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ABSTRACT

With the increasing interconnection of vehicles, security challenges
have moved into focus. Attacks on in-vehicle networks can cause
accidents resulting in financial damages and even loss of life. The im-
pact of an attack can be mitigated by secure internal vehicle networks,
employing authentication of ECUs and authorization of messages.
However, quantifying the real-time performance of additional security
measures is difficult due to the high number of nodes and messages.
In this paper, we present an open source model and simulator for the
evaluation of the real-time performance of automotive networks im-
plementing security measures. Applying parameters from hardware
measurements, we evaluate our model and simulator with realistic test
cases and a case study. We further present application perspectives
on how the open source simulator can be used in different domains
for the analysis of automotive network architectures.

Categories and Subject Descriptors: C.3 [Special-purpose and application-

based systems]: Real-time and embedded systems

General Terms: Algorithms, Design, Security

Keywords: Security, Automotive, Networks

1. INTRODUCTION
Modern vehicles contain a large number of Electronic Control

Units (ECUs), implementing distributed control functions, and in-
terconnected over bus systems. Typically, vehicles have between 40
and 100 such ECUs and a variety of heterogeneous bus systems. All
electronic functions are realized via this architecture. This includes
simple functions, such as the control of lights, as well as more com-
plex functions, e.g., Anti-lock Braking System (ABS) and Advanced
Driver Assistance Systems (ADASs). ADASs include functions like
lane-keeping and, in the future, all sensors and actuators required for
autonomous driving.

The components of a typical device, e.g., an ECU or security
module, are shown in Figure 1. These include hardware compo-
nents, such as the central microcontroller, as well as one or multiple
communication controllers and transceivers. The microcontroller
executes the application software. The communication software is
tightly integrated with the hardware of the ECU and shown as the
communication module in Figure 1. The communication module can
be further subdivided into the layers required for the implemented
bus. In a Controller Area Network (CAN) Flexible Datarate (FD)
setup, Security, Transport, Data Link, and Physical Layers might be
present. In this context, a security layer includes features of session
and presentation layers, namely authentication and encryption, while
the transport layer contains message segmentation.

In-vehicle networks are increasingly connected to networks out-
side the car, e.g., for infotainment purposes or vehicle-to-vehicle
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Figure 1: A small subsystem with two ECUs (e1,e2), security module (sm)
and CAN FD bus (b1), including internal representation of ECUs and security
module. The CAN FD transmission has been extended by a transport layer
lt, implementing segmentation according to ISO-TP (ISO 15765-2) and a
security layer ls, combining session (authentication) and presentation layer
(encryption).

communication. While the interconnection points of internal vehi-
cle networks with external networks are often secured with firewalls,
these are not impenetrable. When a firewall is bypassed by an attacker,
the internal vehicle networks are typically fully accessible. To avoid
such situations, a trend towards encryption in internal networks has
emerged. To achieve secure encryption, authentication frameworks
are required, exchanging symmetric keys. Typically, encryption al-
gorithms require significant computational resources, while ECUs
in vehicles are often highly specialized, low-performance devices
designed to minimize power consumption and cost. Thus, the encryp-
tion of messages and authentication frameworks add a significant
latency to communication. This can affect the real-time capabilities
of the communication system, potentially leading to catastrophic
consequences, including loss of life, if the impact is large enough to
hinder efficient control of the vehicle.

However, evaluating the impact of security on real-time behavior
is not trivial. It is dependent on a large number of parameters, among
them the number of messages to be authenticated, the number of re-
ceivers per message, the selected authentication framework, selected
encryption algorithms, key lengths for different algorithms, bus data
rate, and many others. This impact affects the system in multiple
dimensions, as some of these parameters can vary for different ECUs
and buses in the network. Further impacts result from the architecture
that defines how ECUs are interconnected. The In-Vehicle Network
Simulator (IVNS) proposed in this work can assist in the analysis
and evaluation of the impact of security measures like authentication
and authorization or architecture changes in vehicles.
Contributions. To quantify, analyze, and compare the behavior
of security frameworks in vehicles, we have developed a model to
represent internal automotive networks. This model is implemented
in the IVNS, allowing us to evaluate the performance impact of
different authentication frameworks and security mechanisms on
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automotive networks. Our model and simulator contain a calibration
component, allowing the simulation to be adjusted to the performance
of selected hardware. This allows easy validation of the simulator and
possible extensions through parametrization with existing hardware,
as well as comparison with runs on the same hardware. The IVNS
is modular and extensible, allowing easy interchange of security
protocols and frameworks. The main contributions are as follows.
• We propose a model for automotive networks, containing network

