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Abstract

We  dissect  metabolic  variability  of  mononuclear  phagocyte  (MNP)  subpopulations  across

different  tissues through integrative analysis  of  three large scale datasets.  Specifically,  we

introduce  ImmGen  MNP  Open  Source  dataset  that  profiled  337  samples  and  extended

previous ImmGen effort which included 202 samples of mononuclear phagocytes and their

progenitors. Next, we analysed Tabula Muris Senis dataset to extract data for 51,364 myeloid

cells from 18 tissues. Taken together, a compendium of data assembled in this work covers

phagocytic  populations  found  across  38  different  tissues.  To  analyse  common  metabolic

features,  we  developed  novel  network-based  computational  approach  for  unbiased

identification of key metabolic subnetworks based on cellular transcriptional profiles in large-

scale datasets. Using ImmGen MNP Open Source dataset as baseline, we define 9 metabolic

subnetworks that encapsulate the metabolic differences within mononuclear phagocytes, and

demonstrate that these features are robustly found across all  three datasets, including lipid

metabolism,  cholesterol  biosynthesis,  glycolysis,  and  a  set  of  fatty  acid  related  metabolic

pathways,  as  well  as  nucleotide  and  folate  metabolism.  We  systematically  define  major

features specific to macrophage and dendritic cell subpopulations. Among other things, we find

that cholesterol synthesis appears particularly active within the migratory dendritic cells. We

demonstrate  that  interference  with  this  pathway  through  statins  administration  diminishes

migratory capacity of the dendritic cells  in vivo.  This result demonstrates the power of our

approach and highlights importance of metabolic diversity among mononuclear phagocytes.
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Introduction

The diversity of myeloid cells across different tissues is truly astonishing, both in function and

in their developmental trajectory1,2. Additional dimension of this diversity is manifested by the

metabolic characteristics of individual mononuclear phagocytes which can vary significantly

based on the cell type and its location3-5. At present, direct metabolomics profiling of tissue

residing subpopulations is not feasible, as the process of ex vivo sorting can be lengthy and

cause significant metabolic perturbations6,7. However, RNA levels are significantly more stable

to the sorting process and can serve as a reasonably reliable proxy to activities of metabolic

pathways8,9. In this work we focus on understanding metabolic variability across phagocytic

subpopulations  through  integrated  examination  of  several  large-scale  datasets  that

transcriptionally profiled subsets of myeloid cells (Fig. 1a-c). Specifically, we have assembled

compendium of three datasets, including the first public release of the new dataset generated

by Mononuclear Phagocytes Open Source (MNP OS) ImmGen project10.  

ImmGen MNP OS dataset totals 337 samples and provides a unique source of information

about  individual  cell  subpopulations  (Fig.  1d,  e).  It  extends  previous  ImmGen  effort  that

included 202 samples of various mononuclear phagocytes, also analysed in this study (Fig. 1f,

g). In addition to increased number of mature cell populations from adult mice (monocytes,

macrophages, and dendritic cells), the MNP OS dataset contains macrophages from the yolk

sac (E10.5) and macrophages differentiated in vitro from embryonic stem cells (embryoid body

derived macrophages, E6-E8). Furthermore, we leveraged recently released single-cell RNA-

seq profiling of the multiple murine organs (Tabula Muris Senis11) and reanalysed those data by

focusing only on the phagocytic populations, comprising 36,480 cells across 18 tissues (Fig.

1h,  i).  Taken together,  a compendium of  data assembled in  this work covers multiple cell

subpopulations found across 38 different tissues (Fig. 1b).

Using  these  transcriptional  data,  we  sought  to  identify  the  major  metabolic  features

characteristic of the different populations of phagocytic cells, and define how these features

vary  across  the  cell  types  and  their  locations.  Such  computational  task  has  not  been

addressed  previously  for  the  datasets  of  such  scale.  Indeed,  we  previously  described  a

computational  approach,  called GAM12,  that  uses metabolic  networks as the backbone for

analysis of transcriptional  data and provides a verifiable and systematic  description of  the

metabolic  differences  between  two  conditions9.  However,  datasets  in  question  contain

hundreds or even thousands of individual profiles, while GAM approach is designed to analyse
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comparison  between  two  conditions.  Therefore,  in  this  work  we  have  developed  novel

computational approach, GAM-clustering, which performs unbiased search of a collection of

metabolic subnetworks that jointly define metabolic variability across large datasets (available

on  GitHub,  see  Methods).  By  doing  so,  GAM-clustering  reveals  metabolically  similar

subpopulations in a manner that does not require explicit annotation or pair-wise comparison

of individual samples. Our analysis revealed major metabolic features associated with different

cell  subpopulations  and  highlighted  a  number  of  metabolic  modules  that  are  specific  to

individual cell  types, tissues of residence, or developmental stages. As an example, GAM-

clustering  analysis  revealed  that  cholesterol  de  novo synthesis  pathway  might  play  an

important role in the context of migratory dendritic cells (DCs), which we validated using in vivo

pharmacological inhibition of this pathway followed by tracking of DC migration. Consistent

with the analysis, statins have demonstrated inhibitory effect on DC migratory ability, finding

that has not been reported previously.

