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ABSTRACT: We analyze the wavefunctions for open strings in warped compactifications,
and compute the warped Kéahler potential for the light modes of a probe D-brane. This
analysis not only applies to the dynamics of D-branes in warped backgrounds, but also
allows to deduce warping corrections to the closed string Kéhler metrics via their couplings
to open strings. We consider in particular the spectrum of D7-branes in warped Calabi-Yau
orientifolds, which provide a string theory realizations of the Randall-Sundrum scenario.
We find that certain background fluxes, necessary in the presence of warping, couple to the
fermionic wavefunctions and qualitatively change their behavior. This modified dependence
of the wavefunctions are needed for consistency with supersymmetry, though it is present
in non-supersymmetric vacua as well. We discuss the deviations of our setup from the RS
scenario and, as an application of our results, compute the warping corrections to Yukawa
couplings in a simple model. Our analysis is performed both with and without the presence
of D-brane world-volume flux, as well as for the case of backgrounds with varying dilaton.
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1. Introduction

Scenarios with warped extra dimensions provide us with a rich framework to address long-
standing puzzles in physics Beyond the Standard Model. In the presence of warping the
energies of localized states are suppressed by the gravitational redshift and so, as pointed
out in [l]], this may offer a geometric explanation of the electroweak-gravity hierarchy.



While this feature has been mainly exploited in the context of 5D models as the original
Randall-Sundrum (RS) scenarios and extensions thereof, it does clearly apply to more
general warped backgrounds. In particular, it is also manifest in warped compactifications
of string theory [, B, B, B, B, [, especially for those strongly warped regions that can be
asymptotically described as AdS5 x X5 for some compact manifold X5, and which provide
a natural extension of the RS scenario to a UV complete theory. As a result, these so-called
‘warped throats’ have become a powerful tool to construct phenomenologically attractive
models of particle physics and cosmology from string theory, and are nowadays an essential
ingredient in explicit constructions of string inflationary models [§].

Given the above, it is natural to wonder how the dynamics governing warped compact-
ifications can be understood from a string theory/supergravity perspective. In particular,
in order to draw precise predictions from string warped models it is necessary to understand
the low energy effective action that arises upon dimensional reduction. The derivation of
such warped effective theory has proven to be a subtle problem even if one restricts to the
closed string/gravity sector of the theory [§, [4, [T, [3, [[J], although simple expressions can
be given for certain subsectors [[4]. While these results represent significant progress in the
derivation of warped effective theories, in order to accommodate constructions where the
Standard Model can be realized closed strings are not enough,! and one should include D-
branes in the picture. Hence, it is crucial to go beyond the previous analyses and study the
effective theory for the associated open string degrees of freedom in warped backgrounds.

In this work we take an initial foray in this direction by studying open string wavefunc-
tions in warped compactifications. In order to extract the 4D effective action for the open
string degrees of freedom, we first need to compute their internal wavefunctions and then
carry out a dimensional reduction. As is well known in phenomenological studies of warped
extra dimensions [LJ], warping has the effect of localizing massive modes to regions of strong
warping because of the gravitational potential. As we shall see, warped compactifications
in string theory have new added features. Other than the background geometry which has
been accounted for in the aforementioned studies, string theory contains background field
strengths that, due to the equations of motion, are necessarily non-vanishing in the pres-
ence of warping. Not only do these field strengths couple to open string fermionic degrees
of freedom, but they couple differently depending on the extra-dimensional chirality of such
fields, which results in different warp factor dependence for their internal wavefunctions.
For warped backgrounds that preserve supersymmetry, our results allow us to determine
the warped corrected Kahler metrics for open strings, and to show that this different warp
factor dependence is crucial for the kinetic terms of 4D fields in the same supermultiplet
to match.? We will in addition find that open string wavefunctions act as probes of the
warped geometry; their kinetic terms allowing us to deduce the Kahler metrics of the closed
strings that couple to them and hence the combined warped Kéahler potential. The closed
string Kéhler metrics obtained in this way indeed reproduce the recent results of [[3, [4].

LAt least in the context of type IT string compactifications, where such developments have taken place.

2Let us stress that our analysis does not directly invoke 4D supersymmetry, since we analyze the open
string wavefunctions for bosonic and fermionic fields separately. Therefore, the method of obtaining open
string wavefunctions discussed here can be applied to non-supersymmetric warped backgrounds as well.



We however expect our method to have more general applicability, including situations
where the direct closed string derivations have not yet been carried out.

In particular, we will focus on deriving the open string wavefunctions of D7-branes in
warped type IIB/F-theory backgrounds. As pointed out in the literature (see e.g. [[L6], [7]),
this setup provides a string theory realization of those 5D Warped Extra Dimension (WED)
models where the SM gauge fields and fermions are located in the AdS5 bulk [LJ], and which
have been suggested as a possible solution of the flavor puzzle. Indeed, in this 5D scenario
the hierarchy between the various SM masses and mixing angles (i.e., the flavor hierarchy)
results from the different localization of fermions in the extra dimensions, since the varying
degrees of overlap of their wavefunctions with that of the Higgs field lead to hierarchical
Yukawa couplings. In the string theory setup that we consider, the D7-branes and their
intersections give rise to non-Abelian gauge symmetries and chiral matter. In particular,
in a warped throat background of the form AdSs x X5 we can consider a D7-brane whose
embedding is locally described as AdSs x X3, and so its open string wavefunctions are
extended along the AdSs warped extra dimension.

With a concrete realization of the bulk Randall-Sundum scenario, one can investigate
whether the assumptions made in the phenonomenological studies of warped extra dimen-
sions are justified or modified, and whether the p-form field strengths in string theory could
lead to new variations of this basic idea. Furthermore, the open string wavefunctions ob-
tained here enable us to calculate the physical Yukawa couplings for explicit chiral models,
as we shall demonstrate in an explicit example.

More generally, the present work can be considered as an initial step towards the
construction of the ‘Warped String Standard Model’. Besides the phenomenological appeals
mentioned above, these warped models are interesting because they can be understood, by
way of the AdS/CFT correspondence, as holographic duals of technicolor-like theories.
Constructing these warped models from a UV complete theory allows us to go beyond a
qualitative rephrasing of the strong coupling dynamics in terms of a putative gravity dual.
In addition, embedding such technicolor models in string theory may also suggest new
model building possibilities.? Note that our analysis was carried out with all the essential
ingredients, such as worldvolume fluxes. Therefore, our results can be applied to specific
models once concrete constructions of such technicolor duals are found.

This paper is organized as follows. In Section fl, we study the D7-brane wavefunc-
tions in the situation where the D7-brane worldvolume magnetic flux F is absent. We
begin with the simplest warped background which is conformally flat space and compute
the wavefunctions of the bosonic and fermionic modes separately. Our treatment of the
fermions follows from the x-symmetric fermionic action in [R0] (see also [R]), which takes
into account the coupling of fermions to the background RR p-form field strengths in a
manifested manner. Many of our results carry over directly to the more general case of
a warped Calabi-Yau space, as discussed in subsection R.3, and to turning on background
3-form fluxes in such background, as shown in subsection P.4. In addition, in subsection 2.
we also consider D7-branes in backgrounds with varying dilaton, which become relevant

3See [@] (and also [@]) for the realization of this idea in the context of D3-brane at singularities.



when these constructions are lifted to F-theory. The open string wavefunctions obtained in
the earlier sections can be used to extract information about the warp factor dependence
of the open string Kéhler potential, discussed in subsection P.f, and to analyze a simple
chiral model in subsection R.7. Finally, in Section | we extend the above analysis to the
more generic case of D7-branes with a non-vanishing magnetic flux F, which is an essential
ingredient to obtain chirality in generic situations. We draw our conclusions in Section [,
and our conventions are spelled out in Appendix [A.

2. Unmagnetized D7-branes

2.1 Warped backgrounds in string theory

As discussed in [, [l], one can realize the Randall-Sundrum scenario by considering type
I1IB string theory on a (string frame) metric background of the form

ds%o = A_l/zn“,,daz“dzn” + A1/2e¢§]mndymdy" (2.1)

where A = A(y) is a warp factor that only depends on the extra six-dimensional space
X¢ of metric g. In the limit where the dilaton field ® = ®(y) is constant, the equations
of motion constrain § to describe a Calabi-Yau metric. On the other hand, when & is
non-constant Xg will be a non-Ricci-flat Kéhler three-fold manifold, which nevertheless
serves as a base for an elliptically fibered Calabi-Yau four-fold Xg, as usual in F-theory
constructions.

The above warp factor may be sourced by either localized sources like D3-branes and
O3-planes or by the background field strengths F3, Hs present in the type IIB closed string
sector. In both cases, consistency of the construction demands that the background field
strength Fjy is also sourced. More precisely, the equations of motion require that Fy is
related with the warp factor and the dilaton as

Fy = (1 + #50) Fi™ Mt = 36d (Ae®) (2.2)

where *19 stands for the Hodge star operator in the full 10D metric (.1) and % in the
unwarped 6D metric §. Finally, together with a non-trivial dilaton profile a non-trivial RR
scalar Cy must be present, both of them related by the equation

or =0 (2.3)

where 7 = Cy + ie~® is the usual type IIB axio-dilaton.

In order to introduce a Standard Model-like sector in this setup, one needs to consider
open string degrees of freedom. These can be simply added to the above setup via em-
bedding probe D-branes in this background. Such D-branes will not only give rise to 4D
gauge theories upon dimensional reduction, but also to chiral matter fields charged under
them. The simplest example of this is given by a D3-brane filling R3 and placed at some
particular point yo € Xg. While most quantities of the D3-brane gauge theory will be
affected by the warp factor via the particular value of 1/A(yp), the internal wavefunctions
for the D3-brane fields will have a trivial d-function profile.



A more non-trivial set of wavefunctions is given by the open string fields of a D7-brane
wrapping a 4-cycle S4 C Xg. As now the wavefunctions can extend along a 4D subspace of
X they can feel non-trivially the effect of the warp factor, reproducing one of the essential
ingredients of the WED models with SM fields localized on the bulk [LF]. If we focus on a
single D7-brane, then we will start from an 8D U(1) gauge theory whose bosonic degrees
of freedom are described by the so-called Dirac-Born-Infeld and Chern-Simons actions

S =St + S5y (2.4a)
Spr = - TD7/ 4% e_q’\/\det(P[G] +F)| (2.4D)
R1:3x84
s — / Pl A e” (2.4¢)
R1L:3x 8y
where 71 = (27)%(2ma/)* is the tension of the D7 brane, and where P|...] indicates that

the 10D metric G and the sum of RR potentials C = Ef;:o Cy, are pulled-back onto the
D7-brane worldvolume. The same applies to the NS-NS B-field, which enters the action
via the generalized two-form field strength F = P[B] + 2ma/F. In the remainder of this
section we will simplify our discussion by setting B = 0 and F to be exact. That is, we
will set F' = dA, where A is the 8D gauge boson of the D7-brane worldvolume theory. In
practice, this implies that 7 = 0 up to fluctuations of A, a situation which will be denoted
by (F) = 0. With these simplifications, one can express the fermionic part of the D7-brane

action as [2(]
er - a @ — 1
Sl = Tm/dgge ?. /|det P[G]| ©PP7 <F Da 50) e (2.5)

where D,, is the operator appearing in the gravitino variation, its index « pulled-back into
the D7-brane worldvolume, and O is the operator of the dilatino variation. The explicit
expression of these operators are given in Appendix [A], see eq.(A.1J). As explained there,
these two operators act in a 10D Majorana-Weyl bispinor

0
0= < 9;) (2.6)

where both components have positive 10D chirality I'(1); = 6;. The fermionic degrees of
freedom contained in (2.4) are twice of what we would expect from an 8D supersymmetric
theory, but they are halved by the presence of PP7, which is a projector related with the
k-symmetry of the fermionic action.* For (F) = 0 this projector is given by

1
PPT = 5 (IF T ®02) (2.7)

where I'g) is the 8D chirality operator on the D7-brane worldvolume,® and o3 acts on the
bispinor indices.

4Roughly speaking, (@) is invariant under the transformation © — © + PP7k, with s an arbitrary 10D

MW bispinor. One can then use this symmetry to remove half of the degrees of freedom in ©.

RL2Zk+1 4o T (oks2) = R0 241

I'¢ are flat I-matrices. For instance, a D7-brane extended along the directions 0. . .7 has Dy =

®In our conventions the chirality matrix for a D(2k 4 2)-brane in , where

—iF01234567 .



In order to dimensionally reduce the above construction to a 4D effective theory with
canonically normalized kinetic terms, one first needs to convert the above quantities from
the string to the Einstein frame. This basically amounts to using, instead of the metric
Gy In (@), the rescaled metric GﬁN = e %2GN. That is, in the Einstein frame we
have the 10D metric background

ds?y = 272y, dztdz” + ZY2 G dy™dy™ (2.8)

where Z = Ae?® is the Einstein frame warp factor. Note that eqs.(2-]) and (2-3) are
unchanged by this rescaling, and that in terms of Z we have Fént = %¢dZ. While the D7-
brane CS action does not depend on metric and hence is also not affected by such rescaling,
the DBI action does change. The bosonic action now reads

SBP = —7p7 / d®¢ eq’\/ |det (P[GE] + e=2/2F)| + 7 / PCIAe” (2.9)

where now G refers to the metric tensor in (B.§). Finally, the fermionic D7-brane action
also varies by going to the Einstein frame (see Appendix A) reading

er e @ 1
Sfer = 7y / d*¢e®y/|det P|GF]|©PP7 <r DE + 50E> e (2.10)

where OF and D now refer to the dilatino and gravitino variations in the Einstein frame,
as defined in (|A.19). In the remainder of this paper we will always work with Einsten
frame quantities, without indicating so with the superscript F.

2.2 Warped flat space

The simplest case of a warped background of the form (R.§) is constructed by taking the 6D
metric g to be flat. This situation is easily obtained in string theory, by simply considering
the backreaction of N D3-branes in 10D flat space. While in such simple solution the
internal space Xg = RS is non-compact, one may turn to a compact setup by simply
setting Xg = T, and adding the appropriate number of D3-branes and O3-planes such
that the theory is consistent. In the latter construction the global form of the warp factor Z
will be a complicated function of the D3-brane positions, but close to a stack of D3-branes
it will produce the well-known AdSs x S® geometry that mimics the Randall-Sundrum
scenario [B].

In the following we will derive the open string wavefunctions of a D7-brane in such
conformally flat background. We will particularly focus on the warp factor dependence
developed by the wavefunctions of both fermionic and bosonic zero modes, to be analyzed
separately. This setup will not only be useful to make contact with the WED literature,
but also to emphasize some simple features that remain true in the more general situations
considered below. Finally, we will discuss some subtle issues that arise when considering
D-brane fermionic actions of the form (R.§), as well as an alternative derivation of the
fermionic zero mode wavefunctions more suitable for further generalizations.



