
Preprint typeset in JHEP style - HYPER VERSION CERN-PH-TH/2008-227

MAD-TH-08-14

SU-ITP-08/34

Open String Wavefunctions in Warped

Compactifications

Fernando Marchesano,1 Paul McGuirk,2,3 Gary Shiu1,2,3

1 PH-TH Division, CERN, CH-1211 Geneva 23, Switzerland

2 Department of Physics, University of Wisconsin, Madison, WI 53706, USA
3 Department of Physics and SLAC, Stanford University, Stanford, CA 94305, USA

Abstract: We analyze the wavefunctions for open strings in warped compactifications,

and compute the warped Kähler potential for the light modes of a probe D-brane. This

analysis not only applies to the dynamics of D-branes in warped backgrounds, but also

allows to deduce warping corrections to the closed string Kähler metrics via their couplings

to open strings. We consider in particular the spectrum of D7-branes in warped Calabi-Yau

orientifolds, which provide a string theory realizations of the Randall-Sundrum scenario.

We find that certain background fluxes, necessary in the presence of warping, couple to the

fermionic wavefunctions and qualitatively change their behavior. This modified dependence

of the wavefunctions are needed for consistency with supersymmetry, though it is present

in non-supersymmetric vacua as well. We discuss the deviations of our setup from the RS

scenario and, as an application of our results, compute the warping corrections to Yukawa

couplings in a simple model. Our analysis is performed both with and without the presence

of D-brane world-volume flux, as well as for the case of backgrounds with varying dilaton.

Keywords: D-branes, Warped Compactifications, F-theory.

SLAC-PUB-14739

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

SLAC National Accelerator Laboratory, Menlo Park, CA 94025

http://jhep.sissa.it/stdsearch


Contents

1. Introduction 1

2. Unmagnetized D7-branes 4

2.1 Warped backgrounds in string theory 4

2.2 Warped flat space 6

2.2.1 Fermions 7

2.2.2 Bosons 9

2.2.3 Summary and comparison to RS 14

2.2.4 More on the equation of motion 15

2.2.5 Alternative κ-fixing 16

2.3 Warped Calabi-Yau 18

2.4 Adding background fluxes 22

2.5 Extension to F-theory backgrounds 23

2.6 Effects on the Kähler potential 24

2.7 A simple warped model 30

3. Magnetized D7-branes 32

3.1 Allowing a worldvolume flux 32

3.2 Warped flat space 33

3.2.1 Fermions 33

3.2.2 Bosons 35

3.3 More general warped backgrounds 38

3.4 Warped Kähler metrics 41

4. Conclusions and Outlook 43

A. Conventions 45

A.1 Bulk supergravity action 45

A.2 D-brane fermionic action 45

A.3 Fermion conventions 47

1. Introduction

Scenarios with warped extra dimensions provide us with a rich framework to address long-

standing puzzles in physics Beyond the Standard Model. In the presence of warping the

energies of localized states are suppressed by the gravitational redshift and so, as pointed

out in [1], this may offer a geometric explanation of the electroweak-gravity hierarchy.
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While this feature has been mainly exploited in the context of 5D models as the original

Randall-Sundrum (RS) scenarios and extensions thereof, it does clearly apply to more

general warped backgrounds. In particular, it is also manifest in warped compactifications

of string theory [2, 3, 4, 5, 6, 7], especially for those strongly warped regions that can be

asymptotically described as AdS5 ×X5 for some compact manifold X5, and which provide

a natural extension of the RS scenario to a UV complete theory. As a result, these so-called

‘warped throats’ have become a powerful tool to construct phenomenologically attractive

models of particle physics and cosmology from string theory, and are nowadays an essential

ingredient in explicit constructions of string inflationary models [8].

Given the above, it is natural to wonder how the dynamics governing warped compact-

ifications can be understood from a string theory/supergravity perspective. In particular,

in order to draw precise predictions from string warped models it is necessary to understand

the low energy effective action that arises upon dimensional reduction. The derivation of

such warped effective theory has proven to be a subtle problem even if one restricts to the

closed string/gravity sector of the theory [9, 10, 11, 12, 13], although simple expressions can

be given for certain subsectors [14]. While these results represent significant progress in the

derivation of warped effective theories, in order to accommodate constructions where the

Standard Model can be realized closed strings are not enough,1 and one should include D-

branes in the picture. Hence, it is crucial to go beyond the previous analyses and study the

effective theory for the associated open string degrees of freedom in warped backgrounds.

In this work we take an initial foray in this direction by studying open string wavefunc-

tions in warped compactifications. In order to extract the 4D effective action for the open

string degrees of freedom, we first need to compute their internal wavefunctions and then

carry out a dimensional reduction. As is well known in phenomenological studies of warped

extra dimensions [15], warping has the effect of localizing massive modes to regions of strong

warping because of the gravitational potential. As we shall see, warped compactifications

in string theory have new added features. Other than the background geometry which has

been accounted for in the aforementioned studies, string theory contains background field

strengths that, due to the equations of motion, are necessarily non-vanishing in the pres-

ence of warping. Not only do these field strengths couple to open string fermionic degrees

of freedom, but they couple differently depending on the extra-dimensional chirality of such

fields, which results in different warp factor dependence for their internal wavefunctions.

For warped backgrounds that preserve supersymmetry, our results allow us to determine

the warped corrected Kähler metrics for open strings, and to show that this different warp

factor dependence is crucial for the kinetic terms of 4D fields in the same supermultiplet

to match.2 We will in addition find that open string wavefunctions act as probes of the

warped geometry; their kinetic terms allowing us to deduce the Kähler metrics of the closed

strings that couple to them and hence the combined warped Kähler potential. The closed

string Kähler metrics obtained in this way indeed reproduce the recent results of [12, 14].

1At least in the context of type II string compactifications, where such developments have taken place.
2Let us stress that our analysis does not directly invoke 4D supersymmetry, since we analyze the open

string wavefunctions for bosonic and fermionic fields separately. Therefore, the method of obtaining open

string wavefunctions discussed here can be applied to non-supersymmetric warped backgrounds as well.
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We however expect our method to have more general applicability, including situations

where the direct closed string derivations have not yet been carried out.

In particular, we will focus on deriving the open string wavefunctions of D7-branes in

warped type IIB/F-theory backgrounds. As pointed out in the literature (see e.g. [16, 17]),

this setup provides a string theory realization of those 5D Warped Extra Dimension (WED)

models where the SM gauge fields and fermions are located in the AdS5 bulk [15], and which

have been suggested as a possible solution of the flavor puzzle. Indeed, in this 5D scenario

the hierarchy between the various SM masses and mixing angles (i.e., the flavor hierarchy)

results from the different localization of fermions in the extra dimensions, since the varying

degrees of overlap of their wavefunctions with that of the Higgs field lead to hierarchical

Yukawa couplings. In the string theory setup that we consider, the D7-branes and their

intersections give rise to non-Abelian gauge symmetries and chiral matter. In particular,

in a warped throat background of the form AdS5 ×X5 we can consider a D7-brane whose

embedding is locally described as AdS5 × X3, and so its open string wavefunctions are

extended along the AdS5 warped extra dimension.

With a concrete realization of the bulk Randall-Sundum scenario, one can investigate

whether the assumptions made in the phenonomenological studies of warped extra dimen-

sions are justified or modified, and whether the p-form field strengths in string theory could

lead to new variations of this basic idea. Furthermore, the open string wavefunctions ob-

tained here enable us to calculate the physical Yukawa couplings for explicit chiral models,

as we shall demonstrate in an explicit example.

More generally, the present work can be considered as an initial step towards the

construction of the ‘Warped String Standard Model’. Besides the phenomenological appeals

mentioned above, these warped models are interesting because they can be understood, by

way of the AdS/CFT correspondence, as holographic duals of technicolor-like theories.

Constructing these warped models from a UV complete theory allows us to go beyond a

qualitative rephrasing of the strong coupling dynamics in terms of a putative gravity dual.

In addition, embedding such technicolor models in string theory may also suggest new

model building possibilities.3 Note that our analysis was carried out with all the essential

ingredients, such as worldvolume fluxes. Therefore, our results can be applied to specific

models once concrete constructions of such technicolor duals are found.

This paper is organized as follows. In Section 2, we study the D7-brane wavefunc-

tions in the situation where the D7-brane worldvolume magnetic flux F is absent. We

begin with the simplest warped background which is conformally flat space and compute

the wavefunctions of the bosonic and fermionic modes separately. Our treatment of the

fermions follows from the κ-symmetric fermionic action in [20] (see also [21]), which takes

into account the coupling of fermions to the background RR p-form field strengths in a

manifested manner. Many of our results carry over directly to the more general case of

a warped Calabi-Yau space, as discussed in subsection 2.3, and to turning on background

3-form fluxes in such background, as shown in subsection 2.4. In addition, in subsection 2.5

we also consider D7-branes in backgrounds with varying dilaton, which become relevant

3See [18] (and also [19]) for the realization of this idea in the context of D3-brane at singularities.
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when these constructions are lifted to F-theory. The open string wavefunctions obtained in

the earlier sections can be used to extract information about the warp factor dependence

of the open string Kähler potential, discussed in subsection 2.6, and to analyze a simple

chiral model in subsection 2.7. Finally, in Section 3 we extend the above analysis to the

more generic case of D7-branes with a non-vanishing magnetic flux F , which is an essential

ingredient to obtain chirality in generic situations. We draw our conclusions in Section 4,

and our conventions are spelled out in Appendix A.

