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We study Witten’s open string field theory in the presence of a constant B field. We
construct the string field theory in the operator formalism and find that, compared to the
ordinary theory with no B field, the vertices in the resulting theory has an additional factor.
This factor makes the zero modes of strings noncommutative. This is in agreement with the
results in the first-quantized formulation. We also discuss the background independence of
the purely cubic action derived from the above mentioned string field theory and then make
a redefinition of string fields to remove the additional factor from the vertex. Furthermore,
we briefly discuss the supersymmetric extension of our string field theory.

§1. Introduction

Since the appearance of the seminal paper, 1) noncommutative geometry has
received much attention in Matrix theory and string theory. 2) - 5) (See Ref. 5) for
further references.) In string theory, we have the familiar antisymmetric tensor field
Bij , which directly couples to fundamental strings. If we turn on the background
B field, spacetime becomes noncommutative on D-branes with the nonvanishing B
field. D-branes can be described by open strings whose ends are on the D-branes. 6)

By the quantization of the open strings, we have gauge field on the D-branes, and the
low-energy effective theory of the gauge field is described by the Dirac-Born-Infeld
(DBI) action. 7) Therefore, turning on the B field, we can find the DBI action on the
noncommutative space.

Recently, Seiberg andWitten have shown that the noncommutative DBI action is
equivalent to the ordinary one. 5) To prove this equivalence, they have given a relation
between the gauge fields in the noncommutative DBI action and the ordinary one. 5)

Some closely related topics are discussed in Refs. 8) – 11). However, at present it
seems unclear how we can embed the relation into a whole tower of the excitation
modes of strings. To uncover such a relation, string field theories seem a natural
framework, where we can deal with string fields which include all the excitations as
well as the gauge field.

In Ref. 12), Witten constructed, on a commutative flat Minkowski spacetime, a
covariant open string field theory based on noncommutative geometry. This noncom-
mutativity comes from the nature of the manner in which open strings join together
to become a new string. Therefore, we may expect that Witten’s string field the-
ory in the background B field has an additional noncommutativity. In this paper,
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460 T. Kawano and T. Takahashi

we derive Witten’s open string field theory in the above-mentioned background in
the operator formalism. 13) - 15) By solving the overlap conditions, we show that the
string field theory has an additional factor in its vertex. This factor accounts for the
noncommutativity of spacetime and is in agreement with the result of Refs. 16) and
5) in the first-quantized formulation. In Ref. 17), this factor has also been found
in Witten’s open string field theory with a constant background magnetic field Fij .
By the gauge invariance Bij → Bij + ∂iΛj − ∂jΛi, Ai → Ai + Λi, we can see that
this background is the same as ours. However, the physical significance of this factor
has not been fully realized. Also, open string field theories in general backgrounds
have been discussed in terms of the conformal field theory. 18) The string field theory
presented in this paper could be studied in the same way.

Pregeometrical string field theories have been proposed to give a background-
independent formulation of string theory. 19), 20) In particular, the pregeometrical
theory given in Ref. 19) is Witten’s open string field theory on a flat Minkowski
spacetime without the kinetic term, and so it is sometimes referred to as a purely
cubic action. Therefore, if we drop the kinetic term from our string theory in the
background B field, it is tempting to ask whether the resulting theory can be back-
ground independent. Since the additional noncommutative factor explicitly depends
on the background B field, we may at first think that it cannot be background inde-
pendent. If we were considering a particle field theory, this would be true. However,
as we will show in this paper, we can remove the noncommutative factor from the
three-string vertex through a redefinition of string fields. In addition, we explicitly
demonstrate that the three-string vertex is independent of the background metric
which we use to express the vertex in terms of the oscillators of strings. To this end,
we apply the method given in Ref. 21) to open string field theory.

This paper is organized as follows: In §2, we construct Witten’s open string
field theory in the background B field by using the operator formalism and solving
the overlap conditions for the vertices. In §3, we explicitly show the background
independence of our pregeometrical theory in great detail. Section 4 is devoted to
discussion. In Appendix A, we briefly summarize the operator formalism of the
first-quantized string theory. 22) - 24) In Appendix B, we give a derivation of Yoneya’s
identities 15), 25) of the Neumann coefficients for Witten’s string field theory, which
we need in §3.

When we had almost finished writing this paper, we found a paper (Ref. 26))
written by Sugino that has considerable overlap with ours. The main difference
between that paper and ours is the following two points. First, he argues that
the dependence on the B field can be eliminated from the string field theory by a
redefinition of string fields. This suggests that we can ‘gauge away’ the background
field. We discuss this point in further detail in §4. Second, we explicitly show
background independence of our pregeometrical theory. In §4, we also mention
our main results regarding an open-closed string field theory with light-cone type
interactions 27), 28) in the background we are considering. Furthermore, we discuss
the supersymmetric extension 29) of our string field theory.
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§2. String Field Theory in the Background B Field

We study the bosonic open string field theory proposed by Witten 12) with a
constant metric gij and a constant antisymmetric field Bij . The open string field
theory in the presence of background fields is discussed in Refs. 18) and 30). We
show that we can construct the field theory in our background explicitly by using
the operator formalism. 13) - 15) To this end, it is appropriate to begin with a review
of the operator formalism of the first-quantized string theory with the B field. 22) - 24)

In Appendix A, we give a simple derivation of the result in Refs. 22) – 24) to make
this paper self-contained.