2.2.1 Fermions

Let us then consider a background of the form (R.§) with § = g, (which implies a constant
axio-dilaton 7 = C + ie~®°) and a D7-brane spanning four internal dimensions of such a
background. In particular, we will consider that the internal worldvolume of the D7-brane
wraps a 4-cycle S; = T* € TY, so that we also have a conformally flat metric on the
D7-brane worldvolume

4
dspr = Z7 Py datde? + 217 (gpa)ap dy®dy® (2.11)
a,b=1
where g4 is a flat T* metric.
Then, if in addition we do not consider any background fluxes Hz or Fj3, we have that
the operators entering the D7-brane fermionic action (P.10) are

O =0 (2.12a)
1 in . 1
Dy =Vu+ ks T icy = 9, — (LudmZP (2.12b)
1 in . 1 1
Dy =Vim + g¥s Tonicy = O + gOnnZ — 29n 20, PO3 (2.12¢)

where we have used the definitions (A.19) and the relation (2.3). Here u stands for R!3
coordinates, m labels the internal T® coordinates and the slash-notation stands for a con-
traction over bulk indices as in ([A.14). Finally, we have defined the projectors

1
P93 = 3 (I£T 4 ® 02) (2.13)

where as in (A.30) I'6) is the 6D chirality operator in TO6. These projectors separate
the space of bispinors © into two sectors: those modes © annihilated by P93 and those
annihilated by Pf?’. Pulling-back the above operators® onto the D7-brane worldvolume we
obtain that the term in parentheses in (R.1() reads

1 ~ - 1 1
Dy + 1D, + 50 = P+ + (aft In Z) (5 — 5P+03> (2.14)
where a runs over the internal D7-brane coordinates, @ZXt =TI*9, and (}9141113 = I'"0,. Note

that both of these operators contain a warp factor: @th =z 4(%@1’3 and @ilnt =z 4$T4.
Plugging (R.14) into (R.10), one can proceed with the dimensional reduction of the
D7-brane fermionic action. First, we halve the degrees of freedom in (R.6) by considering

o= (g) (2.15)

which is an allowed choice for fixing the k-symmetry of the action. We can then express

a bispinor of the form

the D7-brane action as

Sfer — 7 e®o / d*z [ dvolps 010" 0 (2.16)
R1,3 T4

5This amounts to pulling-back the index M of Dy, and not indexless quantities like #1n Z or O.



where 6 stands for a conventional 10D MW spinor, dVE)1T4 for the unwarped volume element
of T4 and the warped Dirac operator is given by

pY = P gt (aif‘t In Z) (1 + 2D kxtra) (2.17)

1
8
I'Exira = dvblpa being the chirality operator for the internal dimensions of the D-brane.
For instance, if we considered a D7-brane extended along the directions 0...7 then we

would have I'ixtra = I'P7 with It defined in ([A.20).
Second, we split the 10D Majorana-Weyl spinor 6 as

0 =x+BX" x =00 (2.18)

where 04p are four and fgp six-dimensional Weyl spinors, both of negative chirality, and
B = B, ® Bg is the Majorana matrix ([A.25).

Finally, one must decompose (R.1§) as a sum of eigenstates under the (unwarped) 4D
Dirac operator. More precisely, we consider the KK ansatz

0= 0 =73 0in(a) ®0n(y) + Y (Babin(x)" © (Bsbip(y)* (2.19)

and we impose that I'(y) Pr1s(Babp)* = —my, 0%, where I'(4) is the 4D chirality operator.
This indeed implies that each component 6 of the sum above is an eigenvector of T'(4) Dr13,
with a 4D mass eigenvalue |m,,|.” Imposing the 10D on-shell condition )6 = 0 we arrive
at the following 6D equation for the internal wavefunction of such eigenvector®

1
L) P — 8 (aT4 In Z) (14 2T gxtra) | 06D = Zl/zmw(BﬁeédD)* (2.20)

It is then easy to see that the 4D zero modes of the action (R.10) are given by
0dp = Z7%n_ for Tperan- = —1- (2.21a)

Oip = 2%, for Thxwats = 1+ (2.21b)

where 71 are constant 6D spinor modes with =+ chirality in the D7-brane extra dimensions.
In particular, if we consider a D7-brane extended along 01234578, then I'pytra = 4578 and
the fermionic zero modes will have the following internal wavefunctions

0.0 0,3
000 = Z38n___  0g) = 738 (2.22)

and
Ogp = 2780y 095 =278,y (2.23)

where the 6D fermionic basis {n—__,n4+4— ...} has been defined in Appendix [A.

"As recalled in the appendix, we consider the eigenvalues of {Tw PDr1.3, Ly @14} instead of {Pg1.s, Ppa}
because the former set of operators do commute and can hence be simultaneously diagonalized.

8Naively, this equation looks like it ignores the Majorana-Weyl nature of §. However, as discussed in
Sec 7 this is the equation of motion that we should use.



Hence, we find that the warp factor dependence of the open string fermionic wave-
function depends on the chirality of such fermion in the D-brane extra dimensions. Note
that this is because of the presence of Fj in the D7-brane Dirac action. Indeed, had we
considered an 8D Super Yang-Mills action instead of (2.10), no projector Pfg would have
appeared in (R.14) nor any gyt operator in (R.17). Hence, the zero mode solution would
have been 98 =zY 81 regardless of the eigenvalue of 7 under eyra, as found in L.

Note that (R-21)) implies a specific warp factor dependence on the 4D kinetic terms of
the D7-brane zero modes. These are obtained by inserting them into (R.16). For (R.214)
we find

SISO% = TD7eq>0/ d4a:94D$R1,394D/ dVE)1T4 ?71?7_ (2.24)
RL,3 T4

so we have to divide by mp7e®ovol(T?) to obtain a canonically normalized kinetic term.
Hence, for these zero modes nothing changes with respect to the unwarped case. On the
other hand, for (R.21H) we find

Sk — gy e®o d*z 04pPg1.304p / dvolps Znln, (2.25)
RL,3 T4

which involves the warped volume vol(T#). In the following we will see that both kinetic
terms are precisely the ones required to match those of the bosonic modes, as required by
supersyminetry.

2.2.2 Bosons

In order to compute the D7-brane bosonic wavefunctions in a flat warped background,
let us first analyze the degrees of freedom contained in the bosonic action (R.9). First
we have the 8D gauge boson A,, that enters the bosonic action via its field strength
F =dAin F = P[B]+2ndF. Second, we have the transverse oscillations of the D7-brane
worldvolume, that look like scalars from the 8D point of view, and that enter the bosonic
action via the pull-back of G, B and C. Indeed, let us consider a D7-brane extended
along the directions 01234578. One can describe a deformation of this worldvolume on
the transverse directions 69 via two scalars Y® and Y?, that depend on the worldvolume
coordinates z# u = 0,1,2,3 and y* a = 4,5,7,8. The pull-back of the metric in the
deformed D7-brane is given by

P[G]ag = Gag + Gij&lY@@W —I— aaYiGw + agYiGm (2 26)
= Gag + k*G;j0,0'0507 '
where a, f € {01234578} are worldvolume coordinates and i,j € {6,9} are transverse
coordinates. In the second line we have used the fact that in our background G;, = 0 and
redefined Y? = 27a’0? = ko' for later convenience. Clearly, the same expression applies
for any flat D7-brane in flat space.
In general, a similar expansion applies for the pull-back of the B-field, although as
before we are taking B = 0 and a constant dilaton & = &y. With these simplifications the



DBI action for the D7-brane reads

SEBL — 1y / d8ge‘1’\/ |det (P[G] + e=®/2F)| (2.27)

R 1 - , 1
= —TD7/ d*z dvolys e®0 {1 + —k:2GijGaﬁ8aalagJ’ + e_%—k‘zFaﬁFaﬁ + ... }
R1L3 T4 2 4
_ ~ 1 , o1
= [SDBI] — (8713k2) 1/ d4x/ dvolpa <—e%G,~jGO‘68a0’850] + —FagFo‘ﬁ—i-...)
RI,B T4 2 4
where we have used the formula

det (1+ M) =1+Tr (M)+ %[Tr (M)]? - %Tr (M?) + - (2.28)

and dropped the terms containing more than two derivatives. Also, in the last line of
(2.27) we have separated between a zero energy contribution to the D7-brane action and
the contribution coming from derivative terms, the latter being the relevant part when
computing the open string bosonic wavefunctions.

Besides the DBI action, the open string bosons enter the CS action of the D7-brane,
which for the background at hand reads

5S8 = TD7/P CIAFAF = L(2nk?)" /((JCXt LMY AFAF (2.20)

as all the other RR potentials besides Cy are turned off. We have also separated C}y into
internal and external components, with CCXt containing Cpie3 and Cjtnt the component
Couped Whose indices lie all along the extra dimensions.” Finally, since the term F A F
already contains two derivatives, we have neglected any term of the form d,0° arising from
expanding the pull-back of Cy as in (P.20).

As a result one can see that, up to two-derivative terms, the Chern-Simons action does
not contain the D7-brane geometric deformations ¢*. The 8D action of such scalar fields
then arises from the DBI expansion (R.27), and amounts to

1 - N ) ) . )
Sl — —3 (87T3k:2) b e®o /R1 \ diz - dvolra §s; (Zn‘“’@“al@,,a] + {}&”&8 Jlabcr”)
(2.30)
and so we obtain the following 8D equation of motion

Ograc’ + Z_1DT4O'i =0 (2.31)

where Upg1s = 00,0, and Uga = g,‘}.ﬂ@a(‘)b. Performing a KK expansion
o (", y") ch (2#)s (2.32)

and imposing the 4D Klein-Gordon equation Og1,s¢}, = m2(}, we arrive at the eigenmode
equation
Opas’, = —Zm2 s!, (2.33)

w

9Note that a background C4 component of the form C},qs would break 4D Poincaré invariance.

— 10 —



that again contains a warp factor dependence. Such warp factor is however irrelevant when
setting m,, = 0 and so we obtain that zero modes 36 may either have a constant or linear
dependence on the T? coordinates y®. By demanding that 36 is well-defined in T*?, that
is by imposing the periodicity conditions on si(y® + 1) = sj(y®), the linear solution is
discarded and we are left with a constant zero mode, that describes an overall translation
of the D7-brane in the i*" transverse coordinate.

Note that a trivial warp factor for scalar zero modes does not contradict our previous
results for fermions, where we obtained warped wavefunctions. Indeed, in a supersymmetric
setup like ours, the bosonic and fermionic wavefunctions should not necessarily match
because of the presence of the (warped) vielbein in the SUSY transformations. However,
the 4D effective kinetic terms should match. These are obtained by plugging 36 = const.
in (R.30), after which we obtain

1 _ ) . . o
sl — = (87r3k2) 1 e®o /R13 A gijn™ 0,C80, ¢ /1‘4 dvolps Zsjs)) (2.34)

which again involves a warped volume, like in (R.25). Hence we find that the geometric
zero modes of a D7-brane are related by supersymmetry with fermionic zero modes of the
form (R.211)).

Finally, by inserting the whole KK expansion (R.33) into the 8D action (R.3() and
imposing (R.33) one obtains the following 4D effective action

Sgeal — (8773/8 e®o Z / d*z gi; (0" 0,0, ¢, +m2¢LEl) / dvols Zsl,s),
(2.35)
where we have used that those wavefunctions with different 4D mass eigenvalue are orthog-
onal, in the sense that
/ dvolpa Zgijst, sj =0 it m2 # mi (2.36)
T4
as implied by the Sturm-Liouville problem eq.(2.33). Our primary concern is toward the

zero modes and henceforth, we will will not consider the KK modes.
Regarding the 8D gauge boson A,, the 8D action up to two derivatives reads

dvol
Sgauge _ 87T3k2 /d4 VO T4 [\/—FaﬁF af <C1nt MVPUFMVFPJ + Coxt abchachd)]

where € is a tensor density taking the values +1. As before «, 3 run over all D7-brane
indices, j,v, p, o over the external R'3 indices and a, b, ¢, d over the internal T? indices of
the D7-brane. The gauge boson can be split in terms of 4D Lorentz indices as Ay = (A,, Aq)
where the components A, give a 4D gauge boson while the components A, give scalars in
4D. The action contains a term that mixes the scalars with the 4D photon

(87%K%) ™ / dz [ dvolpd®A,0"A, (2.37)
R1.3 T4
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which comes from the F),, F** term after integrating by parts twice. In analogy with what
is sometimes done in RS (see e.g. [RZ]), this term can be gauged away by the addition of
an Rz gauge-fixing term to the action,

_ _ ~o1
S5, = — (87%K2) / d*z / dvolps — (9" A, + 6" A,)* (2.38)
R1.3 T4 2=

The form of this term is chosen to cancel the mixing term while preserving Lorentz invari-
ance. With this gauge choice, the 4, and A, components decouple. The action for A, in
the Rz gauge is

_ dvol 1 1
S]g};oton _ —(871'3]{72) 1 / d*x VOlp4 |: /§T4 <ZFHVFMV + 2_'_‘ (8”14#)2) (239)
R1,3 T4 =

Vg

1 1 .
+ 5 V QT4nuug%‘b4 aaA,uabAu - gczllnteuupUprFpo]

which results in the equation of motion

1
Orisd, — (1— =)0 0,0, A0 + Z'0Opa A, =0 (2.40)

—

where again, Og1.s and Ops are the unwarped Laplacians on R'3 and T* respectively.
Here we have used that §ps is constant, that Z, Cy are R'3-independent, and that Fpo =
0pAs — 0,4, is an exact two-form. Similarly, for the 4D Lorentz scalars A,, we obtain the
action

_ dvol — (1
SB/% — —(87T3k2) 1 / d433 VOlpa |: gT4 (_FabFab +
Rl,B T4 4

Vg

2o | [1]

(8“Aa)2>

1 1
+ 5\/ §T48uAn8MAn - gCZXteadeFachd]

(2.41)
from which we get the equation of motion in the Rz gauge
7-1/2
OrisA® + 2729, FP + 20°(Z27 120 Ay) + ——=€""0, (27 FLq) = 0 (2.42)
gr4

where we have made use of CX* = Z~! + const., as implied by our bulk supergravity

ansatz, and more precisely by (R]) and (2.9).
Let us now consider the following KK decomposition for the 4D gauge boson

Au(z,y) = ZA‘/‘; (") (y*) (2.43)
w
with the 4D wavefunction satisfying the massive Maxwell equation in the R= gauge
1
S (1 — :)17””8“8,,14;’ = miAjj (2.44)

—
—

So that in an specific Rz gauge, (R.4() amounts to

Opaa® = —Zm?2 a® (2.45)
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Hence, we recover the same spectrum of internal KK wavefunctions as for the transverse
scalar (£.33). In particular, we recover a constant zero mode a” and an effective kinetic
term given by the real part of the 4D gauge kinetic function

fpr = (8773/<;2)_1 dvolpa (Z TT‘* +icjlnt) (a0)2 (2.46)

T /g4

whose holomorphicity has been studied in [R3]. Notice that the kinetic terms again involve

a warped volume, so we conclude that the D7-brane 4D gaugino is also given by a fermionic
zero mode of the form (R.21H).
Similarly, one can decompose the R scalars arising from A, as

Ag (m,y) = Zw;" (:E“)WC‘:’ (y“) (2.47)

and impose the 4D on-shell condition Og13w® = m2w®. Then the 8D eom (R.43) becomes

OpF + 2'P20% (271 PP W) + 10y (Z27 Fy) = —Z'PmEWee (2.48)

gr4
where we have defined 4 = 0,W° — O,W = dW*. Note that if we chose the 4D Lorenz
gauge = = 0, in the case of the zero modes m,—¢ = 0 the above equation is equivalent to

d[Z71(1—xpa) F°] =0 (2.49)

where FO = %F dey“/\dyb is the zero-mode two-form. This implies that (1 —x*pa)F° = Zws,
where ws is a harmonic, anti-self-dual two-form in T*. Because FY is exact, the integral
of Zwy over any two-cycle of T# has to vanish, and so we deduce that wy = 0. Hence
FO = xpuF0 is a self-dual form and, again using the exactness of F?, we deduce that
FY = 0. This is solved by taking WY = const., like for the previous bosonic wavefunctions.
Finally, inserting such W2 in the 8D bosonic action we obtain the 4D effective action in
the 4D Lorenz gauge = =

1 — .
AV -3 (87k%) " /R 13d4$ abm 9,100, w) /T  dvolys wowy (2.50)

which only involves the unwarped T volume. This matches with the 4D kinetic terms
of their fermionic superpartners (R.214). Note that in imposing the 4D Lorenz gauge,
language there is still a residual gauge symmetry which in 8D language is A, — Ay — O A
where 9,A = 0. It is easy to see that this residual gauge symmetry is respected by the
entire 4D effective action and we can use it to set W0 to be constant.

