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Abstract—The DLR developed the open source software frame-
work RCE to support the collaborative and distributed work in
the shipyard industry. From a technology side of view a software
from the shipbuilding field has many requirements in common
with aerospace software projects. Accordingly, RCE has become
the basis for further projects within the DLR. Over the last years
of usage a subset of frequently used software components could
be derived and are provided by the RCE framework. In partic-
ular, the workflow engine, allowing the integration of different
domain-specific tools from local and remote locations into one
overall calculation has become important for various projects.
We present RCE and show how its software components are
reused in two aerospace applications.
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1. INTRODUCTION

The German Aerospace Center (DLR) together with Fraun-
hofer and the shipyard industry developed a domain-specific
design and simulation environment called SESIS [1]. Look-
ing to such industry shows that designing a ship requires
knowledge of various experts and engineers from very dif-
ferent domains. All the data and work they contribute
towards the final product, strongly depends on each other.
For example, the fluid dynamics of a ship’s body influences
its efficiency concerning fuel consumption, which as a con-
sequence influences the design of fuel tanks and engines
used for such a vehicle. With this in mind, the aim of
SESIS was to support engineers with software, allowing them
to contribute into the same design by sharing data across
disciplines. Even more, it was intended to offer a software
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capable of connecting domain-specific tools of the shipyard
industry considering their dependencies and of contribution
into one global calculation bringing results for the intended
design.

With the beginning of the project some of the requirements
concerning the integration of such domain-specific tools re-
quested that these tools can be connected via a network
running on different platforms. The reason behind this
requirement was, that many domain-specific tools can either
only be controlled by their respective engineers, need to run
on a specific platform, or require a too expensive license to
allow an installation on various computers. Accordingly, for
SESIS distribution was inevitable. TENT [2], a former DLR
project was already fulfilling such distribution requirements,
but it was outdated due to its underlying architecture and
technology. As a consequence, the project Remote Compo-
nent Environment (RCE) [3] was initiated to create a new
framework incorporating the lessons learned from TENT and
being based on a new and modern software architecture. But
different to TENT which used to be an integration framework
solely, RCE intended to be more generic and to enable reuse
for various future software projects. By using a component-
based approach, future applications can reuse needed soft-
ware components to reduce development costs and time.
With proposing and implementing such a framework, already
fulfilling the demands on distribution infrastructure, data
management and further important components, SESIS could
be easily finalized on top.

Comparing the shipyard industry with aeronautics and space,
they have a lot in common. All of them develop and design
complex systems with knowledge of various very different
disciplines. But same as in the shipyard industry, all of them
have strong dependencies to each other. A brief look to the
space domain depicts, that the overall mass of the system
influences the launcher that can take it into space. In return,
the launcher constrains the overall structure of the spacecraft
creating further implications to other domains. All of the
experts being involved in the design of such systems use
domain specific tools for their calculations as well. And they
use and provide data from and to other disciplines. Thus,
SESIS, as a supporting software in research and development
in the shipbuilding field, has many requirements in common
with software we develop in aerospace fields at DLR [4].
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In the following we show requirements we identified as main
design and development driver of new software in such com-
plex engineering and science fields. By the support of RCE’s
component-based approach it lends itself as a reasonable
framework for such applications. Accordingly, we explain
how RCE that was initially built for the shipyard industry still
fits to these requirements, by giving a proof of concept refer-
ring to two real life examples: Chameleon, an environment
for the scientific predesign of aircrafts and Virtual Satellite, a
supportive application for concurrent engineering sessions in
the spacecraft domain.

In Section 2 we introduce the requirements of the component-
based framework approach mentioned above. The actual
RCE software framework and the software components it is
offering for reuse are described in Section 3. Afterwards, in
Section 4 and 5 we focus on Chameleon and Virtual Satellite,
two applications from aerospace we realized on top of RCE.
They serve as proof of concept examples. Thereby, we
highlight the benefits of reusing RCE’s software components.
Finally, we give a conclusion in Section 6.

2. REQUIREMENTS FOR THE SOFTWARE

FRAMEWORK

As mentioned, reuse was a major concern for the develop-
ment of RCE as it was intended by SESIS. The environments
of today’s software projects are just to complex to come along
not having reuse in mind [5]. This is surely also the case for
all the projects that were based on RCE over the last years. By
having a closer look to reuse in software engineering, often
three levels of reuse are mentioned: reuse on code level, reuse
on pattern level and reuse on framework level [5].