In the first-quantized string theory, the worldsheet action is given by

S = − 1
4πα′

∫
dσ dτ

(
gijη

ab∂aX
i∂bX

j − 2πα′Bijε
ab∂aX

i∂bX
j
)
. (2.1)

From this action, if the Dirichlet boundary condition is not chosen for all the
directions of the string coordinates, the boundary condition can be seen to be
gijX

j ′ + (2πα′)BijẊ
j = 0 at σ = 0, π, where we denote differentiation with re-

spect to τ and σ by a dot and a prime, respectively. For simplicity, in this pa-
per, we impose this boundary condition on all the string coordinates X i(τ, σ).
The conjugate momenta of the string coordinates X i(σ) turn out to be Pi(σ) =

1
2πα′ gijẊ

j(σ) +BijX
j ′(σ).

The authors of Refs. 22) – 24) have shown that we can quantize our system by
the Dirac quantization procedure if we treat the boundary condition as a constraint.
(See also Appendix A for further details.) The resulting commutation relations can
be seen to be [

X i(σ), Pj(σ′)
]
= i δij δ(σ − σ′),[

Pi(σ), Pj(σ′)
]
= 0,

[
X i(σ), Xj(σ′)

]
=




iθij , (σ = σ′ = 0)
−iθij , (σ = σ′ = π)
0, (otherwise)

(2.2)

where we use the same definitions of the open string metric Gij and the theta pa-
rameter θij as those in Ref. 5):

Gij =
(

1
g + 2πα′B

g
1

g − 2πα′B

)ij
,

θij = −(2πα)2
(

1
g + 2πα′B

B
1

g − 2πα′B

)ij
. (2.3)

As we can see in Appendix A, the mode expansion of the string coordinates
X i(σ) turns out to be

X i(σ) = X̃i(σ) + (θG)ijQ
j(σ), (2.4)
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462 T. Kawano and T. Takahashi

where X̃ i(σ) and Qi(σ) are defined with ls =
√
2α′ as follows:

X̃i(σ) = x̃i + ls
∑
n�=0

i

n
αin cos(nσ),

Qi(σ) =
1
π
Gijpj

(
σ − π

2

)
+

1
πls

∑
n�=0

1
n
αin sin(nσ). (2.5)

We can see here that the variables X̃ i(σ) satisfy the Neumann boundary condition.
Similarly, the expansion of the momenta is given by

Pi(σ) =
1
πls

∑
n

Gijα
j
n cos(nσ). (2.6)

Note that Qi(σ) and Pi(σ) have the relation

Qi(σ) =
∫ σ

π
2

dσ′GijPj(σ′) +
1
2
Gij (pL j − pR j) , (2.7)

where we introduce the momentum operators integrated over half a string, 31)

pL i =
∫ π

2

0
dσ Pi(σ), pR i =

∫ π

π
2

dσ Pi(σ). (2.8)

The commutation relations of the mode variables x̃i, pi and αin can be shown
22) - 24)

to be

[x̃i, pj ] = iδij ,
[
αim, α

j
n

]
= mδm+nG

ij , (2.9)

and the others vanish, as is seen in Appendix A.
The BRS charge in string field theories is necessary to construct their kinetic

terms. In order to obtain the BRS charge, we need to know the energy-momentum
tensor in the worldsheet theory (2.1). While the contribution from the reparametriza-
tion ghosts to the energy-momentum tensor is the same as usual, the energy-momentum
tensor from the matter sector, i.e. the string coordinates, can be found to be

T (z) = − 1
α′ gij∂X

i∂Xj(z) = − 1
α′ Gij∂X̃

i∂X̃j(z),

T̃ (z̄) = − 1
α′ gij ∂̄X

i∂̄Xj(z̄) = − 1
α′ Gij ∂̄X̃

i∂̄X̃j(z̄), (2.10)

with z = exp(τ+ iσ). Note from the boundary condition that T (z) = T̃ (z̄) for z = z̄.
Therefore, we can make use of the doubling technique for open strings to extend the
worldsheet of the upper half-plane to a whole complex plane when we define the
BRS charge by using the energy momentum tensor in the usual way.

In the remainder of this section, we construct a string field theory with the mid-
point interaction in our background. To this end, the reflector and the three-string
vertex will be constructed by using the overlap conditions, as usual. From the result
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Open String Field Theory on Noncommutative Space 463

of Refs. 16) and 5), we expect that the noncommutativity of spacetime will also
appear in our string field theory, in addition to the usual noncommutativity of an
open string field theory. This is actually the case, as we will see below. Although the
mode expansion of the string coordinates is different from that with the Neumann
boundary condition, due to the presence of the background B field, the resulting
vertices will be shown to be the same as usual vertices, except for one factor. It is
this factor that accounts for the noncommutativity of spacetime. By the ‘noncom-
mutative spacetime’, we mean a spacetime such that, given two arbitrary functions
f(x) and g(x) on the space, the product of these functions is given by the Moyal
product

f ∗ g(x) = f(x) exp
[
i

2
θij
←−
∂ i
−→
∂ j

]
g(x). (2.11)

If we identify the ‘zero mode’ x̃ of string coordinates with coordinates of our space-
time, the above-mentioned factor turns out to be the exponential factor in (2.11), as
we show below.

In addition to the BRS charge, in order to obtain a kinetic term in string field
theory, we need the reflector 〈R|, which is used to give the inner product of string
fields. The reflector 〈R| is defined up to an overall normalization by the overlap
conditions

〈R|
(
X i(1)(σ)−X i(2)(π − σ)

)
= 0,

〈R|
(
P

(1)
j (σ) + P

(2)
j (π − σ)

)
= 0. (2.12)

Since the ghost part of the reflector remains unchanged even in our case, we focus
on only its matter part. This will also be the case later for the three-string vertex.
In the case that θ = 0, the matter part of the reflector is thus given by

〈Rx| = (2π)26δ26(p1 + p2)21 〈0| exp

−∑

n≥1

(−)n
n

Gijα
i
n
(1)

αjn
(2)


 , (2.13)

where 21 〈0| denotes 2 〈0| 1 〈0|. We can see that this reflector still satisfies the con-
nection conditions (2.13) even in our case of θ 	= 0. Therefore, using the BRS charge
QB and the reflector 〈R|, we can write the kinetic term of our string field theory.
Obviously, this kinetic term does not have any dependence on the theta parameter
θij .

