

Open Source Software and the Private-Collective Innovation Model:
Issues for Organization Sciencei

Eric von Hippel
Sloan School of Management

MIT
50 Memorial Drive, Cambridge MA 02139

Phone: 617-253-7155
Fax: 617-253-2660

Email: evhippel@mit.edu

and

Georg von Krogh
Institute of Management
University of St.Gallen

Dufourstrasse 48
CH-9010 St.Gallen

Switzerland
Phone: 0041 71 224 23 63

Fax: 0041 71 224 23 55
Email: georg.vonkrogh@unisg.ch

April 30, 2002

Organization Science, Forthcoming 2003

 1

Exploring the Open Source Software Phenomenon:

Issues for Organization Science

Abstract

Currently two models of innovation are prevalent in organization science. The "private investment"

model assumes returns to the innovator results from private goods and efficient regimes of

intellectual property protection. The "collective action" model assumes that under conditions of

market failure, innovators collaborate in order to produce a public good. The phenomenon of open

source software development shows that users program to solve their own as well as shared technical

problems, and freely reveal their innovations without appropriating private returns from selling the

software. In this paper we propose that open source software development is an exemplar of a

compound model of innovation that contains elements of both the private investment and the

collective action models. We describe a new set of research questions this model raises for scholars in

organization science. We offer some details regarding the types of data available for open source

projects in order to ease access for researchers who are unfamiliar with these, and also offer some

advice on conducting empirical studies on open source software development processes.

Keywords: Open source software, innovation, incentives, collective action

 2

1 History and characteristics of open source software development projects

Open source software is software that is made freely available to all. Open source software

development projects are Internet-based communities of software developers who voluntarily

collaborate to develop software that they or their organizations need. Open source projects are

becoming a significant economic and social phenomenon. Thousands exist today, with the number

of developers participating in each ranging from a few to many thousands. The number of users of

the software produced by open source software development projects range from few to many

millions. Well-known examples of open source software having many users are the GNU/Linux

computer operating system, Apache server software and the Perl programming language.

To set a context for exploring the interest that the open source software phenomenon can

hold for organization science researchers, we begin by briefly explaining the history and nature of

open source software itself (the product). Next we outline key characteristics of the open source

software development projects typically used to create and maintain such software (the development

process).

Open Source Software

In the early days of computer programming commercial “packaged” software was a rarity – if

you wanted a particular program for a particular purpose you typically wrote the code yourself or

hired it done. Much of the software development in the 1960’s and 1970’s was carried out in

 3

academic and corporate laboratories by scientists and engineers. These individuals found it a normal

part of their research culture to freely give and exchange software they had written, to modify and

build upon each other’s software both individually and collaboratively, and to freely give out their

modifications in turn. This communal behavior became a central feature of “hacker culture.” (In

communities of open source programmers, "hacker" is a very positive term that is applied to very

talented and dedicated programmers.1)

 In 1969 the U.S. Defense Advanced Research Project Agency (ARPA) established the

ARPANET, the first transcontinental, high-speed computer network. This network eventually grew

to link hundreds of universities, defense contractors and research laboratories. Later succeeded by

the Internet, it also allowed hackers to exchange software code and other information widely, easily

and cheaply – and also enabled them to spread hacker norms of behavior.

The communal hacker culture was very strongly present among a group of programmers –

software “hackers” - housed at the MIT’s Artificial Intelligence Laboratory in the 1960’s and 1970’s

(Levy, 1984). In the 1980’s this group received a major jolt when MIT licensed some of the code

created by its hacker employees to a commercial firm. This firm, in accordance with normal

commercial practice, then promptly restricted access to the “source code” of that software, and so

prevented non-company personnel – including MIT hackers who had participated in developing it -

from continuing to use it as a platform for further learning and development. (Source code is a

sequence of instructions to be executed by a computer to accomplish a program’s purpose.

Programmers write computer software in the form of source code, and also “document” that source

code with brief written explanations of the purpose and design of each section of their program. To

convert a program into a form that can actually operate a computer, source code is translated into

machine code using a software tool called a compiler. The compiling process removes program

documentation and creates a “binary” version of the program - a sequence of computer instructions

consisting only of strings of ones and zeros. Binary code is very difficult for programmers to read

and interpret. Therefore, programmers or firms that wish to prevent others from understanding and

modifying their code will release only binary versions of the software. In contrast, programmers or

1 hacker n. [originally, someone who makes furniture with an axe] 1. A person who enjoys exploring the details of
programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the
minimum necessary. 2. One who programs enthusiastically (even obsessively) or who enjoys programming rather
than just theorizing about programming. 3. A person capable of appreciating hack value. 4. A person who is good at
programming quickly… 8. [deprecated] A malicious meddler who tries to discover sensitive information by poking
around. Hence `password hacker', `network hacker'. The correct term for this sense is cracker. (Jargon File 2001).
See also Halbert (1997).

 4

firms that wish to enable others to understand and update and modify their software will provide

them with its source code. (Moerke 2000, Simon 1996).)

Richard Stallman, a brilliant programmer at MIT’s Artificial Intelligence Laboratory, was

especially distressed and offended by this loss of access to communally developed source code and

also by a general trend in the software world towards development of proprietary software packages

and the release of software in forms that could not be studied or modified by others. Stallman

viewed these practices as morally wrong impingements upon the rights of software users to freely

learn and create. In response he founded the Free Software Foundation in 1985, and set about to

develop and diffuse a legal mechanism that could preserve free access for all to the software

developed by software hackers. His pioneering idea was to use the existing mechanism of copyright

law to this end. Software authors interested in preserving the status of their software as “free”

software could use their own copyright to grant licenses on terms that would guarantee a number of

rights to all future users. They could do this by simply affixing a standard license to their software

that conveyed these rights. The basic license developed by Stallman to implement this idea was the

General Public License or GPL (sometimes referred to as “copyleft” - a play on the word

“copyright”). Basic rights transferred to those possessing a copy of free software include the right to

use it at no cost, the right to study its “source code,” to modify it, and to distribute modified or

unmodified versions to others at no cost. Licenses conveying similar rights were developed by

others, and a number of such licenses are currently used in the open source field.

The free software idea did not immediately become mainstream, and industry was especially

suspicious of it. In 1998, Bruce Perens and Eric Raymond agreed that a significant part of the

problem resided in Stallman’s term “free” software, which might understandably have an ominous

ring to the ears of business people. Accordingly they, along with other prominent hackers, founded

the “open source” software movement (Perens 1998). “Open source” software incorporates

essentially the same licensing practices as those pioneered by the free software movement. It differs

from that movement primarily on philosophical grounds, preferring to emphasize the practical

benefits of such licensing practices over issues regarding the moral rightness and importance of

granting users the freedoms offered by both free and open source software. The term “open source”

is now generally used by scholars to refer to free or open source software, and that is the term we

will use in the remainder of this paper.

Recently, open source software has emerged as a major cultural and economic phenomenon.

Today, the number of open source software projects is rapidly growing, with a single major

infrastructure provider and repository for open source software projects, Sourceforge.net, listing in

 5

excess of 10,000 projects and more than 300,000 registered users. A significant amount of software

developed by commercial firms is being released under open source licenses as well. Current

contributors of code to open source software projects are actively concerned with protecting user

rights to freely use and improve and learn from open source computer code (O’Mahony 2002).

Open source software development projects

Software can be termed open source independent of how or by whom it has been developed:

the term denotes only the type of license under which it is made available. However, the fact that

open source software is freely accessible to all has created some typical open source software

development practices that differ greatly from commercial software development models – and that

look very much like the “hacker culture” behaviors described earlier.