2. Unmagnetized D7-branes

2.1 Warped backgrounds in string theory

As discussed in [3, 7], one can realize the Randall-Sundrum scenario by considering type

IIB string theory on a (string frame) metric background of the form

ds210 = ∆−1/2ηµνdxµdxν + ∆1/2eΦĝmndymdyn (2.1)

where ∆ ≡ ∆(y) is a warp factor that only depends on the extra six-dimensional space

X6 of metric ĝ. In the limit where the dilaton field Φ ≡ Φ(y) is constant, the equations

of motion constrain ĝ to describe a Calabi-Yau metric. On the other hand, when Φ is

non-constant X6 will be a non-Ricci-flat Kähler three-fold manifold, which nevertheless

serves as a base for an elliptically fibered Calabi-Yau four-fold X8, as usual in F-theory

constructions.

The above warp factor may be sourced by either localized sources like D3-branes and

O3-planes or by the background field strengths F3, H3 present in the type IIB closed string

sector. In both cases, consistency of the construction demands that the background field

strength F5 is also sourced. More precisely, the equations of motion require that F5 is

related with the warp factor and the dilaton as

F5 = (1 + ∗10)F
int
5 F int

5 = ∗̂6d
(

∆eΦ
)

(2.2)

where ∗10 stands for the Hodge star operator in the full 10D metric (2.1) and ∗̂6 in the

unwarped 6D metric ĝ. Finally, together with a non-trivial dilaton profile a non-trivial RR

scalar C0 must be present, both of them related by the equation

∂̄τ = 0 (2.3)

where τ = C0 + ie−Φ is the usual type IIB axio-dilaton.

In order to introduce a Standard Model-like sector in this setup, one needs to consider

open string degrees of freedom. These can be simply added to the above setup via em-

bedding probe D-branes in this background. Such D-branes will not only give rise to 4D

gauge theories upon dimensional reduction, but also to chiral matter fields charged under

them. The simplest example of this is given by a D3-brane filling R
1,3 and placed at some

particular point y0 ∈ X6. While most quantities of the D3-brane gauge theory will be

affected by the warp factor via the particular value of 1/∆(y0), the internal wavefunctions

for the D3-brane fields will have a trivial δ-function profile.
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A more non-trivial set of wavefunctions is given by the open string fields of a D7-brane

wrapping a 4-cycle S4 ⊂ X6. As now the wavefunctions can extend along a 4D subspace of

X6 they can feel non-trivially the effect of the warp factor, reproducing one of the essential

ingredients of the WED models with SM fields localized on the bulk [15]. If we focus on a

single D7-brane, then we will start from an 8D U(1) gauge theory whose bosonic degrees

of freedom are described by the so-called Dirac-Born-Infeld and Chern-Simons actions

S bos
D7 =SDBI

D7 + SCS
D7 (2.4a)

SDBI
D7 = − τD7

∫

R1,3×S4

d8ξ e−Φ
√

∣

∣det
(

P [G] + F
)
∣

∣ (2.4b)

SCS
Dp = τD7

∫

R1,3×S4

P [C] ∧ eF (2.4c)

where τ−1
D7 = (2π)3(2πα′)4 is the tension of the D7 brane, and where P [. . . ] indicates that

the 10D metric G and the sum of RR potentials C =
∑4

p=0C2p are pulled-back onto the

D7-brane worldvolume. The same applies to the NS-NS B-field, which enters the action

via the generalized two-form field strength F = P [B] + 2πα′F . In the remainder of this

section we will simplify our discussion by setting B = 0 and F to be exact. That is, we

will set F = dA, where A is the 8D gauge boson of the D7-brane worldvolume theory. In

practice, this implies that F = 0 up to fluctuations of A, a situation which will be denoted

by 〈F〉 = 0. With these simplifications, one can express the fermionic part of the D7-brane

action as [20]

S fer
D7 = τD7

∫

d8ξ e−Φ
√

∣

∣det P [G]
∣

∣ Θ̄PD7
−

(

ΓαDα − 1

2
O
)

Θ (2.5)

where Dα is the operator appearing in the gravitino variation, its index α pulled-back into

the D7-brane worldvolume, and O is the operator of the dilatino variation. The explicit

expression of these operators are given in Appendix A, see eq.(A.13). As explained there,

these two operators act in a 10D Majorana-Weyl bispinor

Θ =

(

θ1
θ2

)

(2.6)

where both components have positive 10D chirality Γ(10)θi = θi. The fermionic degrees of

freedom contained in (2.6) are twice of what we would expect from an 8D supersymmetric

theory, but they are halved by the presence of PD7
− , which is a projector related with the

κ-symmetry of the fermionic action.4 For 〈F〉 = 0 this projector is given by

PD7
± =

1

2

(

I ∓ Γ(8) ⊗ σ2

)

(2.7)

where Γ(8) is the 8D chirality operator on the D7-brane worldvolume,5 and σ2 acts on the

bispinor indices.
4Roughly speaking, (2.5) is invariant under the transformation Θ → Θ+P D7

− κ, with κ an arbitrary 10D

MW bispinor. One can then use this symmetry to remove half of the degrees of freedom in Θ.
5In our conventions the chirality matrix for a D(2k + 2)-brane in R

1,2k+1 is Γ(2k+2) = ikΓ0...2k+1, where

Γi are flat Γ-matrices. For instance, a D7-brane extended along the directions 0 . . . 7 has Γ(8) = −iΓ01234567 .
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In order to dimensionally reduce the above construction to a 4D effective theory with

canonically normalized kinetic terms, one first needs to convert the above quantities from

the string to the Einstein frame. This basically amounts to using, instead of the metric

GMN in (2.1), the rescaled metric GE
MN ≡ e−Φ/2GMN . That is, in the Einstein frame we

have the 10D metric background

ds210 = Z−1/2ηµνdx
µdxν + Z1/2ĝmndymdyn (2.8)

where Z = ∆eΦ is the Einstein frame warp factor. Note that eqs.(2.2) and (2.3) are

unchanged by this rescaling, and that in terms of Z we have F int
5 = ∗̂6dZ. While the D7-

brane CS action does not depend on metric and hence is also not affected by such rescaling,

the DBI action does change. The bosonic action now reads

S bos
D7 = −τD7

∫

d8ξ eΦ
√

∣

∣det
(

P [GE ] + e−Φ/2F
)∣

∣ + τD7

∫

P [C] ∧ eF (2.9)

where now GE refers to the metric tensor in (2.8). Finally, the fermionic D7-brane action

also varies by going to the Einstein frame (see Appendix A) reading

S fer
D7 = τD7

∫

d8ξ eΦ
√

∣

∣det P [GE ]
∣

∣ Θ̄PD7
−

(

ΓαDE
α +

1

2
OE

)

Θ (2.10)

where OE and DE
α now refer to the dilatino and gravitino variations in the Einstein frame,

as defined in (A.19). In the remainder of this paper we will always work with Einsten

frame quantities, without indicating so with the superscript E.

2.2 Warped flat space

The simplest case of a warped background of the form (2.8) is constructed by taking the 6D

metric ĝ to be flat. This situation is easily obtained in string theory, by simply considering

the backreaction of N D3-branes in 10D flat space. While in such simple solution the

internal space X6 = R
6 is non-compact, one may turn to a compact setup by simply

setting X6 = T6, and adding the appropriate number of D3-branes and O3-planes such

that the theory is consistent. In the latter construction the global form of the warp factor Z

will be a complicated function of the D3-brane positions, but close to a stack of D3-branes

it will produce the well-known AdS5 × S5 geometry that mimics the Randall-Sundrum

scenario [3].

In the following we will derive the open string wavefunctions of a D7-brane in such

conformally flat background. We will particularly focus on the warp factor dependence

developed by the wavefunctions of both fermionic and bosonic zero modes, to be analyzed

separately. This setup will not only be useful to make contact with the WED literature,

but also to emphasize some simple features that remain true in the more general situations

considered below. Finally, we will discuss some subtle issues that arise when considering

D-brane fermionic actions of the form (2.5), as well as an alternative derivation of the

fermionic zero mode wavefunctions more suitable for further generalizations.
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2.2.1 Fermions

Let us then consider a background of the form (2.8) with ĝ = ĝT6 (which implies a constant

axio-dilaton τ = C0 + ie−Φ0) and a D7-brane spanning four internal dimensions of such a

background. In particular, we will consider that the internal worldvolume of the D7-brane

wraps a 4-cycle S4 = T4 ⊂ T6, so that we also have a conformally flat metric on the

D7-brane worldvolume

ds2D7 = Z−1/2ηµνdxµdxν + Z1/2
4
∑

a,b=1

(ĝT4)ab dyadyb (2.11)

where ĝT4 is a flat T4 metric.