Although the equations were solved in the 4D Lorenz gauge, W2 = const. and mg = 0
is a solution to (2.48) for any choice of =. However, for the KK modes, some of the
masses will depend on the choice of gauge. This is related to the fact that, except for the
zero mode, each of the vectors Ajj has a mass and so corresponds to the gauge boson of
a spontaneously broken gauge symmetry in the effective 4D language. The modes with
=Z-dependent masses correspond to Goldstone bosons that are eaten by KK vectors which
then become massive. Similarly, ay = const. is a zero mode of (R.44) for any choice of =.
Finally, one can again show that the KK modes are orthogonal with the zero modes as
they were for the position modulus.

— 13 -



RS D7

4D Field P q 4D Field P q
gauge boson 0 1/4 gauge boson/modulus 0 1
gaugino 3/8 gaugino/modulino 3/8

matter scalar (3—2¢)/8 (1— )2 Wilson line 0 0

matter fermion (2 —c¢)/4 Wilsonino -1/8

Table 1: Warp factor dependence for internal wavefunctions (p) and Kéhler metric (¢) in the RS
scenario and the D-brane construction consdered here. In RS, the gauge boson and gaugino come
from a 5D vector multiplet while the matter scalar and fermion come from a 5D hypermultiplet.
The 5D mass of the fermion in the hypermultiplet is ¢K with K the AdS curvature. The additional
degrees of freedom from these supermultiplets are projected out by the orbifold action is RS. The
wavefunctions in SUSY RS are worked out in [R4] (our conventions differ slightly from theirs in that
we take the ansatz for the 5D fermion to be Wp, g (2,4) = ¢ & () xr.& (y) while [R4] uses a power
of the warp factor in the decomposition.)

2.2.3 Summary and comparison to RS

In the previous subsections we have analyzed the zero modes of a D7 brane wrapping a
4-cycle in a warped compactification. One could see this as a step towards a string theory
realization of an extended supersymmetric RS scenario [P4]. In the standard WED setup,
4D fields result from the dimensional reduction of the zero modes of 5D fields propagating
in the bulk of AdS5.'° Unlike for flat space, the supersymmetry algebra in AdSs implies
that component fields have different 5D masses [R5]. In particular, the 4D gauge boson and
gaugino come from a 5D N = 1 vector supermultiplet. Gauge invariance requires that the
5D vector component is massless, while SUSY requires that the 5D gaugino has mass %K
where K = 1/R is the AdS curvature. Similarly, the matter fields result from the reduction
of a 5D hypermultiplet, the component fields of which each have a different mass.

The D7-brane construction here differs not only because of the existence of additional
spatial dimensions, but also because of the presence of additional background fields, namely
the RR potential Cy that couples to open string modes via the D7-brane CS and fermionic
action. This results into a different behavior of the internal wavefunctions when compared
to the analogous RS zero modes, as shown in Table [. For each field, the wavefunction can
be written as ZPn where 7 is a constant function with the appropriate Lorentz structure.
The kinetic terms for each 4D field can then be written schematically as

/ d*z6Do / dvolin Z97n (2.51)
R1:3 int

where ¢ is a 4D field with kinetic operator D, 7 is the corresponding constant internal
wavefunction and ‘int’ denotes the unwarped internal space (S'/Zy for RS or T? here).
Since both the D-brane construction considered here and the extended SUSY RS model
are supersymmetric, the 4D fields can be arranged into supermultiplets with the same value
of ¢ for each component field. These are also given in Table [I.

"These bulk RS models also involve an orbifold S'/Zs. The effect of the orbifold is however to project
out certain zero modes and does not effect the dependence on the warp factor of the surviving modes.
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2.2.4 More on the equation of motion

When deducing the fermionic equation of motion )’6 = 0 from the x-fixed action (.14,
we have apparently ignored the Majorana-Weyl nature of .11 Indeed, the MW condition
implies that in deriving the equation of motion, # and # cannot be varied independently.
As a consequence, if given the two actions

D7 / d%¢r*9,0  and ™7 / A*¢ 0T (0 — OuIn )0 (2.52)

with f an arbitrary function, then the resulting equation of motion is simply I'*9,6 = 0 in
both cases, solved by 6 = n with 1 a constant MW spinor. This is in clear contrast to the
case where 6 in (P.52) is a Weyl spinor, since then for the second action the eom solution
is given by 8 = fn. This could have been anticipated from the fact that the 10D MW
nature of # implies that 1'% %@ is non-vanishing only for n = 3,7. Hence, we have that
6(#1In £)0 = 0 and so, in the MW case, both actions in (R:53) are the same.

Going back to the fermionic action (R.1§), we have that

H_iﬁw@i = 9_:|: ( ZXt + ¢r914nt> 0+ (2.53)

where 1P is given by (B17) and 64 are 10D MW spinors with £1 eigenvalue under I'gytra,

just like those constructed from (R:21). Hence, by analogy with (2.52) one could naively

conclude that the actual zero mode equation is given by @;“tog » = 0, instead of lDw98 p=0.
A more careful analysis shows that this is not the case. Indeed,

55k = ;0 / d®¢ 501" 0 + 0150 = 2y e®? / d®¢ 50" 0 (2.54)
where we have used that
/ A8¢ Z= V40P 460 = / d8¢ 21450 <$T4 - %@w In Z> 9 (2.55)

and that @i In Z60 = —60@1aln ZH. Hence, from (£.54) we read that the equation of
motion is indeed )"0 = 0. Note that we would have obtained the same result if we had
treated A and 6 as independent fields.

While in principle one could apply the same kind of computation to deduce the equation
of motion for the more general backgrounds to be discussed below, let us instead follow the
results of RT]. There, using the action presented in [Rf] (similar to that in [20] to quadratic

order in fermions) the following equation of motion was deduced for an unmagnetized
D7-brane

pPo7 <ra1>£ + %0E> 0=0 (2.56)

which is again the equation found from (P.I0) if we naively ignore the MW nature of ©.

A subtle point in deriving (R.5§) is that a particular gauge choice in the fermionic
sector must be made. Indeed, in [R]]] the background superdiffeomorphisms were used to

1We would like to thank D. Simié¢ and L. Martucci for discussions related to this subsection.
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choose a supercoordinate system in which the D7-brane does not extend in the Grassmann-
odd directions of superspace. One may then wonder whether such fermionic gauge fixing
is compatible with the gauge fixing choices taken in the bosonic sector. One can check this
by comparing the SUSY transformations in 10D with those in 4D. In the absence of NS-NS
flux, the k-fixed SUSY transformations for the bosonic modes are [2(]

5" =€l (2.57a)
5Ay =€T,0 (2.57b)

where € is the 10D Killing spinor. We can compare these against the SUSY transformations
in 4D for a chiral multiplet (¢,%) and a vector multiplet (A, A),

dep =€ (2.58a)
6 A, =EA (2.58b)

where ¢ is a constant 4D spinor and hence independent of the warp factor. This implies that
when we dimensionally reduce (B-57), we will only recover the standard 4D transformations
(2.58) if the warp factor dependence of bosons and fermions follows a particular relation.
Indeed, if we take the zero modes A, and Y* to have no warp factor dependence as in
subsection 2:2.3, and if we notice that I'" ~ T'), ~ Z7 YA T, ~ ZY4 &~ Z7V8 then it is
easy to see that precisely the fermionic wavefunctions of subsection are those needed
to cancel the warp factor dependence in the r.h.s. of (R.57).

2.2.5 Alternative k-fixing

When analyzing the D7-brane fermionic action, the s-fixing choice (R.15) has the clear
advantage of expressing everything in terms of a conventional 10D spinor 6, in contrast to
the less familiar bispinor © that would appear in general. Taking other choices of k-fixing
may, however, provide their own vantage point. Indeed, we will show below that taking
a different r-fixing choice not only allows to rederive the results above, but also to better
understand the structure of D7-brane zero modes in a warped background.

More precisely, let us as before consider the action (R.10) in waped flat space, but now
we choose © such that PP7O = 0. The action (R.1() then reads

Sk — pype®o / d*z [ dvolp:« ©P" O (2.59)
R1.3 T4

where )" is now given by (B.14). Following a similar strategy as in subsection P.2.1], we
split the 10D Majorana-Weyl spinors 6; in (B.6) as
0 = xi+B*Xi xi = 0i4a®0ig (2.60)

where 6; 4 are 4D and 6; ¢ 6D Weyl spinors, all of negative chirality, and B = B4 ® B
is again the Majorana matrix ([A.2§). Because of the condition PP7© = 0 one can set
9174 = 9274 = 04p, so that we have

0
© = O4p ® Ogp + Bibip @ BiOi,  O¢p = (9“”) (2.61)
2,6
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where Ogp satisfies PE*"0qp = 0, with

1
pPxtra — 3 (I + TExtra ® 02) (2.62)

Decomposing (R.61]) as a sum of eigenstates under the (unwarped) 4D Dirac opera-
tor, and imposing F(4)$R1,3(B492’D)* = —m,, 0, and 'O = 0 leads to the 6D bispinor
equation

1
L4 [$T4 ~3 (Fran Z) (1 + 2 pxira @ 02) | OFp = Z%*my,(BsO%p)* (2.63)

which is analogous to (£.20). Finally, instead of (.21)) we obtain

0 Z-1/8 7N_ . ..
O¢p = 5 \in for Tpxtral— = —1— Wilsonini (2.64a)
Z3/8 :
@gD = W <Z::) for Tpgxtrafe = 7+ gaugino 4+ modulino (2.64b)

and so we recover the same warp factor dependence in terms of the extra-dimensional

chirality of the spinor. It is also easy to see that upon inserting such solutions into the

D7-brane action we recover the same 4D kinetic terms as in (.24) and (.25).
Interestingly, the above set of zero modes have a simple interpretation in the context

of 10D type IIB supergravity. Indeed, note that for this choice of k-fixing the D7-brane
zero modes can be rewritten as

©@=2z18=_  with PP¥=_=PpPPT=_ = (2.65a)
=2z, with PPz, =pPP2, =0 (2.65b)

and Z4 constant bispinors. This last expression can be easily deduced from (R.14) and the
fact that PY3 and

1
P2 = o (I£T) ®0) (2.66)

are equivalent when acting on type IIB Weyl spinors. As explained in the appendix [A],
PD3 is the projector that has to be inserted in the D3-brane fermionic action, in the same
sense that PP7 is inserted in (R.1]). This implies that 10D bispinors satisfying PP30 = 0
will enter the D3-brane action, while those satisfying Pf 30 = 0 will be projected out. For
instance, a D3-brane in flat 10D space will have precisely four 4D fermion zero modes of
the form © = const., PP3@ = 0. Such a D3-brane, which is a 1/2 BPS object, breaks
the amount of 4D supersymmetry as N' = 8 — AN = 4, so these four zero modes can be
interpreted as the four goldstini of the theory. Conversely, the constant bispinors satisfying
Pfr) 30 = 0 can be identified with the four generators of the A = 4 superalgebra surviving
the presence of the D3-brane.

If we now consider a warped background created by a backreacted D3-brane, we have
four Killing (bi)spinors generating the corresponding N' = 4 SUSY. Those Killing bispinors
e must satisfy Oe = Dye = D,e = 0, where O and Dy are given by (R.19). It is easy
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to see that the solution are of the form e = Z~1/3© where © is constant and, as argued
above, satisfies Pf_) 30 = 0. Introducing a D7-brane in this background will break the bulk
supersymmetry as N' = 4 — N = 2, so the D7-brane should develop two goldstino zero
modes. Now, by taking the s-fixing choice PP7© = 0 the Dirac action takes the simple
form (R.59), and so such goldstini amount to the pull-back of the above Killing spinors
into the D7-brane!? or, more precisely, those which are not projected out by the condition
PP70 = 0. These are precisely the zero modes in (B.65d), whose warp factor dependence
is thus to be expected.

Hence, we again see by supersymmetry arguments that such modes could never have a
warp factor dependence of the form Z1/®, which would only be allowed if we turned off the
RR flux F5 from our background. Indeed, in that case the background would not satisfy the
equations of motion, so no supersymmetry would be preserved and the arguments above
do not apply.

2.3 Warped Calabi-Yau

Let us now extend the above analysis to include warped backgrounds (B.§) with a non-
flat internal space Xg. We will however still consider a constant axio-dilaton field 7 =
Cy + ie~®0, which constrains X to be a Calabi-Yau manifold. This basically means that
the holonomy group of Xg must be contained in SU(3), which in turn guarantees that
there is a globally defined 6D spinor n°Y, invariant under the SU(3) holonomy group and
satisfying the equation

VornSY =0 (2.67)

where V¢ is the spinor covariant derivative constructed from the unwarped, Calabi-Yau
metric of X4, and where we have taken 1Y to be of negative chirality. If we choose Xg to
be of proper SU(3) holonomy, meaning that its holonomy group is contained in SU(3) but
not in any SU(2) subgroup of the latter, then the solution to (2.67) is unique, and the only
other covariantly constant spinor besides n°Y is its conjugate n* = (Bgn<")*.