Now, let us move on to the three-string vertex. The three-string vertex can also
be specified up to an overall normalization by the connection equations

〈V3|
(
X i(r)(σ)−X i(r+1)

(π − σ)
)
= 0,

(
π

2
< σ ≤ π

)

〈V3|
(
Pi

(r)(σ) + Pi
(r+1)(π − σ)

)
= 0,

(
π

2
< σ ≤ π

)
(2.14)

where r = 1, 2, 3 denotes the r-th string and r + 3 equals r. Before proceeding to
solve these equations, let us consider the three-string vertex with θ = 0.〈

Ṽ3

∣∣∣ (X̃ i (r)(σ)− X̃ i (r+1)(π − σ)
)
= 0,

(
π

2
< σ ≤ π

)
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464 T. Kawano and T. Takahashi

〈
Ṽ3

∣∣∣ (Pi(r)(σ) + Pi
(r+1)(π − σ)

)
= 0.

(
π

2
< σ ≤ π

)
(2.15)

The variables X̃i(σ) and Pi(σ) are expressed by the mode expansions of (2.4) and
(2.6), and these correspond to strings with the Neumann boundary condition, as
mentioned above. Therefore, we find that this vertex

〈
Ṽ3

∣∣∣ agrees with the usual
three-string vertex given by

〈
Ṽ x

3

∣∣∣ = (2π)26δ26

(
3∑
r=1

p(r)

)
321 〈0| eE123 ,

E123 =
∑

m,n≥0
r,s=1,2,3

1
2
N̄ rs
mnGijα

i
m

(r)
αjn

(s)
, (2.16)

where the Neumann coefficients have the same forms as those in the Minkowski
spacetime, 13) - 15) and 321 〈0| denotes 3 〈0| 2 〈0| 1 〈0|.

Using (2.7), (2.4), and (2.15), we can evaluate how the string coordinatesXi(r)(σ)
connect with each other on the vertex

〈
Ṽ3

∣∣∣. We find
〈
Ṽ3

∣∣∣ (X i(r)(σ)−X i(r+1)
(π − σ)

)
= −1

2

〈
Ṽ3

∣∣∣ θijp(r+2)
j ,

(
π

2
< σ ≤ π

)
(2.17)

where, due to the momentum conservation on the worldsheet, 31)

p
(r)
L i + p

(r)
R i = p

(r)
i , p

(r+1)
L i + p

(r)
R i = 0 (2.18)

are used. From the relation[∑
r<s

θijp
(r)
i p

(s)
j , Xi(t)(σ)−X i(t+1)(π − σ)

]
= iθijp

(t+2)
j , (2.19)

(2.17) leads to the three-string vertex with non-zero B field ∗)

〈V3| =
〈
Ṽ3

∣∣∣ exp
(
− i

2

∑
r<s

θijp
(r)
i p

(s)
j

)
. (2.20)

Thus, the three-string vertex in the background B field can be obtained by

multiplying the usual vertex
〈
Ṽ3

∣∣∣ by the factor e− i
2

∑
θijp

(r)
i p

(s)
j , which is characteristic

of a noncommutative space. Since the BRS charge QB can be expressed by the
variables X̃i(σ) and Pj(σ) and commutes with the zero mode pj of the momenta, we
can see that the three-string vertex satisfies the BRS invariance:

〈V3|
3∑
r=1

Q
(r)
B = 0. (2.21)

∗) A similar expression for the three-string vertex is discussed in Ref. 17).
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Finally, we find that our string field theory has the following action:

S[Ψ ] =
∫ (

1
2
Ψ ) QB Ψ +

1
3
Ψ ) Ψ ) Ψ

)

=
1
221 〈R| |Ψ〉1 Q(2)

B |Ψ〉2 +
1
3321 〈V3| |Ψ〉1 |Ψ〉2 |Ψ〉3 . (2.22)

This ) product differs from the ordinary product by the factor which represents the
noncommutativity of space-time, as we have mentioned above. However, except for
this factor, the action (2.22) is the same as that of the theory without B field. Note
that in the kinetic term, the ordinary product can be replaced by the ) product, due
to momentum conservation. This action can be verified to be invariant under the
gauge transformation

δΨ = QBΛ+ Ψ ) Λ− Λ ) Ψ. (2.23)

In the perturbative expansion of this string field theory, if we expand the string
field Ψ in its component fields, for example, a tachyon field and a vector field, the
product of these component fields in the resulting effective action turns out to be the
product of functions on a noncommutative space. Therefore, the low-energy effective
theory becomes noncommutative Yang-Mills theory. Also, in this theory, we have
the open string metric Gij , but not the closed one gij . This is in agreement with the
result in Ref. 5).

§3. Background Independence of String Field Theory

As a background independent formulation of string theory, pregeometrical string
field theories have been proposed in Ref. 19) and 20), where the kinetic terms have
been dropped from the actions of the ordinary string field theories on a flat Minkowski
space and only a cubic term is retained.