Then, if in addition we do not consider any background fluxes H3 or F3, we have that

the operators entering the D7-brane fermionic action (2.10) are

O = 0 (2.12a)

Dµ =∇µ +
1

8
/F

int
5 Γµiσ2 = ∂µ − 1

4
Γµ/∂ lnZPO3

+ (2.12b)

Dm =∇m +
1

8
/F

int
5 Γmiσ2 = ∂m +

1

8
∂m lnZ − 1

4
/∂ lnZΓmP

O3
+ (2.12c)

where we have used the definitions (A.19) and the relation (2.2). Here µ stands for R
1,3

coordinates, m labels the internal T6 coordinates and the slash-notation stands for a con-

traction over bulk indices as in (A.14). Finally, we have defined the projectors

PO3
± =

1

2

(

I ± Γ(6) ⊗ σ2

)

(2.13)

where as in (A.30) Γ(6) is the 6D chirality operator in T6. These projectors separate

the space of bispinors Θ into two sectors: those modes Θ annihilated by PO3
− and those

annihilated by PO3
+ . Pulling-back the above operators6 onto the D7-brane worldvolume we

obtain that the term in parentheses in (2.10) reads

ΓµDµ + ΓaDa +
1

2
O = /∂

ext
4 + /∂

int
4 +

(

/∂
int
4 lnZ

)

(

1

8
− 1

2
PO3

+

)

(2.14)

where a runs over the internal D7-brane coordinates, /∂
ext
4 ≡ Γµ∂µ and /∂

int
4 ≡ Γa∂a. Note

that both of these operators contain a warp factor: /∂
ext
4 = Z1/4 /∂R1,3 and /∂

int
4 = Z−1/4 /∂T4.

Plugging (2.14) into (2.10), one can proceed with the dimensional reduction of the

D7-brane fermionic action. First, we halve the degrees of freedom in (2.6) by considering

a bispinor of the form

Θ =

(

θ

0

)

(2.15)

which is an allowed choice for fixing the κ-symmetry of the action. We can then express

the D7-brane action as

S fer
D7 = τD7 eΦ0

∫

R1,3

d4x

∫

T4

dv̂olT4 θ̄ /D
w
θ (2.16)

6This amounts to pulling-back the index M of DM , and not indexless quantities like /∂ ln Z or O.
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where θ stands for a conventional 10D MW spinor, dv̂olT4 for the unwarped volume element

of T4 and the warped Dirac operator is given by

/D
w

= /∂
ext
4 + /∂

int
4 − 1

8

(

/∂
int
4 lnZ

)

(1 + 2ΓExtra) (2.17)

ΓExtra = d /volT4 being the chirality operator for the internal dimensions of the D-brane.

For instance, if we considered a D7-brane extended along the directions 0 . . . 7 then we

would have ΓExtra = Γ4567, with Γi defined in (A.20).

Second, we split the 10D Majorana-Weyl spinor θ as

θ = χ+B∗χ∗ χ = θ4D ⊗ θ6D (2.18)

where θ4D are four and θ6D six-dimensional Weyl spinors, both of negative chirality, and

B = B4 ⊗B6 is the Majorana matrix (A.25).

Finally, one must decompose (2.18) as a sum of eigenstates under the (unwarped) 4D

Dirac operator. More precisely, we consider the KK ansatz

θ =
∑

ω

θω =
∑

ω

θω
4D(x) ⊗ θω

6D(y) +
∑

ω

(B4θ
ω
4D(x))∗ ⊗ (B6θ

ω
6D(y))∗ (2.19)

and we impose that Γ(4)/∂R1,3(B4θ
ω
4D)∗ = −mω θ

ω
4D where Γ(4) is the 4D chirality operator.

This indeed implies that each component θω of the sum above is an eigenvector of Γ(4)/∂R1,3 ,

with a 4D mass eigenvalue |mω|.7 Imposing the 10D on-shell condition /D
w
θ = 0 we arrive

at the following 6D equation for the internal wavefunction of such eigenvector8

Γ(4)

[

/∂T4 − 1

8

(

/∂T4 lnZ
)

(1 + 2ΓExtra)

]

θω
6D = Z1/2mω(B6θ

ω
6D)∗ (2.20)

It is then easy to see that the 4D zero modes of the action (2.10) are given by

θ0
6D = Z−1/8η− for ΓExtra η− = −η− (2.21a)

θ0
6D = Z3/8η+ for ΓExtra η+ = η+ (2.21b)

where η± are constant 6D spinor modes with ± chirality in the D7-brane extra dimensions.

In particular, if we consider a D7-brane extended along 01234578, then ΓExtra = Γ4578 and

the fermionic zero modes will have the following internal wavefunctions

θ0,0
6D = Z3/8 η−−− θ0,3

6D = Z3/8 η++− (2.22)

and

θ0,1
6D = Z−1/8 η−++ θ0,2

6D = Z−1/8 η+−+ (2.23)

where the 6D fermionic basis {η−−−, η++− . . . } has been defined in Appendix A.

7As recalled in the appendix, we consider the eigenvalues of {Γ(4)/∂R1,3 , Γ(4)/∂T4} instead of {/∂R1,3 , /∂T4}

because the former set of operators do commute and can hence be simultaneously diagonalized.
8Näıvely, this equation looks like it ignores the Majorana-Weyl nature of θ. However, as discussed in

Sec 2.2.4, this is the equation of motion that we should use.
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Hence, we find that the warp factor dependence of the open string fermionic wave-

function depends on the chirality of such fermion in the D-brane extra dimensions. Note

that this is because of the presence of F5 in the D7-brane Dirac action. Indeed, had we

considered an 8D Super Yang-Mills action instead of (2.10), no projector PO3
+ would have

appeared in (2.14) nor any ΓExtra operator in (2.17). Hence, the zero mode solution would

have been θ0
6 = Z1/8η regardless of the eigenvalue of η under Γextra, as found in [17].

Note that (2.21) implies a specific warp factor dependence on the 4D kinetic terms of

the D7-brane zero modes. These are obtained by inserting them into (2.16). For (2.21a)

we find

S fer
D7 = τD7 eΦ0

∫

R1,3

d4x θ̄4D/∂R1,3θ4D

∫

T4

dv̂olT4 η†−η− (2.24)

so we have to divide by τD7e
Φ0 v̂ol(T4) to obtain a canonically normalized kinetic term.

Hence, for these zero modes nothing changes with respect to the unwarped case. On the

other hand, for (2.21b) we find

S fer
D7 = τD7 eΦ0

∫

R1,3

d4x θ̄4D/∂R1,3θ4D

∫

T4

dv̂olT4 Zη†+η+ (2.25)

which involves the warped volume vol(T4). In the following we will see that both kinetic

terms are precisely the ones required to match those of the bosonic modes, as required by

supersymmetry.

2.2.2 Bosons

In order to compute the D7-brane bosonic wavefunctions in a flat warped background,

let us first analyze the degrees of freedom contained in the bosonic action (2.9). First

we have the 8D gauge boson Aα, that enters the bosonic action via its field strength

F = dA in F = P [B]+2πα′F . Second, we have the transverse oscillations of the D7-brane

worldvolume, that look like scalars from the 8D point of view, and that enter the bosonic

action via the pull-back of G, B and C. Indeed, let us consider a D7-brane extended

along the directions 01234578. One can describe a deformation of this worldvolume on

the transverse directions 69 via two scalars Y 6 and Y 9, that depend on the worldvolume

coordinates xµ µ = 0, 1, 2, 3 and ya a = 4, 5, 7, 8. The pull-back of the metric in the

deformed D7-brane is given by

P [G]αβ = Gαβ +Gij∂αY
i∂βY

j + ∂αY
iGiβ + ∂βY

iGiα

= Gαβ + k2Gij∂ασ
i∂βσ

j (2.26)

where α, β ∈ {01234578} are worldvolume coordinates and i, j ∈ {6, 9} are transverse

coordinates. In the second line we have used the fact that in our background Giα = 0 and

redefined Y i = 2πα′σi = kσi for later convenience. Clearly, the same expression applies

for any flat D7-brane in flat space.

In general, a similar expansion applies for the pull-back of the B-field, although as

before we are taking B = 0 and a constant dilaton Φ = Φ0. With these simplifications the
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DBI action for the D7-brane reads

SDBI
D7 = −τD7

∫

d8ξ eΦ
√

∣

∣det
(

P [G] + e−Φ/2F
)
∣

∣ (2.27)

= −τD7

∫

R1,3

d4x

∫

T4

dv̂olT4 eΦ0

{

1 +
1

2
k2GijG

αβ∂ασ
i∂βσ

j + e−Φ0
1

4
k2FαβF

αβ + . . .

}

=
[

SDBI
D7

]

0
−
(

8π3k2
)−1

∫

R1,3

d4x

∫

T4

dv̂olT4

(

1

2
eΦ0GijG

αβ∂ασ
i∂βσ

j +
1

4
FαβF

αβ + . . .

)

where we have used the formula

det (1 +M) = 1 + Tr (M) +
1

2

[

Tr (M)
]2 − 1

2
Tr
(

M2
)

+ · · · (2.28)

and dropped the terms containing more than two derivatives. Also, in the last line of

(2.27) we have separated between a zero energy contribution to the D7-brane action and

the contribution coming from derivative terms, the latter being the relevant part when

computing the open string bosonic wavefunctions.

Besides the DBI action, the open string bosons enter the CS action of the D7-brane,

which for the background at hand reads

SCS
D7 =

τD7

2

∫

P [C4] ∧ F ∧ F =
1

2
(2πk2)−1

∫

(

Cext
4 + C int

4

)

∧ F ∧ F (2.29)

as all the other RR potentials besides C4 are turned off. We have also separated C4 into

internal and external components, with Cext
4 containing C0123 and C int

4 the component

Cabcd whose indices lie all along the extra dimensions.9 Finally, since the term F ∧ F

already contains two derivatives, we have neglected any term of the form ∂ασ
i arising from

expanding the pull-back of C4 as in (2.26).