Because commercial software vendors typically wish sell the code they develop, they sharply

restrict access to the source code of their software products to firm employees and contractors. The

consequence of this restriction is that only insiders have the information required to modify and

improve that proprietary code further (see Meyer and Lopez, 1995; also Young, Smith, and Grimm,

1996; Conner and Prahalad, 1996). In sharp contrast, all are offered free access to the source code of

open source software. This means that anyone with the proper programming skills and motivations

can use and modify any open source software written by anyone. In early hacker days, this freedom

to learn and use and modify software was exercised by informal sharing and co-development of code

– often by the physical sharing and exchange of computer tapes and disks upon which the code was

recorded. In current Internet days, rapid technological advances in computer hardware and software

and networking technologies have made it much easier to create and sustain a communal

development style at ever-larger scales. Also, implementing new projects is becoming progressively

easier as effective project design becomes better understood, and as prepackaged infrastructural

support for such projects becomes available on the Web.

Today, an open source software development project is typically initiated by an individual or

a small group with an idea for something interesting they themselves want for an intellectual or

personal or business reason. Raymond (1999, p.32) suggests: "Every good work of software starts by

scratching a developer's personal itch." "…too often software developers spend their days grinding

away for pay at programs they neither need nor love. But not in the (open source) world…" The

project initiators also generally become the project “owners” or “maintainers” who take on

 6

responsibility for project management.2 Early on, this individual or group generally develops a first,

rough version of the code that outlines the functionality envisioned. The source code for this initial

version is then made freely available to all via downloading from an Internet website established by

the project. The project founders also set up mailing lists for the project that those interested in

using or further developing the code can use to seek help, provide information or provide new open

source code for others to discuss and test. In the case of projects that are successful in attracting

interest, others do download and use and “play with” the code – and some of these do go on to

create new and modified code. Most then post what they have done on the project website for use

and critique by any who are interested. New and modified code that is deemed to be of sufficient

quality and of general interest by the project maintainers is then added to the “authorized” version of

the code. In many projects the privilege of adding to the authorized code is restricted to only a few

trusted “developers.” These few then serve as ‘gate keepers’ for code written by contributors who

do not have such access (von Krogh and Spaeth, 2002).

Most who download open source software are free riders – only a relatively small proportion

contribute to a project by developing code or in other ways. Open source projects do not pay

participants for their services, and the motivations and characteristics of contributors vary. Most are

strongly motivated by a personal or business use for the code that they develop – they are code

“users” in our terminology. Other major sources of motivation include intrinsic rewards such as

personal learning and enjoyment from programming. Most contributors are experienced,

professional programmers. Some act as independent individuals, others are employees of

organizations that support their participation (Lakhani and Wolf 2001).

Two brief case histories will help to further convey the flavor of open source software

development projects.

Apache Server Software

Apache server software is used on web server computers that host web pages and provide

appropriate content as requested by Internet browsers. Such computers are the backbone of

the Internet-based World Wide Web infrastructure.

2 “The owner(s) [or “maintainers”] of an open source software project are those who have the exclusive right,
recognized by the community at large, to redistribute modified versions.” … “According to standard open-source
licenses, all parties are equal in the evolutionary game. But in practice there is a very well-recognized distinction
between ‘official’ patches [changes to the software], approved and integrated into the evolving software by the

 7

The server software that evolved into Apache was developed by University of Illinois

undergraduate Rob McCool for, and while working at, the National Center for

Supercomputing Applications (NCSA). The source code as developed and periodically

modified by McCool was posted on the web so that users at other sites could download, use,

and modify and further develop it. When McCool departed NCSA in mid-1994, a small

group of webmasters who had adopted his server software for their own sites decided to take

on the task of continued development. A core group of eight users gathered all

documentation and bug fixes and issued a consolidated patch. This patchy web server software

evolved over time into Apache. Extensive user feedback and modification yielded Apache

1.0, released on December 1, 1995.

In the space of four years and after many modifications and improvements contributed by

many users, Apache has become the most popular web server software on the Internet,

garnering many industry awards for excellence. Despite strong competition from commercial

software developers such as Microsoft and Netscape, it is currently used by some 60% of the

millions of web sites worldwide. Modification and updating of Apache by users and others

continues, with the release of new versions being coordinated by a central group of 22

volunteers.

Fetchmail – An Internet email utility program

Fetchmail is an Internet email utility program that “fetches” your email from central servers

to your local computer. The open source project to develop, maintain and improve this

program was led by Eric Raymond (Raymond, 1999).

Raymond first began to puzzle about the email delivery problem because he was personally

dissatisfied with then-existing solutions. “What I wanted was for my mail to be delivered on

snark, my home system, so that I would be notified with it arrived and could handle it using

all my local tools.” (ibid. p.31).

Raymond decided to try and develop a better solution. He began by searching databases in

the open source world for an existing, well-coded utility that he could use as a development

publicly-recognized maintainers, and ‘rogue’ patches by third parties. Rogue patches are unusual and generally not
trusted.” (Raymond 1999 p.89).

 8

base. He knew it would be efficient to build upon others’ related work if possible, and in the

world of open source this practice is understood and valued. Raymond explored several

candidate open source programs, and settled upon one in small-scale use called “popclient.”

He developed a number of improvements to the program and proposed them to the then

“maintainer” of popclient. It turned out that this individual had lost interest in working

further on the program, and so his response to Raymond’s suggestions was to offer his role

to Raymond so that he could himself evolve the popclient further as he chose.

Raymond accepted the role of popclient maintainer, and over the next months he improved

the program significantly in conjunction with advice and suggestions from other users. He

carefully cultivated his more active “beta list” of popclient users by regularly communicating

with them via messages posted on an public electronic bulletin board set up for that purpose.

Many responded by volunteering information on bugs they had found and perhaps fixed, and

by offering improvements they had developed for their own use. The quality of these

suggestions was often high because “…contributions are received not from a random

sample, but from people who are interested enough to use the software, learn about how it

works, attempt to find solutions to the problems they encounter, and actually produce an

apparently reasonable fix. Anyone who passes all these filters is highly likely to have

something useful to contribute.” (ibid. p. 42).

Eventually, Raymond had arrived at an innovative design that he knew worked well because

he and his beta list of co-developers had used it, tested it and improved it every day.

Popclient (now renamed fetchmail) became standard software used by millions of servers on

the Internet. Raymond continues to lead the group of volunteers that maintain and improve

the software as new user needs and conditions dictate.

We propose that the practices of open source software developers and communities will be

of interest to researchers working in organization science for two major reasons. First, open source

software projects present a novel and successful alternative to conventional innovation models. This

alternative presents interesting puzzles for and challenges to prevailing views regarding how

innovations “should” be developed, and how organizations “should” form and operate. Second,

open source software development projects offer opportunities for an unprecedented clear look into

their detailed inner workings. By the very nature of the way these projects operate, detailed and

 9

time-stamped logs of most interactions among community members and of project outputs are

automatically generated. These logs are publicly available and open to the inspection of any

researcher without special permission. This simple fact makes open source software development

projects valuable as research sites for many types of studies.

In section 2, following, we explore the general nature of the research opportunities that open

source offers to those interested in organization science in general, and innovation models in

particular. In section 3 we offer a discussion regarding open research questions and the types of data

available for open source software projects in order to ease access for researchers who are unfamiliar

with these, and we offer some advice on the conduct of empirical studies on this phenomenon.

2 Open source software projects – exemplar of a “private-collective” innovation model

Society has a vital interest in encouraging and rewarding innovation. Presently, there are two

major models characterizing how this may be done. The first, “private investment” model assumes

that innovation will be supported by private investment and that private returns can be appropriated

from such investments (Demsetz, 1967). To encourage private investment in innovation, society

grants innovators some limited rights to the innovations they generate via intellectual property law

mechanisms such as patents, copyrights, and trade secrets. These rights, in turn, assist innovators in

getting private returns from their innovation-related investments (Arrow 1962; Dam, 1995).