Taken together,  our work provides both (1) unique data and analysis resource in terms of

studying  variability  of  mononuclear  phagocytes,  as  well  as  (2)  validated  computational

approach that can unbiasedly analyse both single-cell RNA-seq data as well as multi-sample

bulk RNA-seq datasets in terms of key underlying metabolic features. Furthermore, we provide

direct interactive access to the data for examination and visualization through both single-cell

RNA-seq  and  bulk  RNA-seq  visualization  servers  including  metabolic  cluster  annotations

obtained in this work (https://artyomovlab.wustl.edu/immgen-met/).

RESULTS

Mononuclear Phagocytes Open Source (MNP OS) and  Mononuclear Phagocytes from

ImmGen Phase 1 (MNP P1) Datasets

As a part of the Open Source ImmGen Project, a total of 337 samples were collected and

profiled through the collaborative effort of 16 laboratories (Fig. 1d, e, Supplementary Fig. 1a,

Supplementary  Table  1).  Each  laboratory  sorted  specific  populations  of  mononuclear

phagocytes from 26 distinct tissues, isolated RNA from these populations and submitted it for

centralized deep RNA-sequencing and subsequent quantitation. Along with their samples of

interest,  each  laboratory  included  RNA from  locally  sorted  peritoneal  macrophages  as  a

common control  for  evaluation/correction of potential  batch effects (Methods).  Of  note, 15

samples from MNP OS dataset were previously used in the study of sexual dimorphism of the
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immune system transcriptome13, while complete dataset is analysed in this work for the first

time. 

Overall, the transcriptional data demonstrated high concordance between different collection

sites, and were merged into a final transcriptional master table (Supplementary Fig. 1b, c,

Supplementary  Table  2,  Methods).  Previously  established  markers  of  individual  myeloid

subpopulations14–18 matched  well  with  the  sorted  populations  (Supplementary  Fig.  2),

indicating overall consistency of the dataset across different research groups. As individual

principal component analysis (PCA) plots show (Fig. 1d), samples have clustered in accord

with  their  broad  annotation  as  macrophages,  DCs,  monocytes  or  microglia.  Generally,

subpopulation-specific effects were stronger than tissue specific differences within individual

subpopulations  as  evident  by  comparing  Figures  1d and  1e.  To  estimate  the  degree  of

metabolic variability in the data, we examined the enrichment of annotated metabolic pathways

in this  dataset,  revealing coherent  transcriptional  patterns across individual  subpopulations

(Supplementary  Fig.  3a).  This  indicated  that  systematic  evaluation  of  the  metabolic

subnetworks within the data is warranted.

Initial  ImmGen  Phase  1  data  published  previously5 include  202  samples  of  mononuclear

phagocytes with higher contribution of progenitor populations, and smaller number of microglial

samples  (Fig.  1f)  overall  spanning 16  tissues  (Fig.  1g)  –  we  will  refer  to  this  subset  as

ImmGen MNP P1 from here onward. Similar to MNP OS dataset, enrichment in metabolic

pathways  across subpopulations in  MNP P1 data  has demonstrated coordinate  variations

across the samples (Supplementary Fig. 3b). 

Single-cell Myeloid Tabula Muris Senis (mTMS) dataset 

Tabula Muris consortium has performed single-cell  RNA-sequencing for  a large number of

tissues without explicit  sorting into individual cell  populations11.  These data include myeloid

cells localized in the corresponding tissues which can be computationally separated based on

the expression of common myeloid signatures. Using latest public dataset, Tabula Muris Senis,

we have analysed the data for 235,325 cells to identify 51,364 myeloid cells (mononuclear

phagocytes  and  neutrophils)  that  expressed  key  myeloid  markers  (Lyz2,  H2-Aa,  Mki67,

S100a9, Flt3, Emr1, Ccr2, Cx3cr1, Sall1, Clec4f, Lyve1, Itgax, Xcr1, Clec4a4, Siglech, Ccr7,

Fig. 2a,d, Methods). These cells comprised dedicated dataset, further referred to as myeloid

Tabula Muris Senis dataset (mTMS). While single-cell RNA-seq data inevitably detect smaller

number of genes per cell  compared to bulk RNA-sequencing (Supplementary Fig. 4),  the
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depth of the mTMS dataset was sufficient to resolve classical cell  populations. Specifically,

unbiased clustering revealed 15 subpopulations within mTMS dataset (Fig. 2b), which could

be readily identified as well described populations of plasmacytoid DCs, monocytes, Kupffer

cells, microglia etc (Fig. 2c) based on previously described cell-specific markers (Fig. 2d). To

our knowledge, we provide the first large-scale curated annotation for the myeloid cells within

Tabula Muris Senis data. Corresponding annotations are available for hands-on exploration in

the  interactive  single-cell  browser  (http://artyomovlab.wustl.edu/immgen-met/,  see  Tabula

Muris Senis).

