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ABSTRACT: 

State-of-the-art automated image orientation (Structure from Motion) and dense image matching (Multiple View Stereo) methods 
commonly used to produce 3D information from 2D images can generate 3D results – such as point cloud or meshes – of varying 
geometric and visual quality. Pipelines are generally robust and reliable enough, mostly capable to process even large sets of unordered 
images, yet the final results often lack completeness and accuracy, especially while dealing with real-world cases where objects are 
typically characterized by complex geometries and textureless surfaces and obstacles or occluded areas may also occur. In this study 
we investigate three of the available commonly used open-source solutions, namely COLMAP, OpenMVG+OpenMVS and AliceVision, 
evaluating their results under diverse large scale scenarios. Comparisons and critical evaluation on the image orientation and dense 
point cloud generation algorithms is performed with respect to the corresponding ground truth data. The presented FBK-3DOM datasets 
are available for research purposes. 

Figure 1. From UAV image network and sparse point cloud (left and middle) to dense point cloud (right). 

1. ΙNTRODUCTION

The development of robust computer vision algorithms has 
facilitated the democratization of the standard photogrammetric 
pipeline for 3D reconstruction purposes. Towards this end, 
several software implementations are now available as free, 
open-source (Table 1) or commercial, providing to users different 
levels of automatization, parameter tuning and customization. 
The input is commonly a set of images with extra camera 
metadata and the output can be, depending on the requirements, 
a dense coloured point cloud or a triangulated textured mesh. A 
typical pipeline starts with image orientation that relies on 
abundant feature matches among the images and the sparse point 
cloud triangulation (often called Structure from Motion - SfM) 
by means of incremental and/or global bundle adjustment (BA). 
Then, a dense 3D reconstruction is performed (normally called 
Multiple View Stereo - MVS) in order to further densify the 
sparse point cloud by reconstructing the depth value of almost 
every pixel correspondence in the 3D space.  
The available open-source methods are fairly robust, they offer 
full access to parameters and they are able to cope even with large 
sets of unordered and diverse images, but the final 3D data often 
lack completeness and accuracy, especially while dealing with 
real-world cases where objects are commonly defined by 
complex geometries (Figure 1), textureless surfaces, repeated 
patterns, obstacles or occluded areas. Open-source solutions are 
normally not designed to support scaled 3D reconstructions with 
the use of ground control points (GCPs), but with a simple 
Helmert transformation. On the other hand, in case of closed-
source commercial software, there is generally a lack of custom 

in-deep parametrization that may often result to misleading 
output or black-box usage. 

1.1 Aim of the paper 

The paper considers three of the most common open-source 
image-based 3D reconstruction pipelines (Table 1):  
• OpenMVG library combined with OpenMVS (Moulon et al.,

2016; Moulon et al., 2013; Moisan et al., 2012; Moulon et
al., 2012a; Moulon et al., 2012b);

• COLMAP pipeline (Schönberger and Frahm, 2016;
Schönberger et al., 2016a);

• AliceVision computer vision framework (Moulon et al.,
2016; Jancosek et al., 2011).

Being open-source, full control of the implemented functions is 
guaranteed along with parametrization and interchangeability 
between the pipelines (Table 2). The aim is to check algorithm 
reliability and performances on large and extensive datasets. 
Experiments are indeed performed on a series of heterogeneous 
datasets of large scale scenarios, acquired with high-resolution 
cameras (Table 3). None of the pipelines allows the usage of 
GCPs observations for the datum definition, hence all 3D results 
are scaled and roto-translated with a simple Helmert 
transformation after the bundle adjustment. Analyses of the 
results and geometric comparisons are presented and discussed.  
The rest of the paper is organized as follows: Section 2 reports 
related work on open-source software for 3D reconstruction, 
relative benchmark releases and comparison studies. Section 3 
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describes the respective implementation details for every pipeline 
that is used in our experiments, as well as the dataset 
characteristics, while Section 4 presents the experiments and 
their comparisons, followed by conclusions in Section 5. 
 