In the private investment model, any free revealing or uncompensated “spillover” of

proprietary knowledge developed by private investment will reduce the innovator’s profits from its

investment. It is therefore assumed that innovators will avoid such spillovers to the extent possible

– although they will nonetheless occur (Audretsch and Feldman, 1996; Audretsch and Stephan, 1999

Harhoff et al., 2000). At the same time, the monopoly control that society grants to innovators

under the private incentive model and the private profits they reap represents a loss to society

relative to the free and unfettered use by all of the knowledge that the innovators have created.

Society elects to suffer this social loss in order to increase innovators’ incentives to invest in the

creation of new knowledge.

The second major model for inducing innovation is termed the collective action model. This

model applies to the provision of public goods, where a public good is defined by its non-

excludability and non-rivalry: If any user consumes it, it cannot be feasibly withheld from other users

(Olson, 1967: 14). The collective action model operates in science and elsewhere (e.g. Aldrich, 1999;

Monge, Fulk, Kalman, Flanagin, Parnassa, and Tumsey, 1998; McCaffrey, Faerman, and Hart, 1995;

 10

Coleman, 1973; Eyerman and Jamison, 1991; Hess, 1998; Melucci, 1999). It requires that

contributors relinquish control of knowledge they have developed for a project and make it a public

good by unconditionally supplying it to a "common pool". This requirement enables collective

action projects to avoid the social loss problem associated with the restricted access to knowledge of

the private investment model. At the same time, it creates problems with respect to motivating

potential contributors to collective action projects.

Since contributions to a collective action project are a public good, potential beneficiaries of

that good have the option of waiting for others to contribute and then free riding on what they have

done (Olson, 1967). One solution to this problem is to supply some form of monetary or reputation

or other subsidy to contributors to collective action projects to raise their level of motivation. For

example, many societies provide monetary subsidies for basic research for this reason. The social

structure of science itself then operates via norms of reciprocity and knowledge sharing among

scientists to insure contributions to public goods are made, and to offer reputation-based rewards for

good performance (Stephan, 1996).

In the case of open source software development projects, we see an interesting compound

of the private investment and collective action models of innovation. We term this compound the

“private-collective” innovation model. In this model, participants in open source software projects

use their own resources to privately invest in creating novel software code. In principle, these

innovators could then claim proprietary rights over their code, but instead they choose to freely

reveal it as a public good. Clearly, the net result of this behavior appears to offer society the best of

both worlds – new knowledge is created by private funding and then offered freely to all. However,

it also creates an intriguing puzzle. As Lerner and Tirole (2002) put it: “Why should thousands of

top-notch programmers contribute freely to the provision of a public good?’’

The research needed to answer that puzzle is yet to be done. Answering it will involve, we

think, revisiting and easing some of the basic assumptions and constraints conventionally applied to

the private investment and collective action models of innovation. In essence we think that each of

the two basic models, in an effort to offer “clean” and simple models for research, have excluded

from consideration a very rich and fertile middle ground where incentives for private investment and

collective action can coexist, and where a “private-collective” innovation model can flourish. We

think this middle ground is where open source software projects in fact reside. The end result of

exploring it will be, we think, a deeper understanding of a promising new mode of organization for

innovation that indeed can deliver “the best of both worlds” to society under many conditions. In

the remainder of this section we consider how open source software development practice deviates

 11

from the conventional assumptions of the private investment and collective action models of

innovation. Then, we show how the conditions actually faced by open source software projects offer

the basis for a novel, private-collective model for the motivation of innovation.

Open source software project deviations from the private investment model of innovation

Open source software development practice involves two major deviations from the private

investment model of innovation as it is conventionally viewed. First, software users rather than

software manufacturer are the typical innovators in open source. Second, open source innovators

freely reveal the proprietary software that they have developed at their private expense.

With respect to the first deviation, recall that the private investment model of innovation is

premised upon the idea that individuals or organizations will step forward and invest in the

development of innovations if and as they expect such action to “pay” in terms of private rewards.

The model places no additional constraint on who will tend to innovate. However, manufacturers

rather than product users have traditionally been considered the most logical private developers of

innovative products and services because private financial incentives to innovate seem to be higher

for them than for individual or corporate users. After all, a manufacturer has the opportunity to sell

what it develops to an entire marketplace of users while spreading development costs over a large

number if units sold. Individual user-innovators, on the other hand, can typically expect to benefit

financially only from their own internal use of their innovations. Benefiting from diffusion of an

innovation to the other users in a marketplace would require some form of intellectual property

protection followed by licensing. Both are costly to attempt, with very uncertain outcomes (Arrow

1962, Taylor and Silberston 1973, Liebeskind, 1996).

In the case of open source software projects one observes that, contrary to conventional

expectation, the bulk of contributions – and therefore the bulk of private innovation-related

investment - are made by developers that are users of that software, either as individual users or user

firms, rather than by software manufacturers. Why should this be? The most fundamental reason is

that software users can profit by using open source software or open source software improvements

that they develop. In contrast, there is no commercial market for open source software – because its

developers make it freely available as a public good. This eliminates manufacturers’ direct path to

appropriating returns from private investment in developing open source products, and so often

eliminates their incentive to innovate. (Note, however that manufacturers may find indirect paths to

profiting from open source software projects and so may contribute to them. For example, IBM

may profit from developing improvements to the open source program GNU/Linux, if these

 12

improvements enhance Linux’s functioning with a complementary good – proprietary computer

software or hardware – that IBM does sell.) Of course, to say that manufacturers have a

disadvantage with respect to reaping private rewards from open source software innovations is not

the same as saying that users have sufficient private incentives to innovate based upon internal use

only. However, in a number of fields it has been shown that such incentives can indeed suffice, and

that users do often innovate (von Hippel, 1988).

Next we come to the second major deviation that open source software development

practice displays relative to the private investment model of innovation. Users in open source

communities typically freely reveal their innovations by, for example, posting improvements and

code on project websites where anyone can view and download them for free. As was noted earlier,

free revealing does not make sense from the point of view of the private investment model of

innovation. After all, as the conventional reasoning goes, innovating users under budget constraints

spend money and time to create their innovations and revealing their developments without

compensation to non-innovating users, either directly or via a manufacturer, should represent a loss

of potential private returns that users should strive to avoid.

How are we to understand such behavior? From the viewpoint of the private investment

model of innovation, users should only freely reveal their innovations when the costs of free

revealing are less than the benefits. It has been argued that such conditions can hold in many fields,

including open source software (Harhoff et al, 2001). First, it is pointed out that a number of

phenomena, ranging from network effects to increased sales of complementary goods, can actually

increase innovators’ private benefits if and as free revealing causes their innovations to be diffused

more widely. Second, it is pointed out that, independent of any potential private gain from free

revealing of an innovation, any private losses associated with this action will typically be quite low.

In brief overview, this line of argument begins by noting that there are two kinds of costs associated

with revealing an innovation: those associated with the loss of proprietary rights to intellectual

property, and the cost of diffusion. With respect to the former, innovators can expect low losses

from free revealing if they have low rivalry with potential adopters of their innovations and/or

expect gains from the increased diffusion of their innovation that free revealing will cause. In the

case of open source software projects, contributors are diverse and it is highly likely that at least

some potential contributors of a given innovation will see themselves as having low rivalry with

respect to potential adopters. (Indeed, many contributors to open source software projects are

students who do not have any basis for commercial rivalries with other potential adopters, see

Lakhani and Wolf 2001; Herman, Hertel, and Niedner, 2000). And when some holders of a given

 13

Elinor Bradshaw
Okay?

innovation face low rivalry conditions and so are likely to freely reveal, it does not benefit any holder

of that same information to keep it private.