As emphasized in the literature, these facts are crucial in specifying the supersymmetry
generators of not only unwarped, but also warped Calabi-Yau backgrounds. Indeed, it is
easy to see that for a warped Calabi-Yau the 10D gravitino and dilatino variation operators
are given by

O =0 (2.68a)
1
D, =0, — Zrmln ZP93 (2.68b)
1 1
Dy, =V + GOmmZ — Z@ln Zr,, P93 (2.68c¢)

where Pf?’ is again defined by (R.13). In terms of these operators the background super-
symmetry conditions read O¢ = D¢ = Dy,e = 0, where € a type 1IB bispinor like (.6). If

12Recall that )" is a linear combination of gravitino and dilatino operators, pulled-back into the D7-brane
worldvolume.
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we now take the ansatz

€1

€ = (6 ) €& = \ —I—B*/\;k i = Ei74D(:E) ®ei76D(y) (2.69)
2

with €;4p and €; 6p of negative chirality, it is easy to see that D, e = 0 imposes Pf?’e =0

and 9,¢ = 0, while Dy,e = 0 in addition sets €; sp proportional to Z —1/85SY . That is, our

warped Killing bispinor is of the form

e =ep®Z /B < ”%;) —iBjel, ® Z71/8 <”7§YY> (2.70)

m_ n T
where e4p is a constant 4D spinor that, upon compactification, will be identified with the
generator of N = 1 supersymmetry in Rb3. Note that in (R.70) we have set €1 4p = e24p =
€4p because such identification is enforced by the condition PJ??’E = 0. On the other hand,
if we take the unwarped limit Z — 1 then Pf?’e = 0 no longer needs to be imposed,
and so €14p and ez 4p are independent spinors that generate a 4D N = 2 superalgebra.
Thus we recover the fact that any source of warp factor breaks the Calabi-Yau N = 2
supersymmetry down to A = 1.

Let us now consider a D7-brane in this background. For simplicity, we will first take the
limit of constant warp factor Z — 1, while nevertheless imposing the condition Pf?’e =0
on the background Killing spinor. The worldvolume of such a D7-brane is then of the form
R13 x S;, where Sy is a four-cycle inside Xg. Being a dynamical object, our D7-brane will
tend to minimize its energy which, since we are assuming (F) = 0 and constant dilaton,
amounts to minimizing the volume of S4. In the context of Calabi-Yau manifolds there is a
well-known class of volume-minimizing objects, known as calibrated submanifolds, that are
easily characterized in terms of the globally defined 2 and 3-forms J and €2 present in any
Calabi-Yau. In particular, for a four-cycle Sy the calibration condition reads —%P [JAJ] =
dvols,, where PJ-] again stand for the pull-back into S4. Finally, this is equivalent to asking
that Sy is a complex submanifold of Xg, which is the assumption that we will take in the
following.'?

Given this setup, one may analyze which are the bosonic degrees of freedom of our D7-
brane and, in particular, which are the massless bosonic modes from a 4D perspective. The
answer turns out to be quite simple, and only depends on topological quantities of the four-
cycle Sy. First, from the 8D gauge boson Ay = (A,, A,) we obtain a 4D gauge boson A,
and several 4D scalars A, whose internal wavefunctions W, can be used to build up a 1-form
W = W,dé? in Sy. Using that F" = dW = 0 by assumption as well as the gauge freedom

13In fact, a complex four-cycle Sy satisfies either P[J?] = 2dvols, or —P[J?] = 2dvols,, and both
conditions define volume-minimizing objects in a Calabi-Yau. However, given our conventions in the D7-
brane action only P[J?] = —2dvols, will survive as a (generalized) calibration condition when we reintroduce
a warp factor satisfying Fi" = %sdZ. This choice of calibration in warped backgrounds matches the
conventions of @] and @], while the opposite choice P[J?] = 2dvols, is taken in @, @] Changing from
one choice to the other amounts to interchange the definitions of D7-brane vs. anti-D7-brane or, in terms
of the fermionic action, redefining PP7 « Pq? 7. This also explains why, in the next section, we consider a
self-dual worldvolume flux F = s, F for a BPS D7-brane, instead of the anti-self-dual choice taken in [@]
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of A,, one can identify the set of zero modes with the number of independent harmonic
1-forms in S4. We then obtain b;(Sy) real scalar fields from dimensionally reducing Ay, or
in other words h(19)(Sy) = b1(S4)/2 complex Wilson lines. This result applies in particular
to a flat D7-brane in flat space, where we have that by (T*) = 4.

In addition, 4D scalar zero modes may arise from infinitesimal geometric deformations
of the D7-brane internal dimensions 4 — &) inside the Calabi-Yau Xg. Such deformations
will be zero modes if the volume of the 4-cycle does not change, or otherwise said if S} is
still a complex submanifold. It can be shown that, if we describe such deformation via a
vector o transverse to Sy, then S} is complex only if 0 Qaped€? A dE€ is a harmonic (2,0)-
form in S4. The number of complex scalar geometric moduli is then given by the number of
independent harmonic (2,0)-forms of Sy, namely the topological number h(20)(S,). For a
flat D7-brane we have that 220 (T*) = 1, and that the complex zero mode is the transverse
translations of T* inside T©.

Regarding the fermionic zero modes, one should obtain the same degrees of freedom
as for bosonic zero modes, so that the 4D effective theory can be supersymmetric. This
is because the calibration condition —%P[J A J] = dvols, used above is equivalent to
Pf7e = 0, where ¢ is taken as in (R.7() with Z = 1, and which is the equation that a
D7-brane needs to satisfy in order to be a supersymmetric, BPS object in a Calabi-Yau.

Let us describe how these zero modes look like, again taking the unwarped limit Z — 1.
As in subsection P.2.5, to remove the spurious degrees of freedom we will take the s-fixing
choice PP7© =0 in (B.10), which will simplify our discussion below. Then, the zero modes
of this action must satisfy PP70 = 0 and @g1.360; = T°VSY0; = 0, a € S;. An obvious
choice for a zero mode would be to take © = ¢,'* since V$¥n$Y = 0. However, the BPS
condition Pf Te = 0 is equivalent to PP7¢ = €, and so this would-be fermionic zero mode
is projected out by k-fixing. Instead, following [B(] we can consider

0= twe—o ") o, e (5 (2.71)
e — 1 .
VR e P v g

with 64p constant and of negative 4D chirality. This bispinor is not only a D7-brane zero
mode but also an universal one, since it is present for any BPS D7-brane. As pointed out
in [B(], upon dimensional reduction we can identify such zero mode with the 4D gaugino.

The rest of fermionic zero modes can be constructed from (R.71) (see e.g. [9, BI]).
Indeed, by the basic properties of a Calabi-Yau, the covariantly constant spinor n°Y is
annihilated by any holomorphic I'-matrix defined on Xg, namely I',in®Y = inngy = 0.
Since Sy is a complex manifold, the same is also true for the I'-matrices living on Sj.
Hence all the spinors that can be created from 1Y are of the form

mw o= WaIl#n®  and  mm = ma D™ nCY (2.72)

HMGtrictly speaking, here e stands for the restriction of the spinor ¢, defined all over R»® x Xg to the
8D slice RY2 x S84 where the D7-brane is localized. As these worldvolume restrictions for spinors can be
understood from the context, we will not indicate them explicitly.
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with a,b € Sy. Finally, one can show that I'®VSY annihilates these spinors if and only if
W,dz® and mgpdz® A dz° are harmonic (1,0) and (2,0)-forms in Sy, respectively.’® This
clearly matches the scalar degrees of freedom obtained above and, in particular, we can
identify Ay with internal wavefunction for the Wilsonini and 6,,, with that for the modulini
of the theory. More precisely, since we need to impose that PP70© = 0, we have that such
fermion zero modes are

© = 04p ® Ogp + Bi;p ® BgOgp

1

BsOgp = 7 (Z?;]VT// > for Wilsonini (2.73a)
1

O¢p = 7 (ng > for modulini + gaugino (2.73b)

How do these zero modes change when we introduce back the warp factor? By taking

the operators (R.6§), it is easy to see that the D7-brane fermionic action is again of the

form (2.59), now with

pY = P TV + (aift In Z) (% - %Pf?’) (2.74)
Hence, the warped zero modes will again be given by (2.7])) and (2.73), but now multiplied
with a certain power of the warp factor which depends on how Pf?’ acts of them. In
particular, it is easy to see that for (R.71]) and (R.73H) we have that P{3© = ©, so that
the appropriate warp factor is given by Z3/8. On the other hand, for (.734d) we have that
Pf?’@ = 0, and so Wilsonino zero modes need to be multiplied by a warp factor Z /5.
Finally, one can check that if we define I'gytra = dV;6134 as the chirality operator of Sy
then Tgxtran® = 1Y and that the same is true for 7),,, while the Wilsonini ny, possess the
opposite extra-dimensional chirality. Thus, we see that the result (.64) derived for warped
flat space remains valid in warped Calabi-Yau compactifications. This will also imply that
again both the gaugino and modulini will have a 4D kinetic term of the form (£-5]) with
q = 1, while for the Wilsonini ¢ = 0 and nothing will change with respect to an unwarped
compactification.

Considering the bosons, one can also see that the results from warped flat space apply
to a warped Calabi-Yau, and so the wavefunctions for the gauge boson, Wilson lines and
moduli do not carry the warp factor. Indeed, note that in this way the 4D kinetic terms of
bosonic and fermionic superpartners will match, which is again a requirement of supersym-
metry. One can also perform an explicit derivation via an explicit dimensional reduction
for the D7-brane zero modes, along the lines of [RJ] for the gauge boson and of [[LT] for the
moduli.

B Notice that TeVSY £ W54, since VY is constructed from the metric in X6 and not that in S;. See [@]
for their precise relation. In the language of [@], going from Vg , to *vSY involves introducing a twist in
the Dirac operator.
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2.4 Adding background fluxes

Let us now add background fluxes Hs, F3 to our warped Calabi-Yau solution, while still
considering D7-branes with F = 0 in their worldvolume. We can do so by following the
discussion in [B0], adapted to our Einstein frame conventions of eq.(A:19). Indeed, one first
imposes the constraint G5 = Fy+ie~® Hy = —i*g G3, coming form the equations of motion
[ﬂ]. This implies that the operators @gf = Fgal +e~®H o3 defined in () can be written
as Qﬁgt =2%H O'3P$ 3 and so we have that the 10D gravitino and dilatino variations are

= e_%/QHngPf?’ (2.75a)

@
1 o3 1 o 03
D, (%—quéﬂnZPJr -3¢ L H303PC (2.75b)

®q

1 1 2 1
D,, =V + gOmInZ + Z«ﬁm Z0, P93 + % (ngmpf?’ + §FmH3P_O3> o3 (2.75¢)
from which we see that for a bispinor € of the form (R.7() we have that Oe = 0 and
Dye = Dpe =0 < Hs03¢ = 0 (2.76)

which, as expected, happens if and only if Hz is a (2,1)+(1, 2)-form [B3]. Without imposing
this latter condition, we can proceed to analyze the eigenmodes of the D7-brane fermionic
action. Using the same conventions as for the warped Calabi-Yau case, we have that the
Dirac operator is now given by

D” =97 TV + (&ﬁ“ In Z) (é - %Pf?’) + %e—%ﬂ (T*(H3)q — H3) P03 (2.77)
and so we find that the new Dirac operator contains a piece which is exactly like the
fluxless Dirac operator (R.74) plus a new piece proportional to the background flux Hj.
From this piece is where the flux-induced fermionic masses should arise from, following
the microscopic analysis of BJ]. From (B77) we see that in general the Wilsonini do not
get any mass term, as already expected from the analysis in 2g]. Regarding the gaugino
and the modulini, they can get a mass term from I'*(#3), — M5, which projects out the
components of Hz that have just one index on the D7-brane worldvolume. As a component
of Hs with all three indices in Sy is incompatible with our initial assumption (F) = 0, we
are left with only those components of H3 with two indices on Sy, which we denote by
H?Sz), contribute to fermionic mass terms. The Dirac operator can then be expressed as

X i 1 1 1 _

/R S L VL (aift In Z> <§ - §Pf3> +5¢ P0/2 ) pO3s, (2.78)
and so all those zero modes not lifted by the presence of the flux maintain the same warp
factor dependence as in the fluxless case. The warp factor dependence of modes lifted by
the flux is however more complicated, as the operator J gz) also depends on the warp factor.
See [[LI] for a discussion on these issues in terms of bosonic modes.

— 22 —



2.5 Extension to F-theory backgrounds

The results above can be further extended to warped F-theory backgrounds, with metric
(-9) and a nonconstant dilaton field ®. Again, the 10D gravitino and dilatino variations
can be deduced from ([A.19). If for simplicity we assume no background 3-form fluxes they

read
O =Pd — e® Flioy (2.79a)
D, =0, — ifuéﬂn ZpP93 (2.79b)
Dy =Vi6 + ieq)(Fl)m - %am InZ — i@ln Zr,, P93 (2.79¢)

where we have also allowed a non-trivial RR flux F; = Re dr, so that (.3) can be satisfied.
Translating the discussion in [B4] to our formalism, one can look for Killing bispinors e
satisfying D,e = D,,e = 0, again using the ansatz (R.69). We obtain a warped bispinor of

the form
77X6 Z77X6
e=eapez V8 'S | -iBiep, 0z 8 T (2.80)
i M+

6

where again ni( is a negative chirality 6D spinor, now satisfying'®

<vi§6 + ie‘b(ﬂ)m> n¥e =0 (2.81)
instead of (2.67). The fact that ni(ﬁ are no longer covariantly constant implies that the
holonomy group of X cannot be in SU(3), and so Xg cannot be a Calabi-Yau. However,
from (R.81)) one can see that the holonomy group is contained in U(3), which implies that
Xs is a complex, Kihler manifold. Hence, we can still introduce complex coordinates z°
and holomorphic I'-matrices such that, as before, Fzmi(6 = I'"p% = 0. One can then
check that the last supersymmetry condition Qe = 0 is equivalent to (2.3).