2. RELATED WORK 

Evaluating 3D reconstruction pipelines is a common task in the 
research community. Remondino et al. (2017) considers large 
real-world aerial and terrestrial dataset and compares the 3D 
reconstruction performance using various commercial software 
and photogrammetric metrics. Similar evaluation studies with 
commercial software and UAV or underwater images were 
presented in Georgopoulos et al. (2016), Alidoost and Arefi 
(2017), Mangeruga et al. (2018) and Vlachos et al. (2019).  
 
2.1 Open-source pipelines 

Image-based 3D reconstruction has developed immensely during 
the last decades. Thus, numerous free and open-source solutions 
became available to the community, with Photo Tourism (later 
known as Bundler) being one of the pioneers in the field (Snavely 
et al., 2006). Few years later algorithms were able to work even 
with city scale reconstructions (Agarwal et al., 2011). VisualSfM 
was one of the first largely used all-in-one GUI solutions (Wu et 
al., 2011; Wu, 2013) integrating also the famous PMVS/CMVS 
(Furukawa and Ponce 2009; Furukawa et al., 2010) dense image 
matching method. In the last years, many other implementations 
provide full standalone 3D reconstruction pipelines, such as 
COLMAP (Schönberger and Frahm, 2016; Schönberger et al., 
2016a) or a combination of several libraries and algorithms for 
SfM and/or MVS like OpenMVG (Moulon et al., 2016), MVE 
(Fuhrmann et al., 2014), Theia (Sweeney, 2015), OpenMVS1 or 
the OpenSfM library2 of Mapillary. The aforementioned open-
source solutions, mostly developed by the computer vision 
community, target to a broader 3D reconstruction audience and 
thus, their main purpose is not metric accuracy but rather 
photorealistic 3D models of arbitrary scale and low geometric 
quality. MicMac3 (Pierrot-Deseilligny and Paparoditis, 2006; 
Rupnik et al., 2017) is, on the other hand, a fully 
photogrammetric open-source pipeline able to handle GCPs and 
camera constraints (e.g. fixed baselines, etc.). 
 
2.2 Accuracy assessment 

Comparison and evaluation of algorithm performances have 
always accompanied algorithm developments. For this, high 
quality benchmark data are necessary and a plethora of 
benchmarks were released, usually targeting to one specific 
subtask of the 3D reconstruction pipeline. The establishment of 
good reference datasets (ground truth) requires an accuracy level 
which is commonly two or three times better than the expected 
results. The choice of the entities be compared and evaluated is 
also not straightforward (e.g. few single points? an entire 
surface? small patches?), neither is the procedure (e.g. Euclidean 
distance? Hausdorff distance?), nor the metrics (e.g. signed 
distance? sigma MAD? standard deviation? completeness? 
accuracy? RMS error on plane fitting?). In photogrammetry, 
important metrics are the standard deviation of unit weight, 
averaged residuals of image coordinates, the standard deviation 
of object coordinates, accuracy w.r.t. independent references, 
relative accuracy and completeness. Less implemented measures 

 
1 https://github.com/cdcseacave/openMVS  
2 https://github.com/mapillary/OpenSfM  
3 https://micmac.ensg.eu/ 
4 http://vision.middlebury.edu/stereo/ 
5 http://vision.middlebury.edu/mview/eval/ 

used to judge SfM results are intersection angles, redundancy and 
number of oriented cameras etc.   
 