By default, frameworks abstract and provide higher level
functionality for reuse. Furthermore, unlike libraries frame-
works are in charge of the application’s flow of control [6]
often called inverse of control. Therefore, frameworks are
extensible through a callback style of programming. This
means contributions to a framework are done by implement-
ing appropriate interfaces provided by the framework without
being responsible for the flow control of the contributions.
Thus, the framework calls the implementation instead of the
implementation calls the framework. As a consequence,
using frameworks demands less understanding about the
whole application. This enables easy reuse and extension of
the framework since developers just have to comply to the
contract of the mentioned interfaces. Still these frameworks
have to provide the trade-off between generalization and
individuality [7]. Which means on the one hand, a framework
which tries to do everything might be to be too specialized
for reuse in a broad field of applications. On the other hand,
a too generalized framework might not be efficient enough
for reuse. Accordingly, writing a reusable framework like
RCE demands to consider many aspects. NASA provides
the Reuse Readiness Levels (RRLs) [8] judging software on
nine criteria to estimate its reuse potential. These criteria
are documentation, extensibility, intellectual property issues,
modularity, packaging, portability, standards compliance,
support and verification and testing. Even though, some of
these criteria are addressing the internals of software, others
like modularization, portability and extensibility are referring
to aspects and requirements of RCE already mentioned in the
introduction.

Reflecting these criteria for software reuse and applying them
to the RCE framework, we derived the following overall

requirements for it:

• The framework needs to provide a component-based ap-
proach, so that users and developers can decide on their own
which parts they are intending to reuse and which parts are
redundant for them.
• The framework needs to be extensible, so that developers
and users can either extend the functionality of it to fulfill
their individual requirements or let their domain-specific
tools interact with that framework.
• The framework needs to be portable so that it can be used
on a broad variety of host platforms, leaving domain specific
tools in their natural environment.
• The framework needs to be free of licensing issues conflict-
ing with the distribution demands in scientific applications.

The listed requirements affect the framework itself. They
do not consider the mentioned high level functionality a
framework provides. To be aware of the functionality RCE
must provide, it is essential to identify mutual requirements
of relevant applications built on top. Beginning with SESIS
which was delivering the first requirements up to today, six
mutual requirements were identified that play an essential
role for software in the scientific aeronautics and space do-
main:

• Distribution: provide capability to realize distributed soft-
ware.
• Data Management: provide management for scientific
data.
• Privilege Management: provide user management with
authentication and authorization support.
• Workflow Engine: provide environment for coupling of
tools to automated compute workflows.
• Graphical User Interfaces: provide general-purpose ele-
ments.
• Platform Independence: executable on different operating
systems.

Looking back over the past years of developing RCE, some
additional “soft”-requirements evolved. It is worth to mention
that the “hard”-requirements we discussed so far do not
lend themselves as a guarantee for developing a reusable
framework. It is mainly up to the developers using RCE as a
basis for new projects that drive requirements and that finally,
decide if the framework is reusable or not. So, to get accep-
tance by these developers the following two requirements had
a major impact to the last years of RCE development:

• Provide software components which are as individual as
needed and as general as possible.
• Realize a reusing concept which is the most easiest possible
to apply by software developers.

In the following parts we will have a closer look to the
six core components of RCE as well as their individual
requirements.

Distribution

As mentioned ships, airplanes and spacecrafts are complex
systems. They require shared knowledge of various differ-
ent experts throughout the design and development process.
Today, these contributors like suppliers, scientists, and de-
velopers are situated in various locations. Thus, providing
knowledge to a system like a ship or aircraft demands to
work distributed towards a common product. Concerning
RCE this means to exchange data and tools across a com-
mon project environment. Reasons are a tool demanding a
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special database that cannot be easily moved, or corporate
governance that only allows to hand out results but no tools.
In this way RCE allows contributors to access data and tools
from anywhere within the project and to integrate them into
their local calculations.

Hence, the RCE framework must provide features and func-
tionalities to share such data and tools in a common envi-
ronment. Moreover, it needs to enable all remaining parts of
RCE and in particular domain-specific software on top of it
to operate distributed.

Data Management

During research and development activities, data is generated
mostly all of the time. Such data is provided distributed from
various different contributors. The type of data can range
from simulation results of an optimization on a cluster, over a
new ship design on a shipyard’s file server, up to experiment
data of the latest wind tunnel experiment on a scientist’s lap-
top. Hence, it demands different storage back-ends for such
a data management. Primarily, because they might change:
Data stored today on a local relational database might move to
a cloud service tomorrow. Even though, the data is distributed
over several different storage devices, it is often required by
the work of all individuals contributing to a ship or spacecraft.
If users are not able to find the proper data of their interest,
it might influence research and development results, by either
raising unwanted inconsistencies or redundancies. Thereby,
data access issues may also be a concern to either avoid
unauthorized persons of providing new data or changing it.