components, as well as security frameworks and their parameters
(Section 3).
• Based on this model, we develop a discrete event simulator, allow-

ing us to analyze and compare security approaches in automotive
networks, including, but not limited to authentication frameworks
(Section 4). The IVNS is available as open source for free public
use under the MIT license [1].
• We evaluate the IVNS for its performance and present a case

study of a distributed battery management system. In the case
study, we demonstrate how the simulator can support architecture
design decisions to ensure real-time behavior of secure automotive
networks (Section 5).

2. RELATED WORK
In the following we introduce the literature related to this work.

We give a short overview of general work in automotive security, then
discuss some work in security protocols that can be analyzed with the
IVNS, before analyzing and comparing existing network simulators.
Automotive Security. In 2010, Koscher et. al. [2] presented a
security analysis of a commercial vehicle, laying the foundation
for work in this area. They attacked vehicle networks as a proof-of-
concept through wired connections including the On-Board Diagnosis
(OBD) port. In the following year, Checkoway et. al. [3] expanded
on this research, including remote attacks through the telematics unit
of the vehicle under test, as well as the first mention of automotive
viruses. In 2015, Miller and Valasek presented a highly effective
remote attack on a vehicle via the cellular network [4]. Miller and
Valasek attacked an unmodified vehicle and besides taking control
over air-conditioning, radio and horn, were also able to influence
more safety-critical systems, such as the transmission and brakes.

Approaches to integrate security in vehicle networks have been
proposed in [5] and [6], aiming to improve the security of CAN
and FlexRay networks, respectively. A highly efficient approach for
including authentication of messages was presented in [7]. Message
Authentication Codes (MACs) are added to messages and can even
be interleaved with the Cyclic Redundancy Check (CRC) for higher
efficiency.

However, judging the security and latency of security-enabled
networks is difficult. A first approach of a security evaluation for
automotive networks was presented in [8]. There, probabilistic model
checking is used to analyze the security of a subsystem within a given
time frame, based on single component evaluation.
Security Protocols. All protocols used to add security to existing
networks are based on an initial root of trust. In the literature, this
is typically achieved through a pre-programmed key. However, this
key cannot easily be updated and, if not sufficiently secured, might
be compromised. Furthermore, identical keys are often used across
vehicle models [3], allowing attacks on fleets of vehicles through the
analysis of just one. An approach to mitigate such scaling effects in
vehicle fleets through CAN message ID obfuscation was presented in
[9].

Other approaches use authentication and authorization protocols
for key exchange. Timed Efficient Stream Loss-Tolerant Authen-
tication (TESLA) is an authentication protocol for low-power en-
vironments [10]. There, encryption keys are released after use for
encryption of a message, allowing authentication of the message
sender. However, receiving ECUs are not authenticated and sent
messages are not authorized. The Message Authentication Codes
(MACs) used do not provide confidentiality. Furthermore, delayed
release may add latencies which can be hard to predict.

In [11], the Lightweight Authentication for Secure Automotive
Networks (LASAN), a framework specifically tailored to the auto-

motive domain was presented. There, asymmetric and symmetric
cryptographic operations are split into authentication and authoriza-
tion phases, allowing an efficient setup in automotive architectures.
Network Simulators. In literature, several simulators have been pro-
posed for network analysis. The OPNET Modeler [12] is a modular
simulation framework that enables protocol and network design for
various scenarios, including CAN bus simulations [13]. The tempo-
ral behavior of automotive networks, including end-to-end latencies
and data throughput, can be analyzed at the bit-level with OPNET.
This is ideal for analyzing short sequences of network transmissions
with high accuracy. However, longer-term network analysis, such
as the setup of a secure communication architecture in a vehicle, is
precluded by its performance limits. Thus, in this work, we focus on
simulation on the message-level, while taking specified bit timings
into account.