2.3 Benchmarks 

Middlebury University (Seitz et al., 2006) released several 
datasets of indoor laboratory scenarios focusing either on the 
evaluation of dense stereo matching4 algorithms or on multi view 
stereo5. EPFL (Strecha et al., 2008) published real-world outdoor 
datasets6 with their corresponding 3D meshes for multi-view 
stereo and camera calibration evaluation.  
Özdemir et al. (2019) recently introduced the 3DOMcity7 multi-
purpose benchmark dataset serving also for the evaluation of the 
whole photogrammetric 3D urban reconstruction in terms of 
image orientation and dense image matching. Indoor and outdoor 
video frame datasets for evaluation of large scale 3D 
reconstructions are also available in the Tanks and Temples8 
(Knapitsch et al., 2017) and ETH3D9 (Schöeps et al., 2017) 
benchmarks.  
Other benchmarks in the general field of 3D reconstruction 
include RGB-D datasets (captured with proper sensors or 
generated synthetically) to evaluate SLAM, visual odometry and 
optical flow methods in terms of camera trajectory estimation and 
3D reconstruction (Handa et al., 2012; Sturm et al., 2012; Geiger 
et al., 2013; Menze et al., 2018).  
 

3. IMPLEMENTED OPEN-SOURCE PIPELINES 

The employed pipelines, their combined approaches and the 
communication/exchange protocols used in each case are 
summarized in Table 1. In most of the cases, we used conversion 
tools already implemented by developers except for the 
combined AliceVision+OpenMVS approach where an in-house 
converter was developed (it will be soon publicly released). The 
3D reconstruction workflows provide a certain level of 
customization with different algorithms available for each 
processing step (Table 2) and further customization on demand 
is achieved through code accessibility. 
 

Pipelines 
Communication protocol 

SfM MVS 

COLMAP 
COLMAP native 

OpenMVS openmvs:InterfaceCOLMAP 

OpenMVG 
OpenMVS openmvs:InterfaceOpenMVS 

COLMAP openmvg:openMVG2COLMAP 

AliceVision 

AliceVision native 

OpenMVS in-house converter 

COLMAP 
openmvg:openMVG2COLMAP 

+ 
in-house converter 

Table 1: The employed pipelines and combined approaches. 
 
3.1 COLMAP 

COLMAP (Schönberger and Frahm, 2016; Schönberger et al., 
2016a) is a pipeline that implements improved versions of both 
SfM and MVS which comes also with a graphical user interface 
facilitating the use by non-experts. Project information is stored 
in a database structure format. Regarding correspondence search, 
it implements the well-known SIFT algorithm (Lowe, 2004) 
providing both CPU and GPU options, followed by an extensive 
list of feature matching options such as exhaustive matching,  

6 https://www.epfl.ch/labs/cvlab/data/data-strechamvs/ 
7 https://3dom.fbk.eu/3domcity-benchmark  
8 https://www.tanksandtemples.org/  
9 http://www.eth3d.net  
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 COLMAP OpenMVG AliceVision 

Keypoint extraction SIFT (Lowe, 2004) 
SIFT (Lowe, 2004), AKAZE 

(Alcantarilla et al., 2013) 
SIFT (Lowe, 2004), AKAZE 

(Alcantarilla and Solutions, 2011) 

Keypoint matching 

Exhaustive, Sequential, Vocabulary 
Tree (Schönberger et al., 2016b), 
Spatial (Schönberger and Frahm, 

2016), Transitive (Schönberger and 
Frahm, 2016) 

Brute Force, ANN (Muja and 
Lowe, 2009), Cascade 

Hashing (Cheng et al., 2014) 

ANN (Muja and Lowe, 2009) 
Cascade Hashing (Cheng et al., 2014) 

Geometric verification 

4 points homography (Hartley and 
Zissermann, 2003), 5 points relative 

pose (Stewenius et al., 2006), 7-8 
points F-matrix (Hartley and 

Zissermann, 2003) 

4 points homography 
(Hartley and Zissermann, 

2003), 5 points relative pose 
(Stewenius et al., 2006), 7-8 
points F-matrix (Hartley and 

Zissermann, 2003) 

4 points homography (Hartley and 
Zissermann, 2003), homography 

growing (Srajer 2016), 7-8 points F-
matrix (Hartley and Zissermann, 

2003), 
5 points relative pose (Stewenius et 

al., 2006) 
Incremental bundle 

(image resection and 

triangulation) 