If we drop the kinetic term of our string field theory, we may expect the resulting
theory to be a pregeometrical theory on the same footing as the theory proposed
in Ref. 19). In this section, we show that this is the case. Although this seems
to depend on the theta parameter θij , we find that its background dependence can
be absorbed into a redefinition of a string field and that the resulting theory turns
out to be the theory in Ref. 19). In addition, we explicitly show in the oscillator
representation that the three-string vertex is also independent of Gij . This is an
application of the method given by Kugo and Zwiebach 21) to Witten’s open string
field theory.

In Ref. 21), background independence is discussed in α = p+ closed HIKKO
theory compactified on a torus. Kugo and Zwiebach proposed that X i(σ) and Pi(σ)
are independent of background fields. We can therefore read the dependence of the
oscillators on the background fields, which allows us to explicitly verify in terms of
the oscillators that the three-string vertex is background independent.

However, in our open string field theory, the coordinates X i(σ) are no longer
universal objects, because the commutation relation of the string coordinates itself
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depends on θ, as in (2.2). What objects should we regard as universal? From
Eq. (2.4) and (2.7), X i(σ) can be rewritten as

Xi(σ) = X̃ i(σ) +
∫ σ

π
2

dσ′θijPj(σ′) +
1
2
θij

(
pLj − pRj

)
.

Thus, Xi(σ) and Pi(σ) can be expressed by X̃ i(σ) and Pi(σ). Furthermore, their
commutation relations,[

X̃ i(σ), Pj(σ′)
]
= i δij δ(σ − σ′),

[
Pi(σ), Pj(σ′)

]
= 0,[

X̃ i(σ), X̃j(σ′)
]
= 0, (3.1)

have no apparent dependence on background fields. Thus, we propose that X̃ i(σ) and
Pi(σ) are background-independent objects. Namely, under an infinitesimal variation
of Gij and θij , δX̃ i(σ) = 0 and δPi(σ) = 0. Therefore, under this variation, we can
obtain the change of the oscillators

δαin = −
1
2
GijδGjk

(
αkn + αk−n

)
. (3.2)

The oscillators αin can be seen to depend only upon the open string metric G
ij . This

implies that the theta parameter θij in our theory is included only in the above-
mentioned factor of the three-string vertex.

Now, let us consider a purely cubic action with our three-string vertex:

S =
∫

Ψ ) Ψ ) Ψ = 321 〈V3| |Ψ〉1 |Ψ〉2 |Ψ〉3 . (3.3)

If we expand the string field around a classical solution as Ψ = QLI + Ψ̃ , we can
recover the action Eq. (2.22), as discussed in Ref. 19). Here, QL is the BRS charge
density integrated over the left half of a string, and, in terms of the oscillators, I can
be given 14), 15) by

|I〉 = exp

−∑

n≥1

(−1)n
2n

Gijα
i
nα

j
n


 |0〉 (2π)26δ26(p). (3.4)

In the following two subsections, we in turn discuss the dependence of our theory
(3.3) on the theta parameter θij and on the open string metric Gij .

3.1. Similarity transformation of string fields and the theta parameter

The three-string vertex in our theory differs from that in Ref. 19) by the non-
commutative factor exp[−(i/2)∑r<s θ

ijp
(r)
i p

(s)
j ]. Nothing but this factor depends

on the theta parameter, as we have seen previously. Therefore, our theory at first
seems dependent on the background field θij . If we are dealing with a particle field
theory, say φ3 theory, on a noncommutative space, this is true. However, if, in our
string theory, we can express the noncommutative factor by a product of opera-
tors from each of the three strings, we can eliminate the factor by a redefinition of
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string fields. Interestingly, this is indeed the case, as we show below. Therefore, our
pregeometrical theory is independent of the theta parameter.

For the above-stated purpose, let us consider the operator
∑
r<s−(i/2)θijp(r)

i p
(s)
j

on the ordinary three-string vertex
〈
Ṽ3

∣∣∣. This operator can be rewritten as∑3
r=1(i/2)θ

ijpL
(r)
i pR

(r)
j by using the momentum conservation (2.18) on the vertex〈

Ṽ3

∣∣∣. Therefore, our three-string vertex 〈V3| can be rewritten as

〈
Ṽ3

∣∣∣ 3∏
r=1

eM
(r)
= 〈V3| , (3.5)

where M (r) = (i/2)θijpL
(r)
i pR

(r)
j .

Since the noncommutative factor can be given by operating with the operators
eM

(r)
on the three-string vertex, we can eliminate it from the vertex by the redefini-

tion of string fields Ψ → e−MΨ , and we find that our theory turns into the ordinary
theory proposed in Ref. 19), as we have mentioned above.

Before examining the dependence of our theory on the open string metric, we
would like to make some comments about this similarity transformation. When
we apply this field redefinition to the theory we discussed in the last section, we
can eliminate the noncommutative factor from the three-string vertex. But this
redefinition also affects the kinetic term, and then the BRS charge is transformed
into eMQBe

−M . This transformed BRS charge can be found to possess a divergent
term. Very recently, using an interesting technique, Sugino has argued that the
transformed operator indeed remains the original BRS operator QB in the kinetic
term. 26) This seems to imply that the background B field is physically meaningless.
We discuss this puzzle in some detail in §4.
3.2. Independence of the three-string vertex on the background metric

In string field theory, the reflector and the three-string vertex are defined by the
overlap conditions up to an overall normalization. Since the overlap conditions do
not include any background fields, we can expect that these vertices are independent
of background fields. However, we need at least a background metric to concretely
construct these vertices in terms of the oscillators. Therefore, it is interesting to
examine the background independence of the vertices. In this subsection, we consider
the independence of the ordinary three-string vertex

〈
Ṽ3

∣∣∣ on the background metric
by using the method proposed by Kugo and Zwiebach, who applied it to the α′ = p+

HIKKO closed string theory. We could also study the background independence by
using the general method of Sen. 18)

Before considering the three-string vertex, we demonstrate the independence of
the reflector on the open string metric, as an illustration of the method in Ref. 21).
In this subsection, we focus only on the matter sector.