As a consequence, a data management needs to fulfill the
requirements of providing capabilities to connect to different
storage back-ends, keeping them abstracted and transparent,
so that developers and users do not necessarily need to be
aware of them. Furthermore, it needs to provide mechanisms
to store and retrieve data of different type and size. Finally,
it has to provide user interaction for browsing and searching
data in accordance to the privileges of the user.

Privilege Management

In an environment where many suppliers, researchers and
developers contribute into a common design, roles and privi-
leges need to be well defined. In particular, for the reasons
of sharing data in such collaborative environments, it is
necessary to protect it from misuse. This does not cover high
level security like encryption. In such environments its more
a concern of ensuring that only qualified individuals store and
alter respective data. Additionally, this concerns the usage
of such data as well, because if misinterpreted, proceeding
results might corrupt and influence the overall design.

Summarizing, a privilege management needs to provide
means to protect data or tools against misuse. Moreover, it
needs to provide other components such as data management
with relevant information about individual user rights.

Workflow Engine

To work collaboratively it is necessary to connect tools such
as Excel sheets, CFD (Computational Fluid Dynamics), and
FEM (Finite Element Method) calculations together, this is
often called process chains or workflows. Such workflows are
often used in research and development [9]. The mentioned
tools can be distributed within the common project environ-
ment, but still they are intended to interchange data across
all RCE instances. By using such workflows connecting
own local tools with remote ones, engineers can reflect their

contribution with other discipline’s tools and knowledge. In
combination with optimizers or parametric studies, engineers
can quickly evaluate ideas in the global context of the final
product. To connect all these components, data mappings
have to be defined telling where data is provided and where
it is consumed. Such mapping can be a challenge on its own,
hence, engineers need to be provided with adequate feedback
and insight, e.g., logging, interim results and debugging
facilities.

All this demands individual requirements for the workflow
engine, such as providing engineers with a generic set of
workflow components to do optimizations or parametric stud-
ies. It has to be possible to integrate tools as workflow
components by either providing easy to use interfaces or
generic wrapper components. An interface implemented by
a developer has to allow for integrating new tools, while
generic wrapper components have to provide functionalities
for wrapping Excel sheets or Python scripts and executing
them within a workflow. Furthermore, a workflow engine has
to provide a distributed execution environment that can be
configured locally by an individual engineer, to influence the
dedicated execution as well as the data flow. Additionally,
such an environment needs to provide local facilities to in-
spect and debug final and interim results from the distributed
contributions.

Graphical User Interface

Usability demands that interaction is easy to learn, effective
and efficient to use and enjoyable from the user’s perspective.
It needs to enable them to carry out their work [10]. Thus,
developing individual graphical user interfaces (GUI) for
future software is not possible due to their missing require-
ments. Nevertheless, it already can provide some general user
interface for the components provided by RCE. This covers
the login for the privilege management, browsers for the data
management as well as an editor, logger and further tools for
the workflow engine.

Hence, it is required that the framework provides a general
GUI as described above to allow developers of future soft-
ware to decide which parts to use. Furthermore, they need to
be enabled to extend some of the GUI like the editor for the
workflow engine, to display new workflow components being
integrated.

Platform Independence

Due to the nature of the collaborative environment, different
tools that run distributed can be based on different plat-
forms. There might be databases running on Linux machines,
notebooks being based on Mac OS, or workstations using
Windows operating systems. RCE provides functionality to
collaboratively work in such heterogeneous environments.
From a user’s perspective, the underlying platforms of RCE
instances are irrelevant and accordingly abstracted.

The usage of different platforms demands a platform indepen-
dent implementation of RCE and its software components. If
this is impossible for individual components at least differ-
ent platform-dependent implementations of them should be
provided. It is further required that all distributed services
and software components can interchange data on a platform
independent level.
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3. SOFTWARE FRAMEWORK RCE

The development of RCE started in 2005 under the lead
of DLR. From that point onwards it has evolved into a
framework which has become the basis for different projects.
In this Section we focus on the technical realisation that
was driven by the user requirements described in previous
Section 2. We have a closer look to RCE’s underlying system
architecture as well as its software components.