P3P (Gao et al., 2003) + DLT, EPnP 
(Lepetit et al., 2009) + DLT 

P3P (Gao et al., 2003) + 
DLT, EPnP (Lepetit et al., 

2009) + DLT 
PnP (Gao et al., 2003) + DLT 

Global bundle adjustment CERES10  CERES CERES 

Dense point cloud 

generation 
Patch-based stereo  

(Schönberger et al., 2016a) 
Patch-based stereo 

(OpenMVS – Shen, 2013) 
Semi Global Matching (Hirschmüller, 

2007) 

Table 2: Open-source image-based 3D reconstruction pipelines analysed in this study. 

sequential matching, vocabulary tree, spatial matching, transitive 
matching and custom matching. Image pairs are considered 
verified if a valid mapping of their geometric relation exists 
(homography, essential or fundamental matrix) and thus the 
scene graph is created gradually. 3D reconstruction is done by 
implementing incremental SfM starting from a carefully selected 
initial image pair and applying a robust next best view selection 
algorithm and subsequently multi-view triangulation. The bundle 
adjustment step uses Ceres solver and global BA every certain 
steps to improve camera and point estimations and avoid drifting 
(Schönberger and Frahm, 2016). Multi-view stereo 
reconstruction is implemented based on the framework of (Zheng 
et al., 2014) using a probabilistic patch-based stereo approach 
(Schönberger et al., 2016a). 
 
3.2 OpenMVG+OpenMVS 

OpenMVG provides a complete and neat SfM pipeline based on 
standard multiple view geometry principles. Feature detection  
and description are implemented with SIFT (Lowe, 2004) and 
AKAZE (Alcantarilla et al., 2013), while detection and 
description of invariant regions can also be used (Xu et al., 2014; 
Nistér and Stewénius, 2008). Feature matching is implemented 
by classic brute force, ANN-kD trees (Muja and Lowe, 2009), or 
cascade hashing (Cheng et al., 2014). Geometric verification of 
the image pairs is implemented in a similar fashion to COLMAP. 
Sparse reconstruction can be calculated using incremental 
(Moulon et al., 2012) or global (Moulon et al., 2013) methods 
followed by bundle adjustment using Ceres solver. For this 
pipeline combination, we consider dense reconstruction as 
implemented by the OpenMVS library based on patch-based 
stereo method for large-scale scenes (Shen, 2013). 
 
3.3 AliceVision 

AliceVision is a computer vision framework on which the 
graphical user interface Meshroom is based. Similarly to 
OpenMVG, it implements SIFT (Lowe, 2004) and AKAZE 
(Alcantarilla et al., 2013) and some variations of them for feature 
detection and description, while ANN (Muja and Lowe, 2009), 
cascade hashing (Cheng et al., 2014) and vocabulary trees can be 
used for matching. The MVS part, based on a typical semi-global 

 
10 http://ceres-solver.org/  

matching method (Hirschmüller, 2007), does not however grand 
access to the dense point cloud data but rather outputs to a 
textured mesh model. 
 