As a result one can see that, up to two-derivative terms, the Chern-Simons action does

not contain the D7-brane geometric deformations σi. The 8D action of such scalar fields

then arises from the DBI expansion (2.27), and amounts to

S scal
D7 = −1

2

(

8π3k2
)−1

eΦ0

∫

R1,3

d4x

∫

T4

dv̂olT4 ĝij

(

Zηµν∂µσ
i∂νσ

j + ĝab
T4∂aσ

i∂bσ
j
)

(2.30)

and so we obtain the following 8D equation of motion

�R1,3σi + Z−1
�T4σi = 0 (2.31)

where �R1,3 = ηµν∂µ∂ν and �T4 = ĝab
T4∂a∂b. Performing a KK expansion

σi (xµ, ya) =
∑

ω

ζi
ω

(

xµ
)

si
ω

(

ya
)

(2.32)

and imposing the 4D Klein-Gordon equation �R1,3ζi
ω = m2

ωζ
i
ω we arrive at the eigenmode

equation

�T4si
ω = −Zm2

ω s
i
ω (2.33)

9Note that a background C4 component of the form Cµνab would break 4D Poincaré invariance.
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that again contains a warp factor dependence. Such warp factor is however irrelevant when

setting mω = 0 and so we obtain that zero modes si
0 may either have a constant or linear

dependence on the T4 coordinates ya. By demanding that si
0 is well-defined in T4, that

is by imposing the periodicity conditions on si
0(y

a + 1) = si
0(y

a), the linear solution is

discarded and we are left with a constant zero mode, that describes an overall translation

of the D7-brane in the ith transverse coordinate.

Note that a trivial warp factor for scalar zero modes does not contradict our previous

results for fermions, where we obtained warped wavefunctions. Indeed, in a supersymmetric

setup like ours, the bosonic and fermionic wavefunctions should not necessarily match

because of the presence of the (warped) vielbein in the SUSY transformations. However,

the 4D effective kinetic terms should match. These are obtained by plugging si
0 = const.

in (2.30), after which we obtain

S scal
D7 = −1

2

(

8π3k2
)−1

eΦ0

∫

R1,3

d4x ĝijη
µν∂µζ

i
0∂νζ

j
0

∫

T4

dv̂olT4 Zsi
0s

j
0 (2.34)

which again involves a warped volume, like in (2.25). Hence we find that the geometric

zero modes of a D7-brane are related by supersymmetry with fermionic zero modes of the

form (2.21b).

Finally, by inserting the whole KK expansion (2.32) into the 8D action (2.30) and

imposing (2.33) one obtains the following 4D effective action

S scal
D7 = −1

2

(

8π3k2
)−1

eΦ0
∑

ω

∫

R1,3

d4x ĝij

(

ηµν∂µζ
i
ω∂νζ

j
ω +m2

ωζ
i
ωζ

j
ω

)

∫

T4

dv̂olT4 Zsi
ωs

j
ω

(2.35)

where we have used that those wavefunctions with different 4D mass eigenvalue are orthog-

onal, in the sense that

∫

T4

dv̂olT4 Zĝijs
i
ωs

j
χ = 0 if m2

ω 6= m2
χ (2.36)

as implied by the Sturm-Liouville problem eq.(2.33). Our primary concern is toward the

zero modes and henceforth, we will will not consider the KK modes.

Regarding the 8D gauge boson Aα, the 8D action up to two derivatives reads

Sgauge
D7 = −1

4

(

8π3k2
)−1

∫

d4x
dv̂olT4
√

ĝT4

[

√

ĝT4FαβF
αβ − 1

2

(

C int
4 ǫµνρσFµνFρσ + Cext

4 ǫabcdFabFcd

)

]

where ǫ is a tensor density taking the values ±1. As before α, β run over all D7-brane

indices, µ, ν, ρ, σ over the external R
1,3 indices and a, b, c, d over the internal T4 indices of

the D7-brane. The gauge boson can be split in terms of 4D Lorentz indices as Aα = (Aµ, Aa)

where the components Aµ give a 4D gauge boson while the components Aa give scalars in

4D. The action contains a term that mixes the scalars with the 4D photon

(

8π3k2
)−1

∫

R1,3

d4x

∫

T4

dv̂olT4∂aAa∂
µAµ (2.37)
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which comes from the FµaF
µa term after integrating by parts twice. In analogy with what

is sometimes done in RS (see e.g. [22]), this term can be gauged away by the addition of

an RΞ gauge-fixing term to the action,

S Ξ
D7 = −

(

8π3k2
)−1

∫

R1,3

d4x

∫

T4

dv̂olT4
1

2Ξ

(

∂µAµ + Ξ∂aAa

)2
(2.38)

The form of this term is chosen to cancel the mixing term while preserving Lorentz invari-

ance. With this gauge choice, the Aµ and Aa components decouple. The action for Aµ in

the RΞ gauge is

S photon
D7 = −

(

8π3k2
)−1

∫

R1,3

d4x

∫

T4

dv̂olT4
√

ĝT4

[

√

ĝT4

(

1

4
FµνF

µν +
1

2Ξ
(∂µAµ)2

)

(2.39)

+
1

2

√

ĝT4ηµν ĝab
T4∂aAµ∂bAν − 1

8
C int

4 ǫµνρσFµνFρσ

]

which results in the equation of motion

�R1,3Aν −
(

1 − 1

Ξ

)

ηµσ∂ν∂µAσ + Z−1
�T4Aν = 0 (2.40)

where again, �R1,3 and �T4 are the unwarped Laplacians on R
1,3 and T4 respectively.

Here we have used that ĝT4 is constant, that Z,C4 are R
1,3-independent, and that Fρσ =

∂ρAσ − ∂σAρ is an exact two-form. Similarly, for the 4D Lorentz scalars Aa, we obtain the

action

Swl
D7 = −

(

8π3k2
)−1

∫

R1,3

d4x

∫

T4

dv̂olT4
√

ĝT4

[

√

ĝT4

(

1

4
FabF

ab +
Ξ

2

(

∂aAa

)2
)

+
1

2

√

ĝT4∂µAn∂
µAn − 1

8
Cext

4 ǫabcdFabFcd

]

(2.41)

from which we get the equation of motion in the RΞ gauge

�R1,3Aa + Z−1/2∂bF
ba + Ξ∂a

(

Z−1/2∂bAb

)

+
Z−1/2

√

ĝT4

ǫabcd∂b

(

Z−1Fcd

)

= 0 (2.42)

where we have made use of Cext
4 = Z−1 + const., as implied by our bulk supergravity

ansatz, and more precisely by (2.1) and (2.2).

Let us now consider the following KK decomposition for the 4D gauge boson

Aµ

(

x, y
)

=
∑

ω

Aω
µ

(

xµ
)

αω(ya) (2.43)

with the 4D wavefunction satisfying the massive Maxwell equation in the RΞ gauge

�R1,3Aω
µ −

(

1 − 1

Ξ

)

ηνσ∂µ∂νA
ω
σ = m2

ωA
ω
µ (2.44)

So that in an specific RΞ gauge, (2.40) amounts to

�T4αω = −Zm2
ω α

ω (2.45)
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Hence, we recover the same spectrum of internal KK wavefunctions as for the transverse

scalar (2.32). In particular, we recover a constant zero mode α0 and an effective kinetic

term given by the real part of the 4D gauge kinetic function

fD7 =
(

8π3k2
)−1

∫

T4

dv̂olT4
√

ĝT4

(

Z
√

ĝT4 + iC int
4

)

(α0)2 (2.46)

whose holomorphicity has been studied in [23]. Notice that the kinetic terms again involve

a warped volume, so we conclude that the D7-brane 4D gaugino is also given by a fermionic

zero mode of the form (2.21b).

Similarly, one can decompose the R
1,3 scalars arising from Aα as

Aa

(

x, y
)

=
∑

ω

wω
a

(

xµ
)

W ω
a

(

ya
)

. (2.47)

and impose the 4D on-shell condition �R1,3wω
a = m2

ωw
ω
a . Then the 8D eom (2.42) becomes

∂bF
ω ba + Z1/2Ξ∂a

(

Z−1/2∂bW ω
b

)

+
1

√

ĝT4

ǫabcd∂b

(

Z−1Fω
cd

)

= −Z1/2m2
ωW

ω a (2.48)

where we have defined Fω
ab ≡ ∂aW

ω
b − ∂bW

ω
a = dW ω. Note that if we chose the 4D Lorenz

gauge Ξ = 0, in the case of the zero modes mω=0 = 0 the above equation is equivalent to

d
[

Z−1 (1 − ∗T4)F 0
]

= 0 (2.49)

where F 0 = 1
2F

0
abdy

a∧dyb is the zero-mode two-form. This implies that (1−∗T4)F 0 = Zω2,

where ω2 is a harmonic, anti-self-dual two-form in T4. Because F 0 is exact, the integral

of Zω2 over any two-cycle of T4 has to vanish, and so we deduce that ω2 = 0. Hence

F 0 = ∗T4F 0 is a self-dual form and, again using the exactness of F 0, we deduce that

F 0 = 0. This is solved by taking W 0
a = const., like for the previous bosonic wavefunctions.

Finally, inserting such W 0
a in the 8D bosonic action we obtain the 4D effective action in

the 4D Lorenz gauge Ξ = 0

Swl
D7 = −1

2

(

8π3k2
)−1

∫

R1,3

d4x ĝab
T4η

µν∂µw
0
a∂νw

0
b

∫

T4

dv̂olT4 W 0
aW

0
b (2.50)

which only involves the unwarped T4 volume. This matches with the 4D kinetic terms

of their fermionic superpartners (2.21a). Note that in imposing the 4D Lorenz gauge,

language there is still a residual gauge symmetry which in 8D language is Aα → Aα − ∂αΛ

where ∂µΛ = 0. It is easy to see that this residual gauge symmetry is respected by the

entire 4D effective action and we can use it to set W 0
a to be constant.