NS-2 [14] is a discrete-event simulator that implements numerous
network protocols and is able to simulate traffic or routing in networks.
It can be extended by user-defined protocol implementations and run
various network architectures. Currently, no established support for
automotive use cases and protocols exists and such architectures
would need to be implemented from scratch, with effort close to that
required to design IVNS.

OMNeT++ is an open-source discrete event simulation frame-
work that provides tools to write and run simulations for any type
of network [15]. It enables large-scale simulations, visualization of
message flows, and can be extended with user-defined protocols and
architectures. Internal automotive networks such as CAN or Ethernet
can be analyzed and implemented by this framework [16]. However,
implementing our proposed model into the rigid framework of OM-
NeT++, especially including the parametrization of the components,
is cumbersome. Database lookups, as well as filtering, formatting,
and exporting of results create additional hurdles. Thus, implemen-
tation in OMNeT++ would exceed the effort of implementing the
model in a new environment. Once our model and approach are
implemented, these can be combined into an OMNeT++ library in
future work.

Other commercially available simulators are Timing Architects’
Simulator [17], Symta Vision’s SymTA/S & Trace Analyzer [18],
and Inchron’s ChronSIM [19]. While [17] is focused exclusively
on the simulation of multi-core systems, [18] and [19] also support
the simulation of networks. However, while these tools offer many
interfaces for integration with existing workflows in the automotive
industry, the libraries for simulating components and protocols are
limited to those supplied by the manufacturer, and cannot easily be
extended to enable prototyping of security measures. Neither offers
security protocols.

3. MODEL
In this section, we define the simulation model formally. The

model is required to represent a security-enabled automotive archi-
tecture, as well as the configuration and calibration of the simulation.
While the architecture A under test is the target of any analysis, the
configuration C defines the basic configuration of the system and
simulator, such as the used cryptographic algorithms and validity pa-
rameters. The calibration, in turn, is based on benchmarks P created
on real-world systems, thus tuning the components of the architecture
to represent existing hardware. Furthermore, the model can be vali-
dated through comparison with real-world systems, based on the set
of parameters used for calibration and obtained from the same hard-
ware. We follow a compositional approach, combining these basic
simulation components to represent the complete system behavior.

The IVNS defines a simulation s which contains the architecture
A to be evaluated, the configuration C, as well as a set of parameters
P, depicted in Figure 3:

s = (A,C, P) (1)

Architecture. The architecture A contains the set of ECUs E, buses
B, and gateways G, as well as their interconnections I:

A = (E, B,G, I) (2)
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A small subsystem is shown in Figure 1.
An ECU e ∈ E is identified by its application a, one or multiple

communication modules mc ∈ MC and its hardware implementation
HW:

e = (a,MC,HW) (3)

The hardware components HW define the latencies t induced in
every communication module mc. These components are the central
processor µ, one or multiple communication controllers o ∈ O, as
well as one or multiple transceivers tr ∈ T generating the physical
signals. Furthermore, an ECU might contain a hardware accelerator
acc for cryptographic operations:

HW = (µ,O,T, acc) (4)

Each application a running on an ECU e sends a set of messages
m ∈ M. All messages with the same message identifier id are called
a stream Mid. Each message m in such a stream Mid is called a mes-
sage instance, or message. A message instance m can be secured by
a function sec(m). A stream needs to be authorized by a function
auz(Mid). Depending on the security settings of the simulation, func-
tion auz(Mid) may trigger a set of authentication and/or authorization
functions. In LASAN, e.g., an authentication auc(e) is performed per
ECU, after which message streams may be authorized.