4. EXPERIMENTS AND EVALUATION 

The datasets used in our experiments (Table 3), featuring varying 
amount of images, acquisition platforms, sensor sizes and ground 
sampling distance (GSD) values, consist of: a set of aerial images 
of an ancient temple of complex form (Nettuno_aerial), the 
respective terrestrial image set of the same temple 
(Nettuno_terrestrial) as well as the fused one (Nettuno_fused), a 
set of terrestrial images of a church gate (Modena), a dataset 
(Barn TaT) from the Tanks and Temple benchmark8, as well as 
the newly released 3DOMcity7 benchmark dataset (Özdemir et 
al., 2019).  
In theory, given the same set of images as input to the several 
pipelines, the results would be similar and comparable to each 
other. However, due to the fact that the implementation details of 
each solution have its own limitations, strengths and weaknesses, 
the generated results may vary drastically from each other. In this 
study, we focus on tuning and combining the available 
parameters, optimizing them according to the needs of each 
family scenario. At the same time, we implement a further 
automatization step for each one of the three pipelines to facilitate 
mass processing of large-scale scenarios that takes into 
consideration the respective available parameters and lets the 
user run on demand, organizing the output in a meaningful way.  
We perform analysis on the image orientation (SfM) results 
(Tables 4 and 5), as they directly affect the quality of the final 
dense reconstruction, as well as on the final the 3D dense point 
cloud (Figure 3, Table 6). The used parameter combinations for 
each of the employed pipelines were selected carefully after 
examination and study of all available parameters under each 
implementation. In more details, for COLMAP, as SIFT was the 
only available descriptor and the sparse reconstruction is 
achieved with an incremental bundle adjustment (IBA), we 
choose to experiment with the sequential (S) and exhaustive (E) 
keypoint matching options. On the other hand, for OpenMVG and 
AliceVision we examined both AKAZE and SIFT feature 
detectors/descriptors, coupled with cascade hashing as criterion 
for the best match between the descriptors.  
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Type Camera Provenance 
# 

images 

Image 

resolution & 

size [px] 

GSD 

[mm/pixel] 

Validation / 

Ground 

Truth (GT) 

# GT 

points 

NETTUNO AERIAL 

Aerial / 
UAV 

Canon EOS 550D, 22.3x14.9 
mm, CMOS sensor, 25 mm focal 

FBK-3DOM 212 
18 MPx, 

5184*3456 px 
(scaled to ½) 

ca. 12  
(scaled to ½) 

C2C vs laser 
scanner  

(res. 3 mm) 
37.6 M 

          
NETTUNO TERRESTRIAL 

terrestrial 
Nikon D3X, 36x24mm CMOS 

sensor, 50mm focal length 
FBK-3DOM 404 

24 MPx, 
6048*4032 px 
(scaled to ½) 

ca. 3 
(scaled to ½) 

C2C vs laser 
scanner  

(res. 3 mm) 
37.6 M 

         
NETTUNO FUSED 

fused 
as in  

Nettuno_aer & Nettuno_terr 
FBK-3DOM 616 

as in 
Nettuno_aer & 
Nettuno_terr 

as in 
Nettuno_aer & 
Nettuno_terr 

C2C vs laser 
scanner  

(res. 3 mm) 
37.6 M 

          
BARN TaT 8 

terrestrial 
Sony A7SM2, 23.9 x 35.8 mm 

CMOS sensor, 21 mm focal 
length  

Benchmark 
TaT  

410 
2.1 MPx, 

1920*1080 px 
ca. 7 

C2C vs laser 
scanner  

(res. 5 mm) 
12.7 M 

          
MODENA 

terrestrial 
Nikon D750,  

35.9 x 24 mm CMOS sensor,  
28 mm focal length 

FBK-3DOM 55 
24 Mpx, 

6016*4016 px 
ca. 1.5 

C2C vs laser 
scanner  

(res. 2 mm) 
100 M 

          

3DOMCITY 7 

aerial 
(nadir + 
oblique) 

Nikon D750, 35.9 x 24 mm 
CMOS sensor, 50 mm focal 

length 

Benchmark 
3DOMcity  

420 
24 Mpx, 

6016*4016 

ca 0.12 (nadir), 
ca. 0.20 

(oblique) 

C2C vs 
photogram. 
point cloud 

(res. 0.3 mm) 

28.4 M 

          

Table 3. Scenarios and datasets considered in the presented evaluation (C2C = Cloud to Cloud comparison; GT = Ground Truth). 
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Both incremental (IBA) and global bundle adjustments (GBA) 
for sparse reconstruction were tested. For the processing based 
on combined pipelines (as defined in Table 1), we considered the 
best image orientation (SfM) result of every trial and we used it 
for the successive MVS / dense point cloud generation. As best 
result is considered the one that satisfies both the number of 
oriented images criterion (Table 4– more than 90% of the dataset 
images should be oriented successfully, inspected also visually) 
as well as the total reprojection error of the BA (Table 5).  
To be noted that the native AliceVision MVS module is providing 
only a binary triangulated mesh and not an unorganized dense 
point cloud. Therefore the geometric analyses are performed 
extracting the vertices of the meshes and AliveVision MVS was 
not combined with any other SfM pipeline. 
 