As before, the BPS condition for a D7-brane Pf7e = 0 will restrict S4 to be a com-
plex submanifold of Xg and, since Xg is Kahler, this will mean that &y is minimizing its
volume.'” Taking the s-fixing choice PP7© = 0 and the unwarped limit Z — 1, we will
have again a D7-brane fermionic action of the form (R.59), where now

x 1 i g
pY =97t e (Vf"' + Zeq)(Fl)a) - Eeq) (Froo —ide®) (2.82)
Because of the holomorphicity of the dilaton, the zero modes of this Dirac operator will

as before be of the form (R.71]) and (B:73), with the obvious replacement 1< — 7’6,
While (R.71]) will be a universal zero mode that corresponds to the D7-brane gaugino, the

Y5 This is the weak coupling and small Cy limit (that is, linearized) version of eq. (2.19) in [@]

"Notice that for a varying axio-dilaton 7 the physically relevant question is whether the D7-brane is
minimizing its energy, and more precisely its DBI + CS Lagrangian densities, rather than its volume. Of
course, energy minimization turns also to be true for such D7-branes, as expected from their BPSness.
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Wilsonino and modulino zero modes will have to solve a differential equation, that will
again relate them to the harmonic (1,0) and (2,0)-forms of Sy, respectively.!®

Finally, we can restore the warp factor dependence on the D7-brane fermionic action,
which amounts to add to (R.89) a piece of the form

(@L’“ In Z) (% - %Pf?’) (2.83)

exactly like in warped flat and Calabi-Yau spaces. As a result, we will again have that the
D7-brane gaugino and modulini depend on the warp factor as Z3/, while the Wilsonini do
as Z~1/8. The generalization to F-theory backgrounds with fluxes is then straightforward.

2.6 Effects on the Kahler potential

Just like for closed strings, one can interpret the effect of warping in the open string
wavefunctions as a modification of the 4D Kahler potential and gauge kinetic functions.
In order to properly interpret the effect of warping, we must convert our results to the 4D
Einstein frame, which differs from the 10D Einstein frame by a Weyl transformation of the

unwarped 4D metric
VO
Nuv — V_n/u/ (2.84)

W

where V), is the warped volume of the internal 6D space
Vi = / dvolx, Z (2.85)
X6

and V? is the fiducial volume of the unwarped Calabi-Yau. This Weyl transformation gives
a canonical 4D Einstein-Hilbert action with 4D gravitational constant

1 Yo

S 2.86
2;@2l 2/1%0 ( )

Let us now analyze the different open string metrics. The D7-brane gauge kinetic
function for the gauge boson was deduced for the toroidal case in (P.46). From the results
of Sec P.3, one can easily generalize this result to a D7-brane wrapping a 4-cycle Sy in a
warped Calabi-Yau as

Jor = (32 [ TS (5 e i (2.87)

Sy g&i

where gs, is the unwarped induced metric on &y, and dVE)Lg4 the corresponding volume
element. Since the gauge kinetic function is Weyl invariant, this is not modified when
moving to the 4D Einstein frame.

The position moduli and modulini combine to form N = 1 chiral supermultiplets, the
Kahler metric for which can be read from the kinetic term of the moduli, after converting

BSee [@] for a derivation of this spectrum using twisted Yang-Mills theory.
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it to the 4D Einstein frame.!” Let us first consider the case where the D7 is wrapping
T = (T2)Z. X (T2)j C TO, where each torus has a complex structure defined by the
holomorphic coordinate

LM ym+3 + 7_mym—|—6 (2.88)

Then, from (R.34), the kinetic term in the 4D Einstein frame for the zero mode (dropping
the KK index 0 on the 4D fields) in the warped toroidal case is

k2
min R1,3

Sl — d*z 0 9,(0, ¢* / dvolps €0 Zsgs? (914) 12 (2.89)
T4
where we have defined the complex field o0 = (o34 + Tko6+k) for i # k # j and extracted
the zero modes from the expansion (£.32). The Kéhler metric is then
k72

dvolpa €0 Zsosh () 1z (2.90)
Vw T4

If we now consider a D7-brane wrapping a 4-cycle 4 in an unwarped Calabi-Yau, the
D7-brane moduli can be expanded in a basis {s4} of complex deformations of Sy

o(z,y) = ¢* () 54 (y) + {51 () (2.91)

Following [B7], the Einstein frame kinetic term can then be written as
D7 / e®L 45 dCH A xgdCP (2.92)
RL,3

where
f54 maAmp

Lap= fX QCY A QCY (2.93)
6

and {m4} is a basis of harmonic (2, 0)-forms related to {s4} via ma = ¢5, Q2. As we have
seen, in the toroidal case the effect of warping introduces a warp factor in the integral over
the internal wavefunctions and requires a Weyl rescaling with the warped volume rather
than the unwarped one. The appropriate generalization for the warped Calabi-Yau case

amounts then to
fS4 ZmaNmg

fXg 7 QCY A QCY

Lag— L5 = (2.94)

Let us now try to combine these open string Kahler metrics with the kinetic terms in
the closed string sector, studied in [[[3, [[3, [[4]. For the axio-dilaton, the result from [1J] is

- d*x Ky 0M1 0.t (2.95)
R1.3
where t is the axio-dilaton zero-mode, and the Kéhler metric is given by

1

Kiy=—
"8 (Imr) 2 Vy

/ A (2.96)
X6

9The same philosophy has been applied in [E] to compute (unwarped) open string K&hler metrics in
the 10D SYM limit of type I theory, using the framework developed in [@]
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where Yj is the internal wavefunction for the zero mode. Since the equation of motion
admits a constant zero mode, the integral is proportional to the warped volume which is
canceled by the factor of Vy, appearing in the denominator. That is, the kinetic term for
the zero mode of the axio-dilaton is unaffected by the presence of warping. In the presence
of D7 branes, the D7 geometric moduli and the axio-dilaton combine into a single Kéahler
coordinate S. In the unwarped Calabi-Yau this combination is given by [B7]

S =t — KkirprL A CE (2.97)
and so the appropriate part of the Kéhler potential is
K 3 In[-i(S — §) — 2ik3mprL 4 5¢AC0] (2.98)

The kinetic term for ¢ is not modified by warping, which suggests that in the presence of
warping we should identify )
SY =t — Kitpr LY 5¢ACP (2.99)

and that the K&hler potential should be modified accordingly,
K 3 In[—i(S" — 8%) — 2inimpr LY 5¢ACP) (2.100)

This correctly reproduces the quadratic-order kinetic terms for the axio-dilaton and D7
deformation moduli.

Turning now to the Wilson line and Wilsonini, their Kéhler metric can be found from
the Wilson line action. In the &4 = TZ2 X T? case, the components of the 1-form potential
A in complex coordinates are

i

Aa = 21Im (1)

(7 Aars — Aass) (2.101)
for a = ¢,j. Converting (R.5() to the Einstein frame, we find that the action for the
massless modes is

k2 A ~ *
Sy = / d* G2t 8, 1w,0, W / dvolpa WO W (2.102)
/€4VW RL.3 T4

which finally gives the Kahler metric

k‘2
29 _ _
’%4ICab Y

v s dvolpa WO W gat, (2.103)

b
where the indices a and b are not summed over.
In the Calabi-Yau case, the Wilson lines of a D7 wrapping &4 can be expanded as

AdA® = wy (@) W (y) + w7 (2) T () (2.104)

where {W'} is a basis of harmonic (1,0)-forms on Ss. The kinetic term for the Wilson
lines in the unwarped case is [B7]

27 k?

1
V RL3

CI7pdwy A %41 7 (2.105)
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where V is the (unwarped) Calabi-Yau volume. If we now expand the Kéhler form in a
basis {wq} of harmonic 2-forms
JY =0, (2.106)

we can express CL/ as
J

C{ﬂ:/ Plwa A\WI AW (2.107)
Sy

In the warped toroidal case, the effect of the warping on the Wilson line kinetic terms is
to simply replace the volume with the warped volume. Again, from Sec P.3, this result is
independent of the shape of unwarped internal geometry so that in the warped Calabi-Yau
case, the kinetic term for the Wilson lines is

9 2 _
2 [ e e, A ydi (2.108)
Vi RL3

where now the warped volume V,, appears in the denominator.

One may again wonder how these open string modes combine with the closed string
ones in the full Kahler potential. In analogy with the results for the unwarped Calabi-Yau
case, we would now expect that Wilson lines combine with the Kéhler moduli. However, as
pointed out in [B7] it is not an easy problem to derive the Kihler metrics from the general
form of the Kahler potential. Let us instead consider the particular case of Xg = T,
Sy = (T2) X (Tz)j. In the unwarped case, the Kéhler potential can be written as

K> —Wn[Ty +Ta] — [T} + T; — 6ixmork®Cl wrwy] (2.109)
— In [T] + Tj - 6iH2TD7k2C]ij]@j]
where T, are a combination of Kéhler moduli and D7’s Wilson lines. Indeed,

_ 3 =
To+Ta = 5Ka+ 6ik3p7k*CL W 7 (2.110)

where I, control the the volume of the 4-cycles of the compactification. More precisely, if

(]

we express an unwarped Calabi-Yau volume in terms of the v* defined in (2.106),
1
V=< g 0000 (2.111)

then we have that, in general,
Ko = Togv 07 (2.112)

and in particular this expression applies for the Kihler moduli of T®.
Expanding (B.109) up to second order in the D7-brane Wilson lines w! we obtain that
their unwarped Kéahler metrics are given by

0 o 3icL7
KiTDTk? D 2 wiw (2.113)

Q

Comparing to our result (R.10§), it is easy to see that a simple generalization that would
reproduce the Wilson line warped metric is to replace

I3l W 3 . 7
To+To — TY+T, = 3 &vaﬁzﬂ + 6ikitprk?CL wrw 7 (2.114)
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in (£.109). Here we have defined the warped intersection product?’

apy = / Zwa Nwg A wey (2.115)
Xe
that defines the warped volume as
1
Ve = Ezgﬁwv%ﬁm (2.116)

One may then wonder whether this way of writing the warped Ké&hler potential is a
particular feature of toroidal-like compactifications. A possible caveat is that the modifi-
cation (R.114) is clearly different from the modification of the gauge kinetic function (.87)
and that both quantities, 7,y and fp7, should have a simple dependence on the Kahler
moduli of the compactification.?! Indeed, the warp factor of the gauge kinetic function is
integrated only over Sy, while the warp factor in the definition of 7)) is integrated over the
entire internal space. In fact, both definitions of warped volume can be put in the same
form

1
VO (S4) = —5 | EAJTAJ (2.117)
2 Jx,

where [¢] is Poincaré dual to [Sy], and J = ZY2J° is the warped Kihler form. Because
J? is not closed, (R.117) depends on the representative ¢ € [¢]. In particular, for T £ is
the harmonic representative, while for fpy £ should have §-function support on Sy.

Despite this discrepancy there is not necessarily a contradiction between (2.87) and
our definition of 7). For instance, if one takes the definition of Kihler moduli given in [Bg],
that in the present context translates into the shift JAJ — JAJ+t%ws], [wa] € H>%(Xs),
we see that T)) and fpy have exactly the same dependence on ¢, which suggest that they
could differ by a holomorphic function of the compactification moduli. Indeed, for the case
of a single Kéhler modulus the results in R3] (see also [Bd]) show that one can express the
warped volume of Sy as

Vs, = /S Zdvols, = TY + T, + [¢ + P (2.118)
4

where ¢ is a holomorphic function of D-brane position moduli. Hence, the real part of ¢
is precisely the difference between both choices of ¢ in (R.117). It would be interesting to
try to extend (R.11§) to compactifications with several Kéhler moduli.

In fact, compactifications with one Kéhler modulus provide a further test to the above
definition of warped Kéhler potential. There, the unwarped Kihler potential reads [B7]

—3In[T + Ta — 6ikamprk*Ch w w5] (2.119)

where the single four-cycle Sy is wrapped by the D7 brane. According to our prescription
(R.114), in the warped case this should be modified to

—3In[TN + T\ — 6iramprk*Cy’ wrw;] (2.120)
*°An alternative possibility would have been to set I3z, = (Vw/V)Zapy, although this would imply a

very mild modification of the Kahler potential with respect to the unwarped case.
21Let us stress out that we are not identifying 7. with the Kéhler moduli of a warped compactification,
but rather with the quantities that encode their appearance in the Kéahler potential.
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and, in the absence of a D7 brane where w; = 0, this becomes
—3In[Ty +Ty) (2.121)

Note that this reproduces is the results of [[[4]. Indeed, from our definition of T} we have
that, in the absence of D7-branes,

w 3 w
tA = ZIAAA(UA)z (2122)

where t} is the real part of T){'. This real part of the universal Kahler modulus can be
identified as an RY3-dependent shift ¢ in the warp factor [, [3, [4)*

Z (z,y) = Zo(y) + c(=) (2.123)
Integrating this equation over Xg gives an expression for the fluctuating warped volume
Vi (2) =V +c(z)V (2.124)

As shown in [[[4], the universal Kéhler modulus is orthogonal to the other metric fluctua-
tions so we can freeze the value of V to the fiducial value V°. With this identification,

N =T 4 cTagy (2.125)
where
Io%)y = /)(6 Zowa Nwg A wy (2.126)

While in general the warp factor may provide significant corrections to Z,g,, in the case
of a single Kéahler modulus A the correction is simply a rescaling with the warped volume

VO
W W
Ixia = Ianagsg (2.127)
where V0 is again the fiducial volume of the unwarped Calabi-Yau. This allows us to write
w W .3 2
t = (c+ E)ZIAAA(»UA) (2.128)
so that the warping correction to the single Kéhler modulus is an additive shift proportional
to 0
V.
o (2.129)

And so, up to a multiplicative constant, we recover the result of ], where all warping
corrections to the Kéahler potential for the universal Kéhler modulus were summarized in
an additive shift for the latter. We find it quite amusing that, at least in the case of a
single Kéhler modulus, such result can be reproduced by means of a DBI analysis. It
would be interesting to see if the same philosophy can be applied to compactifications with
several Kahler moduli, as well as to Kéhler potentials that involve Kahler moduli beyond
the universal one.

22 As explained in [E, @, ], compensators are need to be added for consistency with the equations of
motion for the closed string fluctuations. These are however unimportant for the discussion here since to
quadratic order in fluctuations, the open string kinetic terms depend only on the background values of the
closed string moduli.
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2.7 A simple warped model

Let us now apply the above results to a model based on D7-branes which, besides a non-
trivial warp factor, allows for semi-realistic features like 4D chiral fermions and Yukawa
couplings. This will not only allow us to show the effects that warping can have on the 4D
effective theory, but also to check that our results for the Kéhler potential are compatible
with the computation of physical quantities like Yukawa coupling. A simple way of con-
structing such model is to consider unmagnetized D7-branes in toroidal orbifolds. That is,
we consider an internal manifold of the form Xg = T®/T', where T is a discrete symmetry
group of T, and place a stack of N D7-branes wrapping a T in the covering space. For
trivial warp factor the phenomenological features of such models have been analyzed in
). We would now like to see how 4D quantities change after introducing a warp factor.