The Fock vacuum of string fields is defined by G 〈0|α−n = 0 for n ≥ 1, where
the oscillators αn depend on the open string metric Gij . Thus, the vacuum G 〈0| also
depends on the metric Gij . As we have seen in (3.2), the oscillators change under
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an infinitesimal variation of Gij by δαin = −1
2G

ijδGjk

(
αkn + αk−n

)
. It is useful to

introduce the operator

B = −
∑
n≥1

1
4n

δGij

(
αinα

j
n − αi−nα

j
−n
)
, (3.6)

which satisfies
[B, αin] = −1

2G
ijδGjkα

k−n. According to the above definition of the
Fock vacuum, it is changed under the variation δGij into

G+δG 〈0| = G 〈0| − G 〈0| B. (3.7)

The part of the reflector relevant to this paper is 〈Rx| ∼ 21 〈0| eE12 , where E12

is given 15) by E12 = −∑n≥1
(−)n

n Gijα
i
n
(1)

αjn
(2). (We will omit the delta function

of the zero mode pj , which, as we mentioned above, is background independent.)
By making use of (3.7) and the formula δ

(
eE12

)
=

[
B(1) + B(2), eE12

]
under the

variation, we obtain

δ 〈Rx| = −〈Rx|
(
B(1) + B(2)

)
. (3.8)

The right-hand side of (3.8) vanishes because, on the reflector, the oscillators satisfy

〈Rx|
(
αin

(1) + (−)nαin(2)
)
= 0.

Thus, the reflector is independent of the background Gij .
Similarly, under the variation of the metric, we find the variation of the three-

string vertex
〈
Ṽ3

∣∣∣ to be
δ
〈
Ṽ x

3

∣∣∣ = − 321 〈0| eE123

3∑
r=1

B(r) + 321 〈0| eE123δ0E123, (3.9)

where δ0E123 corresponds to the change in the zero-mode parts and is given by

δ0E123 = −12
∑
rs

N̄ rs
00δGijα

i
0
(r)

αj0
(s) − 1

2

∑
rs

∑
m≥1

N̄ rs
0mδGijα

i
0
(r)

αjm
(s)

.

The first term of (3.9) can be evaluated to be 321 〈0| eE123 multiplied by

−1
4

∑
n≥1

3∑
r=1

1
n
δGijα

i
n
(r)

αjn
(r) +

1
4

∑
m,l≥1

r,s


∑
n≥1

3∑
t=1

N̄ rt
mnnN̄

ts
nl


 δGijα

i
m

(r)
αjl

(s)

−1
2

∑
l≥1
r,s


∑
n≥1

3∑
t=1

N̄ rt
0nnN̄

ts
nl


 δGijα

i
0
(r)

αjl
(s)

−1
4

∑
r,s


∑
n≥1

3∑
t=1

N̄ rt
0nnN̄

ts
0l


 δGijα

i
0
(r)

αj0
(s)

−1
4

∑
n≥1

N∑
r=1

nN̄ rr
nnδGijG

ij . (3.10)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/104/2/459/1912019 by guest on 16 August 2022



Open String Field Theory on Noncommutative Space 469

Note that, although our argument is parallel to that in Ref. 21), the last term of
(3.10) is a new term, whose counterpart in the closed string case dose not exist.

To prove the background independence, we can use the identities of the Neumann
coefficients, 15), 25)

∑
n≥1

3∑
t=1

N̄ rt
mnnN̄

ts
nl=

1
m

δm,lδ
rs,

∑
n≥1

3∑
t=1

N̄ rt
mnnN̄

ts
n0 = −N̄ rs

m0,

∑
n≥1

3∑
t=1

N̄ rt
0nnN̄

ts
n0 = −2N̄ rs

00 . (3.11)

Note that the second and third equalities need the momentum conservation for the
zero-modes, which is guaranteed by the vertex. These identities are proven in Ap-
pendix B. Therefore, we can see that the second term of (3.9) cancels the first three
terms of (3.10). For the last term of (3.10), we need another identity,

∑
n≥1

N∑
r=1

nN̄ rr
nn = 0, (3.12)

which is also proved in Appendix B. Thus, we can see that the three-string vertex〈
Ṽ3

∣∣∣ is background independent.
§4. Discussion

In this paper, we derived Witten’s open string field theory in a background
B field by using the standard overlap conditions in the operator formalism. The
resulting three-string vertex naturally contains an additional factor which gives the
Moyal product to the zero modes, compared to the ordinary vertex with no B field.
Thus, the zero modes x̃i can be found to be noncommutative. In addition to this
noncommutative factor, the three-string vertex can be written by using the open
string metric Gij . Therefore, the low-energy effective theory of the gauge field should
be described by noncommutative Yang-Mills theory. This result is in agreement with
the result in the first-quantization formulation in Ref. 5) and 16).

Following the idea of the pregeometrical formulation, 19), 20) we dropped the ki-
netic term from our string field theory and explicitly demonstrated the background
independence of the resulting theory by using the method of Ref. 21).