GAM-clustering:  identification  of  metabolic  subnetworks  in  datasets  with  multiple

conditions

Previously,  we  have  shown  that  metabolic  remodelling  between  two  conditions  can  be

analysed using network-based analysis of their transcriptional profiles9,12. Specifically, the GAM

(‘Genes  and  Metabolites’)  algorithm  searches  for  optimal  subnetworks  within  a  global

metabolic network by weighing individual  enzymes in accord with differential  expression of

their genes and then solving the generalized maximum-weight connected subgraph (GMWCS)

problem12,19.  While  this  approach  cannot  be  directly  translated  to  multi-sample/single-cell

datasets such as ImmGen or Tabula Muris Senis data, we were able to reformulate weighting

scheme in a manner that allows GMWCS subnetwork search without explicit  annotation of

individual samples or conditions. Here, we describe novel algorithm called GAM-clustering that

allows the user to obtain metabolic subnetworks enriched within the transcriptional data that

include many samples across multiple conditions. 

In  brief,  GAM-clustering  searches  for  connected  metabolic  subnetworks  that  have  most

correlated  expressions of  individual  enzymes, resulting in  a  collection  of  subnetworks that

follow distinct transcriptional profiles. To achieve that, we first initialize a pattern-generating

profiles by clustering all metabolic genes based on their co-expression patterns (Fig. 3,  see

Methods and  Supplementary Material for details). For initialization of the multisample bulk

RNA-seq data  we use k-medoids clustering  with  k=32 (see  Supplementary Material  and

Supplementary Fig. 5a,b for parameters sensitivity), any other gene expression clustering

approach can be used in this step since downstream steps include significant re-grouping and

merging of individual clusters. For initialization of single-cell RNA-seq data, we first cluster the

cells in the dataset to multiple clusters (~100) which provides sufficient balance between fine

resolution of the data and minimal coarse-graining needed to avoid drop-out artefacts (see
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Methods and Supplementary Material for details). Then, genes are clustered using the same

procedure as for multisample bulk datasets. 

Next, each enzyme is weighed with respect to the similarity of its transcript’s profile to the

average cluster/pattern profile, resulting in multiple weights per gene that are specific for each

pattern (Fig. 3). For any given pattern, weights of individual enzymes serve as input to the

GMWCS solver, resulting in the individual subnetworks that are associated with each pattern.

Individual subnetworks are then refined in an iterative procedure of updating the gene content

for each pattern (see  Supplementary Material). The final output presents a set of specific

subnetworks that reflect metabolic variability within a given transcriptional dataset (Fig. 3).

Major metabolic modules within mononuclear phagocyte subpopulations

The GAM-clustering algorithm was applied to data from all baseline (non-infected) samples

and yielded nine distinct metabolic modules  (Fig. 4a, Supplementary Table 3). Hierarchical

clustering of samples based on the Euclidean distance metric in space of these nine metabolic

modules  showed  that  they  can  be  broadly  separated  based  on  the  cell  types:  yolk  sac

macrophages,  dendritic  cells,  monocytes,  and  macrophages  from adult  organism.  Broadly

defined mononuclear cell types are further split into several smaller metasamples: dendritic

cells subdivided into plasmacytoid dendritic cells (pDCs), tissue specific dendritic cells, and

migratory dendritic cells (migDCs), and macrophages subdivided into microglia, adipose tissue

macrophages,  and  a  large  metasample  of  tissue  residing  macrophages,  as  well  as  an

additional  metasample  composed  of  embryoid  body,  alveolar,  and  small  peritoneal

macrophages (SPMs) that clustered distinctly from other macrophage subpopulations (Fig.

4a). 

While  obtained  metabolic  modules/subnetworks  provide  a  more  accurate  description  of

metabolic diversity compared to canonically annotated pathways, the latter can be useful for

coarse-grained understanding of functionalities associated with each subnetwork (Fig.  4b).

Indeed, pathway enrichment analysis along with subnetworks gene content analysis indicate

that modules 1, 2, 8 and 9 represent various aspects of lipid metabolism, and modules 3, 4 –

two  types of  fatty  acid  synthesis  pathways.  Finally,  distinct  modules  represent  cholesterol

synthesis  metabolism  (module  5),  glycolysis  (module  6)  and  nucleotide/folate  metabolism

associated subnetworks (module 7).
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The underlying metabolic phenotypes for each metasample can be represented using radar

chart diagrams (Fig. 4c): each metasample is defined by a specific combination of metabolic

features that provides unique insights into metabolic wiring within those populations. Here, the

names to metasamples are given based on the most common sample type inside the cluster.

An alternative view of the samples in the space of metabolic modules can be obtained using

PCA that  is  built  based on only  9  metabolic  modules,  which  shows distinct  separation of

individual metasamples (Supplementary  Fig. 6a).  Consistently, when overlaid with the PCA

representation  from  Figure  1,  individual  metabolic  modules  formed  coherent  patterns

indicating the groups of metabolically similar samples (Supplementary Fig. 6b).  Altogether,

the metabolic modules/subnetworks and corresponding metasamples encapsulate metabolic

variability across both cell  types and their tissues of residency. We next turn to examining

robustness of the obtained subnetworks across three considered datasets.