RCE’s System Architecture

Out of the user requirements for a platform independent
framework, using a component-based approach as well as
the demand for avoiding licensing issues, the Eclipse Rich
Client Platform (RCP) [11] was chosen as foundation for
the RCE framework. Looking to the aerospace and au-
tomotive industry or to academia, Eclipse has become a
major framework in the development of today’s research
and development software. There are many reasons for it
such as being implemented with Java offering a modern
and freely available programming language to developers.
Figure 1 shows the interaction of it within the context of
the RCE framework. The bottom layer shows Eclipse RCP
together with its (Open Services Gateway initiative) [12]
OSGi-runtime Equinox. Using OSGi already fulfills the
base requirement for the component-based approach, since
it requires to encapsulate code in bundles. First, such bundles
can be loaded and unloaded during runtime by the OSGi
framework. Second, these bundles can provide services
which are then consumable by other bundles. Such features
enables developers of aerospace applications to decide which
RCE bundles they want to include in their application, by
individually activating them in the OSGi context. Next to
the OSGi standard functionality Equinox offers services to
build native GUI applications. Even though, the GUI is
native it still fulfills the user requirement of being platform
independent, since Equinox offers service implementations
for various operating systems. RCE is based on this Eclipse
RCP and OSGi layer by consuming services. Besides the GUI
elements all of the RCE software components are plain OSGi
bundles providing further services to the actual application
layer on top. As shown in Figure 1, this approach allows to
build applications using on the one hand the whole Eclipse
RCP framework, and on the other hand the additional RCE
features in parallel.

Building applications based on Eclipse RCP has a further
advantage. Eclipse used to be an Integrated Development
Environment (IDE) for the software development in the be-
ginning, but turned over into the RCP project with the IDE
based on it itself. This way it lends itself as an IDE, go-
ing beyond software engineering using RCE. All extensions
which are already available for software development can
now be integrated into any other application based on RCP.
For example, it can have a Python development environment
directly integrated in RCE. This is reasonable and handy if
you build workflows with the Python wrapper component and
thus, need to implement Python scripts. As third advantage
it is worth mentioning that Eclipse is open source. Thus,
developers do not have to spend extra money for licensing
since RCE is open source as well. Accordingly, it fulfills a
further important user requirement.

RCE as Open Source

At DLR, we develop software to support research and devel-
opment activities or to solve research problems. In nearly all
cases we do not develop software for selling purposes. Our
business model for software development differs from con-

vential software companies. Usually, we do not get funding
for software development from customers but as aid money
from German Federal and Leander Authorities, European
Union (EU) and other public institutions. This leads to the
fact that software development at DLR is mostly done within
research projects. For that reason the challenge for DLR is to
convince project partners and mentioned public institutions to
develop a specified software or to use and extend an existing
one already developed at DLR.

The decision to change RCE into an open source project
based on the Eclipse Public License (EPL) was raised and
realised in 2010. Due to our special business model described
above we did not apply one of the main open source busi-
ness models listed in [13]. The decision for open source
was made, because our experience showed that there was a
higher acceptance for our software compared to commercial
or closed source software in the DLR research project envi-
ronment. This has two reasons: First, an open source software
enables collaboration outside the research project scope. This
is particularly applicable for partners from academia often
suffering small budgets for licensing fees. Second, an open
source software with a liberal license like the EPL allows
individual software being built on top of it to be open source
as well as being published commercially. Thereby, project
partners have no restrictions using the developed software of
a project after it has been finished. In turn, this is important
for public institutions, because they like to fund projects
with sustainable results with a profit for a wide range of
organisations and not only the software development ones.

Since RCE became open source its acceptance in the DLR
research project environment grew and it has been applied to
further projects. The initial decision for providing RCE as
open source software was made for funding reasons. But as
the number of projects with RCE increases we will face chal-
lenges explained in [13]. For example, the RCE development
group will not be able to implement all project’s requirements
because of missing time and domain knowledge. To manage
such challenges in the future we will develop an open source
strategy for RCE making use of the benefits of open source
going beyond the ones described above, in particular building
a community not only consuming but also contributing to
RCE.

RCE’s Software Components

Figure 2 shows the RCE software components that are de-
rived from the mutual requirements. Additionally, it provides
an overview of their dependencies in a layered architecture.
Upper software components make use of lower ones. For
example, the data management consumes services from the
user privileges, notification as well as the distribution. The
notification instead is just consuming services from the dis-
tribution component. The GUI component on the left may

Figure 1. Interaction of RCE with Eclipse RCP/OSGi and
Aerospace Application
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access all of the individual components and their services.

Figure 2. RCE software components and its dependencies

In the following part each of RCE’s software components will
be explained in more detail.

Distribution— Various RCE instances can be bundled to a
common project environment. Within such RCE environ-
ments every provided service is reachable from another re-
mote RCE instance. These remote services can be accessed
from any point within the aerospace application or RCE itself.
To access it, it needs to be requested from the distribution
service of this component. From then on the distribution
service takes care about forwarding calls to the remote RCE
instance and its requested service. The supported com-
munication protocols are RMI (Remote Method Invocation)
and SOAP. Nevertheless, the component is extensible to add
further protocols to meet future requirements or local network
policies.