In order to prove that the three-string vertex is independent of the theta param-
eter θij , we have shown that the noncommutative factor can be eliminated by field
redefinition. If we also apply the redefinition to the theory with the kinetic term, we
can easily see that, in addition to elimination of the noncommutative factor of the
three-string vertex, it also affects the kinetic term and transforms the BRS charge
QB into eMQBe

−M . Here, the operator M is (i/2)θijpLipRj . This transformed BRS
charge can be found to possess a divergent term. This divergent term seems to come
from the mid-point σ = π/2 of strings. Very recently, using an interesting technique,
Sugino has argued 26) that the transformed operator indeed remains the original BRS
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operator QB in the kinetic term and that the kinetic term remains intact under the
field redefinition. This seems to imply that the background B field is physically
meaningless.

In Ref. 5), Seiberg and Witten showed that the noncommutative Dirac-Born-
Infeld (DBI) action is equivalent in the slowly varying field approximation to the
commutative DBI action with the background B field. In addition, they emphasized
that the B field parallel to D-branes cannot be gauged away, due to the gauge
invariance Bij → Bij + ∂iΛj − ∂jΛi, Ai → Ai+Λi. Here Ai is the gauge field on the
D-branes. Therefore, to be consistent with the result in Ref. 5), we may expect that,
even after the field redefinition, the dependence of the B field remains in the kinetic
term of the string field theory and that the B field appears in the low-energy effective
action only through the gauge-invariant combination Fij = Bij +Fij . However, this
apparently conflicts with Sugino’s recent result. 26) Thus, we think that we have an
interesting puzzle to solve.

To our knowledge, there is no study which shows that Witten’s open string field
theory has the above-mentioned gauge invariance. In addition, it seems difficult to
prove it, because the theory has no explicit field from the closed string sector in its
action. For this purpose, it may be more suitable to study the gauge invariance and
the dependence of B field in an open-closed string field theory with the mid-point
interaction in Ref. 32).

Apart from the gauge invariance, we would like to discuss the operatorM which
was used for the field redefinition. If we do not use Sugino’s technique to show
that the kinetic term remains intact by the field redefinition, we must deal with the
divergent term in eMQBe

−M . This divergent term seems to come from the mid-point
of strings, as mentioned above. Since the operator M consists of the half-integrated
momenta pL and pR, we are led to wonder if the singularity may be related to
the mid-point interaction. In addition, the operator M seems to be suitable only
for the mid-point interaction, because we cannot apply it to the light-cone type
interaction. Since the kinetic term of string field theories does not depend on the
types of interactions of strings, it is desirable to have a field redefinition which is
independent of types of string interactions. Therefore, it may be useful to introduce
another candidate,

M̃ = − i

4

∫ π

0
dσ

∫ π

0
dσ′ε(σ − σ′)θijPi(σ)Pj(σ′), (4.1)

where ε(σ) is the step function which is 1 for σ > 0 and −1 for σ < 0. Indeed,
rewriting this operator as

i

2
θijpLipRj −

i

4

∫ π

π
2

dσ

∫ π

π
2

dσ′ε(σ − σ′)θij{Pi(σ)Pj(σ′)− Pi(π − σ)Pj(π − σ′)}

(4.2)

and putting the sum
∑3
r=1 M̃

(r) on the usual three-string vertex
〈
Ṽ3

∣∣∣, we can see
that the second terms in the operators M̃ (r) cancel each other, due to the overlap
condition (2.15). Furthermore, as we discuss below, this operator M̃ can be used to
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give the field redefinition to remove the noncommutative factor from the light-cone
type interactions.

To this point we have been discussing the problem with the mid-point interac-
tion concerning the relation between our string field theory and the ordinary one.
However, it is plausible that, if there is such a relation, we can find the same relation
in other string field theories. In particular, since we cannot apply the operatorM to
string field theories with light-cone type interactions like that given by Refs. 27) and
28), we can expect that the dependence on the B field cannot be completely removed.
Therefore, in order to obtain some information regarding this problem, it may be
helpful to study the string field theory with the light-cone type interaction 27), 28)

by using the operator M̃ . Since this theory explicitly has closed string fields in its
Lagrangian, as well as open strings, it may also help to find some relation between
the condensation of the antisymmetric tensor Bij from the closed string field and
the above redefinition of the open string field.

Now, let us just sketch the main points of our results about the string field
theory with the light-cone type interaction 27), 28) in the background B field. These
results will be explained in more detail in another paper. 33) As we can verify by the
method explained in §2, the light-cone type vertices are also modified to include the
noncommutative factor, and there is no other modification due to the background B
field. This noncommutative factor can be expressed by a product of the operators
M̃ from each string. Since the operator M̃ thus plays an important role, it is useful
to give some discussion on it.

The commutation relation between the operator M̃ and the string coordinates
can be shown to be

[M̃, Xi(σ)] = − 1
π2ls

∑
n�=0

1− (−)n
n2

(θG)ijα
j
n +

2
π2

θij pj
∑
m≥1

1− (−)m
m2

cos(mσ)

+
2

π2ls

∑
m≥1


 ∑
n�=±m

1− (−)m+n

m2 − n2
(θG)ijα

j
n


 cos(mσ). (4.3)