Three independent large-scale datasets show consistent metabolic features

We next considered if  metabolic subnetworks derived from ImmGen MNP OS data can be

seen in the other two large scale datasets considered in this work – ImmGen MNP P1 and

mTMS datasets. While overlap in profiled tissues is considerate (Fig. 1b), 3 datasets are not

identical in terms of populations profiled. We, therefore, grouped the samples into 19 general

classes and compared the datasets by looking at the metabolic enrichments across these

classes (Fig. 5a, Supplementary Table 4). To examine robustness of metabolic signatures,

we computed enrichments of individual metabolic modules from Figure 4a in each of the 19

representative  classes  of  ImmGen  MNP  OS,  ImmGen  MNP  P1 and  mTMS.  Indeed,  all

datasets modules demonstrated extremely similar enrichment profiles (Fig. 5b): for instance,

Module 1 was enriched in microglia, adipose tissue macrophages and Kuppfer cells, module 8

enriched  in  alveolar  macrophages,  module  5  –  in  pDCs  and  migratory  DCs   across  all

datasets, etc. 

Importantly, independent application of the GAM-clustering algorithm to each of the datasets

also revealed very high degree of similarity in obtained modules, highlighting reproducible and

robust nature of the derived metabolic subnetworks (Supplementary Fig. 7, Supplementary

Table 3, Supplementary Material).

Next we examined individual subnetworks from the perspective of metabolic reactions covered

and describe both published evidence of the corresponding metabolic activities as well  as

validation data obtained in this project. 
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Subnetworks associated with early developmental stages

Module  6  (Fig.  6a,b,d)  is  one  of  the  modules  most  distinctly  associated  with  yolk  sac,

embryoid body, alveolar, and small peritoneal macrophages. This module, though unbiasedly

derived by our network analysis, closely matches the canonical glycolysis pathway (Fig. 6b),

indicating strong transcriptional co-regulation of these genes across the collected samples.

Enrichment of the glycolysis module in developmental cell types is consistent with previously

published  data  highlighting  the  importance  of  glycolysis  for  stem-like  and  progenitor

populations20–23. This is also consistent with the ImmGen MNP P1 and mTMS data (Fig. 6d),

where this module is also most enriched in progenitor populations. Interestingly, mTMS single-

cell RNA-seq data also demonstrate that this module is enriched in neutrophils, in accord with

described high glycolytic rate in these cells24.

Module 7 (Fig. 6a,c,d) represents another set of metabolic activities including folate and serine

metabolism  as  well  as  the  nucleotide  biosynthesis  pathway  typically  associated  with  the

progenitor  populations25–27.  In  addition  to  the  yolk  sac  macrophages,  this  module  is  also

enriched in some tissue residing dendritic cells and pDCs (but not in migDCs). Indeed, the

importance of some of these pathways (e.g. folate metabolism) has been demonstrated in

dendritic cell functions such as antigen presentation28.

Cholesterol synthesis pathway is enriched in and functionally important for migratory

DCs

Module 5 almost exclusively consists of enzymes from the cholesterol metabolism/mevalonate

synthesis pathway (Fig. 6d,e,f), and is enriched in embryoid body macrophages and some

dendritic cells. Specifically, cholesterol synthesis appears to play a major role in migDCs, while

it is less prominent in pDCs and conventional tissue residing dendritic cells. Additionally, with

respect to potential tissue-specific imprinting, it is worth noting that a small subset of tissue

residing macrophages, comprised of epithelial and dermal macrophages, is enriched in genes

of  the  mevalonate/cholesterol  synthesis  pathway  (Fig.  6e).  Enrichment  of  cholesterol

metabolism in migratory dendritic cells was consistent with mechanistic data by Hauser and

colleagues  who  showed that  cellular  cholesterol  levels  are  directly  linked  to  the  ability  of

dendritic  cells  to  oligomerize  Ccr7  (key  marker  of  migDCs)  and  acquire  a  migratory

phenotype29. Given the results of our analysis and these published mechanistic connections,

we  evaluated  mobilization  of  DCs  to  lymph  node  following  epicutaneous  application  of

fluorescein isothiocyanate (FITC) in either control animals or animals treated i.p. with low-dose
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Simvastatin (0.57 mg/kg/day) for seven days (Fig. 6g). Draining lymph nodes collected 18 h

after FITC application demonstrated significantly fewer migrated FITC+CD11c+ dendritic cells in

the  animals  treated  with  Simvastatin,  illustrating  that  in  vivo interference  with  cholesterol

synthesis  reduces  dendritic  cell  migration  to  the  lymph  node,  fitting  with  the  prominent

expression of cholesterol synthesis genes in DCs. This results illustrates general validity of our

analysis and highlights novel features of the systemic metabolic perturbations, such as statin

treatments, that we previously not recognized.

Subnetworks associated with lipid metabolism

Modules  1  and  2  cover  various  aspects  of  lipid  metabolism  and  are  strongly  specific  to

macrophages relative to monocytes and dendritic cells (Fig. 7a). Due to general similarity of

their  patterns,  we  merged  the  subnetworks  for  modules  1  and  2  in  order  to  make  the

interpretation easier (Fig. 7b, Supplementary Fig. 8a,b). The resulting subnetwork is centred

around  phospholipid and arachidonic acid metabolism, and includes parts of the glutathione

and  cysteine/glutamate/glycine  metabolism  pathways,  as  well  as  the  N-acetylglucosamine

pathway.  Indeed,  arachidonic  acid  metabolism  has  been  shown  to  play  major  roles  in

macrophages30,31. Its metabolic flow is associated with utilization of phospholipids to produce

two major classes of the arachidonic acid derivatives: leukotrienes and prostaglandins. Unlike

prostaglandins,  leukotriene  production  (C4  and  downstream)  requires  glutathione  as  an

intermediate  metabolite,  thus  involving  the  glycine,  cysteine  and  glutamate  pathways32.