The number of communication modules mc ∈ MC depends on the
number of controllers and transceivers available and used by the ECU.
A communication module mc may contain all or a subset of layers as
defined in the Open Systems Interconnect (OSI) model. This includes
an application layer la, a presentation layer lpr, a session layer lse, a
transport layer lt, a network layer ln, a data link layer ld and a physical
layer lp:

mc =(la, lpr, lse, lt, ln, ld, lp) (5)

Many bus systems require only a subset of these or summarize
cross-layer functions. In CAN FD with segmentation according
to ISO 15765-2, e.g., only transport layer lt, data link layer ld, and
physical layer lp are used. Furthermore, cross-layer security functions
of session and presentation layer can be summarized as a security
layer ls. Cryptographic operations such as encryption/decryption and
signing/verification are located in this security layer ls. The security
layer further handles stream initiation and authentication frameworks
such as LASAN and TESLA.

Some authentication frameworks, such as LASAN, require a root
of trust in the network. Being an ECU with defined security functions,
a security module sm ∈ E is defined as an ECU. The same holds for
a gateway gw ∈ G, which is a type of ECU (G ⊂ E) with multiple
interfaces where the application layer is filtering and forwarding
messages depending on an Access Control List (ACL):

sm = gw = (a,MC,HW) (6)

A bus b ∈ B is defined by its properties, including data rate d,
maximum message length lmax, bus access scheme mac, and the
velocity factor υP of the medium:

b = (d, lmax,mac, υP) (7)

Configuration. The configuration C contains the settings c valid
for all components. This configuration defines the framework of the
simulation, including the parameters such as key lengths and selected
algorithm for encryption/decryption, signing/verification and hashing
algorithms on ECUs, as well as other settings, such as the validity of
nonces and certificates and maximum simulation times. The settings
are dependent on the implemented layers and protocols, which can
define and load any configuration setting and can thus be extended
easily.

C = (algsym, keylensym, algasym, keylenasym, alghash) (8)

Other possible settings could be different operating modes for the
security frameworks, caches or components, such as gateways.
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Figure 2: Components of message transmission latencies per layer, as defined
in our model. Function ts defines the sending time, function tr defines the
receiving time, per layer, respectively. Depending on the security setup of the
system, the security layer has high and varying influence on the message trans-
mission latency, being responsible for encryption, as well as authentication
and authorization.

Parameters. The parameters p ∈ P are used to calibrate the IVNS
to a real-world environment. Calibration parameters are typically ob-
tained by benchmarking existing hardware. The calibration is crucial
to be able to simulate reality as accurately as possible. Furthermore,
this allows validation of the model and simulator through compar-
ison of a calibrated simulation with the underlying hardware used
for calibration. The required measurements depend on the selected
algorithms but typically include cryptographic parameters, such as
encryption/decryption, signing/verification, hashing, key generation,
as well as transmission related parameters, such as gateway latencies
and bit transmission times for the selected buses.

P = (tenc, tdec, tsign, tverif , thash, tGW , ttx) (9)

Parameters can be defined as constants (e.g., bit timing on bus),
lookup tables (e.g., encryption/decryption latencies) or functions
(e.g., hashing latency). The parameters are loaded at runtime, based
on the configuration of the individual components depending on these
parameters. Furthermore, they are applied per ECU and can thus be
used to define varying hardware for ECUs of different computational
capabilities.
Message Flow. The components described above determine the
latencies a message experiences when being sent. Every component
and every layer defines and adds its own latencies. A simple message
transmission is shown in Figure 2.