Although the equations were solved in the 4D Lorenz gauge, W 0
a = const. and m0 = 0

is a solution to (2.48) for any choice of Ξ. However, for the KK modes, some of the

masses will depend on the choice of gauge. This is related to the fact that, except for the

zero mode, each of the vectors Aω
µ has a mass and so corresponds to the gauge boson of

a spontaneously broken gauge symmetry in the effective 4D language. The modes with

Ξ-dependent masses correspond to Goldstone bosons that are eaten by KK vectors which

then become massive. Similarly, α0 = const. is a zero mode of (2.44) for any choice of Ξ.

Finally, one can again show that the KK modes are orthogonal with the zero modes as

they were for the position modulus.
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RS D7

4D Field p q 4D Field p q

gauge boson 0
1/4

gauge boson/modulus 0
1

gaugino 3/8 gaugino/modulino 3/8

matter scalar (3 − 2c)/8
(1 − c)/2

Wilson line 0
0

matter fermion (2 − c)/4 Wilsonino −1/8

Table 1: Warp factor dependence for internal wavefunctions (p) and Kähler metric (q) in the RS

scenario and the D-brane construction consdered here. In RS, the gauge boson and gaugino come

from a 5D vector multiplet while the matter scalar and fermion come from a 5D hypermultiplet.

The 5D mass of the fermion in the hypermultiplet is cK with K the AdS curvature. The additional

degrees of freedom from these supermultiplets are projected out by the orbifold action is RS. The

wavefunctions in SUSY RS are worked out in [24] (our conventions differ slightly from theirs in that

we take the ansatz for the 5D fermion to be ΨL,R (x, y) = ψL,R (x)χL,R (y) while [24] uses a power

of the warp factor in the decomposition.)

2.2.3 Summary and comparison to RS

In the previous subsections we have analyzed the zero modes of a D7 brane wrapping a

4-cycle in a warped compactification. One could see this as a step towards a string theory

realization of an extended supersymmetric RS scenario [24]. In the standard WED setup,

4D fields result from the dimensional reduction of the zero modes of 5D fields propagating

in the bulk of AdS5.
10 Unlike for flat space, the supersymmetry algebra in AdS5 implies

that component fields have different 5D masses [25]. In particular, the 4D gauge boson and

gaugino come from a 5D N = 1 vector supermultiplet. Gauge invariance requires that the

5D vector component is massless, while SUSY requires that the 5D gaugino has mass 1
2K

where K = 1/R is the AdS curvature. Similarly, the matter fields result from the reduction

of a 5D hypermultiplet, the component fields of which each have a different mass.

The D7-brane construction here differs not only because of the existence of additional

spatial dimensions, but also because of the presence of additional background fields, namely

the RR potential C4 that couples to open string modes via the D7-brane CS and fermionic

action. This results into a different behavior of the internal wavefunctions when compared

to the analogous RS zero modes, as shown in Table 1. For each field, the wavefunction can

be written as Zpη where η is a constant function with the appropriate Lorentz structure.

The kinetic terms for each 4D field can then be written schematically as
∫

R1,3

d4xφ̄Dφ

∫

int
dv̂olintZ

qη̄η (2.51)

where φ is a 4D field with kinetic operator D, η is the corresponding constant internal

wavefunction and ‘int’ denotes the unwarped internal space (S1/Z2 for RS or T4 here).

Since both the D-brane construction considered here and the extended SUSY RS model

are supersymmetric, the 4D fields can be arranged into supermultiplets with the same value

of q for each component field. These are also given in Table 1.

10These bulk RS models also involve an orbifold S
1/Z2. The effect of the orbifold is however to project

out certain zero modes and does not effect the dependence on the warp factor of the surviving modes.
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2.2.4 More on the equation of motion

When deducing the fermionic equation of motion /D
w
θ = 0 from the κ-fixed action (2.16),

we have apparently ignored the Majorana-Weyl nature of θ.11 Indeed, the MW condition

implies that in deriving the equation of motion, θ and θ̄ cannot be varied independently.

As a consequence, if given the two actions

τD7

∫

d8ξ θ̄Γα∂αθ and τD7

∫

d8ξ θ̄Γα
(

∂α − ∂α ln f
)

θ (2.52)

with f an arbitrary function, then the resulting equation of motion is simply Γα∂αθ = 0 in

both cases, solved by θ = η with η a constant MW spinor. This is in clear contrast to the

case where θ in (2.52) is a Weyl spinor, since then for the second action the eom solution

is given by θ = fη. This could have been anticipated from the fact that the 10D MW

nature of θ implies that θ̄Γa1···anθ is non-vanishing only for n = 3, 7. Hence, we have that

θ̄(/∂ ln f)θ ≡ 0 and so, in the MW case, both actions in (2.52) are the same.

Going back to the fermionic action (2.16), we have that

θ̄± /D
w
θ± ≡ θ̄±

(

/∂
ext
4 + /∂

int
4

)

θ± (2.53)

where /D
w

is given by (2.17) and θ± are 10D MW spinors with ±1 eigenvalue under ΓExtra,

just like those constructed from (2.21). Hence, by analogy with (2.52) one could näıvely

conclude that the actual zero mode equation is given by /∂
int
4 θ0

6D = 0, instead of /D
w
θ0
6D = 0.

A more careful analysis shows that this is not the case. Indeed,

δS fer
D7 = τD7 eΦ0

∫

d8ξ δθ /D
w
θ + θ̄ /D

w
δθ = 2τD7 eΦ0

∫

d8ξ δθ /D
w
θ (2.54)

where we have used that
∫

d8ξ Z−1/4θ̄/∂T4δθ =

∫

d8ξ Z−1/4δθ

(

/∂T4 − 1

4
/∂T4 lnZ

)

θ (2.55)

and that θ/∂T4 lnZδθ = −δθ/∂T4 lnZθ. Hence, from (2.54) we read that the equation of

motion is indeed /D
w
θ = 0. Note that we would have obtained the same result if we had

treated θ and θ̄ as independent fields.

While in principle one could apply the same kind of computation to deduce the equation

of motion for the more general backgrounds to be discussed below, let us instead follow the

results of [21]. There, using the action presented in [26] (similar to that in [20] to quadratic

order in fermions) the following equation of motion was deduced for an unmagnetized

D7-brane

PD7
−

(

ΓαDE
α +

1

2
OE

)

Θ = 0 (2.56)

which is again the equation found from (2.10) if we näıvely ignore the MW nature of Θ.

A subtle point in deriving (2.56) is that a particular gauge choice in the fermionic

sector must be made. Indeed, in [21] the background superdiffeomorphisms were used to

11We would like to thank D. Simić and L. Martucci for discussions related to this subsection.
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choose a supercoordinate system in which the D7-brane does not extend in the Grassmann-

odd directions of superspace. One may then wonder whether such fermionic gauge fixing

is compatible with the gauge fixing choices taken in the bosonic sector. One can check this

by comparing the SUSY transformations in 10D with those in 4D. In the absence of NS-NS

flux, the κ-fixed SUSY transformations for the bosonic modes are [20]

δǫY
i = ǭΓiθ (2.57a)

δǫAα = ǭΓαθ (2.57b)

where ǫ is the 10D Killing spinor. We can compare these against the SUSY transformations

in 4D for a chiral multiplet (φ,ψ) and a vector multiplet (λ,A),

δεφ = ε̄ ψ (2.58a)

δεAµ = ε̄ λ (2.58b)

where ε is a constant 4D spinor and hence independent of the warp factor. This implies that

when we dimensionally reduce (2.57), we will only recover the standard 4D transformations

(2.58) if the warp factor dependence of bosons and fermions follows a particular relation.

Indeed, if we take the zero modes Aα and Y i to have no warp factor dependence as in

subsection 2.2.2, and if we notice that Γi ∼ Γµ ∼ Z−1/4, Γa ∼ Z1/4, ǭ ∼ Z−1/8, then it is

easy to see that precisely the fermionic wavefunctions of subsection 2.2.1 are those needed

to cancel the warp factor dependence in the r.h.s. of (2.57).

2.2.5 Alternative κ-fixing

When analyzing the D7-brane fermionic action, the κ-fixing choice (2.15) has the clear

advantage of expressing everything in terms of a conventional 10D spinor θ, in contrast to

the less familiar bispinor Θ that would appear in general. Taking other choices of κ-fixing

may, however, provide their own vantage point. Indeed, we will show below that taking

a different κ-fixing choice not only allows to rederive the results above, but also to better

understand the structure of D7-brane zero modes in a warped background.