4.1 Image Orientation / SfM 

Table 4 reports the number of oriented cameras per dataset and 
per pipeline, whereas Table 5 shows the RMS reprojection error 
of the bundle adjustments for each method.  
We can observe that the Nettuno_fused dataset (high resolution 
aerial + terrestrial images) is the most challenging one, as most 
of the methods (except COLMAP-exhaustive and OpenMVG-
SIFT-incremental) faced problems in properly orienting all 
images while achieving a relatively low RMS reprojection error.  
The AKAZE operator under its OpenMVG implementation failed 
to describe the features because of the high computational cost. 
In Nettuno_aerial all processing ran quite smoothly over all 
methods giving enough oriented cameras and relatively low RMS 
errors, apart from the AliceVision-SIFT implementations that 
resulted relatively high reprojection error values. This behaviour 

was expectable given as the UAV flight offered a regular image 
acquisition with satisfying overlap.  
In Nettuno_terr and Modena datasets, higher in resolution and 
acquired by a handheld camera, the AKAZE operator and global 
adjustment failed to give an adequate number of oriented images.  
whereas there were almost no problems for sequential or 
exhaustive matching method and incremental bundle adjustment.  
For Barn_TaT and 3DOMcity benchmark datasets most of the 
pipelines performed well except for AliceVision-global that 
encountered problems orienting the images.  
However, after a careful inspection of computed image networks 
and point clouds (sparse and dense), it was observed that there 
were few cases where even though the number of oriented images 
and the reprojection error were considered successful, images 
were erroneously oriented, resulting to drift effects on the final 
dense point clouds. Figure 2 shows an example of the Barn_TaT 
dataset, where all 420 images were oriented by COLMAP–
sequential with a half-pixel reprojection error (Table 5), yet a 
visual inspection of the cloud reveals an obvious drift. Thus, for 
this specific dataset, for the MVS step, the COLMAP-exhaustive 
results were chosen, although the error number was slightly 
larger (Table 5). Similar errors were observed in Nettuno_aerial 

and Nettuno_fused dataset, as AliceVision orientation was 
erroneous (397 and 616 oriented cameras, respectively) resulting 
in not-correct 3D reconstructions (Figure 2). 
 
4.2 Dense 3D reconstruction / MVS 

Apart from a qualitative evaluation (Figure 3 – visual inspection 
on dense clouds and cross sections), the achieved dense point 
clouds are compared with the available GT data. 

 

SFM - NUMBER OF ORIENTED IMAGES 

 
# 

images 

COLMAP OpenMVG AliceVision 

SIFT AKAZE SIFT AKAZE SIFT 

S E Fast Cascade Hashing Fast Cascade Hashing 

IBA IBA GBA IBA GBA IBA GBA IBA GBA 

Nettuno_aerial 212 212 212 212 211 212 212 212 210 212 212 

Nettuno_terr 404 396 404 404 157 404 403 364 83 404 347 

Nettuno_fused 616 212 616 -- -- 615 403 212 193 616 544 

Barn TaT 410 410 410 410 410 410 410 90 224 397 377 

Modena 55 55 55 55 32 55 46 50 39 55 46 

3DOMcity 420 420 420 420 418 420 420 407 23 420 219 

Table 4. Number of oriented cameras for each pipeline. S: sequential keypoint matching; E: exhaustive keypoint matching; IBA: 
incremental bundle adjustment; GBA: global bundle adjustment. Worst achieved result per dataset are highlighted in bold. 