Notification—Applications with long-running tasks or with
unpredictable events need a notification system. For example,
it is needed to inform a workflow component of new data
to be processed, or to inform a GUI element to update its
content. The notification component of RCE is consuming
the distribution service, accordingly, it allows for distributed
notifications. Such notifications enable distributed concur-
rency, which is used for the data management or the workflow
engine. Notification examples for such cases are ’workflow
is finished’, ’remote RCE instance is down’, or ’query results
are present’ informing other RCE instances of events being
important for their local control and user feedback.

Privilege Management— Privilege management consist of
authentication and authorization. The first one helps to prove
if someone is the person he pretends to be. The second checks
for individuals’ rights. Both of them are realized in RCE as
services which allow to request user privileges at any point in
the aerospace application or RCE itself. The privilege compo-
nent consumes the notification and distribution service. This
interaction allows for example to notify an RCE instance of a
new user logging into the system, or to ask for tool access on
a remote RCE instance.

Data Management—The data management component pro-
vides query and data storage services. The whole RCE
data management is decentralized, accordingly, every RCE
instance has a local data management. Since the data man-
agement is making use of the user privileges, notification
and distribution service, each local data storage is accessible
from any other RCE instance still obeying user rights. To
store and find data appropriately, RCE annotates this data
with meta tags. Users can search for these meta tags from
anywhere in a common project environment, thus letting the

decentralised data management appear as a whole one. So
far, the data management just provides file storage solutions,
but it is extensible similar to the distribution component.
Accordingly, further storage types can be added at a later
stage to meet individual requirements of applications on top.

Workflow Engine—The workflow engine in RCE is respon-
sible for tool integration support and management of work-
flows. Workflow in RCE means integrating tools, so called
workflow components and connecting them together for col-
laborative calculations. Workflow components are installed,
managed and started locally. Each RCE instance can provide
such components. The workflow engine is consuming the
user privileges, notification and distribution service, thus,
allowing any other RCE instances to consume and use such
workflow components obeying user privileges. Nevertheless,
the actual calculation and the tool used for it stays on its
original machine, which means that only data is exchanged
to and from such a component. Figure 3 shows such a case of
a workflow managed by one local instance using two remote
RCE instances contributing into a common calculation. RCE
is delivered with a set of standard workflow components for
parametric studies, Python execution, or Excel calculations.
Accordingly, it is extensible so that individual applications
can provide further components.

GUI Elements—RCE provides GUI elements which are often
needed in applications built on top. The elements range from
login dialog over a log browser and a data management view
towards the workflow editor. Implemented in separate bun-
dles it contributes these GUI elements to the RCP framework.
Thus, they can be easily accessed, for example, a login dialog
is available by traversing the standard “File”-menu provided
by standard RCP workbenches or specific user applications.
Having the GUI elements separated in individual bundles they
are not necessarily needed to build an application on top of
it. This can be important if a workflow component is needed
for a tool like a database server not providing a GUI. Such a
workflow component can be implemented using the core RCE
software components without the GUI component, hence,
providing the workflow component to other RCE instances
solely as remote service.

RCE in Practice

With the described architecture and software components
and the fact that RCE is written in the platform-independent
programming language Java, we meet all requirements listed
in Section 2. Nevertheless, a real proof of concept are the
applications built on top of it.

Until today applications from different domains are built
on top of RCE. The first one was the ship and simulation
system SESIS. Applications in aeronautics and space have
followed. These are Chameleon, an environment for the
scientific predesign of aircrafts and Virtual Satellite, a sup-
portive application for concurrent engineering sessions in the
spacecraft domain. In the following we will explain how
we reused RCE’s base software components within these two
examples, and how specified components of both of them are
realized on top of RCE.

4. APPLICATION IN AERONAUTICS:
CHAMELEON

The DLR develop Chameleon for support of multi-
disciplinary projects in aeronautic fields. Similar to the
SESIS project, Chameleon needs facilities allowing differ-

5



Figure 3. Example of a workflow being executed within a common project environment. The local RCE instance is managing
a running the whole workflow, while the two python scripts are remotely contributing to the collaborative result.

ent contributors to work towards a common design of new
aircrafts. Chameleon focusses on collaborative simulations
of preliminary aircraft designs. Accordingly, the various
tools used and their dependencies have to be considered
and understood. Connecting them together into an overall
workflow allows engineers to investigate design and ideas
taking multi-disciplinary knowledge into account.

Since the beginning of Chameleon it has been applied to
several different multi-disciplinary projects within the DLR.
Below is an overview of these projects with a short descrip-
tion of their individual goals:

• Technology integration for the virtual aircraft (TIVA I + II,
VAMP): This project’s goal was to do technology assessments
regarding collaborative predesign of civil aircrafts.
• Climate optimized air transport system (CATS): This
project intended to optimize aircraft and missions with re-
gards to their climatic impact.
• Evaluation of innovative aero-engines (EVITA): This
project focused on the preliminary design of engines rather
than on the whole aircraft.
• Unmanned Combat Air Vehicle (UCAV-2010/FaUSST):
This project aimed to simulate the development of a military
unmanned aircrafts optimized for stealth capabilities.