In the case of open source software projects, the costs that an innovator incurs to freely

reveal the novel code he or she has developed and widely diffuse it also are low. Open source

software project participants simply post it on the appropriate project Internet site. The act of

posting and the act of retrieving the posted information by others are both near costless. When the

expected costs associated with free revealing are low, even a low level of reward can be sufficient to

induce the behavior. As Lerner and Tirole (2002) and von Krogh (1998; 2002) observe, adequate

rewards can be provided to participants in open source software projects in a variety of forms,

including elevated reputations, expected reciprocity, and incentives to help build a community.

Open source software project deviations from the collective action model of innovation

The collective action model of innovation is a response to market failure. The model can be

applied to the creation of public goods ranging from provision of a public bridge to provision of

open source software. As was mentioned earlier, a public good is defined by its non-excludability

and non-rivalry: If any user consumes it, it cannot be feasibly withheld from other users (Olson,

1967). Non-excludability leads directly to the central dilemma for the collective action model: If

users who do not contribute to a public good – “free riders” – can benefit from that good on equal

terms with those who do contribute, how can one motivate users to contribute rather than free ride?

The collective action literature, has responded to this central dilemma by placing a great deal of

emphasis on the importance of recruiting and properly motivating participants in a successful

collective action project in order to increase the attractiveness of contributing relative to free riding.

With respect to successfully recruiting contributors to a collective action task, conventional

theory predicts that both the specification of project goals and the nature of recruiting efforts should

matter a great deal (McPhail and Miller, 1973; Snow, Zurcher, and Ekland-Olson, 1980; Snow and

Benford, 1992; Benford, 1993). Thus, researchers have pointed out that direct and stable social

relationships between recruiters and potential participants are important, so that recruiters will have

more knowledge of individual motivations and be more effective in defining a rewarding goal (Oliver

and Marwell, 1988; Taylor and Singleton, 1993.) The nature of effective recruiting strategies has also

been explored (Taylor and Singleton, 1993; Benford, 1993; Snow and Benford, 1992).

With respect to the free-rider problem, Axelrod (1984) notes that it has been found that the

reward for cooperation can be higher than the reward for defection in a multi-round Prisoners’

Dilemma game with no fixed end-point. Therefore, he suggests that it would be effective to

 14

convince participants in a collective action project that they are engaged in long-term cooperative

relationships. Schwartz and Paul (1992) argue that it can be effective to convince potential

contributors that the importance of “group fate” outweighs the cost incurred of contributing.

It has also been argued that the creation and deployment of selective incentives for

contributors is essential to the success of collective action projects (e.g., Friedman and McAdam,

1992; Oliver, 1980). Thus, projects may elect to use specific social categories and to bestow

credentials on their members, based on observed efforts and/or skills. Individuals then may gain

private benefits from such credentials in the form of enhanced social relations, enhanced reputation,

privileged access to social relations and so on.3 The importance of selective incentives to successful

collective action in turn suggests that small groups will be most successful at executing collective

action projects because selective incentives can then be carefully tailored for each group member

(Olson, 1967, pp. 43-52; Fireman and Gamson, 1979; Taylor and Singleton, 1993). Also, monitoring

of individual efforts is easier in a small group where people meet and communicate face to face

(Ostrom, 1998). In particular, if knowledge of group members overlap with respect to the task, an

appraisal of others’ efforts can be made that is consistent with the appraisal of one’s own efforts

(Osterloh and Frey, 2000).

Interestingly, successful open source software projects do not appear to follow any of the

guidelines for successful collective action projects just described. With respect to project

recruitment, goal statements provided by successful open source software projects vary from

technical and narrow to ideological and broad – and from precise to vague and emergent (for

examples see goal statements posted by projects hosted on Sourceforge.net)4. Further, such projects

3 The nature of the incentives to be deployed marks a difference between classical organization theory and collective
action theory: “Organization theory is most developed for organizations based on material incentives, whereas most
(collective action) bind people with solidarity and purposive (immaterial) incentives” (Zald, 1992: 336). An
immaterial selective incentive would result from members creating and enforcing social categories (Tajfel and
Turner, 1979; Tajfel, 1982): “People’s sense of who they are in terms of some meaningful social category (e.g
occupational, gender, status, age) that distinguishes how they interact with those inside from those outside the
category” (Roy and Parker-Gwin, 1999: 206).
4 As a specific example of a project with an emergent goal, consider the beginnings of what became the Linux open
source software project. In 1991, Linus Torvalds, a student in Finland, wanted a Unix operating system that could be
run on his PC equipped with a 386 processor. Minix was the only software available at that time but it was
commercial, closed source, and it traded at USD 150.-. Torvalds found this too expensive, and started development
of a Posix-compatible operating system, later known as Linux. Torvalds did not immediately publicize a very broad
and ambitious goal, nor did he attempt to recruit contributors. He simply expressed his private motivation in a
message he posted on July 3, 1991, to the USENET newsgroup comp.os.minix (Wayner, 2000: 55) as follows: Hello
netlanders, Due to a project I’m working on (in minix), I’m interested in the posix standard definition. [Posix is a
standard for UNIX designers. A software using POSIX is compatible with other UNIX-based software.] Could
somebody please point me to a (preferably) machine-readable format of the latest posix-rules? Ftp-sites would be
nice. In response, Torvalds got several return messages with Posix rules and people expressing a general interest in
the project. By the early 1992, several skilled programmers contributed to Linux and the number of users increased

 15

typically engage in no active recruiting beyond simply posting their intended goals and access address

on a general public website customarily used for this purpose (for examples, see the website named

“Freshmeat”). Also, projects have shown by example that they can be successful even if large groups

– perhaps thousands - of contributors are involved. Finally, open source software projects seem to

expend no effort to encourage contributing over free riding. Anyone is free to download code or

seek help from project websites, and no apparent form of moral pressure is applied to make a

compensating contribution (e.g., “If you benefit from this code, please also contribute…”).

What can explain these deviations from expected practice? We propose that the private

rewards to those that contribute to open source software collective action projects are considerably

stronger than those available to free riders. This in turn enables the deviations from expected

collective action practice that are observable in open source software projects. We develop this idea

in our discussion of the private-collective innovation model that follows next.

Open source software projects as an illustration of a private-collective model of innovation

The central deviation we believe that open source software projects display with respect to the

assumptions about incentives embedded in the private investment and the collective action models

of innovation is that contributions to open source software development are not pure public goods –

they have significant private elements even after the contribution has been freely revealed. More

specifically, the private-collective model of innovation occupies the middle ground between private

investment and collective action models by:

• Eliminating the assumption in private investment models that free revealing of innovations

developed with private funds will represent a loss of private profit for the innovator and so will

not be engaged in voluntarily. Instead it proposes that under common conditions free revealing

of proprietary innovations may not involve a loss of profit to innovators who developed those

innovations with private funds. Indeed, under some conditions free revealing may actually result

in a net gain in private profit for the innovator. For example, free revealing can increase

innovation diffusion and so increase an innovator’s innovation-related profits through network

effects.

by the day. Today, Linux is the largest open source development project extant in terms of number of developers,
and in the server software market it is second to Microsoft in terms of servers that use it.

 16

• Eliminating the assumption in collective action models that a free rider will be able to obtain

benefits from the completed public good that are equal to those a contributor can obtain.

Instead, it proposes that contributors to a public good can inherently obtain private benefits that

are tied to the development that good. These benefits are available only to project contributors

and not to free riders and represent a form of “selective incentives” for project participation that

need not be managed by collective action project personnel.

To explore these ideas, consider first that contributors to an open source software project

must engage in problem solving to create novel code. When they freely reveal this code to the

project it becomes a public good. However, the problem-solving process and effort used to produce

the code have other important outputs as well, such as learning and enjoyment, and a sense of

“ownership” and control over their work product. In open source and other software projects the

technical learning opportunities can be enormous (e.g. Kohanski, 1998; Himanen, 2000: Hermann,

Hertel, Niedner 2000). Previous coding and learning in turn might increase the user's returns on

learning in future activity (Arthur, 1997). Surveys of individuals who contribute to open source

software projects find that on average they regard personal learning and enjoyment derived from

programming to be very important motivators for their project participation (Lakhani and Wolf,

2001; Herman, Hertel, and Niedner, 2000).