A message thus experiences the following delay tm in conventional
transmission, where ts, tb and tr are sending, bus and receiving delays,
respectively:

tm = ts + tb + tr (10)

These components can be defined in more detail based on the
layers (see Figure 2). On the sending ECU, a message experiences a
delay ts, which consists of the sending delays of the application ts(a),
the security layer ts(ls), the transport layer ts(lt), the data link layer
ts(ld) and the physical layer ts(lp):

ts = ts(a) + ts(ls) + ts(lt) + ts(ld) + ts(lp) (11)

The bus introduces latency tb, mostly depending on the data rate
of the bus and the size of the message, as well as the velocity factor.
On the receiving ECU, the message experiences a further latency tr,
consisting of the receiving latencies of the physical layer tr(lp), the
data link layer tr(ld), the transport layer tr(lt), the security layer tr(ls)
and the application tr(a):

tr = tr(lp) + tr(ld) + tr(lt) + tr(ls) + tr(a) (12)

In case an authentication protocol is used, the first message might
experience a longer sending delay ta, as first, the authentication and
authorization need to be performed. In this case

ta = tauz + ts + tb + tr, (13)

where tauz is highly dependent on the authentication and authorization
framework and the state of the system, specifically the number and
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size of messages required, as well as the selected authentication
mechanisms and their speed on the ECU.
Protocols. The above latencies are the abstraction level of events
for a discrete event simulation on the basis of OSI layers. The
latencies per layer l are required to be calculated at runtime, based
on the chosen implementation (e.g., CAN FD), required algorithms
(e.g., encryption), state of the system (e.g., bus load) and inputs
(e.g., message length), among others. Thus, the implementation
needs to take into account the behavior of the layer l as defined
in its specification, as well as the measurements of basic hardware
parameters, as defined in the parameters P. The accuracy of the
abstraction is defined through the detail of implementation. The
runtime values might vary considerably, based on, e.g., bus access for
tb or, in case of LASAN, a potential authentication required before
authorization, triggering a separate set of message transmissions. To
achieve higher performance, these sub-layer latencies are computed
at runtime and abstracted to a single event in the model, reducing
the number of events considerably and thus increasing computational
performance.
Modularity. The complexity of the model pays off when attempt-
ing to compare different networks. All components have defined
functions, settings and interfaces. This allows a high amount of
modularity in the system, as every component can be exchanged as
required. For example, to exchange a bus system, only the imple-
mentation of the bus b needs to be adjusted. In the same manner,
the authentication and authorization framework can be exchanged by
changing the security layer ls. Furthermore, the underlying hardware
for an ECU e or the security module sm can be easily exchanged, sim-
ply by switching the parameter set P. In this way, it is easily possible
to, e.g., add a cryptographic accelerator to an existing architecture.

Alternatively, single ECUs may be configured with a different set
of parameters, only applicable to a specific ECU. This allows creation
of different ECUs, some more powerful than others. While the base
ECU of the architecture could be an 8-bit controller, e.g., used for
the outer mirror of a car, some ECUs, such as the infotainment unit,
might be significantly more powerful.
Granularity. This model represents the basic setup of an automotive
architecture, including security components. The key to performance
in the development of a simulation model is the abstraction level. Too
detailed a model may result in unreasonably long computation times,
while too highly abstracted a model results in insufficient accuracy of
results.

We chose the abstraction level of our model to be especially effi-
cient for the analysis of long-term processes in automotive systems,
such as protocol analysis. To achieve this, we do not model single bit
times as separate events, but summarize a set of latencies calculated
at runtime into a single event in our discrete event simulation. The
chosen abstraction for our model is on the level of OSI layers. We
separately model the layers as events, but base the timeouts on the pa-
rameter set P. This allows us to calculate latencies in the system with
the accuracy of the smallest measurable time component, typically
1 bit time on the bus. However, due to bit times being summarized
in events per layer, these smallest latencies cannot be exported or
analyzed individually. Therefore, The smallest level for analysis is
an OSI layer latency.

4. SIMULATION
The simulation framework implements the model as described

in Section 3. The Python language has been used for implemen-
tation. Using an interpreted language like Python allows fast and
easy extension of components. Furthermore, a large number of li-
braries are available, speeding up the implementation process, and
simplifying future extension by the community. The discrete event
handling is based on the Python library SimPy [20]. An overview of
the components of the IVNS is given in Figure 3.

The simulation environment is set up with the given configuration
C, typically read from configuration files. The network architecture A
is either defined by the user, or generated by a test case generator and
fed into the core of the simulation environment. The test case gen-
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Figure 3: Architecture of the simulator with a 12 cell setup on a single bus.
The IVNS includes a test case generator generating architecture A, database
of hardware parameters P, configuration files C, as well as GUI and CSV
output via an API.