Reusing RCE

Due to the similarities to the project SESIS and concerning
the workflows in particular, the decision was made to use an
existing framework as basis for Chameleon. RCE was not
ready for further use at that time, leading to an evaluation of
other frameworks providing workflow services. Accordingly,
the ModelCenter framework from Phoenix Integration [14]
was chosen as base system for the early Chameleon. Unfor-
tunately, this turned out to be a sub optimal decision for the
following reasons:

• The mentioned licensing concerns decreased the accep-

tance of Chameleon. In particular, after projects ended, since
no budget was left for new licensing fees and a continuous
use and development.
• As non open source framework, it was not flexible enough
to fulfill all the individual requirements from the various
projects based on Chameleon.

RCE was able to overcome these drawbacks, thus it was
integrated as soon as it was ready. Being open source, RCE
does not suffer licensing issues and being a DLR internal
project it can directly react to requirements out of the project.
Thus, fulfilling individual needs which are not achievable
with a commercial solution.

Figure 4 gives an overview about the architecture of
Chameleon and how it is integrated in RCE. It illustrates
which software components are used by Chameleon by draw-
ing a direct connection to them. To get a better understanding
why these software components are reused by Chameleon,
the use cases for them are described in the following.

Figure 4. Chameleon architecture on top of RCE
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RCE’s Distribution Infrastructure—Multi-disciplinary simu-
lations as provided by Chameleon involves tools from DLR
institutes spread all over Germany. It is often required that all
tools must stay at their corresponding institute for technical
or organisational reasons. As a consequence, Chameleon
needs to be a distributed system with the capability to execute
distributed workflows. With RCE’s distribution component
Chameleon became a distributed simulation environment
without implementing any additional code.

RCE’s Notification System—Chameleon extends RCE with
its own graphical user interfaces, primarily for monitoring of
running tools. The notification component of RCE enables
Chameleon to update the user interfaces as soon as changes
occur on any relevant RCE instance within a project environ-
ment.

RCE’s Workflow Engine and Components— The key com-
ponent for Chameleon is RCE’s workflow engine and its
workflow components. With them, Chameleon is able to
automatically execute simulation tools as workflows and thus,
allowing for multi-disciplinary simulations. Next to standard
workflow components like a parametric study or optimizer,
Chameleon makes use of the provided Python component.
Hence, engineers can provide simulation logic ad-hoc and on
their own just by writing a Python script. Within such scripts
input values from other tools are transparently accessible and
output values are declared as Python variables. So, the Python
component allows even the engineer to extend the framework
with functionality.

A screenshot of Chameleon shows Figure 5. In the middle
is the workflow editor for creating, managing and starting
workflows. On the right hand side next to it is a monitoring
view. It shows an investigated parameter studied by the
parametric study workflow component. At the lower right
hand side is the integrated TIGLViewer [15]. This viewer
allows for visualization of aircraft geometries. The workflow
console browser can be seen to the left hand side next to
the TIGLViewer. It provides engineers with natural console
output of the integrated tools.

Further Software Components of Chameleon

Every tool used in these multi-disciplinary projects expects its
own data format for input and output. This needs to be taken
into account for each new workflow component integrating
such tools. Chameleon is used in several projects, thus,
integrating a large amount of different tools. Hence, solving
the input and output issues for each tool individually would
clearly result in an unmanageable effort.

As a consequence, Chameleon uses a common integra-
tion concept. The backbone is a common data format
called CPACS (Common Parametric Aircraft Configuration
Scheme) [16]. Every tool gets its input from CPACS and
writes its output back to it. Libraries, such as TIXI [17]
and TIGL [15] support interaction between the tools and
the CPACS format. Thus, they also support the interaction
between RCE and CPACS. Accordingly, Chameleon extends
RCE with workflow components supporting this common
integration concept instead of individual ones for each tool.

Upshot

Chameleon is a simulation environment for preliminary air-
craft design. It provides a distributed infrastructure within
the DLR for multi-disciplinary simulation in aeronautics.
Therefore, Chameleon focuses on aeronautic specific features

implemented in the supportive components based on CPACS.
Necessary features such as the distribution are provided by
RCE without any further effort needed by Chameleon’s devel-
opers. This reuse of RCE components is an important aspect
that allows Chameleon to be rapidly developed and extended.

5. APPLICATION IN SPACE: VIRTUAL

SATELLITE

In 2008 the DLR initiated a national satellite program. Aim
of this program is to gain an independent access to space
for scientific experiments. As part of this initiative a new
Concurrent Engineering Facility (CEF) was built. To support
the work in the CEF the development of the software Virtual
Satellite was started as well [18].