More precisely, let us as before consider the action (2.10) in waped flat space, but now

we choose Θ such that PD7
− Θ = 0. The action (2.10) then reads

Sfer
D7 = τD7e

Φ0

∫

R1,3

d4x

∫

T4

dv̂olT4 Θ̄ /D
w

Θ (2.59)

where /D
w

is now given by (2.14). Following a similar strategy as in subsection 2.2.1, we

split the 10D Majorana-Weyl spinors θi in (2.6) as

θi = χi +B∗χ∗
i χi = θi,4 ⊗ θi,6 (2.60)

where θi,4 are 4D and θi,6 6D Weyl spinors, all of negative chirality, and B = B4 ⊗ B6

is again the Majorana matrix (A.25). Because of the condition PD7
− Θ = 0 one can set

θ1,4 = θ2,4 = θ4D, so that we have

Θ = θ4D ⊗ Θ6D +B∗
4θ

∗
4D ⊗B∗

6Θ∗
6D Θ6D =

(

θ1,6

θ2,6

)

(2.61)
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where Θ6D satisfies PExtra
+ Θ6D = 0, with

PExtra
± =

1

2
(I ± ΓExtra ⊗ σ2) (2.62)

Decomposing (2.61) as a sum of eigenstates under the (unwarped) 4D Dirac opera-

tor, and imposing Γ(4)/∂R1,3(B4θ
ω
4D)∗ = −mω θ

ω
4D and /D

w
Θ = 0 leads to the 6D bispinor

equation

Γ(4)

[

/∂T4 − 1

8

(

/∂T4 lnZ
)

(1 + 2ΓExtra ⊗ σ2)

]

Θω
6D = Z1/2mω(B6Θ

ω
6D)∗ (2.63)

which is analogous to (2.20). Finally, instead of (2.21) we obtain

Θ0
6D =

Z−1/8

√
2

(

η−
iη−

)

for ΓExtraη− = −η− Wilsonini (2.64a)

Θ0
6D =

Z3/8

√
2

(

iη+

η+

)

for ΓExtraη+ = η+ gaugino + modulino (2.64b)

and so we recover the same warp factor dependence in terms of the extra-dimensional

chirality of the spinor. It is also easy to see that upon inserting such solutions into the

D7-brane action we recover the same 4D kinetic terms as in (2.24) and (2.25).

Interestingly, the above set of zero modes have a simple interpretation in the context

of 10D type IIB supergravity. Indeed, note that for this choice of κ-fixing the D7-brane

zero modes can be rewritten as

Θ = Z−1/8Ξ− with PD3
+ Ξ− = PD7

− Ξ− = 0 (2.65a)

Θ = Z3/8Ξ+ with PD3
− Ξ+ = PD7

− Ξ+ = 0 (2.65b)

and Ξ± constant bispinors. This last expression can be easily deduced from (2.14) and the

fact that PO3
± and

PD3
± =

1

2

(

I ± Γ(4) ⊗ σ2

)

(2.66)

are equivalent when acting on type IIB Weyl spinors. As explained in the appendix A,

PD3
− is the projector that has to be inserted in the D3-brane fermionic action, in the same

sense that PD7
− is inserted in (2.10). This implies that 10D bispinors satisfying PD3

− Θ = 0

will enter the D3-brane action, while those satisfying PD3
+ Θ = 0 will be projected out. For

instance, a D3-brane in flat 10D space will have precisely four 4D fermion zero modes of

the form Θ = const., PD3
− Θ = 0. Such a D3-brane, which is a 1/2 BPS object, breaks

the amount of 4D supersymmetry as N = 8 → N = 4, so these four zero modes can be

interpreted as the four goldstini of the theory. Conversely, the constant bispinors satisfying

PD3
+ Θ = 0 can be identified with the four generators of the N = 4 superalgebra surviving

the presence of the D3-brane.

If we now consider a warped background created by a backreacted D3-brane, we have

four Killing (bi)spinors generating the corresponding N = 4 SUSY. Those Killing bispinors

ǫ must satisfy Oǫ = Dµǫ = Dmǫ = 0, where O and DM are given by (2.12). It is easy
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to see that the solution are of the form ǫ = Z−1/8Θ where Θ is constant and, as argued

above, satisfies PD3
+ Θ = 0. Introducing a D7-brane in this background will break the bulk

supersymmetry as N = 4 → N = 2, so the D7-brane should develop two goldstino zero

modes. Now, by taking the κ-fixing choice PD7
− Θ = 0 the Dirac action takes the simple

form (2.59), and so such goldstini amount to the pull-back of the above Killing spinors

into the D7-brane12 or, more precisely, those which are not projected out by the condition

PD7
− Θ = 0. These are precisely the zero modes in (2.65a), whose warp factor dependence

is thus to be expected.

Hence, we again see by supersymmetry arguments that such modes could never have a

warp factor dependence of the form Z1/8, which would only be allowed if we turned off the

RR flux F5 from our background. Indeed, in that case the background would not satisfy the

equations of motion, so no supersymmetry would be preserved and the arguments above

do not apply.

2.3 Warped Calabi-Yau

Let us now extend the above analysis to include warped backgrounds (2.8) with a non-

flat internal space X6. We will however still consider a constant axio-dilaton field τ =

C0 + ie−Φ0 , which constrains X6 to be a Calabi-Yau manifold. This basically means that

the holonomy group of X6 must be contained in SU(3), which in turn guarantees that

there is a globally defined 6D spinor ηCY, invariant under the SU(3) holonomy group and

satisfying the equation

∇CY
m ηCY

− = 0 (2.67)

where ∇CY is the spinor covariant derivative constructed from the unwarped, Calabi-Yau

metric of X6, and where we have taken ηCY to be of negative chirality. If we choose X6 to

be of proper SU(3) holonomy, meaning that its holonomy group is contained in SU(3) but

not in any SU(2) subgroup of the latter, then the solution to (2.67) is unique, and the only

other covariantly constant spinor besides ηCY
− is its conjugate ηCY

+ = (B6η
CY
− )∗.

As emphasized in the literature, these facts are crucial in specifying the supersymmetry

generators of not only unwarped, but also warped Calabi-Yau backgrounds. Indeed, it is

easy to see that for a warped Calabi-Yau the 10D gravitino and dilatino variation operators

are given by

O = 0 (2.68a)

Dµ = ∂µ − 1

4
Γµ/∂ lnZPO3

+ (2.68b)

Dm =∇CY
m +

1

8
∂m lnZ − 1

4
/∂ lnZΓmP

O3
+ (2.68c)

where PO3
+ is again defined by (2.13). In terms of these operators the background super-

symmetry conditions read Oǫ = Dµǫ = Dmǫ = 0, where ǫ a type IIB bispinor like (2.6). If

12Recall that /D
w

is a linear combination of gravitino and dilatino operators, pulled-back into the D7-brane

worldvolume.
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we now take the ansatz

ǫ =

(

ǫ1
ǫ2

)

ǫi = λi +B∗λ∗i λi = ǫi,4D(x) ⊗ ǫi,6D(y) (2.69)

with ǫi,4D and ǫi,6D of negative chirality, it is easy to see that Dµǫ = 0 imposes PO3
+ ǫ = 0

and ∂µǫ = 0, while Dmǫ = 0 in addition sets ǫi,6D proportional to Z−1/8ηCY
− . That is, our

warped Killing bispinor is of the form

ǫ = ǫ4D ⊗ Z−1/8

(

ηCY
−

iηCY
−

)

− iB∗
4ǫ

∗
4D ⊗ Z−1/8

(

iηCY
+

ηCY
+

)

(2.70)

where ǫ4D is a constant 4D spinor that, upon compactification, will be identified with the

generator of N = 1 supersymmetry in R
1,3. Note that in (2.70) we have set ǫ1,4D = ǫ2,4D =

ǫ4D because such identification is enforced by the condition PO3
+ ǫ = 0. On the other hand,

if we take the unwarped limit Z → 1 then PO3
+ ǫ = 0 no longer needs to be imposed,

and so ǫ1,4D and ǫ2,4D are independent spinors that generate a 4D N = 2 superalgebra.

Thus we recover the fact that any source of warp factor breaks the Calabi-Yau N = 2

supersymmetry down to N = 1.

Let us now consider a D7-brane in this background. For simplicity, we will first take the

limit of constant warp factor Z → 1, while nevertheless imposing the condition PO3
+ ǫ = 0

on the background Killing spinor. The worldvolume of such a D7-brane is then of the form

R
1,3 ×S4, where S4 is a four-cycle inside X6. Being a dynamical object, our D7-brane will

tend to minimize its energy which, since we are assuming 〈F〉 = 0 and constant dilaton,

amounts to minimizing the volume of S4. In the context of Calabi-Yau manifolds there is a

well-known class of volume-minimizing objects, known as calibrated submanifolds, that are

easily characterized in terms of the globally defined 2 and 3-forms J and Ω present in any

Calabi-Yau. In particular, for a four-cycle S4 the calibration condition reads −1
2P [J ∧J ] =

dvolS4 , where P [·] again stand for the pull-back into S4. Finally, this is equivalent to asking

that S4 is a complex submanifold of X6, which is the assumption that we will take in the

following.13

Given this setup, one may analyze which are the bosonic degrees of freedom of our D7-

brane and, in particular, which are the massless bosonic modes from a 4D perspective. The

answer turns out to be quite simple, and only depends on topological quantities of the four-

cycle S4. First, from the 8D gauge boson AM = (Aµ, Aa) we obtain a 4D gauge boson Aµ

and several 4D scalars Aa whose internal wavefunctions Wa can be used to build up a 1-form

W = Wadξ
a in S4. Using that FW = dW = 0 by assumption as well as the gauge freedom

13In fact, a complex four-cycle S4 satisfies either P [J2] = 2dvolS4
or −P [J2] = 2dvolS4

, and both

conditions define volume-minimizing objects in a Calabi-Yau. However, given our conventions in the D7-

brane action only P [J2] = −2dvolS4
will survive as a (generalized) calibration condition when we reintroduce

a warp factor satisfying F int
5 = ∗̂6dZ. This choice of calibration in warped backgrounds matches the

conventions of [20] and [27], while the opposite choice P [J2] = 2dvolS4
is taken in [28, 29]. Changing from

one choice to the other amounts to interchange the definitions of D7-brane vs. anti-D7-brane or, in terms

of the fermionic action, redefining P D7
± ↔ P D7

∓ . This also explains why, in the next section, we consider a

self-dual worldvolume flux F = ∗S4
F for a BPS D7-brane, instead of the anti-self-dual choice taken in [28].
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of Aa, one can identify the set of zero modes with the number of independent harmonic

1-forms in S4. We then obtain b1(S4) real scalar fields from dimensionally reducing AM , or

in other words h(1,0)(S4) = b1(S4)/2 complex Wilson lines. This result applies in particular

to a flat D7-brane in flat space, where we have that b1(T
4) = 4.