Let us then illustrate the warping effects by focusing in a particular toroidal model,
namely the Pati-Salam Z, toroidal orbifold model considered in [B3], Sec 9.1. In this model,
the internal space is locally X = T6/Z4 where the Z4 action is

e27rz/4

0: (2’1,22,2’3) — ( 21,e27ri/4zg,em23) (2.130)

and the T has been factorized into three T?. The gauge group and matter arise from a
stack of eight D7-branes wrapping (T?); x (T?), and located at an orbifold fixed point
on the third torus. The orbifold action on the gauge degrees of freedom break the initial
gauge group U(8) — U(4) x U(2)r, x U(2)g, producing at the same time two quark/lepton
generations F? = (4,2,1), F}j2 = (4,1,2) 4,5 = 1,2, a Higgs multiplet H = (1,2,2), and
Yukawa couplings €;; H FiF}]2 The latter can be understood as arising from orbifolding and
dimensionally reducing of the 8D SYM term

/d8§\/§ O Ay, 0 (2.131)

present in the initial U(8) D7-brane theory.?3

When introducing the warp factor Z, the open string wavefunctions of this model will
no longer be constant but develop a warp factor dependence following the analysis of Sec
R.3. In particular, Fy, p arise from (orbifolded) U(8) Wilson line multiplets, whereas H
arises from the transverse modulus 4+ modulino. By Table [l, we have that the warp factor
dependence of their internal wavefunctions is given by

H = (h,%g)ip — (2°,2°%%), F = (f,4r)ap — (2°,2718). (2.132)

These wavefunctions must be inserted in the D7-brane fermionic action, where an analogous

term to (R.131]) gives

Spys = o7 / d*¢/ge™eij (0T Alp, O, + OuT Al 07, +hc.) (2.133)

Z1n fact, not all Yukawa couplings can be understood like this. In unwarped backgrounds without fluxes,
a way to guess the missing Yukawas is to start from a 10D SYM action and reduce it to 8D in order to

produce couplings beyond ()7 as in [@] We will however not discuss such approach, as () will be
enough for the purposes of this subsection.
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and where both T-matrices contain a factor of Z=1/4. It is then easy to see that the full
warp factor dependence cancels in the integral, performed upon dimensional reduction, and
that one is left with an 4D effective action of the form

Yuk

16 - . . ~
SD? = Tp7 e®o (grll‘14)1/2 /1 ) d4z fz¢H¢fVR€ij / ) dvolpa WFLWLUFR + ... (2.134)
R ) T

@
Vi
where s and n are constant bosonic and fermionic internal wavefunctions, respectively, and
where we have converted all quantities to the 4D Einstein frame. From Sec P.J we know

that the normalization constants of such wavefunctions are

—-1/2
N, = <eq’°o/9/2V;3/2 4dv61T4Z> / (2.135)
; -1/2
Ny, = <eq’0a’9/2v;3/2 / 4dv61T4> (2.136)
B B —-1/2
NWFL _ <k2a/3v‘;lgil[‘14 " dVE)lT4> (2137)

and so, by imposing that our 4D fields are canonically normalized, we obtain the physical
Yukawa coupling

(27)**k
YHFLFRp = N 12 ~ 9p7 (2.138)
(s dvolps 2)
that should be compared to the standard supergravity formula
yig = €/ (’Cﬁlcjjlckfg)_l/zwijk (2.139)

and the results from subsection B.§. Indeed, we see that by setting Wgp, p, = 1 and using

eqgs.(2:90) and (B-103), as well as K = (B.100) + (R.109), we can derive (2.13§).

As emphasized in [, [, [[J], compensators are needed for consistency of the equations

of motion for the closed string fluctuations, and thus the field space metrics for the closed
string sector are in general highly complex. However, in comparing (2.13§) and (2.139), we
do not need to evaluate derivatives of the Kéhler potential K with respect to closed string
moduli and so the issue of compensators do not concern us here.

In this particular model, the Higgs field propagates throughout the worldvolume of
the D7. In contrast, in the Randall-Sundrum scenario the Higgs is confined to or near the
IR end of the geometry. As discussed in section R.2.3, the 5D masses of the bulk fermions
(except for the gaugino) is a free parameter, though is related to the masses of the bulk
scalars. The mass myg = cK controls the profile of the fermion in the bulk, with modes
for ¢ > % being localized toward the IR and modes with ¢ < % being localized towards the
UV [[[3]. This localization controls the overlap with the Higgs and hence the 4D Yukawa
couplings depend sensitively on ¢ so that this mechanism provides a model of the fermion
mass hierarchy. However, the bosonic and fermionic actions for D-branes do not have such
mass terms. Instead, the localization can be controlled by either using gauge instantons
(as suggested in [[I7]) or by localizing the matter fermions on intersections of D7 branes
(as used for example in [13]).
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3. Magnetized D7-branes

3.1 Allowing a worldvolume flux

As we have seen, D7-branes in warped backgrounds of the form (P.§) provide a wealth of
gauge theories with warped internal wavefunctions. This is however far from being the most
general possibility when producing such theories. Indeed, as discussed before the D7-brane
action depends on a generalized field strength F = P[B] + 2w’ F living on the D7-brane
worldvolume R x Sy, which contains the 8D gauge boson degrees of freedom via the usual
relation /' = dA. Now, instead of consider a vanishing vev for F as in the previous section,
one may allow a nontrivial vev for such worldvolume flux. Clearly this does not spoil 4D
Poincaré invariance if we choose the indices of (F) to be along Sy and, in fact, this is an
essential ingredient to obtain 4D chiral fermions via D7-brane intersections. Finally, such
“magnetized” D7-brane will be a stable BPS object if, in addition to demanding that Sy
is volume minimizing we impose that [, Bg]

F = x5, F (3.1)

where here and henceforth we omit the brackets to refer to the vev of 7. That is, magnetized
D7-branes in warped backgrounds of the form (R.§) are BPS if F is a self-dual 2-form of
their internal dimensions S;.2*

It is easy to see that adding a non-trivial F will change the zero mode equations for
both fermions and bosons. In particular, the Einstein frame fermionic action is not longer

of the form (R.10), but rather (see [RQ] and Appendix [A])
er A “1\a 1
Sfer =y / d¢e®/|det M|OPPT(F) (rﬂpu + (M~hHabT, (Db+ grbo» 0 (3.2)

where as before ; stands for a R index and a, b for indices in S;. The worldvolume flux
dependence enters via the operators?

M =P[G)+e *?F (3.3a)
M =P[G] + e ¥ Fos (3.3b)
1
D7 _ F
det P[G] ~ 3 42
%) =T || (1= F @oss 3 (8.3

that clearly reduce to those in (2.I() when taking 7 — 0. Note that terms that do not
appear with a tensor product implicitly act as the identity on the bispinor space. Finally,

one can show that PP7(F) are still projectors, and that (B.1) is equivalent to impose the
usual BPS condition PP7(F)e = 0, with € given by the Killing spinor (R.70) [B4, S, R7].

*More precisely, F = =+ *s, F if 2dvols, = FP[J?] (see footnote E), and the choice taken in [@] was
such that a BPS D7-brane should host an anti-self-dual flux . Our conventions match those of @], where
the derivation of the D7 BPS conditions were also carried out for more general supergravity backgrounds.

25The operator M corresponds to M in [@] and, while the definition here and in @] slightly differ, they
are equivalent. For an expression of the fermionic action closer to that in [@] see the appendix.
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3.2 Warped flat space

Paralleling our previous discussion for unmagnetized D7-branes, let us first consider the
case where our D7-brane wraps a conformally flat four-cycle Sy = T* inside the warped
internal manifold Xg = T% which is also conformally flat, and so that the metric on the
D7-brane worldvolume is of the form (R.I1]). Let us further simplify this situation by taking

a factorizable setup where Sy = (T?); x (T?); and
P[J] = dvoly2), + dvol(pz) (3.4a)

(3.4b)

j

F =b dVE)l(Tz)i + bj dVZ)l(TQ)j
where as before dvolp: = Z/ 2dVE)sz stand for warped and unwarped volume elements. It
is then easy to see that with the choice dvols, = —dvol(t2), A dvol(t2), the BPS condition
(B-) is equivalent to F A P[J] = 0, which is solved for b = b; = —b;. If in addition we
consider a vanishing background B-field, then F = 27d/ f, where f is a U(1) field strength

of the form

f=2mm; % + 2mm; % (3.5)
VOI(T2)Z. VOI(T2)J.

and where, because of Dirac’s charge quantization, m;, m; € Z. The BPS conditions above

then translate into the more familiar condition m;/ VE)I(TQ)Z. +m;/ VE)I(TQ)J. = 0 used in the

magnetized D7-brane literature.

3.2.1 Fermions

Following the steps taken in subsection P.2.1], we have that the dilatino and gravitino
operators entering the fermionic action are again given by (R.12)). Hence, plugging them
in (B.J) and taking the s-fixing gauge (B.1§), one finds a Dirac action of the form (2.1€),
where now

det gT4 wo_ ext —1\ab 1 1 —1\ba
Mﬁ =@y + (Mpi)"Tal O 88ban +4A( F)Textra(Mpi )" TadyIn Z

1 1,
-5 <1 — Z(MTj) brarb> HnZ

1 1
+ §A(—~7:)FExtra (1 - Z(M;})“FJ;,) PlnZ (3.6)

where

B det gpa —d0/2 3 gy 2 . I —®o/2
AF) = \/m(ﬂ—l-e f—l—§€ F Mrs = gpa +2mc’e f (3.7

and g4 = Z'/2§pa stands for the warped T* metric.
Using now the factorized ansatz T4 = (T?); x (T?); and (B.4), it is easy to see that

M Mz 0 3.8
T4 - 0 MT2 ( * a)
J

1 Rem 0 my
Mo =472d’ | ZV2R? ' —®o/2 ‘ 3.8b
T3 e ‘\ Rer; |ri|? te —m; 0 (3.8b)
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In terms of the complex coordinates 2™ = y™+3 + 7,,5™*6 this reads

0 1+4:iB;

1
Mys = =(4n%a’) ZV/2 R?
7 = jlma) \1-iB;, 0

) with B; = Z~ Y2~ %0/2p, (3.9)

Then, also in this complex basis?%

1 I— iBiFTg I— iBjFTZ
~(M)™To Iy = : ’ 3.10
3 (Mps)"Taly T1iBE  [11iB,P (3.10)
where I';e = —¢ dv/)l(Tz)i is the chirality matrix for T?. Similarly, we have
I+iB;I I+ iB;I'me b b
AF) = iy RN IR (3.11)

1+iB;]  [1+iB;]|

where we have defined ¢; = arctan B;. Notice that, unlike in the usual magnetized D-brane
literature, ¢; is not a constant angle, having a non-trivial dependence on the warp factor.
Finally we can express I'gxtra = dvb134 = FT?FT?

We can now implement the dimensional reduction scheme of subsection R.2.1], taking
again the ansitze (2.1§) and (R.19). In order to find the eigenmodes of the Dirac operator,
one first notices that given the setup above the first line of (B.6)) can be written as

ox _ 1
4 (Mph)™T, |0y — 510 Z (1+2M(=F)kxira) (3.12)

In addition, considering the case where the worldvolume flux F satisfies the BPS conditions
Bi = —Bj < ¢i+¢; =0, it is easy to see that the second plus third lines of (B.§) vanish
identically. Hence, we find a 6D internal eigenmode equation similar to (B.20) where the
main differences come from the substitution g;} — M,;} and the insertion of A(—F). In
particular, the zero mode equation amounts to?”

1
0 — 50 InZ (1 + 2A(—F)TExtra) |08 = O (3.13)

whose solutions are
0 7-1/8
Osp = mn_ for Textran— = —7_ Wilsonini (3.14a)

00, = Z%8n,  for Tparamny = 14 gaugino + modulino (3.14b)

where 14 are again constant 6D spinor modes with + chirality in the D7-brane extra
dimensions. In particular, for a D7-brane extended along 01234578, we have that Sy =
(T?); x (T?)y C (T?); x (T?)y x (T?)3 = X and so the fermionic zero modes will have
the following internal wavefunctions

Oop = Z%5n___ g = 23y (3.15)

26Here 4, j denote particular T?’s and so there are no sums implicit in this kind of expressions.
2TThe same discussion in Sec applies here as well.
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and 1/8 7-1/8
zZ~
0,1 _ 0,2 _
Osp = 1—iB N—++ Osp = 1—|—ZB +—+ (3.16)

where B = B; = —Bs, and again using the 6D fermionic basis defined in Appendix [].

Notice that the new Wilsonini wavefunctions do not amount to a simple constant
rescaling, as the ‘density of wordvolume flux’ B depends nontrivially on the warp factor.
This dependence is however the one needed to cancel all warp factor dependence in the
Wilsonini 4D kinetic terms. Indeed, by inserting (B.144)) into the k-fixed fermionic action
(2.16) we obtain again

SD? = 7'D7ecI> / d4a;04D¢’9R1,304D/ dVE)szl T]T_T]_ (317)
RL3 T4

where we have taken into account the new volume factor appearing in the r.h.s of (B.§),

which in the BPS case reads
det grm4 . 2
—7= = |1+1¢B 1
\/ det Mra |1+ 3B (3.18)

and where we are again expressing everything in terms of complex coordinates, as in (B.9).
Regarding the gaugino and the modulino, the above factor does not cancel and so we have
a kinetic term of the form

S]ge7r = 7 e®0 / d4$§4D$R1,394D/ dVE)IT4 |Zl/2 —I—ie_%/2b|277177+ (3.19)
RL3 T4

that generalizes that obtained in (R.25). As we will now see, such results can be rederived
by analyzing the D7-brane bosonic wavefunctions.