Figure 4: A screenshot of the GUI. Here, a LASAN setup is shown. The
Event View (left) shows every message sent and received on all buses. Red
markers indicate the authentication of ECUs, green markers indicate the
authorization of streams, and blue markers indicate data messages, occurring
with significantly higher frequency after all streams have been set up securely.
The Message View (right) shows the number of messages sent (red) or received
(green) by a device, in this case the Security Module.

erator uses statistical processes to generate new architectures, based
on a set of parameters for the architecture. These parameters include
the number of ECUs, number of messages, etc. This architecture is
calibrated by the parameters P, taken from hardware benchmarks. In
our case, these benchmarks have been performed on an STM32F415
microcontroller for software and hardware implementations of cryp-
tographic functions. These benchmarks will be published together
with the IVNS for free use.

The Graphical User Interface (GUI) supports different plugins for
analysis of the running system. A screenshot of the Event View and
Message View is shown in Figure 4. There, the setup and operation
of a system with the LASAN authentication framework, 5 ECUs and
one security module are shown.

Every component in this simulation is built in a modular fashion
and is easily exchangeable. A reporting and filtering system is in
place, allowing collection, display, and export of any value in any of
the components. These values could include the state of the ECU
and security module buffers, the load on the bus, or the internal state
of any task on an ECU. Reported values can be filtered to maximize
performance of the IVNS and minimize the storage required for
export files.

The IVNS has been built from the ground up with parametrization
in mind. This allows easy import of externally generated parameters,
e.g., latencies for encryption/decryption operations or the forwarding
latency in a gateway, making the IVNS highly flexible. Initially, all
implemented ECUs are based on an STM32 controller, but by adding
parameters P measured on other devices, the IVNS can flexibly
simulate any automotive networking environment.

5. EXPERIMENTAL RESULTS
We evaluate IVNS from multiple perspectives. On the one hand,

we analyze the computation time and memory required for network
systems of varying size and varying security protocols, to prove its
performance. On the other hand, we demonstrate with a case study
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Figure 5: Evaluation of computation time and average memory consumption
of the simulator for architectures of different size and different authentication
frameworks. IVNS stays below 10 minutes of computation time and below
250 MB of RAM for any realistic test case.

of a distributed battery management system how IVNS can be used
to feed back performance data to the architecture design process. All
computations in this section have been executed on an Intel Core
i5-3450 CPU with 4 GB of RAM.

5.1 Synthetic Test Cases
To evaluate the computational and memory performance of IVNS,

we implement two authentication protocols, LASAN and TESLA.
Using the built-in test case generator (see Figure 3), we automatically
generate architectures of varying sizes. These architectures include a
varying number of ECUs and 500 messages. The number of receivers
per message increases with the number of ECUs. This demonstrates
the multicast behavior of messages in automotive networks.

The results are shown in Figure 5. As it can be clearly seen, the
average memory requirement for a TESLA simulation stays fairly
constant below 250 MB, even for large systems with up to 100
ECUs. The average memory usage for a LASAN simulation increases
linearly, resulting from the larger number of messages transmitted in
the system and needing to be stored in buffers. However, even for
100 ECUs, the memory requirement is less than half that of a TESLA
simulation. As the number of receivers increases, the number of
message objects to be processed in the separate receiving ECUs also
increases. The higher memory requirement of the TESLA simulation
originates from the number of keys being stored for all messages
in the system. Here, we generate a chain of 400,000 keys, which
is stored on the ECUs and applied in reverse order. This number is
reasonable, as for a message with a period of 10 milliseconds, this set
of keys lasts about 1 hour. In any case, the memory consumption for
simulation of systems of realistic size stays below 250 MB, which is
very low for modern desktop computers.