If we naively exchange the order of the summations on the right-hand side of (4.3), we
obtain [M̃, X i(σ)] = −(θG)ij Qj(σ). Therefore, we would find that eM̃ X i(σ) e−M̃ =
X̃ i(σ). But this result must be false, because it is inconsistent with the commutation
relation [X i(σ), Xj(σ′)] ∼ θij , which cannot be changed to [X̃ i(σ), X̃j(σ′)] = 0 by
the similarity transformation eM̃ X i(σ) e−M̃ . A closer examination shows that the
relation [M̃, Xi(σ)] = −(θG)ij Qj(σ) holds only for 0 < σ < π. Therefore, the trans-

formed BRS operator eM̃ QB e−M̃ naively becomes the ordinary BRS operator with
the closed string metric gij , but, due to subtleties caused by the ends of strings, it has
additional terms for which, at least at present, we do not have any interpretation.
In spite of the discrepancy between eM̃ X i(σ) e−M̃ and X̃ i(σ), since the operator M̃
allows us to relate our three-string vertex to the ordinary vertex, regardless of the
types of string interactions, we are tempted to speculate that the operator M̃ would
give us some clue about a relation between the noncommutative string field the-
ory and the ordinary one, like the relation found by Seiberg and Witten 5) between
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noncommutative and commutative DBI theories.
Finally, we would like to touch on superstring field theory. We can easily extend

our theory to Witten’s superstring field theory 29) by constructing other necessary
vertices in a manner similar to that in the bosonic case. In the worldsheet picture
of superstring theory, we add to the bosonic sector

Sψ = − 1
4πα′

∫
d2z

(
gijψ

i∂̄ψj + gijψ̃
i∂ψ̃j

)
, (4.4)

and the boundary conditions are given by

(g + 2πα′B)ijψ(z) = (g − 2πα′B)ijψ̃(z̄), at z = z̄. (4.5)

It is convenient to introduce the new fields ϕi(z) and ϕ̃i(z) defined by

ϕi(z) = Gij(g + 2πα′B)jkψk(z),

ϕ̃i(z̄) = Gij(g − 2πα′B)jkψ̃k(z̄). (4.6)

These fields play a role similar to the string coordinates X̃i in the bosonic case. Since
the fields ϕi(z) and ϕ̃i(z) satisfy the same boundary condition as that with no B
field, we have the ordinary mode expansion of these fields ϕi(z) and ϕ̃i(z). Therefore,
solving the overlap conditions for these fields, we obtain the ordinary three-string
vertex as well as the ordinary reflector. The oscillator expression of the vertices can
be found in Refs. 34) and 15). From (4.6), we can immediately verify that these
vertices also satisfy the overlap conditions for ψ(z) and ψ̃(z̄). Moreover, the picture
changing operators can be expressed by using only ϕi(z), ϕ̃i(z) and X̃i, and can be
found to have the ordinary expression. Thus, we can extend our string field theory
to superstring cases, though we still face the mid-point singularity problem, as in
Ref. 35).∗)
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Appendix A
Operator Formalism of Strings in a Background B field

We consider the operator formalism of first-quantized string theory in a constant
background B field by following Refs. 22) – 24). Although Chu and Ho have discussed
different methods of quantization in their first and second papers of Ref. 22), our
strategy is slightly different from both of theirs; namely, we simplify their methods
by combining them.

The worldsheet action is given by

S = − 1
4πα′

∫
dσ dτ

(
gijη

ab∂aX
i∂bX

j − 2πα′Bijε
ab∂aX

i∂bX
j
)
, (A.1)

where gij is a constant background metric and Bij is a constant background anti-
symmetric tensor. We also denote (2πα′)Bij by bij . The signature of the worldsheet
metric ηab is (−,+) and the invariant antisymmetric tensor εab is defined by ε01 = 1.
The equation of motion of the string coordinates is ∂aηab∂bX i = 0. The boundary
condition turns out to be

gijX
′j + 2πα′BijẊ

j = 0 (A.2)

at σ = 0, π. The conjugate momenta are given by Pi = (1/2πα′)gijẊj + BijX
′j ,

where the dot and the prime denote differentiation with respect to τ and σ, respec-
tively. As in the usual way, we can obtain the Hamiltonian density

H = 1
4πα′

[
(2πα′)2gijPiPj + (4πα′)bikgkjx′

i
Pj +GijX

′iX ′j] . (A.3)

Here, the open string metric Gij is given by Gij = gij − (bg−1b)ij . The Pois-
son brackets of the string coordinates and the momenta are all vanishing except{
X i(σ), Pj(σ′)

}
P = δijδ(σ − σ′).

The idea in the second paper of Ref. 22) and in Refs. 23) and 24) is to deal with
the boundary condition (A.2) as a constraint φi = GijX

′j + (2πα′)bikgkjPj in the
operator formalism and to quantize the system by following the Dirac quantization
method. By using the consistency condition φ̇i = {φi, H}P ≈ 0 with the Hamiltonian
H =

∫
dσH, all the second-class constraints are found 22) - 24) to be

∂2nφi
∂σ2n

(σ) = 0,
∂2n+1Pi
∂σ2n+1

(σ) = 0, (A.4)

with n ≥ 0 at σ = 0, π, and there is no first-class constraint. Here, we first solve
these constraints (A.4) and find that

φi(σ) = −
∞∑
n=1

nGijx
j
n sin(nσ), Pi(σ) =

∞∑
n=0

pni cos(nσ). (A.5)

Therefore, using θij = −(2πα′)(G−1bg−1)ij , we obtain

X i(σ) =
∞∑
n=0

xin cos(nσ) + θij
[
p0jσ +

∞∑
n=1

1
n
pnj sin(nσ)

]
. (A.6)
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Chu and Ho in the first paper of Ref. 22) expressed the string coordinates as
a mode expansion in terms of the solutions of the equation of motion and used the
invariant symplectic form

ω =
∫

dσ
[
−dX i(σ) ∧ dPi(σ) + dPi(σ) ∧ dX i(σ)

]
(A.7)

to find the commutation relations of the modes. Now we apply their idea to our
system by using the above mode expansion of string coordinates and the momenta,
instead of the mode expansion in terms of the solutions of the equation of motion, to
find the commutation relations of xin and pnj . After applying this procedure, we find
the equation of motion of these variables xin and pnj . Substituting the expansions
(A.5) and (A.6) into the symplectic form (A.7), we find the Poisson brackets of the
modes to be

{
xi0, p0j

}
P
=
1
π
δij ,

{
xin, pmj

}
P
=
2
π
δijδn,m,

{
xi0, x

j
0

}
P
= θij , (A.8)

and the others vanish. Since these variables xin and pnj are the solutions of the con-
straints (A.4), they are all physical variables. Thus, we can obtain their commutation
relations by the usual prescription [A,B] = i{A,B}P to quantize our system.