3.2.2 Bosons

In the presence of a world-volume flux, the 8D gauge boson A, enters into the D7-brane
action through the field strength F = P[B] + 27d/f + 27’ F where f = (F) is the
background field strength and F = dA. The transverse oscillations again enter through
the pullback of the metric as in (P.26). In the case of B = 0 and constant dilaton ® = ®,
the action for the D7-brane up to quadratic in fluctuations order becomes

Sbos _ [SD’?] + Sscal + Sphoton (320&)

where the action for the position moduli is
_ 1 N o
Sl = — (832 ! / a*¢\/[det M] 3e™G (M) D ,0° 050" (3.20b)

and the action for the 8d gauge boson is
sgree = - eni) ™ [ e Vit () R)" 4 ) 0 Fus,
|:Clnt uupaijFpJ + szt abch ch:|

1
— 1_6CoeadefabfcdeuVJpFquop } (3.20(:)
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where we have again used (R.2§) and have separated the action between a zero energy part
and a part with derivatives. In general, there are three more contributions to the action
up to quadratic order including a term that is linear in the field strength,

(873k%) 7" / d¢ (™27 \/[det Mopa | (Mp)) "k Fy +; ot f o Fy)  (3.21)

an interaction between the position moduli and the 8D gauge boson,

%(87‘(31{72) /d8£< ( <I>o/2Z \/W( )[cd]) I;(a Oext) abcdfab> ch' (3‘22)

and a potential term for the position moduli

—(8n%k?) / d8§( 0i0; + 1010303 ) (e®°Z71/|det Mpa| — éczxteabcd favfea) (3.23)

N —

However, when the world-volume flux is self-dual, all three of these contributions vanish
up to surface terms. This is most easily seen by inserting the fluxes explicitly.
Expanding out the action for the position moduli,

1 _ o u o
Spt = —5 (87°k) feo / d®¢ /|det M| <Z77‘“’3u02(9,/0j + 22 (M) "’aaalabaﬂ>
(3.24)
we obtain the 8D equation of motion

Ogiso’ + [det Mpa| Y2 0,[ 272 /[det Mopa | (M}) “P0y0'] = 0 (3.25)

As in the unmagnetized case (R.32), performing a KK expansion gives the eigenmode

0, [Z7V/%\/[det Mpa] (M) ™ 0ys) = —\/[det Mpam?s (3.26)

This depends on the warp factor and the magnetic flux, but for the massless modes, the

equation

only well-defined solution is s} = const. The resulting 4D kinetic term for the zero mode
is

Sscal = (8713k‘2 / d* :ngn“’jaug]@ (0/ dvolpa e%‘Zl/2+ze %/2()‘2 p ] (3.27)

which again matches with kinetic term for the modulino (B.19).
Also as in the unmagnetized case, the action contains an interaction piece between the
4D photon A, and the 4D Wilson lines A, which, after integrating by parts twice, is

G / 3¢ 0, (2712 /et Mpa] (M) “n™ 4,0, A,) (3.28)

In analogy with the unmagnetized case, this can be gauged away by considering the class
of R= gauges with gauge-fixing term

S5, = (87°k?) ! / d*¢ /|det M|G=(A) (3.29)
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where we take

2
G=(A) = % [aﬂAM + 222 |det Mopa| ™2 0, (v/]det Mpa] (Z27/2M5H) ™ 45) | (3.30)

The form of the gauge fixing is chosen so that the equations of motion for A, decouple from
the equations of motion for A, for any value of = and so that it reduces to gauge-fixing
term in the unmagnetized case (R.3§). For A,,, the equation of motion in the Rz gauge is

1 a
OrisA, — <1 - E) 0,0, A + |det Mpa| Y2 9,(2712/|det M| (M) 0,4,) = 0
(3.31)
while for A,, the equation is

ARENY |det Ml (Mfi) (ab)DRLsAb

1 c —1\[a abe _
+ 0, [Z_1\/|det M| <M;bdecd - §(M,;41)[ A (ph! b]ch>] + el (771 FLy)

+E [Z_1/2\/7|det M| (M) P 0y [|det Mopa|™Y/2 0,(Z27Y/2/[det M| (Mgh) D 44) | = 0
(3.32)

where we have defined

S () = Sy () (339

Mabcd —
2

Note that the presence of warping and background world-volume flux together has made
the equation of motion rather complex, even in the case of flat space. With this gauge
choice, the KK modes for the 4D gauge boson satisfy

0a(v/]det Mpa | 22 (Mph) ™ 9,0%) = —/|det Mopa|mZa® (3.34)

so that the zero mode a” has a constant profile on the internal dimensions. This gives a
gauge kinetic function

dvolpa
T4 /g4
The real part matches the kinetic term for the gaugino (R.2§) and in the absence of warping

agrees with that found in, e.g., [i5, fiq].
The equation of motion for the Wilson lines simplify further in the 4D Lorenz gauge

2

for = (87%%2) ! (|22 + e~ P02 4 i(CI — Cob?) (o) (3.35)

= = 0 though even then the equation of motion is difficult to solve in general. However, if
we focus on the zero-modes which satisfy

Ogrsw? =0 (3.36)

then the equation of motion for the internal profiles becomes

B [Z_lx/|det MT4|< chad [0 —%(M;j)[“” (M;j)[ab}Ffdﬂ +ed, (271 FY) = 0 (3.37)
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In the unmagnetized case, we deduced that the solution satisfied F L?b = 0 and this is clearly

a solution in the magnetized case as well. This again determines the solution to be of the

form w? = const. up to the residual gauge freedom A, — A, — 9,A where O\ = 0. This

residual freedom will not effect the 4D effective action,

1 _ ~ a
Syt = ——(87T3k:2) ! d*z n" 8,w20,w}) /1‘4 dvolpa |Z1/2+ie_¢°/2b|22_1/2 (M,l_,i)( b)WaOWbO

2 Rl,B
(3.38)
For = # 0, there is an additional term in the equation of motion for the internal wavefunc-
tion W2 that depends on =

= [2—1/2\/ [det Mepa] (Mgh) Y0y [|det Mopa|™Y/2 0,272 /|det Mpa| (Mg}) P Ay)
(3.39)
However, when the world-volume flux is self-dual or anti-self-dual, the combination

2712 /|det Mga] (Mgh)“? (3.40)

is constant implying that A, = const. is still a solution for arbitrary =. After complexifying
the Wilson lines (2.101)) the kinetic term matches the kinetic term for the Wilsonini (B.17)
for any choice of Rz gauge.

3.3 More general warped backgrounds

Let us now consider magnetized D7-branes in more general warped backgrounds. Just as
in the unmagnetized case, it proves useful to compute the D7-brane wavefunctions via an
alternative choice of k-fixing. Let us first do so for warped flat space. In this case, and
before any k-fixing, the operator in (B.3) between © and © is given by

POT(F) |95 + (Mpi)eT, (ab + oz (L1 Pf?»)ﬂ
— PPT(F) (1= H(MZh)*Taly) §1n ZPY?

just like the last two lines of (B.4), the second line of (B.41]) vanishes when we impose the
BPS condition on the worldvolume flux F. As a result, for BPS D7-branes such term

(3.41)

can be discarded independently of the k-fixing choice. Let us in particular take the choice
PP7(F)© = 0, as in subsection P.2.5. This allows to remove PP7(F) from (B-41), and so
we find an fermionic action of the form (R.59), with a Dirac operator

w  [det Mpa [ e “la 1 1
DY = (;tig;r [ 4t+(MTi) bfa<3b+3b1nz<§—§Pfg>>] (3.42)

Hence, the main difference on )" with respect to the unmagnetized case (P.14) comes from
substituting g~ — M™!. As M~ is obviously invertible, one would naively say that the
zero mode internal wavefunctions are the same as in the unmagnetized case.

Note however that the s-fixing condition PP7(F)© = 0 depends on F, and so will the
set of 10D bispinors © that enter our fermionic action. Indeed, following [[[]] one can write

— i Do+, )®cr i(@-r +¢;T )®o‘
Iy @02 = e 2( )T (D @ og) N T (3.43)
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where we have used the explicit form of A(F) in (B.11]). Hence, the bispinors surviving the
projection PP7(F)© = 0 are given by

— i ¢iPra+é;T2 | Q0
©=ce 2< LA T?) " where PP =0 (3.44)

and where PP7 stands for the unmagnetized D7-projector (R.7). We thus need to consider
a basis of bispinors ‘rotated’ with respect to the one used for unmagnetized D7-brane.
As the rotation only acts on the internal D7-brane coordinates, one can still make the
decomposition (R.61]), with the 4D spinor #,p intact and the 6D bispinor Ggp rotated as
in (B.44). In particular, if we impose the BPS condition ¢; + ¢; = 0, Ogp takes the form

Yo —igiTpo®os [ 71—
O6p._ = — T f Textran— = —1_ 3.45
6D, \/56 in_ or 1 Extra”) n ( a)
O,y = L (1 for Trxmay = 74 (3.45b)
V2 \ 1+

and so the bispinors ©gp 1 with positive extra-dimensional chirality are exactly those of
the unmagnetized case, while those of negative chirality ©¢p,_ are rotated by a (warping
dependent) phase.

From the above, it is easy to see that the zero modes coming from Ogp 4 have as
wavefunction 1/19r = 73/8  just like in the unmagnetized case. On the other hand, plugging
(B.45d) into (B.47) we obtain a zero mode equation quite similar to that found Wilsonini
in subsection B.2.1], and so we find that % = Z_1/8]1 +iB;|~!. As a result, the zero mode
wavefunctions are given by

70a (o o
8D7_ =1 BT © o \in. for Tgxtra?l—- = —N— Wilsonini (3.46a)
73/8 ;
(S} Dt = W <Z::> for Tgpxtrafe = N+ gaugino + modulino (3.46b)

where, via matching of the 4D kinetic functions, we have identified the fermionic 4D zero
modes that they correspond to. Note that again the Wilsonini have an extra warp factor
dependence with respect to the unmagnetized case, which is contained in B;.

On can then proceed to generalize the above computation to the case of a D7-brane in
a warped Calabi-Yau. Imposing the x-fixing choice PP7(F)O = 0 and the BPS condition
xs,F = F, the Dirac operator reads

w det M ex —1\a 1 1
Y = /Wg; [ o+ (MGH bra<vgY+ab1nZ <§ — §Pf3>>] (3.47)
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where we have removed the term coming from the second line of (B.41), using the fact that
it vanishes for a BPS worldvolume flux F.?8

In addition to the Dirac operator, one needs to know how the worldvolume fermions
satisfying PP7(F)© = 0 look like. From our discussion above we know that this s-fixing
choice selects bispinors of the form

_m\1/2
0 = (A( ) © with PP"® =0 (3.49)

A(]—')l/2>
where again PP7 stands for (7). In general, the rotation A(F) will be an element of
Spin(4) = SU(2)1 x SU(2)y. If we identify SU(2); with the SU(2) inside the holonomy

group U(2) of Sy, then following [A]] we can classify our fermionic modes in terms of
Spin(4) representations as

PO3@" =0 ©" transforms as (1,2)

3.50
PY30" =0 ©" transforms as (2,1) (3:50)

In addition, if we impose the BPS condition x5, F = F then A(F) € SU(2);, and so
bispinors projected out by P92 are left invariant by the rotation in (B-49). In particular,
this applies to the bispinor (2.71)), that describes the D7-brane gaugino for the unwarped
Calabi-Yau case. As discussed in section R.3J, this same fermionic wavefunction will be
a solution of the unmagnetized, warped Dirac operator (2.74) if we multiply it by Z3/.
Finally, since (R.71) satisfies PP70© = 0 and (2.74) and (B.47) imply the same zero mode
equation, it follows that the wavefunction of the D7-brane gaugino is also of the form

[N AR . L[ g
0ip ® ﬁ nCY —1B0ip ® ﬁ Z,niY (3.51)

as already pointed out in [B{].
On the other hand, bispinors of the form (R.734) are projected out by Pf?’ and so are
non-trivially rotated by A(FF) even assuming the BPS condition for F. One can then see

e = z7%/8

that the corresponding zero modes, which correspond to the D7-brane Wilsonini, should
have as wavefunction

_18l,, 1a
0=7z 1/81(/\/1541) Ty

Bi0ip ® —= —ifap® 2| 3.52
Wi ﬁ<nw) w ﬁ(mév )

28Indeed, even if we are no longer in flat space, there is locally always a choice of worldvolume vielbein

where [E]
1 I1—iByoy 1—iBjo}
2 |14+ iBi|2  |1+1iB;|?
A(]‘—) — ei(¢i0§+¢j0—§)

(M§41 )abFan —

where 03 =03 @ LRIz, 02 =l ®o3® s and 03 = I, ® Ix ® 03 act on the 6D spinor basis () In
this basis s, F = F is equivalent to ¢; + ¢; = 0, and so all the algebraic manipulations carried out for flat
space also apply. In particular, the second line of M| identically vanishes.
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which is the obvious generalization of the warped flat space solution (B.464). Again, the
warp factor dependence of this solution is contained in both Z~1/® and in ng, and both

cancel out with y/det Mg, /det gs, when computing the Wilsonini 4D kinetic term.

Finally, one may consider fermionic wavefunctions of the form (R.73H), also invariant
under the rotation (B.49), and whose zero modes give rise to D7-brane modulini. The
analogy with flat space, suggests that to any zero mode of the unwarped case a factor of
Z73/8 should be added to obtain the warped zero mode. Let us however point out that, by
the results of [i§, 9] one would expect that many of these would-be moduli and modulini
are lifted due to the presence of the worldvolume flux F and to global properties of Sy.
Thus, the question of which are the zero mode profile of modulini is a tricky one even in
the unwarped case, and so we will refrain from analyzing them in detail.

3.4 Warped Kahler metrics

Let us now proceed to compute the warped Kéahler metrics for open strings on magnetized
D7-branes, following the same approach taken in Sec R.q for unmagnetized D7-branes. One
first realizes that the gauge kinetic function is given by

_ dvol ,
for = (87°K?) ! V(i S (v/|det Ms,| —i(C™ + Co f A f)) (3.53)
Ss V9S4

where again f = (F). This can be written as a holomorphic function by using the BPS
condition

A 1
dvols,+/|det Mg, | = 3 (=P[JAJ])+ e PO F A F) (3.54)

and the identity (R.11§). Note that J = Z'/2J° is the warped Kihler form, and that the
only dependence of fpr in the warp factor is contained in J2. Hence, the extra piece in
fp7 that comes from the magnetic flux is precisely as in the unwarped case.

Regarding the position modulus and modulino, they again combine into an N = 1
supermultiplet. In the toroidal case, assuming the setup of (B.4) and the BPS condition

b= b; = —bj, we have a the Kahler metric of the form
k’2 ~ P P 2
KiKee = o [ dvolpe 0|21 4 ie= P/ 2b| 505 (G4 4k (3.55)
w JT4

that can be read from the corresponding kinetic term. Note that
0| ZV2 4 e Po/2p? = oo 7 4 1 (3.56)

and so we again have a warp-factor independent extra term. In order to find out how this
generalizes to D7-branes in warped Calabi-Yau backgrounds, let us first recall the results
for the unwarped Calabi-Yau. Following [b(], one can see that the presence of the magnetic
flux F modifies the kinetic term (2.93) to

A _
™7 / il 45 <e‘1’0 + 4GB B — 0 f> d¢A A x4dCB (3.57)
Rl,B V
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Here the background world-volume flux has been split as

f=fxs+f=fg,Plwd +f (3.58)

where w, is a basis of (1,1)-forms of X42” to be pulled-back into the D7-brane 4-cycle Sy,
and f is the component of f that cannot be seen as a pull-back. One then defines

B* = b* — kf§(6 B = b w, (3.59)
where B is the bulk B-field as well as

1
Gw = — Wq N\ *gWp 3.60
where V is the volume of the unwarped Calabi-Yau, and
Q=K | FAf (3.61)
Sa

Finally, recall that v is defined by (R.106), wa corresponding to the Calabi-Yau harmonic
2-form Poincaré dual to S4. Then, from the explicit computation of the kinetic term in
the toroidal case, it is easy to see that the natural generalization of (B.57) to warped
compactifications is

~ A -
o7 / (iﬁVAYBe‘I’O +iL% 5 G BB — 3—@ f~> d¢A A #gdCP (3.62)
RL,3 w

in agreement with the (string frame) Kéhler metric derived in [F1]. As before, we have that

f54 Zma Amp
fXﬁ 7QCY /\QCY

LY, = (3.63)

while we have also defined

~ fs maAmpg
LYs = . = 3.64
AB fXG 7 QCY A QCY (3.64)

Note that both terms involve the warped internal volume which comes from moving to the

4D Einstein frame while the first term has an additional power of the warp factor in the
integral over the internal profiles, as we found in the toroidal case.