When evaluating the computation time required to simulate a net-
work, we see a clear correlation between LASAN and TESLA in our
simulator. This is expected, as both systems follow the same ECU-
and bus-internal message sending sequences, as defined in Section 3.
Though the computation time exhibits exponential behavior, even for
large systems, it remains below 10 minutes. As in the automotive
domain systems rarely exceed the threshold of 100 participants on
the bus, this computation time is reasonable.

As all computations have been performed on a commercial off-
the-shelf desktop computer, IVNS is ideal for evaluating automotive
networks in a design environment. There, the feedback of the simu-
lator can be used as an input to the optimization functions of other
tools, or, as will be shown in the following case study, as feedback to
the designer.

In summary, IVNS can be used to efficiently analyze automotive
architectures of different sizes on commercial desktop computers, en-
abling designers to ensure real-time requirements while prototyping
secure applications and security protocols. In the case of LASAN
vs. TESLA, e.g., our simulator shows that LASAN allows setup
of streams significantly more efficiently than TESLA, with stream
setup times faster than 2 ms, on ECUs with cryptographic hardware
accelerators.

5.2 Case Study
To show the applicability of IVNS to real-world applications, we

analyze the case study of a distributed embedded Battery Manage-
ment System (BMS), as might be used in next-generation Electric
Vehicle (EV) batteries [21]. In this system, each cell in a battery is
equipped with a microcontroller, allowing it to survey its own State
of Charge (SOC) and State of Health (SOH). Furthermore, such a
setup can allow battery cells to exchange charge and thus implements
active cell balancing in a distributed fashion. Secure communication
is of particular importance in the context of such BMSs to ensure the
safety of high-energy Lithium-Ion (Li-Ion) cells.

In the following, we analyze the distributed battery management
with and without cryptographic hardware acceleration, as well as
for different numbers of cells and network topologies. The system
is secured with the authentication framework LASAN. Different
numbers of cells are used in different applications. Starting from
3 battery cells, such as for laptops, we increase the architecture
size to 24 and 48 cells, often in use for electric bicycles and hybrid
electric vehicles, respectively, up to 96 cells, such as in use for EVs.
The architecture choice we investigate is the division of cells onto
buses and has a large influence on complexity, weight and cost of
the system. The number of buses, and a gateway, if required, cause
additional weight and cost. On the other hand, connecting all battery
cells to a single bus can lead to an increased bus load and thus system
setup time, as all cells have to negotiate secure messages. The results
are shown in Figure 6, illustrating the worst-case system setup time,
representing authentication and authorization over the number of
battery cells in the system. To estimate the worst-case setup time of
the system, we assume that all battery cells need to transmit all status
messages and charge exchange requests at the same time, right at the
start of the system. While this is not a realistic test case (typically
such transmissions are spread over a range of hours), it gives us a
worst-case estimate for the setup time.
Evaluation. From Figure 6, we see that the hardware-accelerated
system is significantly faster than the software-only implementations
in all cases. This behavior is expected. The system setup time exhibits
an exponential behavior, increasing with the number of cells in the
system. This is due to the fact that the employed distributed battery
management system uses broadcasts on nearly all messages. To
achieve full security across all these messages and nodes, LASAN
needs to exchange grant messages and cryptographic keys with every
receiving ECU for every message to be sent.

In the case of large systems on a single bus, such as batteries
for electric vehicles with 96 cells, hardware accelerated, as well as
software only implementations, exhibit a very high latency of about
50 to 80 seconds.