The Concurrent Engineering Facility at the DLR

The CEF built in Bremen was inspired by the Concurrent
Design Facility (CDF) [19] of the European Space Agency
(ESA). It is built for communication, presentation as well as
scientific and concurrent work. Accordingly, it offers twelve
workstations for engineers and further places for visitors
and customers. All workstations are equipped with modern
computer systems to assist the work of the engineers. The
engineers are seated in an open semi circle with the others
sitting in the middle [18]. This semi cycle allows for an
easy face to face communication, which is important in the
early stage discussions of space systems. Target of these
early discussions is to gain a good and reasonable idea of the
planned spacecraft. Important measures in these early stage
studies are the weight, costs as well as data and power budgets
of the system. Following a defined process the engineers
can discuss their design concerning such measures. Based
on quick iterations and discussing trade-offs the engineers
aim for common-ground within a short period of just a few
weeks [20], [21]. Nevertheless, a software together with an
integrated data model is inevitable to support the concurrent
engineering process [20], [19], [22].

A Design Software for the Concurrent Engineering Facility

The software Virtual Satellite is built targeting for the needs
in the CEF and the early phase studies done there. Based
on Eclipse RCP the software offers an integrated data model
using the Eclipse Modeling Framework (EMF) [23]. The data
model allows all engineers to decompose the satellite into
its components. These components are stored as so called
SystemComponents which allow to persist corresponding pa-
rameters, calculations and additional information. The data
model is filled with data through the graphical user interface
of the software. A Navigator is representing the stored study
in a tree like hierarchy reflecting the decomposition. Each
SystemComponent of that decomposition can be opened and
edited by an editor. Such an editor supports adding and alter-
ing parameters, calculations and further relevant data [21].
To support the collaborative aspects of CEF sessions, the
data model is shared through a version control system. Any
change of each engineer can be committed to a central server
and forwarded to all other participants in the study. Hence,
every engineer contributes into one central integrated data
model [20].

Integrating RCE as a New Basis

Virtual Satellite started as an experimental scientific project.
As it turned out that it will pass the proof of concept phase
the decision was made that Virtual Satellite will become a
productive software for the use in the CEF. Therefore, new
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Figure 5. Chameleon based on RCE

demands of usability and quality were set in place. Out of
these requirements the decision was made to take advantage
of an already productive framework.

RCE was ready to use at that time and the software com-
ponents it offers met the needs of Virtual Satellite. Both
Virtual Satellite and RCE being based on Eclipse RCP and
the Equinox framework allowed for an easy step by step
integration. Thus, RCE was chosen as base framework for
Virtual Satellite. The integration started on bundle level
and has approached RCE’s workflow engine now, which
is in the process of integration. Figure 6 depicts the two
main components Virtual Satellite is using. The privilege
management as well as the workflow engine including its
logging services.

Software Component Reuse and First Steps using RCE—The
common base environment of Eclipse RCP allows for an easy
integration of RCE without changing just one line of code
in the Virtual Satellite. Aim of the first step was to enable
developers to start using RCE features without being forced
to change the current software design. Due to the component-
based approach of Eclipse RCP this aim was achieved by
copying all necessary bundles into the Virtual Satellite project
and extending its configuration to start RCE services in the
background.

As the first software component the logger system of RCE
was reused in Virtual Satellite. All console logging messages
were consequently replaced by adequate logger messages.
Due to the ease of use this step was finished in just a few
days and demonstrated a first successful use of RCE.

RCE’s LDAP Authentication for CEF Studies—With the data
model that is distributed among all engineers within the CEF
study, data conflicts have to be avoided. The easiest way is by
separating the work of the engineers, so that they not interfere
each other. Following the hierarchical decomposition of the
investigated system, only one engineer must be assigned to a
SystemComponent at any time.

Together with RCE this was achieved by modelling Disci-
plines. These Disciplines consist of a name and only one
engineer’s user name who is responsible for it. Each System-
Component is assigned to exactly one discipline, which is the
only one allowed to alter data contained in it. RCE’s LDAP
authentication is now used to authenticate a user against
the software. If an engineer is authenticating himself, the
modeled disciplines will be checked for his user name. By
this, the software analyses which disciplines have read and
write permissions. Hence, the software decides to which Sys-
temComponent the engineer has read and write permissions
as well.

RCE’s Excel Component for Individual Calculations—So far,
the data models used in the CEF as well as in the CDF are
based on ESA’s IDM [19], [24]. As a consequence, most
engineers supporting CEF sessions are used to it. Most of
their work is based on years of preparation based and modeled
in Excel. Accordingly, it is inevitable to support Excel in a
new tool as well.