Since the time derivative of a physical variable O can be obtained by Ȯ =
{O, H}P , we can see that φ̇i(σ) = (2πα′)P ′

i(σ) and Ṗi(σ) = (1/2πα′)φ′
i(σ). Substi-

tuting the mode expansion (A.5) into these equations to get the equations of motion
of the variables xin and pnj and solving the resulting equations, we find that

xin = i
ls
n

(
αine

−inτ − αi−ne
inτ
)
, pnj =

1
πls

Gjk

(
αkne

−inτ + αk−ne
inτ
)
, (A.9)

with ls =
√
2α′ for n 	= 0. We also have xi0 = xi + ls

2Gijpjτ and p0j = (1/π)pj.
Putting these new mode variables, αin, x

i and pi, into (A.8), we obtain[
xi, pj

]
= iδij ,

[
xi, xj

]
= iθij ,

[
αim, α

j
n

]
= mGijδm+n. (A.10)

These commutation relations are in agreement with the results in Ref. 22). Note here
that, if we define the new ‘center of mass’ coordinates x̃i by x̃i = xi+(1/2)θijpj , the
coordinates x̃i turn out to be commutative variables:

[
x̃i, x̃j

]
= 0.

Finally, with the mode variables αin, x̃i and pi, we can express the string coor-
dinates Xi(σ) and the conjugate momenta Pi(σ) as

Xi(σ) = X̃ i(σ) +
1
πls

θij


lspj

(
σ − π

2

)
+Gjk

∑
n�=0

1
n
αkne

−inτ sin(nσ)


 ,

Pj(σ) =
1
πls

Gjk

∞∑
n=−∞

αkne
−inτ cos(nσ), (A.11)

where X̃i(σ) = x̃i + ls
2Gijpjτ + ls

∑
n�=0(i/n)α

i
ne

−inτ cos(nσ) and pj = (1/ls)Gjkα
k
0 .
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Appendix B
Identities for the Neumann coefficients

Consider an N -string vertex with a midpoint interaction 15), 13), 14). The Neu-
mann function on the strip is given by

N(ρr, ρ′s) = −δrs

2∑

n≥1

1
n
e−n|τr−τ

′
s| cos(nσr) cos(nσ′

s)− 2max(τr, τ ′s)



+2
∑

m,n≥0

N̄ rs
mne

mτr+nτ ′s cos(mσr) cos(nσ′
s). (B.1)

In the case τr > τ ′s, we find that

∂

∂τr
N(ρr, ρ′s) = 2δrs


∑
n≥1

e−n|τr−τ
′
s| cos(nσr) cos(nσ′

s) + 1




+2
∑
m≥1

∑
n≥0

mN̄ rs
mne

mτr+nτ ′s cos(mσr) cos(nσ′
s). (B.2)

The Neumann function and its derivative with respect to ρ are continuous at the
interaction time τr = 0, provided that we use momentum conservation for the zero
mode parts. In other words, in order to maintain its continuity, it is necessary to
multiply the zero mode terms 2δrsmax(τr, τ ′s) and N̄ rs

n0 by the factor
∑
s p

(s).
Using the continuity of the Neumann function, we find the identity

0 =
N∑
t=1

∫ π

0
dσ′′

tN(iσ
′′
t , ρr)

∂N

∂τ ′′t
(iσ′′

t , ρ
′
s)

= −2πδrs
∑
n≥1

1
n
enτr+nτ ′s cos(nσr) cos(nσ′

s)

+2π
∑
n≥1

N̄ rs
n0e

nτr cos(nσr) + 2π
∑
n≥1

N̄ rs
0ne

nτ ′s cos(nσ′
s) + 4πN̄

rs
00

+2π
∑
m,l≥1


∑
n≥1

N∑
t=1

N̄ rt
mnnN̄

ts
nl


 emτr+lτ ′s cos(mσr) cos(lσ′

s)

+2π
∑
m≥1


∑
n≥1

N∑
t=1

N̄ rt
mnnN̄

ts
n0


 emτr cos(mσr)

+2π
∑
l≥1


∑
n≥1

N∑
t=1

N̄ rt
0nnN̄

ts
nl


 elτ

′
s cos(lσ′

s). (B.3)

From this identity, we can obtain (3.11).
To obtain (3.12), we take the limit ρ′s → ρr in the Neumann function (B.1):

N(ρr, ρr + δ) = ln δ −
∑
n≥1

1
n
cos(2nσr) + 2τr
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+2
∑

m,n≥0

N̄ rs
mne

(m+n)τr cos(mσr) cos(nσr) +O(δ2). (B.4)

From the continuity at the time of the interaction, we can obtain (3.12) as

0 =
N∑
r=1

∫ π

0
dσr

∂

∂τr
N(iσr, iσr + δ) = 2π

∑
n≥1

N∑
r=1

nN̄ rr
nn, (B.5)

where we can make
∑N
r=1 ∂/∂τr τr vanish due to momentum conservation.

These arguments and identities can also be established for light-cone-type ver-
tices with one interaction time.
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