Furthermore, our analysis picked up a distinct subnetwork of co-expressed genes from the

glycerophospholipid  pathway  (Module  9,  see  Fig.  7a,c,d)  that  was  particularly  highly

expressed in the microglial populations (Fig. 7a). This module included enzymes such as Dgkd

and Lpcat2, suggesting that their role in microglia might be of particular interest33,34. As Fig. 7d

shows, these observations were common across all three datasets.

Subnetworks associated with fatty acid synthesis and degradation

Our analysis identified three distinct subnetworks associated with modulation of fatty acids in

terms of both their synthesis (modules 3 and 4) and fatty acid oxidation (module 8). 

The structure of Module 3 (Supplementary Fig. 8a,b,d) reflects energetic demands of the

fatty  acid  synthesis  and includes  portions  of  pentose phosphate  pathway and  TCA cycle,

where citrate synthase (Cs) is one of the most pattern-specific genes within this subnetwork.

Overall,  module  3  is  highly  enriched  in  dendritic  cell  populations,  but  not  in
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macrophage/monocyte samples, underscoring another facet of metabolic divergence between

these cell types. The functional importance of this module for dendritic cells is evident from the

fact that a blockade of Fasn-mediated fatty acid synthesis markedly and selectively decreases

dendropoiesis both in mice and in humans35,36. 

Interestingly, the pattern of Module 8 (Fig. 7e-g) was directly opposite to Module 3, and was

strongly enriched among various tissue macrophages, particularly in alveolar macrophages.

Metabolic flow encompassed by this network includes enzymes such as Lipa (LAL), which is

responsible  for  lysosomal  lipolysis  and initial  breakdown of  intracellular  lipid  storage.  This

breakdown is followed by mitochondrial import of cytosolic fatty acids via carnitine transport

shuttle  (Cpt1a)  and  their  subsequent  breakdown  via  classical  FAO steps  (Acox1,  Hadha,

etc)37,38 (Fig.  7e).  The  Lipa expression  pattern  is  one  of  the  most  specific  for  module  8,

indicating its potential importance for macrophages. Indeed, there are studies highlighting the

importance of  Lipa for  macrophage function,  especially  in  the  context  of  anti-inflammatory

polarization39.  Furthermore,  Lipa is also likely to be important  for human macrophages, as

mutations in the  LIPA gene of patients with  cholesteryl ester storage disease (CESD) cause

aberrant  cholesterol  accumulation  in  tissue  macrophages40,41.  Enrichment  of  fatty  acid

oxidation-related Module 8 in alveolar macrophages is particularly interesting as it is distinctly

reproduced in  ImmGen MNP P1 and mTMS data.  Importance of  this  pathway in  lungs is

intriguing and warrants further detailed investigations.

DISCUSSION

Here  we  introduced  unique  dataset  covering  multiple  subpopulations  of  dendritic  cells,

monocytes and macrophages from diverse tissues – result  of ImmGen MNP Open Source

profiling effort. We focused on understanding potential metabolic variability among collected

myeloid cell subpopulations and co-analysed it in the context of two other large-scale profiling

efforts – ImmGen Phase 1 and Tabula Muris Senis. Using new algorithmic approach (GAM-

clustering),  we  have  defined  9  major  metabolic  subnetworks  that  encapsulate  the  major

metabolic differences that were highly reproducible across three studied datasets. Our analysis

demonstrated that specific metabolic features could be attributed to cell populations as well as

specific tissue of residence for distinct populations (e.g. adipose tissue macrophages).  

Our  analysis  suggested  that  major  metabolic  differences  between  baseline  (unactivated)

macrophages and dendritic cells are (1) levels of Fasn-mediated fatty acid synthesis enriched

in dendritic cells’ transcriptional profiles, and (2) regulation of arachidonic acid metabolism,
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which is enriched in macrophages. Among various tissue residing cell types, it was apparent

that  microglia  and  CNS  macrophages  have  a  very  distinct  phenotype  relative  to  other

populations: based on their transcriptional profile they appear more metabolically quiescent,

yet a particular lipid-associated module (module 9) was enriched in these cells, with key genes

being Lpcat2, Dgkd, Csd1 that are involved in phospholipid metabolism and the generation of

bioactive lipids from phospholipid precursors.

Indeed, distinct patterns in lipid metabolism, including pathways related to cholesterol, were

also  apparent  in  dendritic  cells  versus  macrophages.  Macrophages'  capacity  to  handle

cholesterol and store it in esterified form to generate so-called macrophage foam cells is a

well-established  theme in  cardiovascular  research  and  inflammatory  disease42,43.  Our  data

reveal that expression of Lipa, an enzyme involved in breaking down cholesterol esters in the

lysosome and whose mutation is associated with lysosomal storage diseases, is a widespread

characteristic of tissue macrophages but not dendritic cells. On the contrary, we observed that

pathways active in cholesterol synthesis are very low in all tissue macrophages but elevated in

monocytes and dendritic cells, especially migratory dendritic cells. 