In addition, 4D scalar zero modes may arise from infinitesimal geometric deformations

of the D7-brane internal dimensions S4 → S ′
4 inside the Calabi-Yau X6. Such deformations

will be zero modes if the volume of the 4-cycle does not change, or otherwise said if S ′
4 is

still a complex submanifold. It can be shown that, if we describe such deformation via a

vector σa transverse to S4, then S ′
4 is complex only if σaΩabcdξ

b ∧ dξc is a harmonic (2,0)-

form in S4. The number of complex scalar geometric moduli is then given by the number of

independent harmonic (2,0)-forms of S4, namely the topological number h(2,0)(S4). For a

flat D7-brane we have that h(2,0)(T4) = 1, and that the complex zero mode is the transverse

translations of T4 inside T6.

Regarding the fermionic zero modes, one should obtain the same degrees of freedom

as for bosonic zero modes, so that the 4D effective theory can be supersymmetric. This

is because the calibration condition −1
2P [J ∧ J ] = dvolS4 used above is equivalent to

PD7
+ ǫ = 0, where ǫ is taken as in (2.70) with Z = 1, and which is the equation that a

D7-brane needs to satisfy in order to be a supersymmetric, BPS object in a Calabi-Yau.

Let us describe how these zero modes look like, again taking the unwarped limit Z → 1.

As in subsection 2.2.5, to remove the spurious degrees of freedom we will take the κ-fixing

choice PD7
− Θ = 0 in (2.10), which will simplify our discussion below. Then, the zero modes

of this action must satisfy PD7
− Θ = 0 and /∂R1,3θi = Γa∇CY

a θi = 0, a ∈ S4. An obvious

choice for a zero mode would be to take Θ = ǫ,14 since ∇CY
a ηCY

± = 0. However, the BPS

condition PD7
+ ǫ = 0 is equivalent to PD7

− ǫ = ǫ, and so this would-be fermionic zero mode

is projected out by κ-fixing. Instead, following [30] we can consider

Θ = θ4D ⊗ 1√
2

(

iηCY
−

ηCY
−

)

− iB∗
4θ

∗
4D ⊗ 1√

2

(

ηCY
+

iηCY
+

)

(2.71)

with θ4D constant and of negative 4D chirality. This bispinor is not only a D7-brane zero

mode but also an universal one, since it is present for any BPS D7-brane. As pointed out

in [30], upon dimensional reduction we can identify such zero mode with the 4D gaugino.

The rest of fermionic zero modes can be constructed from (2.71) (see e.g. [29, 31]).

Indeed, by the basic properties of a Calabi-Yau, the covariantly constant spinor ηCY
− is

annihilated by any holomorphic Γ-matrix defined on X6, namely ΓziηCY
− = Γz̄i

ηCY
− = 0.

Since S4 is a complex manifold, the same is also true for the Γ-matrices living on S4.

Hence all the spinors that can be created from ηCY
− are of the form

ηW = WaΓ
za

ηCY
− and ηm = mabΓ

zazb

ηCY
− (2.72)

14Strictly speaking, here ǫ stands for the restriction of the spinor ǫ, defined all over R
1,3 × X6 to the

8D slice R
1,3 × S4 where the D7-brane is localized. As these worldvolume restrictions for spinors can be

understood from the context, we will not indicate them explicitly.
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with a, b ∈ S4. Finally, one can show that Γa∇CY
a annihilates these spinors if and only if

Wadz
a and mabdz

a ∧ dzb are harmonic (1,0) and (2,0)-forms in S4, respectively.15 This

clearly matches the scalar degrees of freedom obtained above and, in particular, we can

identify θW with internal wavefunction for the Wilsonini and θm with that for the modulini

of the theory. More precisely, since we need to impose that PD7
− Θ = 0, we have that such

fermion zero modes are

Θ = θ4D ⊗ Θ6D +B∗
4θ

∗
4D ⊗B∗

6Θ
∗
6D

B∗
6Θ∗

6D =
1√
2

(

iηW

ηW

)

for Wilsonini (2.73a)

Θ6D =
1√
2

(

iηm

ηm

)

for modulini + gaugino (2.73b)

How do these zero modes change when we introduce back the warp factor? By taking

the operators (2.68), it is easy to see that the D7-brane fermionic action is again of the

form (2.59), now with

/D
w

= /∂
ext
4 + Γa∇CY

a +
(

/∂
int
4 lnZ

)

(

1

8
− 1

2
PO3

+

)

(2.74)

Hence, the warped zero modes will again be given by (2.71) and (2.73), but now multiplied

with a certain power of the warp factor which depends on how PO3
+ acts of them. In

particular, it is easy to see that for (2.71) and (2.73b) we have that PO3
+ Θ = Θ, so that

the appropriate warp factor is given by Z3/8. On the other hand, for (2.73a) we have that

PO3
+ Θ = 0, and so Wilsonino zero modes need to be multiplied by a warp factor Z−1/8.

Finally, one can check that if we define ΓExtra = d /volS4
as the chirality operator of S4

then ΓExtraη
CY
− = ηCY

− and that the same is true for ηm, while the Wilsonini ηW possess the

opposite extra-dimensional chirality. Thus, we see that the result (2.64) derived for warped

flat space remains valid in warped Calabi-Yau compactifications. This will also imply that

again both the gaugino and modulini will have a 4D kinetic term of the form (2.51) with

q = 1, while for the Wilsonini q = 0 and nothing will change with respect to an unwarped

compactification.

Considering the bosons, one can also see that the results from warped flat space apply

to a warped Calabi-Yau, and so the wavefunctions for the gauge boson, Wilson lines and

moduli do not carry the warp factor. Indeed, note that in this way the 4D kinetic terms of

bosonic and fermionic superpartners will match, which is again a requirement of supersym-

metry. One can also perform an explicit derivation via an explicit dimensional reduction

for the D7-brane zero modes, along the lines of [23] for the gauge boson and of [11] for the

moduli.

15Notice that Γa∇CY
a 6= /∇S4

, since ∇CY
a is constructed from the metric in X6 and not that in S4. See [21]

for their precise relation. In the language of [31], going from /∇S4
to Γa∇CY

a involves introducing a twist in

the Dirac operator.
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2.4 Adding background fluxes

Let us now add background fluxes H3, F3 to our warped Calabi-Yau solution, while still

considering D7-branes with F = 0 in their worldvolume. We can do so by following the

discussion in [30], adapted to our Einstein frame conventions of eq.(A.19). Indeed, one first

imposes the constraint G3 = F3 + ie−ΦH3 = −i∗6G3, coming form the equations of motion

[7]. This implies that the operators G
±
3 ≡ /F 3σ1±e−Φ /Hσ3 defined in (A.19) can be written

as G
±
3 = 2e−Φ /Hσ3P

O3
∓ , and so we have that the 10D gravitino and dilatino variations are

O = e−Φ0/2 /H3σ3P
O3
+ (2.75a)

Dµ = ∂µ − 1

4
Γµ/∂ lnZPO3

+ − 1

8
e−

Φ0
2 Γµ /H3σ3P

O3
− (2.75b)

Dm =∇CY
m +

1

8
∂m lnZ +

1

4
/∂ lnZΓmP

O3
+ +

e−
Φ0
2

4

(

/H3ΓmP
O3
+ +

1

2
Γm /H3P

O3
−

)

σ3 (2.75c)

from which we see that for a bispinor ǫ of the form (2.70) we have that Oǫ = 0 and

Dµǫ = Dmǫ = 0 ⇐⇒ /H3σ3ǫ = 0 (2.76)

which, as expected, happens if and only if H3 is a (2, 1)+(1, 2)-form [32]. Without imposing

this latter condition, we can proceed to analyze the eigenmodes of the D7-brane fermionic

action. Using the same conventions as for the warped Calabi-Yau case, we have that the

Dirac operator is now given by

/D
w

= /∂
ext
4 + Γa∇CY

a +
(

/∂
int
4 lnZ

)

(

1

8
− 1

2
PO3

+

)

+
1

2
e−Φ0/2

(

Γa( /H3)a − /H3

)

PO3
+ σ3 (2.77)

and so we find that the new Dirac operator contains a piece which is exactly like the

fluxless Dirac operator (2.74) plus a new piece proportional to the background flux H3.

From this piece is where the flux-induced fermionic masses should arise from, following

the microscopic analysis of [33]. From (2.77) we see that in general the Wilsonini do not

get any mass term, as already expected from the analysis in [28]. Regarding the gaugino

and the modulini, they can get a mass term from Γa( /H3)a − /H3, which projects out the

components of H3 that have just one index on the D7-brane worldvolume. As a component

of H3 with all three indices in S4 is incompatible with our initial assumption 〈F〉 = 0, we

are left with only those components of H3 with two indices on S4, which we denote by

H
(2)
3 , contribute to fermionic mass terms. The Dirac operator can then be expressed as

/D
w

= /∂
ext
4 + Γa∇CY

a +
(

/∂
int
4 lnZ

)

(

1

8
− 1

2
PO3

+

)

+
1

2
e−Φ0/2 /H

(2)
3 PO3

+ σ3 (2.78)

and so all those zero modes not lifted by the presence of the flux maintain the same warp

factor dependence as in the fluxless case. The warp factor dependence of modes lifted by

the flux is however more complicated, as the operator /H
(2)
3 also depends on the warp factor.