Contributors to open source software projects also report valuing the sense of ownership of

and control over their work product that they experience in open source software projects and do

not experience in programming work they carry out for hire (Lakhani and von Hippel, 2000; Moon

and Sproull 2000; Hermann, Hertel, and Niedner 2000). This difference makes sense. For-profit

programming firms often seek to reduce development costs and control quality by closely

monitoring what programmers do and how they do it (e.g. Cusumano 1992; Sawyer and Guinan

1998). In contrast, contributors to open source software projects choose the project, the task they

will work on and their technical approach to that task to suit their own interests. Outputs from the

code writing process such as learning and enjoyment are private benefits that are available to

contributors but not to free riders. Interestingly, some of the private benefits, such as the private

learning garnered from critiques and corrections supplied by others, may only be obtainable if the

code itself is revealed to others.

Consider next that software code is information and so is a non-rival good. This means that

any number of people can use the good simultaneously: my use of the software does not interfere

 17

with your use of it. It also means that I as a developer can contribute my code as a public good and

at the same time use it for my private and perhaps somewhat different purposes. In the case of open

source software, modules are regularly created by individual users or user firms for private purposes

and are tailored to their individual needs (Pavlicek, 2000). Then, they are openly revealed and

contributed to the project as a public good for whatever general use there may be. To the extent that

the conditions faced by the contributor differ from those faced by free riders, the contributor may be

in a more favorable position than free riders to gain private benefit from the code he contributes.

Contributors to open source software projects may also get private benefits from

participating in the project “community” that are not available to free riders (Raymond, 1999;

Wayner, 2000; Lerner and Tirole, 2002; Moon, Sproull 2000). If the cooperation among users is

intense and sustainable, these might even outweigh individual user rewards (von Krogh, 1998; 2002).

As John Elster remarks (1986:132): "Cooperation reflects a transformation of individual psychology

so as to include the feeling of solidarity, altruism, fairness, and the like. Collective action ceases to

become a prisoner’s dilemma because members cease to regard participation as costly: It becomes a

benefit in itself, over and above the public good it is intended to produce.” Recent developments in

economic theory support Elster’s conjecture. Thus, Rabin (1993) and Fehr and Schmidt (1999) have

shown that a game that in material payoffs constitutes a Prisoner’s Dilemma can be transformed into

a coordination game in which cooperation is also an equilibrium outcome if pecuniary motivations

and social motivations are taken into account.

Recall now the puzzle posed by Lerner and Tirole (2002) noted earlier in the paper: “Why

should thousands of top-notch programmers contribute freely to the provision of a public good?’’ If

we combine our observations regarding the interlinked public and private aspects of contributions

made to open source software projects with our earlier observation regarding the generally low

competitive advantage associated with keeping privately-generated code private, then we have a

reasonable and reasonably likely answer to this question: Programmers contribute freely to the

provision of a public good because they garner private benefits from doing so.

In sum, the emerging phenomenon of open source software development obviously does not

undermine either the private investment or the collective action models of innovation. However, it

does make clear the utility of combining both into a “private-collective” incentive model that can

more effectively address the interlinked private and collective incentive structures observable in that

field, and perhaps elsewhere as well.

3 Discussion

 18

Early in this paper we pointed out that open source software projects appeared to be

potentially interesting and important to researchers interested in organization science for two

reasons. First, such projects appeared to offer “the best of both worlds” – a happy combination of

the private and collective action models of innovation: and second, open source software projects

offer opportunities for an unprecedented clear look into their detailed inner workings because

detailed and time-stamped logs of most interactions among community members and of project

outputs are automatically generated. In this final section of our paper, we discuss both of these

points in more detail.

Some Research Questions

We have seen that participants in open source software projects commonly use their private

budget to create innovations they freely reveal as a public good. We have also seen those

contributors retain and gain significant private benefits from this action: They retain private benefits

from their work process such as learning and enjoyment, and they gain benefits associated with

community participation as well. This suggests a rational economic basis for a “private-collective”

innovation incentive. Studies of an integrated private collective innovation model could greatly

increase our understanding of how public goods are and may be collectively provided.

Recall that in the collective action literature, the most important solution to the free-rider

problem is found in the creation and awarding of selective incentives (Friedman and McAdam, 1992;

Oliver, 1980). The important selective incentives and private benefits associated with participation in

projects, such as private functional value obtained from code that is contributed, and the learning

and enjoyment associated with code-writing are those that the contributor applies and “awards” to

him or herself. This may largely obviate the need for collective action project managers to either

provide or monitor selective incentives within the confines of a project. It would be important to

explore the nature of the private and community incentives acting upon open source contributors

more deeply. In the course of this research it will be important to distinguish between incentives

impacting firms that may assign employees to contribute to open source software projects, and

incentives impacting individual contributors.

Self-provision of private rewards for contributions to a public good have very significant

implications for the governance of collective action projects. A major argument for central

governance of collective action projects springs from the need to discourage free riding. Thus

conventional reasoning suggests that in the larger group collective action becomes increasingly fragile

 19

(e.g. Raub, 1988), since social relationships become increasingly scattered, ephemeral, and interests

increasingly diverse. When the group increases in size, the impact of any individual’s participation in

producing the collective good is negligible and a self-interested, rational individual will choose to free

ride under these conditions (Hardin, 1971). The cost of an individual’s decision to free ride are

spread over a greater number of people, and the cost of organizing and using selective incentives to

induce cooperation of individuals increases as well (Marwell and Oliver, 1993). It becomes

increasingly costly for each group member to monitor and sanction other’s free riding behavior.

Eventually, as the group grows, the monitoring costs outgrow the costs of contributing, and jointly

they outweigh the rewards from the public good itself. The expected outcome is that the public

good will be underprovided.

In order to sustain collective action in large groups, conventional reasoning suggest that it

will be rational for project members to turn to, or install a central authority or leader that specializes

in monitoring of group members and enforcement of sanctions against free-riding (Hardin, 1982, see

also Swanson, 1992; Stroup, 2000). The central authority moderates the cost of using the selective

incentive, but under this authoritarian regime, collective action only succeeds if the regulatory

interests that mandate cooperation overcome those changes in interests that would encourage

defection. In other words, leaders can formulate norms and create incentives that safeguards

compliance with norms (e.g. normative leadership), and maintain the value of social categories

through the control of credentialing processes.

The “self-rewarding” of important private benefits by participants in open source software

projects that are not also available to free riders may considerably diminish participants concern

about free riders. Indeed, informal observation in the field of open source software development

suggests that contributors actually regard free riders as an asset. Free riders that adopt open source

code without contributing to it nonetheless increase the “market share” and importance of the

project and may help set de-facto standards. Also, some who free ride with respect to code creation

and other major project tasks are not free riders with respect to all project-related tasks. For

example, they may report software bugs that they encounter to project contributors. The more users

and program usage there is, the faster bugs get identified and the faster contributors can fix them

with benefit to all program users (Raymond 1999).

The immediate nature of private rewards associated with the development of code may also

mean that active recruiting of members is not significant to project success. Of course, it may also

mean that contributors to an open source software project may have smaller incentives to stay with a

project long-term than they would if rewards were consciously allocated by project managers or

 20

community members in a gradual manner. We need to understand how and why project members

join and leave particular projects, and the nature and emergence of social categories in such projects.