Thus, it appears as though macrophages are oriented toward handling exogenously derived

cholesterol,  such  as  that  which  may  be  derived  from  engulfment  of  large  amounts  of

phagocytic cargo, whereas dendritic cells are oppositely programmed to synthesize their own

cholesterol and associated intermediates. As tissue macrophages are especially incapable of

migrating to distal sites like lymph nodes, a major functional distinction from dendritic cells, we

have validated importance of the cholesterol synthesis pathway for the migratory phenotype in

vivo by using pharmacological interventions with Simvastatin. 

Altogether, our analysis underscores metabolic variability across cell types and tissues and

highlights the need to understand metabolic wiring, not only in terms of cellular metabolism,

but also at the level of whole-body communication networks (see e.g. Castillo-Armengol and

colleagues44, Droujinine and Perrimon45). Furthermore, since direct metabolic profiling is not

feasible  or  sufficiently  accurate at  the  moment,  the development  of  ex vivo metabolomics

profiling  technologies46–48 suggests  that  direct  insight  into  metabolism  of  various  myeloid

subpopulations through in vivo metabolomics techniques will be possible in future.
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METHODS

RNA-sequencing

Bulk RNA-sequencing data were collected from 16 labs. All of the mice used in this study were

handled in  accordance with  IACUC-approved protocols.  Each lab,  in  addition to  their  own

samples,  sorted  a  standard  peritoneal  cavity  macrophage  population  (CD115+B220-

F4/80hiMHCII-) for comparability between all labs. Samples were profiled using ImmGen’s ultra

low input (ULI) sequencing pipeline, in batches of 90-96 samples. All samples were sequenced

in two separate NextSeq500 runs and combined for increased depth (expect 8-12 106 reads

per sample). Following sequencing, raw reads were aligned with STAR to the mouse genome

assembly  mm10,  and  assigned  to  specific  genes  using  the  GENCODE vM12  annotation.

Aligned  reads  were  quantified  using  featureCounts.  Samples  that  did  not  pass  the  QC

threshold  for  read  counts  (<2  million  reads)  were  dropped  for  further  analysis.  Pearson

correlation was calculated between biological replicates to exclude samples that did not pass a

threshold of 0.9 correlation coefficient. For the cell populations with three biological replicates,

of which one did not agree with the other two, the suspect one was removed from the data set.

In  case  cell  populations  had  only  two  replicates,  both  were  removed.  Samples  with

Jchain>1,000  and  Ighm>10,000  were  set  asides  as  well  as  samples  with  high  B  cell,

erythrocytes and fibroblasts transcripts. Peritoneal cavity samples were downsampled to keep

consistency across samples number in all tissues.

RNA-sequencing data processing

All  gene  counts  were  imported  into  the  R/Bioconductor  package  EdgeR  and  TMM

normalization size factors were calculated to adjust for differences in library size across all

samples. Feature not expressed in at least three samples above one count-per-million were

excluded from further analysis and TMM size factors were recalculated to create effective TMM

size factors. The effective TMM size factors and the matrix of counts were then imported into

the R/Bioconductor package Limma and weighted likelihoods based on the observed mean-

variance  relationship  of  every  gene  and  sample  were  then  calculated  for  all  samples.

Performance  of  the  samples  was  assessed  with  a  Pearson  correlation  matrix  and

multidimensional scaling plots.

Single-cell RNA-seq data processing
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Filtered h5ad file  for  Droplet  subset  was downloaded from the official  Tabula  Muris  Senis

repository  (https://figshare.com/projects/Tabula_Muris_Senis/64982).  The  data  were

processed by the standard Seurat pipeline and resulted in 235,325 cells organised in distinct

clusters detectable on TSNE/UMAP plots. Next, cells annotated with names corresponding to

myeloid populations were picked out. A differential gene expression analysis between these

cells and all others was performed. Top 250 of these differentially expressed genes were used

as a “myeloid signature genes” (Supplementary Table 5) to identify clusters that most express

them and thus correspond to myeloid cells. Cell content of these clusters was used to create a

new subset of 60,844 cells. Obtained dataset was analysed by non-myeloid marker genes to

detect and remove cell doublets with T-cells, B-cells, NK-cells and fibroblasts (Cd3d, Cd3e,

Cd3g, Cd4, Cd8a, Cd19, Cd79a, Tnfrsf17, Cd22, Nkg7, Gnly, Col6a1, Col6a2, Col6a3). Finally,

dataset of 51,364 cells was obtained and used in the further GAM-clustering analysis.

GAM-clustering

The algorithm for multisample metabolic network clustering (hereinafter referred to as GAM-

clustering,  see  Supplementary  Material and  Supplementary  Fig.  5 for  details)  identifies

modules  describing  dynamic  regulation  of  metabolism  and  is  based  on  the  previously

developed GAM method12. GAM-clustering extends the GAM method by setting the task to find

not one but several metabolic modules (connected subnetworks of metabolic network) with the

condition  that  each of  these  modules  should  contain  as  many  metabolic  genes with  high

pairwise correlation of their expression as possible. 