RCE provides an Excel wrapper. This wrapper is capable of
writing and reading to and from Excel sheets. Additionally,
it allows to directly embed Excel files into the developed
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application and to interact with it in the known way. Virtual
Satellite’s editor has been extended to attach an Excel file
with each individual SystemComponent. The file is attached
and stored together with the data model. To directly connect it
with the data model, the engineers can define inputs from the
EMF model into Excel, run calculations and read the results
back from the Excel file into the EMF data model. In this way
engineers can continue to work with their known tool without
missing the benefits of a distributed data model.

RCE’s Workflow Engine Connected with EMF—The design
of a new space craft is influenced by all disciplines. Strong
dependencies exist among theses disciplines. Most of the
disciplines use specialized tools as well to give the correct
input to the overall design. Within aeronautics the approach
of workflows is well established. It allows engineers to
connect their tools sequentially together. Which as a result
allows to give detailed answers taking the dependencies of
the various disciplines into account. Within Virtual Satellite
the challenge is taken to use the approach of workflows to
aerospace. Even though, these workflows are not yet used in
satellite design, they offer a new tool to the CEF to connect
the various disciplines together.

RCE provides the workflow engine which already offers
several workflow components that can be connected together.
These components range from Python execution over Excel
calculations to parametric studies. Within Virtual Satellite a
new component was developed to connect the workflow to the
EMF data model. Further workflow components to connect
the workflow to domain specific tools, like orbit calculations
or thermal analysis tools are considered but have not been
approached yet. Nevertheless, with just the workflow compo-
nents provided by RCE itself as well as the connection to the
data model the CEF process has been enriched by an efficient
tool. Since the design of a satellite is very complex engineers
evaluate just a few design options in a CEF session. With
RCE’s workflow engine engineers can now start parametric
studies on different parts of the design between the sessions
to evaluate alternatives and to optimize the design without
much extra software technology effort.

Figure 6. Virtual Satellite architecture on top of RCE

6. CONCLUSION

Summary

Out of the SESIS project, the DLR developed the open
source software framework RCE (Remote Component Envi-
ronment). It provides reusable base software components,
like data management, workflow engine, or graphical user
interfaces. RCE has been implemented in a component-

based approach on top of Eclipse RCP. In conjunction with
the current success of Eclipse in academia and industry, this
offers a stable and modern basis for future developments.
The software components RCE offer to developers have been
implemented in accordance with their respective user require-
ments. These user requirements for the software components
have been elevated over the past years of development and
out of the various projects based on RCE.

Next to a shipyard application we build software from
aeronautics and space on top of RCE. Presented examples
are Chameleon, aircraft simulation environment and Virtual
Satellite, software for design of satellites in an CEF (Con-
current Engineering Facility). Both of them reuse software
components of RCE and implement specified ones to meet
their individual requirements. They show that RCE helped to
provide new important functionalities to their work environ-
ments with little effort and little changes to their internals.

Future Work

Chameleon supports multi-disciplinary preliminary aircraft
design. Thereby, a key problem is optimization. Optimiza-
tion is done per workflows including at least one optimizer
workflow component and many tools computing different
parts of an aircraft. Herby, on the one hand engineers need
DLR optimizers specialized in DLR domains. On the other
hand a set of basic optimizers for first quick evaluations
are required. At the moment optimizers are only integrated
individually for proprietary workflows in Chameleon. None
of them are provided by RCE right now. Thereby, they are not
reusable in other domain-specific software on top of RCE. As
optimizers are more and more requested beyond Chameleon
we will realize and provide a set of basic optimizers as RCE
workflow components. Furthermore, we will integrate the
DLR optimizer AutoOpti [25] and provide it as a workflow
component. AutoOpti is a multi-objective optimizer for turbo
machinery design. With them integrated RCE provides a
reusable optimization environment for various use cases in
aerospace and beyond.

Due to the amount of involved disciplines creating a simu-
lation workflow in the multi-disciplinary preliminary aircraft
phase is a scientific challenge. Thus, a created workflow in
Chameleon contains many knowledge from different disci-
plines. But this knowledge only exists implicitly and will get
lost as soon as scientists change. To avoid this knowledge
leak Chameleon needs an integrated knowledge management.
Because this requirement is a common one for aerospace soft-
ware, we decided to extend RCE instead of Chameleon. So,
we will integrate XPS into RCE, an expert system developed
at DLR as well [4].

As described in Section 2 during research activities data is
generated mostly all of the time. Each data has a history,
so called provenance [26]. Data provenance contains a large
amount of information. It gets more and more important in
aerospace, e.g., at workflow execution in preliminary aircraft
design. Hence, the aim is to enable RCE to gather provenance
data and deduce information out of it. Therefore, we will
provide common software components in RCE.
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