserved hypothetical protein	Salmonella enterica subsp. enterica serovar Kentucky
pAA	scaffold16_orf0038	hypothetical protein c3659	Escherichia coli CFT073
pAA	scaffold16_orf0039	hypothetical protein c3661	Escherichia coli CFT073
pAA	scaffold16_orf0040	hypothetical protein pB171_031	Escherichia coli
pAA	scaffold16_orf0041	conserved hypothetical protein	Escherichia coli H299
pAA	scaffold16_orf0042	conjugal transfer fertility inhibition protein FinO	Escherichia coli
pAA	scaffold16_orf0043	conjugal transfer pilus acetylation protein TraX	Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188
pAA	scaffold16_orf0044	hypothetical protein pYT1_p113	Salmonella enterica subsp. enterica serovar Typhimurium
pAA	scaffold16_orf0045	conjugal transfer nickase/helicase TraI	Escherichia coli

pAA	scaffold16_orf0046	conjugal transfer nickase/helicase TraI	Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188
pAA	scaffold16_orf0047	hypothetical protein R100p115.2br	Plasmid R100
pAA	scaffold16_orf0048	Protein traJ	Escherichia coli 55989
pAA	scaffold16_orf0049	TraM	Escherichia coli
pAA	scaffold16_orf0050	putative lytic transglycosylase	Escherichia coli ETEC H10407
pAA	scaffold16_orf0051	conserved hypothetical protein	Escherichia coli MS 185-1
pAA	scaffold16_orf0052	putative recombinase	Escherichia coli
pAA	scaffold16_orf0053	SepA	Escherichia coli 536
pAA	scaffold16_orf0054	putative transposase	Escherichia coli
pAA	scaffold16_orf0057	conserved hypothetical protein	Escherichia coli MS 153-1
pAA	scaffold16_orf0058	AatD	Escherichia sp. 4_1_40B
pAA	scaffold16_orf0059	AatC ATB binding protein of ABC transporter	Escherichia coli 55989
pAA	scaffold16_orf0060	AatB	Escherichia coli 55989
pAA	scaffold16_orf0061	AatA outermembrane protein	Escherichia coli 55989
pAA	scaffold16_orf0062	AatP permease	Escherichia sp. 4_1_40B
pAA	scaffold16_orf0063	serine protease eatA	Shigella dysenteriae 1617
pAA	scaffold16_orf0064	protease IgA1	Escherichia coli
pAA	scaffold16_orf0065	hypothetical protein E4_23001	Escherichia sp. 4_1_40B
pAA	scaffold16_orf0066	Serine protease sat precursor (Secreted autotransporter toxin sat) (fragment)	Escherichia coli 55989
pAA	scaffold16_orf0067	ISPsy2, transposase	Escherichia coli MS 185-1
pAA	scaffold16_orf0069	14 kDa aggregative adherence fimbriae I protein (Fragment) (modular protein)	Escherichia coli 55989
pAA	scaffold16_orf0070	putative transposase domain protein	Escherichia coli 3431
pAA	scaffold16_orf0071	Serine protease sepA precursor (fragment)	Escherichia sp. 4_1_40B
pAA	scaffold16_orf0072	IS186 transposase	Escherichia coli UMNK88
pAA	scaffold16_orf0073	CvaB, IS186 transposase	Escherichia coli BW2952
pAA	scaffold16_orf0074	hypothetical protein	Escherichia coli
pAA	scaffold16_orf0075	hypothetical protein Mtub2_09757	Mycobacterium tuberculosis 210
pAA	scaffold16_orf0076	putative IS639 ORF1	Escherichia coli ETEC 1392/75
pAA	scaffold16_orf0077	putative transcriptional activator aggR (AAF-III) regulatory protein)	Escherichia coli 55989
pAA	scaffold16_orf0078	transposase ORF A, IS1	Escherichia coli 55989

pAA	scaffold16_orf0079	transposase	Escherichia coli M863
pAA	scaffold16_orf0080	hypothetical protein Mtub2_09757	Mycobacterium tuberculosis 210
pAA	scaffold16_orf0081	hypothetical protein E4_23056	Escherichia sp. 4_1_40B
pAA	scaffold16_orf0083	putative transposase (fragment)	Escherichia coli 55989
pAA	scaffold16_orf0084	putative Isopentenyl-diphosphate delta-isomerase (IPP isomerase) (Isopentenyl pyrophosphate isomerase) (IPP:DMAPP isomerase)	Escherichia coli 55989
pAA	scaffold16_orf0085	hypothetical protein pEC55989_0080	Escherichia coli 55989
pAA	scaffold16_orf0086	conserved hypothetical protein	Escherichia coli MS 119-7
pAA	scaffold16_orf0087	transposase	Escherichia coli M863
pAA	scaffold16_orf0088	putative transposase insK for insertion sequence element IS150	Shigella sonnei 53G
pAA	scaffold16_orf0089	putative protein encoded within IS	Shigella sonnei Ss046