The initial approximation of the final set of modules is carried out by k-medoids clustering of a

gene expression matrix for all metabolic genes of a dataset with some arbitrary k (here we

used k=32). Each cluster forms a corresponding expression pattern which can be determined

as averaged value of its z-normalized gene expression values. The metabolic network used for

further analysis is presented as a graph where vertices are metabolites and edges are KEGG

database  reactions  which  are  mapped  with  catalysing  them  enzymes  and  corresponding

genes. For each particular pattern edges of this graph are scored (weighted) based on their

gene expression similarity with this pattern and dissimilarity with other patterns. 

For each case of weighted graph a connected subgraph of maximal weight is found by a signal

GMWCS (generalized maximum weight connected subgraph) solver49 (https://github.com/ctlab/

sgmwcs-solver) and is called a metabolic module. This solver uses the IBM ILOG CPLEX

library, which efficiently performs many iterations of this method in a reasonable amount of
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time. Then, each pattern is updated by replacing it with an averaged gene expression of the

module’s edges with a positive score. If the pattern is changed, a new score set is calculated

and  a  new  iteration  is  performed.  Before  moving  to  the  next  iteration,  small  graphs  are

eliminated from further analysis so that there are no graphs with less than five edges and

diameter less than four in the output solution. The algorithm continues until the pattern content

stops changing. 

GAM-clustering method is applicable not to bulk RNA-seq data only but to single-cell RNA-seq

data as well. Single-cell data need an additional step of preprocessing implying transformation

of  individual  cells  into  technical  samples.  This  is  performed  based  on  averaging  gene

expressions of individual cells inside high resolution clusters. In case of single-cell RNAseq

data, among final metabolic modules might occur ones that do not cover all biological replicas

of cell types they are specific for. These modules are eliminated from the final result. 

Thus,  the  final  metabolic  modules  are  subnetworks  of  the  overall  metabolic  network  that

contain a set of closely located genes with high correlation of their expression profile across all

samples. 

GAM-clustering method is available at https://github.com/artyomovlab/ImmGenOpenSource.

DC migration 

Epicutaneous  application  of  Fluorescein  isothiocyanate  (FITC)  to  study  DC migration  was

performed on three areas of each side of the mouse back skin as described previously 50. Both

females and males were studied. Briefly, FITC (8 mg/ml) was dissolved in acetone and dibutyl

phthalate (Sigma-Aldrich, F7250) and applied in 25-μl aliquots to each site. Recovered LNs, 18l aliquots to each site. Recovered LNs, 18

h later, were teased and digested in 2.68 mg/ml collagenase D (Roche) for 25 min at 37°C.

Then, 100 μl aliquots to each site. Recovered LNs, 18l 100 mM EDTA was added for 5 min, and cells were passed through a 100-μl aliquots to each site. Recovered LNs, 18m cell

strainer,  washed,  counted,  and  stained  for  flow  cytometry  after  counterlabeling  with  PE

conjugated anti-CD11c (Biolegend). Prior to FITC painting, some cohorts of mice were treated

with simvastatin i.p. at 0.57 mg/kg/day for 7 days, as this protocol was previously shown to

significantly block monocyte diapedesis from the bloodstream51. Control mice received vehicle

i.p.

Data availability
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The bulk RNA-sequencing data are deposited in  the GEO repository under  the accession

codes GSE122108 and GSE15907. Interactive gene expression heatmaps for both ImmGen

and  Tabula  Muris  Senis  datasets  as  well  as  metabolic  modules  described  in  the  present

research are available by the provided link https://artyomovlab.wustl.edu/immgen-met/.

Supplementary information

Supplementary Figures 1–9, Supplementary Tables 1–5 and Supplementary Material.
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FIGURE LEGENDS

Figure 1. General overview of ImmGen Mononuclear Phagocytes Open Source (IG MNP
OS), ImmGen Mononuclear Phagocytes Phase 1 (IG MNP P1) and myeloid Tabula Muris
Senis  (mTMS)  datasets. a,  Schematic  representation  of  Mus  musculus tissues  where
samples were derived from (marked with colored dots depending on the dataset). b, Number
of  tissues  overlapping  across  all  datasets.  c,  Cell  types  distribution  across  all  datasets.
Principal  component  analysis  (PCA)  based  on  12,000  most  expressed  genes  across  all
samples colored by the tissue of its origin (e,g) or cell type (d,f). UMAP representation of cells
colored by the tissue of its origin (i) or its type (h). LN – lymph node.

Figure  2. Tabuls  Muris  Senis  single  cell  RNAseq  dataset. a,  Dataset  preprocessing
resulting in myeloid subset derivation. UMAP plot with natural clusters (b) and cell types (c)
identified  based  on  cell  specific  markers  (d).  NP  –  neutrophil,  Mo  –  monocyte,  prog  –
progenitor,  DC –  dendritic  cell,  MF – macrophage,  alv  MF –  alveolar  macrophage,  MG –
microglia, KC – Kupffer cell, pDC – plasmacytoid dendritic cell, migDC – migratory dendritic
cell. 