Finally, the Wilson lines and Wilsonini also combine into A/ = 1 chiral supermultiplets.
For the factorizable torus, the kinetic term for the complexified Wilson lines defined in

[ET00) s
;2 ; . .
Syl = —2—/ d%gf}l’mw@“wa&,wg/ dvolT4W£0)Wl—) © (3.65)
kiVw JrL3 T4

The presence of the magnetic flux cancels out, as found for the Wilsonini in (B.I7) and in
the warped Calabi-Yau case. This gives the Kdhler metric for the Wilson supermultiplets
k‘2

29~ _ _
"4’4’Cab Y

v dvolpa W, W, et (3.66)

We thus find that kinetic term for the Wilsonini is then unchanged with the addition of
magnetic flux, and so the kinetic terms are the same as those found in Sec P.6

29 More precisely, as the analysis of @] takes place in the context of orientifold compactifications, w, €
H(,l'l)(XgﬂR)7 that is to those (1,1)-forms that are odd under the orientifold involution.
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4. Conclusions and Outlook

In this paper we have analyzed the wavefunctions for open string degrees of freedom in
warped compactifications. In particular, we have focused on type IIB supergravity back-
grounds with O3/07-planes, and explicitly computed the zero mode wavefunctions for open
strings with both ends on a probe D7-brane. Such analysis has been performed for both
the bosonic and fermionic D7-brane degrees of freedom, in the case of warped flat space,
warped Calabi-Yau and warped F-theory backgrounds, and finally in the case of D7-branes
with and without internal worldvolume fluxes.

One clear motivation to carry out such computation is the fact that models of D7-
branes in warped backgrounds provide a string theory realization of the Randall-Sundrum
scenario. In particular, they reproduce the basic features of 5D WED models where gauge
bosons and chiral fermions are allowed to propagate in the bulk. On the other hand, since
by considering D7-branes we are embedding such WED scenarios in a UV complete theory,
one may naturally wonder if new features may also arise. Indeed, string theory/supergravity
contains a sector of RR antisymmetric fields which is not present in the RS 5D construc-
tion, and whose field strengths are required to be non-trivial in warped backgrounds by
consistency of the equations of motion. We found that such background RR fluxes couple
non-trivially to the fermionic wavefunctions, leading to qualitatively different behavior de-
pending on their extra-dimensional chirality. We have shown that these different behaviors
are not accidental, but are necessary in order to provide a sensible description of SUSY
or spontaneously broken SUSY 4D theories upon dimensional reduction, and in particular
to produce models where the kinetic terms for bosons and fermions can be understood in
terms of a 4D Kéhler potential.

In fact, computing the open string Kéahler potential turns out to be a very fruitful
excercise since, as we have shown, it suggests a general method of extracting the closed
string Kéhler potential from (an often simpler) open string computation. Indeed, from
this point of view the open strings serve as probes of the background geometry, as the
consistency of their couplings to the closed string degrees of freedom enable us to use
their Kahler metrics to deduce their closed string counterparts. We have shown that this
simple procedure reproduces the recently derived closed string results of [[3, [4], which
were obtained in a highly complicated way. Moreover, we expect our open-closed string
method to be useful in probing the structure of Kahler potentials in more general cases.

Returning to the WED perspective, the present work can be viewed as an initial step
in the studies of the Warped String Standard Model. Such studies should involve the
computation of phenomenologically relevant quantities like Yukawa couplings and flavor
mixing. Even if we have illustrated such kind of computations in a very simple class of
models, namely D7-branes at singularities, our results are also relevant for more realistic
constructions like those in [5J], that involve backgrounds fluxes and magnetized intersecting
D7-branes. Note, however, that the chiral sector in this latter kind of constructions arises
from the intersection of D7-branes, for which a worldvolume action is still lacking. It would
then be very interesting to extend our analysis to describe the degrees of freedom at the
intersection of D7-branes in the presence of bulk fluxes.
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Finally, let us point out that we have focussed our discussions to supersymmetric back-
grounds for the sake of simplicity, but that our analysis is applicable to non-supersymmetric
models as well. In such non-SUSY models, warping provides an alternative mechanism of
generating the electroweak hierarchy [[J], which by way of the gauge/gravity duality can
be understood as a dual description of technicolor theories. The above wavefunctions and
their overlaps allows us to compute via a weakly coupled theory interactions in the strongly
coupled dual, and may then offer insights into technicolor model building. Hence, other
than realizing the Standard Model, constructing chiral gauge theories in warped back-
grounds may also help in understanding the physics of strongly coupled hidden sectors, an
element in many SUSY breaking scenarios. For instance, recent work [[J] has shown that
the strongly coupled hidden sector in general gauge mediation [53] can be holographically
described in terms of the dual warped geometries. The open string wavefunctions obtained
here can thus play an important role in determining the soft terms in such supersymmetry
breaking scenarios.
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A. Conventions

A.1 Bulk supergravity action

The bosonic sector of type IIB supergravity consists of the metric Gy, 2-form Bjsn and
dilaton ® in the NS-NS sector and the p-form potentials Cy, C5, and Cy in the R-R sector.
The string frame action for these fields is

S =Sns + Sr + Scs (A.la)
1 1
Sns == / A"z e, /| det G|{R + 400 PO P — —H32} (A.1b)
2K 2
1 1
Sp = — e A"z /|det G|{F12 + FP + §F52} (A.1c)
Scs :—%/04/\H3/\F3 (A.1d)
4k

where 2x3, = (27)7a/* and

Fl =dC (A.2a)
Fy =dCy — Hy (A.2b)
Fy =dCy — %Cg N Hs + %BQ A F3 (A.QC)

and Hz = dBy. Here for any p-form w we define w? = w - w, where - is given by

Wp:* Xp = HWML..MPXML"MP (A3)

Finally, R is the Ricci scalar built from the metric G.

A.2 D-brane fermionic action

The fermionic action for a single Dp-brane, up to quadratic order in the fermions and in
the string frame, was computed in [p4]. I was shown in [BJ] that one can express it as

Sty = Top / dP+1ge—¢\/ |det (P[G] + F)| @PP%f)((M—l)“ﬁrBDa — %0) 0 (A4)

-1 _
where Top =

the Dp-brane worldvolume, and © is a 10D Majorana-Weyl bispinor,

0
O = < 9;) (A.5)

with 61,02 10D MW spinors. Gamma matrices act on such bispinor as

[0 = (PM 91) (A.6)

(2m)P /"= is the tension of the Dp-brane, P|...] indicates a pull-back into

I'pr6o
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This action involves the generalized field strength F = P[B]+27a/F (where F is the world-
volume field strength of the U(1) gauge theory) through several quantities. An obvious one
is the integration measure det(P[G] + F) that substitutes the more conventional volume
element. A more crucial quantity for the analysis of Sec | is M3 = Gop + Fapl'(10) ® 03,
that encodes the D-brane world-volume natural metric in the presence of a non-trivial F.
Finally, F also appears in the projection operators

1
P’ = o (I+T'py) (A7)
where I'p,, can be written as [53]
0 I'pt
I'pp = <fD (I))p> (A.8)
P
with
y !det P[GH [ot.azq
FDp = Z-(p—2)(p—3)f‘](301)) 129 ‘7:0‘10!2 T ‘7:112q71‘7:a2q (Ag)
\/|det (PG +F)| T @
and €Q1--Qp 1]
0) _ L Optl (A.10)
D = 1)/ [det PIG]
Then, for p =2k + 1,
Z'(P—2)(p—3)rl(30])) = iP=D2D (A.11)

with T'(,11) as defined in footnote [J. Hence, for D3 and D7-branes with F = 0 we have

that
roo_ [0 —iTw) L 1 -
D3 — . G ® oo an FD? = F(g) X o9 (A12)
ZP(4) 0

so that egs.(2.7) and (P.6G) follow from (7).

The operators O and D, are defined from the dilatino and gravitino SUSY variations

1 1 4 0o F
0y =Dye = |V + Z(H3)M03 + 1—66 (—O’(F) 0 > PMF(H))] € (A.13a)
oA =0 = @@+1HU + Leopm 0 F Tplg) | € (A.13b)
where 1
¥r,= aFMl,,,MpFMl"'M” (A.14)

indicates a contraction over bulk indices and o indicates that the order of indices in the

contraction is reversed,

1
o(F,) = ZT!FMl...MPFMP M (A.15)
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In type IIB theory one then has that

1 1 . int .
Dy =V + Z(Hg)MO'g + geq) <F1202 + Faoy + F5 tZO’2> Ty (A.16a)
1 1
O :@<I>—|— §H30'3 —ECI) <F1i02+§F301> (A16b)
For converting ([A.4) to the Einstein frame we have to do the following fermion redefi-
nitions
oF = ¢~*/%0
OF = ¢®/80 (A.17)

DE = 78 (D - II',0)
After which we obtain

Sty TDp/dPng(’ug)@, /|det (G + F)| @FPPP(F) ((M—l)o‘ﬁrg (Df + %Fa(’)E> - %(’)E> oFf

=y [ @16l I [det (G4 )| 65 PP() (19D + (M), (DF 4 (0" ) ) ©F

where in the second line we have taken into account that we are reducing to 4D, and where
the I'’s and M are converted to the Einstein frame. In the unmagnetized case F = 0 we
have

Sty = oy [ e aer (pla)) [ 08P (repk 4 R0 )oF (aay

matching (R.10) for the case p = 7. Finally, the gravitino and dilatino operators in the

Einstein frame are

DE =V + gew <®g{rM - §PM®§{> +3 <e¢(F1)M + §F5 trM> ioy  (A.19a)

1
oF =jo — 564’/2@55 — e Frioy (A.19D)
where we have defined (’5;,'E = F301 £ e ®H503.

A.3 Fermion conventions

In order to describe explicitly fermionic wavefunctions we take the following representation
for I'-matrices in flat 10D space

ME=1"@Lelel I =y @5 (A.20)
where u =0, ..., 3, labels the 4D Minkowski coordinates, whose gamma matrices are
0 —I ; 0 oy
0 2 i i
= = A.21
gl (112 0 > gl <cn- 0 > (A.21)
m =4,...,9 labels the extra RS coordinates
Al = 012 e ' =00l
¥ = o301 @1 P =03R0,01 (A.22)
¥ = 0300301 A0 = 03 ® 03 ® 03
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and o; indicate the usual Pauli matrices. The 4D chirality operator is then given by
F(4) = V) ® Ll (A.23)

where y(4) = i7°y192~3, and the 10D chirality operator by

I, 0
L0y = Y4 @) = < 02 L ) ® 03 ® 03 ® 03 (A.24)
with ) = —i713233544535 " Finally, in this choice of representation a Majorana matrix
is given by
0
B = 20780 = ( 22> ® 09 ®ioy ® 09 = By ® By (A.25)

which indeed satisfies the conditions BB* = I and BI'MB* = I'M*_ Notice that the 4D
and 6D Majorana matrices By = fy2fy(4) and Bg = 7*7°75 satisfy analogous conditions
BB} = B¢B§ =1 and Byy* B} =", B¢y Bg = —y™".

In the text we mainly work with 10D Majorana-Weyl spinors, meaning those spinors
0 satistying 6 = I'(10)0 = B*0". In the conventions above this means that we have spinors
of the form

9 = 3" <§O_) ®n_—_ —i(y°)* <020§i) Q@ N++ (A.26a)

ol = ! <§0_) © 0y + (1) <020§_

0° = ¢ <§O_) D g — i(¢7)" <020§i) @ 17—y — (A.26¢)

03 = <§0_) © Ny + ()" <020§_

where 1)/ is the spinor wavefunction, (0 £_)! is a 4D spinor of negative chirality and 7, cyes

QNy—— (A26b)

YN y E— (A26d)

is a basis of 6D spinors of such that

N NORO I ORORO N

etc. Note that these basis elements are eigenstates of the 6D chirality operator (), with
eigenvalues €1eg€3.

In fact, that enters into the fermionic D7-brane action is a bispinor © of the form
(4), where each of 6, 0 is given by (A.:2() or a linear combinations thereof. Both
components of the bispinor are however not independent, but rather related by the choice of
k-fixing. Indeed, note that the fermionic action ([A.4) is invariant under the transformation
© - O+P"r K, with k an arbitrary 10D MW bispinor. This means that half of the degrees
of freedom in © are not physical and can be gauged away. In practice, this amounts to
impose on © = PPPO + pr © a condition that fixes PPPO.
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Let us for instance consider a D7-brane with F = 0. Taking the s-gauge PP70 = 0,

we have that
91 . F(g)eg 0
(92 > ( —F(g)el —Zr(g)e ( )

where 6 is a spinor of the form (A:2§). If in addition the D7-brane spans the coordinates
01234578 with positive orientation, then the 8D chirality operator is I'g) = —{]'01234578
and so the wavefunctions ] of both spinors are related as

)

Py = —ip) Wy =d@p] Y =dip] Y = i} (A.29)

so that there are only four independent spinors wavefunctions after imposing this constraint.
If we now define the projectors
PP =

(H + F(4) ® 02) P£3 = (]1 + F(G) ® 02) (A.30)

N —
N —

with I'g) = 14 ® 7(6), then we see that two bispinors satisfy Pf?’@ = PE?’@ = (0, namely

o' = o and ©? = & (A.31)
—\ —il g6 -\ —ilg)0? '
and two satisfy P930 = PP3© =0
60 6°
0 _ d 63 = A.32
© (—z‘r(g)eo) and - © il (5)0° (A.52)

Finally, let us recall that to dimensionally reduce a D7-brane fermionic action, one
has to simultaneously diagonalize two Dirac operators: @, and P, built from T'* and T'™,
respectively. However, as these two set of I'-matrices do not commute, nor will @, and 0",
and so we need instead to construct these Dirac operators from the alternative I'-matrices

[ =Ty =Ty @ L oL P2 =Tyl = L ef"™° (A.33)
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