It would also be important to explore the nature of social integration of individuals in their

communities. Users whose identity is known to the community enjoy greater benefits from revealing

their innovations than those who are less integrated (see Wenger, 1998; 2000; Taylor, 1989; Calhoun,

1988). This is so because their ideas, bug reports, viewpoints, or code can be reviewed and

commented upon by other users, and in terms of learning benefits the group’s feedback can be direct

and specific. Open source entrepreneurs therefore have an incentive to integrate important users

socially, by such means as listing the important developers in a project (von Krogh and Spaeth,

2002). Social integration might not prevent withdrawal from the project through punishment, but

perhaps through the individual utility derived from the social category such as a core-developer

status. Hence, open source software entrepreneurs might seek to make this category valuable, rare

and membership restricted. If users' motives change, the learning rewards have been exhausted,

and/or the value of the social category depreciates, users are likely to reduce the level of their

participation. So what is the nature of social integration in the private-collective innovation model,

and how important is this for user's involvement with a particular project?

Finally, the question of "active integration" also raises questions regarding the role of leadership

and central authority. Many observers of the open source software phenomenon point to the

paramount role many leaders have had in the development of an open source software project

(Pavliceck, 2000). In fact, it has already been argued that various forms of leadership extending

beyond simple authoritarian leadership can have a positive effect on motivation of contributors for

collective action (see Coloner, 1995; Frolich, Oppenheimer, and Young, 1971; Salisbury, 1969).

However, leadership is likely to be very different from the leadership we have observed in the private

investment- and perhaps even the collective action model of innovation. Experimental evidence

show that groups can perform worse in producing collective action when outside agencies monitor

group activities and appropriate resources for this activity, primarily because groups find it difficult to

agree on rules for monitoring and sanctioning to be bestowed on this authority (Schmitt, Swope, and

Walker, 2000). Interestingly, one of the norms clearly expressed in the hacker community is that

work cannot be mandated and enforced by a leader (Himanen, 2000; Raymond, 1999) nor does the

leader have any monetary incentives or legal basis to induce or enforce cooperation. So, what is the

importance of leadership for sustaining activity in distributed innovation, how do leaders emerge,

and what are the various functions they perform? If it is true that leaders who can choose who is a

member of a social category secure a more talented group and hence more effective production of

 21

public goods (Schwart and Tomz, 1997), leadership in distributed innovation might in fact be

analogous to that performed by a playing coach. These issues need much more exploration in future

studies.

A deeper understanding of a private-collective model of innovation incentives within open

source software projects will help us to understand how far such a model is applicable to other fields

as well. We think that it is likely that it can apply quite broadly. Consider that, the simultaneous

existence of public and private aspects of “public goods production” is possible in the case of

physical products as well as information products. For example, an architect contributing services to

the design of a public bridge may gain private learning and enjoyment as well as reputation

advantages from his labor that will not be equally available to free riders. Also, one who contributes

large amounts of resources to the creation of a public good can sometimes gain a higher level of

influence on the project's goal and directions that can be used to advance private agendas (McCarthy

and Zald, 1979; Fireman and Gamson, 1979). Note also that even physical products consist of

knowledge and information at the design stage – one can freely reveal CAD models of an airplane

design as readily as one can freely reveal software code.

Free revealing of privately developed innovations as public goods is also not unique to open

source software projects. It also has been observed in areas ranging from industrial equipment

innovations and closed source software developed by firms, to sporting equipment innovations

developed by individual end consumers (Allen 1983, Morrison et al 1999, Harhoff et al 2000, Franke

and Shah 2001). Also, the existence of user innovation communities in the instance of sporting

equipment innovations has been documented (Franke and Shah, 2001).

What may be unique to knowledge and information products is that in these fields we see users

carrying out the entire innovation process for themselves – no manufacturer required. Thus, open

source software projects encompass the entire innovation process, from design to distribution to

field support and product improvement. Such “full-function” user innovation and production

communities are possible only when self-manufacture and/or distribution of innovative products

directly by users can compete with commercial production and distribution. In the case of open

source software this is possible because innovations can be “produced” and distributed essentially for

free on the web, software being information rather than a physical product. In the case of

innovations embodied in physical products, one would expect that, while users would innovate

general diffusion would require the involvement of manufacturers. This is because physical products

must be produced and physically distributed and these activities involve significant economies of

scale (von Hippel, 2001).

 22

Some starting points for open source software innovation research

Open source software research projects have some access points and technical aspects that

may be unfamiliar to researchers just beginning research in this field. Most projects are hosted on a

few major sites like Sourceforge.net. Researchers considering a first empirical research project on

open source software development will find it useful to begin by browsing Sourceforge.net to

become familiar with standard project infrastructures such as code listings and mailing lists and logs

devoted to different specialized functions.

Much of the activity transpiring in open source software projects is a matter of public record.

Code written for the project and accepted into the “official” version is available on-line. In active

projects, this code is modified and added to often – perhaps several times per day. Records of what

is “committed” to the official code and by whom, is recorded in a publicly accessible Concurrent

Versioning System (CVS) log. CVS is an important software tool used by many open source

projects. Its function is to keep track of changes made to the source code by project developers. It

also stores the project’s source code along with programmers’ written comments that explain their

work in detail. In many projects the privilege of adding authorized code to the CVS is restricted to

only a few trusted developers. These few then serve as ‘gate keepers’ for code written by

contributors who do not have such access (von Krogh and Spaeth, 2002).

Interactions among project members are generally posted in the form of messages on public

Internet sites maintained by projects. One example of such a site is Geocrawler. These interactions

are all time-stamped and organized into “threads” consisting of an initial message and all others that

directly respond to it. It is important to note that a simple thread search say under a heading of

"functionality X" might not uncover all discussions about this particular part of the software

architecture. Relevant discussions about this functionality might also appear in different threads.

Furthermore, some projects also organize their discussions in separate domains, for example one

reserved for technical development and the other for general interest and comments on the public

use of the software.

A description of and empirical study illustrating the use of CVS log data is Koch and

Schneider (2000) who were interested in the range of efforts contributors put into a project over

time. They accessed publicly available data on the GNU Network Object Model Environment

(GNOME) project in the CVS repository and in discussion groups. They provided descriptive

statistics (e.g. contributor profiles, Lines Of Code added or deleted, number of postings to the

mailing list) and cluster analyses to identify contributor groups and program files, applying lines of

 23

code as the discriminating variable. This research used established metrics of software development

productivity and successfully captured the dynamic nature of GNOME. However, it can be very

valuable to verify metrics and variables with project experts in early empirical studies of a new arena.

For example, lines of code reflects quantitative aspects of the project’s final source code, but that

metric fails to capture the importance of the code to the overall project architecture5

An empirical study that describes and illustrate the analysis of discussion thread data is

Yamauchi, Yokozawa, Shinohara, and Ishida (2000). They focused on the Free Berkeley Software

Distribution (FreeBSD) Newconfig., a project aimed at modifying the FreeBSD software for devices

that use PCMCIA cards, and the GNU (Gnu Not Unix) GCC project, which aims at developing an

improved compiler for the GNU system, including the GNU/Linux variant. Their interest was in

how an open source software project could achieve smooth coordination, agreement on design, and

innovation using limited media. They used a mixture of methods tracking threads on public

discussions, analyzing the contents of messages and task descriptions to identify communication

patterns among users. They proposed “rational” social norms governing the communication: Users

make their behavior logically plausible to the community, base decisions on technical performance

criteria, and have a bias for action/programming rather than project planning.

In general, summary data such as number of messages by number of participants are easy to

develop by straightforward analysis of publicly available logs (indeed, some summary statistical data

is available on open source software project host sites like Sourceforge.net). However, researchers

should be aware that much user communication happens beyond public email. Thus, Internet Relay

Chat (real time chatting on the Internet), private email, or direct communication between users can

have significant value for studies of motives, incentives, community development, coordination, and

technical decision-making in projects (Lakhani et al. 2001).