Figure 3. Scheme of analysis approach for multisample metabolic network clustering
(GAM-clustering). The dataset’s metabolic genes are initially clustered based on a k-medoids
algorithm. Averaged gene expression of the obtained clusters is further considered as patterns.
For each gene, a score is calculated on the basis of its correlation with each pattern. These
scores are superimposed on the KEGG metabolic network. Based on these scores, the most
weighted connected subnetwork  is  found for  each parent.  After  the  refinement  procedure,
metabolic modules as a final version of subnetworks are obtained.

Figure 4. Metabolic modules as a result of multisample metabolic network clustering of
all  myeloid cells  but  not  inflammatory conditions from ImmGen MNP OS dataset. a,
Heatmap representing samples hierarchically clustered based on averaged gene expression of
each of obtained module (from lowest as blue to highest as red). Euclidean distance is used as
a clustering metric. YS MF – yolk sac macrophage, EB MF – embryoid body macrophage,
alvMF – alveolar macrophage, SPM – small peritoneal macrophage, MG – microglia, MF –
macrophage, Mo – monocyte, DC – dendritic cell, pDC – plasmacytoid DC, migDC – migratory
DC. b, Annotation of the obtained modules based on gene enrichment in KEGG and Reactome
canonical  pathways. Enrichment  value  is  calculated  as  a  percentage  of  module  genes
contained in a particular pathway.  c, Radar chart representation of metabolic modules within
each metasample. Each individual sample is shown as a grey line while mean of all samples
inside one metasample is shown as a colored line. Nine radii of radar chart are devoted to the
corresponding metabolic modules: 1,2 – Lipid metabolism, 3 – FAS pathway,  4 – mtFASII
pathway, 5 – Cholesterol synthesis, 6 – Glycolysis, 7 – Folate, serine & nucleotide metabolism,
8 – FAO & sphingolipid de novo synthesis, 9 – Glycerophospholipid metabolism. Metasamples
of EB MFs + alvMFs and alvMFs + SPMs cells are shown at one chart as they are extremely
close in their metabolic characteristics. 

Figure 5. Cell types shared between ImmGen Mononuclear Phagocytes Open Source (IG
MNP OS), ImmGen Mononuclear Phagocytes Phase 1 (IG MNP P1) and myeloid Tabula
Muris Senis (mTMS) datasets have similar patters of metabolic modules signatures. a,
Population  memberships  across  the  datasets:  prog  –  progenitor,  SC  –  stem cell,  MLP –
multilineage progenitor, MF YS – yolk sac macrophage, MF EB – embryoid body macrophage,
MF – macrophage, alvMF – alveolar macrophage, SPM – small peritoneal macrophage, MG –
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microglia, KC – Kupffer cell, Mo – monocyte, pDC – plasmacytoid dendritic cell, DC – dendritic
cell,  migDC  –  migratory  dendritic  cell,  NP  –  neutrophil  (Supplementary  Table  4).  b,
Enrichment  of  individual  metabolic  modules  across  all  datasets  obtained  during  GAM-
clustering analysis of IG MNP OS dataset. 

Figure 6. Subnetworks associated with early developmental stages and dendritic cells.
Heatmaps of module patterns along with the expression of some of its genes or genes related
to the same biological subject (from lowest as blue to highest as red). YS MF – yolk sac
macrophage, EB MF – embryoid body macrophage, alvMF – alveolar macrophage, SPM –
small  peritoneal  macrophage,  MG – microglia,  MF – macrophage,  Mo – monocyte,  DC –
dendritic cell, pDC – plasmacytoid DC, migDC – migratory DC (a,e). Metabolic modules per se
where edges of modules are attributed with color according to correlation of its enzyme’s gene
expression to this particular module pattern and thickness according to its score (b,c,f).  d,
Enrichment of modules genes expression (from lowest as blue to highest as red, transparent
dots correspond to treated samples) across all three analysed datasets: ImmGen Mononuclear
Phagocytes Open Source (IG MNP OS), ImmGen Mononuclear Phagocytes Phase 1 (IG MNP
P1) and myeloid Tabula Muris Senis (mTMS) datasets. g, Dendritic cell migrations experiment
scheme and results.

Figure 7. Subnetworks associated with fatty acid synthesis and degradation. Heatmaps
of module patterns along with the expression of some of its genes (from lowest as blue to
highest as red). YS MF – yolk sac macrophage, EB MF – embryoid body macrophage, alvMF
–  alveolar  macrophage,  SPM  –  small  peritoneal  macrophage,  MG  –  microglia,  MF  –
macrophage, Mo – monocyte, DC – dendritic cell, pDC – plasmacytoid DC, migDC – migratory
DC  (a,e).  Metabolic  modules  per  se and  corresponding  schematic  diagrams.  Edges  of
modules are attributed with color according to correlation of its enzyme’s gene expression to
this particular module pattern and with thickness according to its score. (b,c,f). Enrichment of
modules genes expression (from lowest as blue to highest as red, transparent dots correspond
to treated samples)  across all  three analysed datasets:  ImmGen Mononuclear  Phagocytes
Open Source (IG MNP OS), ImmGen Mononuclear Phagocytes Phase 1 (IG MNP P1) and
myeloid Tabula Muris Senis (mTMS) datasets (d,g).
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