 

SFM –RMS REPROJECTION ERROR [pixels] 

 
# 

images 

COLMAP OpenMVG AliceVision 

SIFT AKAZE SIFT AKAZE SIFT 

S E Fast Cascade Hashing Fast Cascade Hashing 

IBA IBA GBA IBA GBA IBA GBA IBA GBA 

Nettuno_aerial 212 0.45 0.47 0.42 0.46 0.46 0.48 0.73 0.78 0.91 0.95 

Nettuno_terr 404 0.45 0.58 0.45 0.49 0.40 0.42 0.38 1.04 0.53 0.57 

Nettuno_fused 616 0.44 0.51  -- -- 0.43 0.42 0.73 0.76 0.74 0.88 

Barn TaT 410 0.49 0.56 0.55 0.62 0.59 0.64 0.45 0.55 0.70 0.52 

Modena 55 0.71 0.71 0.49 0.48 0.56 0.55 0.31 0.33 0.82 0.90 

3DOMcity 420 0.40 0.48 0.42 1.17 0.42 0.42   0.27 0.39 0.54 0.41 

Table 5. RMS reprojection error (pixel) for each pipeline. S: sequential; E: exhaustive; IBA: incremental bundle adjustment; GBA: 
global bundle adjustment. Best achieved results per dataset and pipeline are highlighted in bold.  
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Figure 2. Examples of badly reconstructed dense clouds (drift effect) because of erroneously oriented images. 
Up: Barn_TaT dataset oriented with COLMAP-sequential (left) and AliceVision-SIFT-incremental (right). 

Bottom: Nettuno_aerial dataset, AliceVision+COLMAP (left), AliceVision+OpenMVS (right). 

Lacking GCPs integration modules, the clouds were co-
registered using a 7-parameters ICP method, so introducing 
possible scale errors among the data. Given the complexity and 
non-planarity of the analysed scenarios, as metrics we considered 
the cloud to cloud (C2C) distance as implemented in 
CloudCompare.  
Starting from the best result of each SfM method, we further 
proceed with the dense reconstructions using the native 
(COLMAP, OpenMVS, AliceVision) and the combined pipelines 
(Table 1). Although the number of reconstructed points is 
indicative whether the reconstruction algorithm has produced a 
complete result or not, yet cannot be used as a robust method to 
evaluate the quality of the reconstruction.  
C2C distances are reported in Table 6. Since AliceVision outputs 
a triangulated mesh model, Cloud to Mesh (C2M) distances are 
given. The best scores over all pipelines are observed in the 
3DOM_city dataset, probably due to the high quality of the 
dataset in terms of resolution and network geometry. On the 
contrary, the Nettuno_aerial dataset has the highest error values 
over all pipelines, a fact that can be explained by the camera-
object distance and image resolution. The Nettuno_terr dataset 
resulted to high quality dense point clouds, achieving similar 
errors to the Modena dataset. Error values were generally of the 
same order of magnitude over all pipelines. Nettuno_fused had 
higher errors than its respective terrestrial, yet lower than the 
aerial.  
 

5. CONCLUSIONS 

The paper presented a review of actual open-source image-based 
3D reconstruction pipelines. Experiments were performed with 
diverse large real-world scenarios, testing the performance of 
COLMAP, OpenMVG+OpenMVS and AliceVision, as well as 

their possible combinations. Towards this end, parts of these 
pipelines were automatized allowing a massive number of tests 
and observing the output over diverse parameter settings. As 
metrics for evaluating the SfM part were used the number of 
oriented images and the RMS reprojection error, while for the 
dense reconstructions the distance between the resulted cloud and 
its corresponding ground truth was chosen as evaluation 
criterion. According to our tests, AKAZE was low-performing 
with respect to SIFT and it seems that the incremental bundle 
adjustment grants better results. Assuming correct camera poses, 
patch-based MVS generally delivers more dense and accurate 
dense point clouds. 
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