Interpretation of subtle matters relevant to organization researchers will be aided by having a

good a contextual and behavioral understanding of project activities, and a broad set of data and

methods might then be valuable. For example, Lee and Cole (2000) opted for an inductive approach

(Glaser and Strauss, 1967) to analyze data related to the development of the GNU/Linux “kernel” -

the portion of the GNU/Linux operating system that coordinates the functioning of its various

5 The number of lines of code is not a good measure of a project’s qualitative progress and hence is often disputed as
a metric to reflect a project’s output (Koch, Schneider 2000; Humphrey, W.S. 1995). As illustration of the uncertain
link between quality and quantity, consider that hackers typically favor neat and compact programs that achieve a
given function using minimum lines of code. This is evidenced by the very popular 5K-competition, where people
can submit programs up to 5 kilobytes, and where the program with the most impressive functions under these
constraints wins an award.

 24

components. Their data sources covered second-hand interviews, the Linux kernel mailing list

during the years 1995-2000, and archival data of the Linux source code (1,9 Mio. LOC).

Finally, it can be very useful to create an "intellectual genealogy" for an open source

development project at an early stage in an empirical research project. Such a genealogy traces major

changes over time in the software architecture and identifies decisions and code contributions that

have had a major impact on the evolution of the software, software functionality and project. With

such a genealogy in hand, researchers will be able to distinguish critical from non-critical project

attributes and behaviors, and so be in a better position to deepen our understanding of issues central

to the effective functioning of open source software development projects.

4. Conclusion

 There are clearly many interesting puzzles in open source software research projects that can

trigger the interest of organization scholars for years to come. Answering some of them might even

lead to substantial rethinking of the very concept of "organization for innovation" and a better

understanding of innovation among distributed users who derive utility from freely revealing their

information-based innovation to produce a collective good. We hope that we have stimulated the

interests of some readers, and look forward to joining with them in further explorations of this very

interesting topic!

References

Aldrich, H. (1999) Organizations Evolving, London: Sage

Allen, Robert C. (1983) "Collective Invention." Journal of Economic Behavior and Organization 4,

no.1(March):1-24.

Arrow, K. (1962). "Economic Welfare and the Allocation of Resources for Inventions," in: The

Rate and Direction of Inventive Activity, ed. R. Nelson, Princeton University Press, pp. 609-625.

Arthur, W.B. (1997) "Path-dependence, self-reinforcement, and human learning" in W.B. Arthur

(ed.) Increasing returns and Path Dependence in the Economy, Ann Arbor, MI: The University of Michigan

Press, pp. 133-158

Audretsch, D.B. and M.P. Feldman (1996) "R&D spillovers and the geography of innovation and

production", American Economic Review, pp. 630-640

 25

Audretsch, D.B. and P.E. Stephan (1999) "Knowledge spillovers in biotechnology: Sources and

incentives" Journal of Evolutionary Economics, 9, pp. 97-107

Austin, R.D. "The effects of time pressure on quality in software development: An agency model",

Information Systems Research, 12(2), pp. 195-207

Axelrod, R. (1984) The evolution of cooperation, New York: Basic Books

Calhoun, C. (1988) “The radicalism of tradition: Community strength or venerable disguise and

borrowed language?” American Journal of Sociology, 88(5), pp. 886-924

Coleman, J. (1973) The Mathematics of Collective Action, Chicago: Aldine

Coloner, J.M. (1995) “Leadership games in collective action”, Rationality and Society, 7(2), pp. 225-247

Conner, K.R. and C.K. Prahalad (1996) "A resource-based theory of the firm: Knowledge versus

opportunism", Organization Science, 7(5), pp. 477-501

Benford, R.D. (1993) “You could be the hundreth monkey: Collective action frames and

vocabularies of motives within the nuclear disarmament movement” The Sociological Quarterly, 34, pp.

195-216

Cusumano, M.C. (1992) "Shifting economies: From craft production to flexible systems and software

factories", Research Policy, 21(5), pp. 453-480

Dam, K.W. (1995) "Some economic considerations in the intellectual property protection of

software", Journal of Legal Studies, 24(2), pp. 321-377

Demsetz, H. (1967) "Towards a theory of property rights", American Economic Review, 57, pp. 347-359

Eyerman, R. and A. Jamison (1991) Social Movements: A cognitive approach, University Park, Penn.: Penn

State Press

Fehr, E. and K.M. Schmidt (1999) “A Theory of Fairness, Competition, and Cooperation”, Quarterly

Journal of Economics,114(3), pp. 817-868

Fireman, B. and W.H. Gamson (1979) “Utilitarian logic in the resource mobilization perspective”, in

M.N. Zald and J.D. McCarthy (eds.) The Dynamics of Social Movements, Cambridge, Mass.: Winthrop

Franke, Nik and Sonali Shah, (2001) “How Communities Support Innovative Activities: An

exploration of assistance and sharing among innovative users of sports equipment. MIT Sloan School

of Management Working Paper (October).

Friedman, D. and D. McAdam (1992) “Collective identity and activism: Networks, Choices, and the

life of a social movement”, in A.D. Morris and C. McClurg (eds.) Frontiers in Social Movement Theory,

New Haven: Yale University Press, pp. 156-173

 26

Frolich, N, J.A. Oppenheimer, and O. Young (1971) Political leadership and collective goods, Princeton,

NJ: Princeton University Press

Glaser, B. and A.Strauss (1967) The Discovery of Grounded Theory, London: Weidenfeld and Nicholson

Halbert, D. (1997) "Discourses of danger and the computer hacker", Information Society, 13(4), pp.

361-374

Hardin, R. (1982) Collective Action, Baltimore: Resources for the future

Hardin, R.R. (1971) “Collective action as an aggregate N-prisoner’s dilemma”, Behavioral Science, 16,

pp. 472-81

Harhoff, D., J. Henkel and E. von Hippel (2000) “Profiting from voluntary information spillovers:

How users benefit from freely revealing their innovations,” MIT Sloan School of Management Working

Paper (July)

Herman, S., G. Hertel, and S. Niedner (2000) Linux Study Homepage, http://www.psychologie.uni-

kiel.de/linux-study/writeup.html

Hess, S. (1998) “Individual behavior and collective action towards the environment: An economic

framework based on the social customs approach”, Rationality and Society, 10(2), pp. 203-222

Himanen, P. (2001) The Hacker Ethic, New York: Random House

Jargon File, version 4.3.1, 29 JUN 2001.

(http://www.tuxedo.org/~esr/jargon/html/entry/hacker.html) [The Jargon File is a collective on-

line work by computer hackers. In print form, it is Raymond, Eric (1999b)]

Kohanski, D. (1998) Moths in the Machine, New York: St.Martin’s Griffin

Lakhani, K., S. Spaeth, G. von Krogh and E. von Hippel (2001) “Freenet”, Working Paper, University

of St.Gallen, November, 2001

Lakhani, K. and R. Wolf (2001) "Does free software mean free labor? Characteristics of participants

in open source communities," BCG Survey Report, Boston, MA: Boston Consulting Group Report

(available at http://www.osdn.com/bcg/)

Lakhani, K. and E. von Hippel (2000) “How Open Source Software Works: “Free” User-to-User

Assistance,” MIT Sloan School of Management Working Paper #4117 (May)

Lee, G.K. and R. Cole (2000) "The Linux Kernel development as a model of open source knowledge

creation", Working Paper, Berkeley, CA: University of California, Berkeley

Lerner, J. and J. Tirole (2002) " “Some Simple Economics of Open Source” Journal of Industrial
Economics, 52 (June).
Levy, Steven (1984) Hackers, New York: Anchor/Doubleday

 27

http://www.tuxedo.org/~esr/jargon/html/entry/hacker.html

Liebeskind, J.P. (1996) "Knowledge, strategy, and the theory of the firm", Strategic Management Journal,

17, pp. 93-107

Marwell, G. and P. Oliver (1993) The critical mass in collective action: A Micro-social theory, Cambridge:

Cambridge University Press

McCaffrey, D.P., S.R. Faerman, and D.W. Hart (1995) “The Appeal and Difficulties of Participative