Based on the behavior of LASAN and the requirements of the
system, a designer might want to split the system into multiple buses.
While this should decrease the setup time, quantifying the latency
advantage is not trivial, due to it being based on the number of mes-
sages in the system and the number of receivers per message, as well
as the performance of all ECUs. With IVNS, the system can easily be
split into buses of different sizes. Results of these tests are also shown
in Figure 6 for 12 and 24 cells per bus and hardware accelerated, as
well as software-only implementations, respectively. As this split
onto multiple buses leads to a large amount of parallelization across
buses, the worst-case system setup time can be reduced significantly.
In case of an electric vehicle battery with 96 cells and 12 cells per
bus, the system setup time can be reduced to below 10 seconds. As
for other systems the exponential behavior does not have such a large
influence, the savings are smaller, yet significant. In the case of 48
cells, a typical hybrid electric vehicle battery, e.g., the setup time can
be reduced from over 20 seconds to about 3 seconds, when using 12
cells per bus.
Optimization. These results can be fed back into the architecture
design. In case the specification, e.g., for an electric vehicle battery
requires the designer to build a system with a worst-case system
setup time of below 10 seconds, the results obtained by our simulator
suggest a system with a maximum of 12 battery cells per bus and
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Figure 6: Case study of a distributed embedded battery management system
with the LASAN authentication framework. The worst-case system setup
time has been analyzed for different systems with (HW) and without (SW)
cryptographic hardware accelerators. Furthermore, the impact of the module
size, or cells per bus on the setup time, is evaluated.

hardware acceleration. For the designer of an electric bike with 24
cells and similar requirements, the simulator clearly shows that the
additional cabling effort and cost for hardware accelerated controllers
required for a splitting of buses does not lead to much shorter setup
times. In this context, the IVNS can be integrated with the design for
secure communication architectures in vehicles.

6. APPLICATION PERSPECTIVES
With the open source release of IVNS, we enable the scientific

community to address open challenges in the area of automotive
networks. The IVNS can be used to analyze a multitude of parameters
in different vehicle networks, setups, protocols, etc. Thanks to its
flexible model, it can be used in any research environment related to
automotive networks where reality-backed evaluations are performed.
The following list offers a base set of scenarios where the IVNS can
be applied:
• To develop new protocols and analyze these protocols for their

performance in varying automotive scenarios.
• To evaluate different architectures including feedback for Design

Space Explorations (DSEs) and optimization problems in a multi-
tude of configurations.
• Modularity and clearly defined Application Programming Inter-

face (API), as well as the interoperability of the underlying Python,
mean extending the simulator to evaluate software components in
a Software-in-the-loop (SIL) simulation is easy, e.g., for newly
developed control algorithms.
• Similar to SIL simulations, Hardware-in-the-loop (HIL) tests can

be executed where existing hardware (sub-)systems are mixed
with software simulations, e.g., for restbus simulations.
• The high performance of the simulator allows to simulate virtual

prototypes of (sub-)systems to vehicle level size architectures.
• When integrated with other evaluation mechanisms, IVNS can be

used to allow multi-objective evaluations of automotive systems,
e.g., for security and real-time performance.
• Modularity allows the inclusion of further bus systems and layers,

thus enabling simulation of communication systems and layers not
yet defined. The different possible implementations of Automotive
Ethernet could, e.g., easily be compared.
• Integrating the highly flexible IVNS with existing simulators, such

as OMNeT++, e.g., in the form of a library, to combine the power
of both approaches into a multi-functional automotive simulator.

The modularity, as well as the option to calibrate the simulator with
real hardware measurements, allows many possibilities for the use in
the research community. The approaches listed above are an introduc-
tion to the domain of quantifying behavior in vehicle architectures,
but are by no means exhaustive. The open source and free nature of

the selected MIT license allows adjustments of the simulator of any
kind. Feedback from community development is appreciated and can
be integrated easily through established contribution mechanisms.

7. CONCLUSION
In this work, we have presented an open source framework for

modeling and simulating secure automotive networks, allowing real-
time performance analysis. The model includes components and
interconnections in automotive networks, a basic configuration, as
well as a set of parameters. Parameters can be supplied to tune the
components to real-world behavior. The simulator is implemented
in Python and is highly modular, allowing easy extensibility. It is
available as open source for free use by the research community
and industry. By modeling a sufficiently high abstraction level of
events, we achieve high performance in terms of computation time
and memory requirements, analyzing networks of up to 100 nodes
in under 10 minutes, while keeping memory utilization below 300
MBytes. The usefulness of the simulator has been presented in a
case study to quantify the real-time behavior of a secure distributed
battery management system. By adjusting the architecture slightly,
the performance of the system could be increased by close to an order
of magnitude.
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