Systems” Organization Science, 6(6), pp. 603-627

McCarthy, J.D. and M.N. Zald (1977) “Resource mobilization and social movements: A partial

theory”, American Journal of Sociology, 82, pp. 1212-1241

McPhail, C and D. Miller (1973) “The assembling process: A theoretical and empirical examination”,

American Sociological Review, 38, pp. 721-735

Melucci, A. (1999) Challenging codes: Collective action in the information age, Cambridge: Cambridge

University Press

Meyer, M.H and L. Lopez (1995) "Technology strategy in a software products company", Journal of

Product Innovation Management, 12(4), pp. 194-306

Moerke, K.A. (2000) "Free speech to a machine", Minnesota Law Review, 84(4), pp. 1007-1008

Monge, P.R., Fulk, J., Kalman, M.E., Flanagin, A.J., Parnassa, C., and S. Rumsey (1998) “Production

of collective action in alliance-based interorganizational communication and information systems”,

Organization Science, 9(3), pp. 411-433

Moon, J.Y. and L. Sproull (2000) "Essence of distributed work: The case of the Linux kernel", First

Monday, 5(11)

Morrison, P. D., J. H. Roberts and E. von Hippel (2000), “Determinants of User Innovation and

Innovation Sharing in a Local Market,” Management Science, 46, 12 (December), pp1513-1527.

Oliver, P.E. (1980) “Rewards and punishment as selective incentives for collective action: Theoretical

investigations”, American Journal of Sociology, 85, 1356-75

Oliver, P.E. and G. Marwell (1988) “The paradox of group size in collective action: A Theory of the

Critical Mass II” American Sociological Review, February 1988, 53(1), pp. 1-18

Olson, M. (1967) The Logic of Collective Action, Cambridge: Harvard University Press

O'Mahony, S. (2002) "Guarding the commons: How open source contributors protect their work",

Working Paper, Stanford University

Osterloh, M. and B. Frey (2000) "Motivation, Knowledge transfer, and organizational forms",

Organization Science, 11(5), pp. 538-550

 28

Ostrom, E. (1998) A behavioral approach to the rational choice theory of collective action”, American

Political Science Review, 92(1), pp. 1-22

Pavlicek, R.C. (2000) Embracing insanity: Open source software development, Indianapolis, Ind: Sams

Perens, Bruce (1998) “The Open Source Definition,” http://perens.com/Articles/OSD.html

Rabin, M (1993) “Incorporating Fairness into Game-Theory and Economics”, American Economic

Review, 83(5), pp 1281-1302

Raub, W. (1988) “Problematic social situations and the large number dilemma: A game theoretical

analysis”, Journal of Mathematical Sociology, 13, pp. 311-157

Raymond, E. (1999) The Cathedral and the Bazaar: Musings on Linux and Open Source by an accidental

revolutionary, Sebastopol, CA.: O'Reilly

Raymond, E. (1999b) The Hacker's New Dictionary, Cambridge, MA: MIT Press

Roy, W.G. and R. Parker-Gwin (1999) “How many logics of collective action?” Theory and Society, 28,

pp. 203-237

Salisbury, R.H. (1969) “An exchange theory of interest groups”, Midwest Journal of Political Science,13,

pp. 1-32

Sawyer, S. and P.J. Guinan (1998) "Software development: Process and performance", IBM Systems

Journal, 37(4), pp. 552-569

Schmitt, P., K. Swope, and J. Walker (2000) “Collective action with incomplete commitment:

Experimental evidence”, Southern Economic Journal, 66, pp. 829-855

Schwart, E.P. and M.R. Tomz (1997) “The long-run advantages of centralization for collective

action”, American Political Sciences Review, 92(3), pp. 685-693

Schwartz, M. and S. Paul (1992) „ Resource mobilization versus the mobilization of people“ in A.D.

Morris and C. McClurg (eds.) Frontiers in Social Movement Theory, New Haven: Yale University Press,

pp. 205-223

Simon, E. (1996) "Innovation and intellectual property protection: The software industry

perspective", Columbia Journal of World Business, 31(1), pp. 30-37

Snow, D.A., L. Zurcher, S. Ekland-Olson (1980) “Social networks and social movements: A

microstructural approach to differential recruitment”, American Sociological Review, 45, pp. 787-801

Snow, D.A. and R.D. Benford (1992) “Master-frames and cycles of protest”, in A.D. Morris and C.

McClurg (eds.) Frontiers in Social Movement Theory, New Haven: Yale University Press, pp. 133-154

 29

Stephan, P. (1996) "The economics of science", Journal of Economic Literature. Vol. XXXIV, pp. 1199-

1235

Stroup, R.L. (2000) “Free-riders and collective action revisited”, Independent Review, 4(4), pp. 485-501

Swanson, G.E. (1992) “Doing this together – Some basic forms of agency and structure in collective

action and some explanations”, Social Psychology Quarterly, 55(2), pp. 94-117

Tajfel, H. (1982) Social identity and integroup relations, Cambridge: Cambridge University Press

Tajfel, H. and J.C. Turner (1979) “An integrative theory of inter-group conflict”, in W.G. Austin and

S. Worchel (eds.) The Social Psychology of Inter-group Relations, Monterey, CA.: Brooks/Coole

Taylor, C.T., and Z.A. Silberston (1973) The Economic Impact of the Patent System: A Study of the British

Experience. Cambridge: Cambridge University Press.

Taylor, M. and S. Singleton (1993) “The communal resource: Transaction costs and the solution of

collective action problems”, Politics and Society, pp. 195-215

Taylor, M. (1989) “Rationality and revolutionary collective action” in M. Taylor (ed.) Rationality and

Revolution, Cambridge: Cambridge University Press, pp. 63-97

von Hippel, E. (1988) The Sources of Innovation, New York: Oxford University Press

von Hippel, E. (1998) "Economics of product development by users: The impact of sticky local

information", Management Science, 44(5), pp. 629-644

von Hippel, E. (2001) "Innovation by user communities: Learning from open source software", Sloan

Management Review, July

von Krogh, G. (1998) "Care in Knowledge Creation", California Management Review, 40(3), pp. 133-153

von Krogh, G. (2002) "The communal resource and information systems", Journal of Strategic

Information Systems, forthcoming

von Krogh, G. and S. Spaeth (2002) "Joining, specialization, and innovation in open source software

development: A case study", Working paper

Wayner, P. (2000) Free for all, New York: Harper Business

Wenger, E. (1998) Communities of practice, Cambridge University Press, Cambridge

Wenger, E. (2000) “Strategic communities and knowledge diffusion”, Sloan Management Review, 41(3),

p. 9

Young, G., K.G. Smith, and C.M. Grimm " Austrian and industrial organization perspectives on firm

level competitive activity and performance", Organization Science, 7(3), pp. 243-254

 30

 31

Zald, M. (1992) “Looking backward to look forward: Reflections on the past and future of the

resource mobilization research program” in A.D. Morris and C. McClurg (eds.) Frontiers in Social

Movement Theory, New Haven: Yale University Press, pp. 326-350

i We are grateful for insightful comments from Kaye Schoonhoven, Sebastian Spaeth, Petra Kugler, John Seely
Brown, and Simon Gaechter.

	Issues for Organization Science
	University of St.Gallen
	
	
	
	
	
	Organization Science, Forthcoming 2003

	Abstract

	1 History and characteristics of open source software development projects
	
	Open Source Software

	Apache Server Software
	
	Open source software project deviations from the private investment model of innovation
	Open source software project deviations from the collective action model of innovation
	Open source software projects as an illustration of a private-collective model of innovation

	4. Conclusion
	There are clearly many interesting puzzles in open source software research projects that can trigger the interest of organization scholars for years to come. Answering some of them might even lead to substantial rethinking of the very concept of "organi
	References