See [11] for a discussion on these issues in terms of bosonic modes.
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2.5 Extension to F-theory backgrounds

The results above can be further extended to warped F-theory backgrounds, with metric

(2.8) and a nonconstant dilaton field Φ. Again, the 10D gravitino and dilatino variations

can be deduced from (A.19). If for simplicity we assume no background 3-form fluxes they

read

O = /∂Φ − eΦ /F 1iσ2 (2.79a)

Dµ = ∂µ − 1

4
Γµ/∂ lnZPO3

+ (2.79b)

Dm =∇X6
m +

1

4
eΦ(F1)m +

1

8
∂m lnZ − 1

4
/∂ lnZΓmP

O3
+ (2.79c)

where we have also allowed a non-trivial RR flux F1 = Re dτ , so that (2.3) can be satisfied.

Translating the discussion in [34] to our formalism, one can look for Killing bispinors ǫ

satisfying Dµǫ = Dmǫ = 0, again using the ansatz (2.69). We obtain a warped bispinor of

the form

ǫ = ǫ4D ⊗ Z−1/8

(

ηX6
−

iηX6
−

)

− iB∗
4ǫ

∗
4D ⊗ Z−1/8

(

iηX6
+

ηX6
+

)

(2.80)

where again ηX6
− is a negative chirality 6D spinor, now satisfying16

(

∇X6
m +

1

4
eΦ(F1)m

)

ηX6
− = 0 (2.81)

instead of (2.67). The fact that ηX6
± are no longer covariantly constant implies that the

holonomy group of X6 cannot be in SU(3), and so X6 cannot be a Calabi-Yau. However,

from (2.81) one can see that the holonomy group is contained in U(3), which implies that

X6 is a complex, Kähler manifold. Hence, we can still introduce complex coordinates zi

and holomorphic Γ-matrices such that, as before, ΓziηX6
− = Γz̄i

ηX6
− = 0. One can then

check that the last supersymmetry condition Oǫ = 0 is equivalent to (2.3).

As before, the BPS condition for a D7-brane PD7
+ ǫ = 0 will restrict S4 to be a com-

plex submanifold of X6 and, since X6 is Kähler, this will mean that S4 is minimizing its

volume.17 Taking the κ-fixing choice PD7
− Θ = 0 and the unwarped limit Z → 1, we will

have again a D7-brane fermionic action of the form (2.59), where now

/D
w

= /∂
ext
4 + Γa

(

∇X6
a +

1

4
eΦ(F1)a

)

− i

2
eΦ
(

/F 1σ2 − i/∂e−Φ
)

(2.82)

Because of the holomorphicity of the dilaton, the zero modes of this Dirac operator will

as before be of the form (2.71) and (2.73), with the obvious replacement ηCY
− → ηX6

− .

While (2.71) will be a universal zero mode that corresponds to the D7-brane gaugino, the

16This is the weak coupling and small C0 limit (that is, linearized) version of eq. (2.19) in [34].
17Notice that for a varying axio-dilaton τ the physically relevant question is whether the D7-brane is

minimizing its energy, and more precisely its DBI + CS Lagrangian densities, rather than its volume. Of

course, energy minimization turns also to be true for such D7-branes, as expected from their BPSness.
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Wilsonino and modulino zero modes will have to solve a differential equation, that will

again relate them to the harmonic (1,0) and (2,0)-forms of S4, respectively.18

Finally, we can restore the warp factor dependence on the D7-brane fermionic action,

which amounts to add to (2.82) a piece of the form

(

/∂
int
4 lnZ

)

(

1

8
− 1

2
PO3

+

)

(2.83)

exactly like in warped flat and Calabi-Yau spaces. As a result, we will again have that the

D7-brane gaugino and modulini depend on the warp factor as Z3/8, while the Wilsonini do

as Z−1/8. The generalization to F-theory backgrounds with fluxes is then straightforward.

2.6 Effects on the Kähler potential

Just like for closed strings, one can interpret the effect of warping in the open string

wavefunctions as a modification of the 4D Kähler potential and gauge kinetic functions.

In order to properly interpret the effect of warping, we must convert our results to the 4D

Einstein frame, which differs from the 10D Einstein frame by a Weyl transformation of the

unwarped 4D metric

ηµν → V0

Vw
ηµν (2.84)

where Vw is the warped volume of the internal 6D space

Vw =

∫

X6

dv̂olX6Z (2.85)

and V0 is the fiducial volume of the unwarped Calabi-Yau. This Weyl transformation gives

a canonical 4D Einstein-Hilbert action with 4D gravitational constant

1

2κ2
4

=
V0

2κ2
10

(2.86)

Let us now analyze the different open string metrics. The D7-brane gauge kinetic

function for the gauge boson was deduced for the toroidal case in (2.46). From the results

of Sec 2.3, one can easily generalize this result to a D7-brane wrapping a 4-cycle S4 in a

warped Calabi-Yau as

fD7 =
(

8π3k2
)−1

∫

S4

dv̂olS4
√

ĝS4

(

Z
√

ĝS4 + iC int
4

)

(2.87)

where ĝS4 is the unwarped induced metric on S4, and dv̂olS4 the corresponding volume

element. Since the gauge kinetic function is Weyl invariant, this is not modified when

moving to the 4D Einstein frame.

The position moduli and modulini combine to form N = 1 chiral supermultiplets, the

Kähler metric for which can be read from the kinetic term of the moduli, after converting

18See [31] for a derivation of this spectrum using twisted Yang-Mills theory.
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it to the 4D Einstein frame.19 Let us first consider the case where the D7 is wrapping

T4 =
(

T2
)

i
×
(

T2
)

j
⊂ T6, where each torus has a complex structure defined by the

holomorphic coordinate

zm = ym+3 + τmy
m+6 (2.88)

Then, from (2.34), the kinetic term in the 4D Einstein frame for the zero mode (dropping

the KK index 0 on the 4D fields) in the warped toroidal case is

S scal
D7 = − k2

κ2
4Vw

∫

R1,3

d4x ηµν∂µζ∂ν ζ
∗

∫

T4

dv̂olT4 eΦ0Zs0s
∗
0

(

ĝT4

)

kk̄
(2.89)

where we have defined the complex field σ = (σ3+k + τkσ6+k) for i 6= k 6= j and extracted

the zero modes from the expansion (2.32). The Kähler metric is then

κ2
4Kζζ̄ =

k2

Vw

∫

T4

dv̂olT4 eΦ0Zs0s
∗
0 (ĝT4)kk̄ (2.90)

If we now consider a D7-brane wrapping a 4-cycle S4 in an unwarped Calabi-Yau, the

D7-brane moduli can be expanded in a basis {sA} of complex deformations of S4

σ
(

x, y
)

= ζA (x) sA (y) + ζ̄Ās̄Ā (y) (2.91)

Following [37], the Einstein frame kinetic term can then be written as

iτD7

∫

R1,3

eΦLAB̄ dζA ∧ ∗4dζ̄
B̄ (2.92)

where

LAB̄ =

∫

S4
mA ∧mB̄

∫

X6
ΩCY ∧ Ω̄CY

(2.93)

and {mA} is a basis of harmonic (2, 0)-forms related to {sA} via mA = ιsA
ΩCY. As we have

seen, in the toroidal case the effect of warping introduces a warp factor in the integral over

the internal wavefunctions and requires a Weyl rescaling with the warped volume rather

than the unwarped one. The appropriate generalization for the warped Calabi-Yau case

amounts then to

LAB̄ → Lw
AB̄ =

∫

S4
ZmA ∧mB̄

∫

X6
Z ΩCY ∧ Ω̄CY

(2.94)

Let us now try to combine these open string Kähler metrics with the kinetic terms in

the closed string sector, studied in [12, 13, 14]. For the axio-dilaton, the result from [12] is

−
∫

R1,3

d4xKt̄t ∂
µt̄ ∂µt (2.95)

where t is the axio-dilaton zero-mode, and the Kähler metric is given by

Kt̄t =
1

8 (Imτ)2 Vw

∫

X6

d6y Z Y 2
0 (2.96)

19The same philosophy has been applied in [35] to compute (unwarped) open string Kähler metrics in

the 10D SYM limit of type I theory, using the framework developed in [36].
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where Y0 is the internal wavefunction for the zero mode. Since the equation of motion

admits a constant zero mode, the integral is proportional to the warped volume which is

canceled by the factor of Vw appearing in the denominator. That is, the kinetic term for

the zero mode of the axio-dilaton is unaffected by the presence of warping. In the presence

of D7 branes, the D7 geometric moduli and the axio-dilaton combine into a single Kähler

coordinate S. In the unwarped Calabi-Yau this combination is given by [37]

S = t− κ2
4τD7LAB̄ζ

Aζ̄B̄ (2.97)

and so the appropriate part of the Kähler potential is

K ∋ ln
[

−i
(

S − S̄
)

− 2iκ2
4τD7LAB̄ζ

Aζ̄B̄
]

(2.98)

The kinetic term for t is not modified by warping, which suggests that in the presence of

warping we should identify

Sw = t− κ2
4τD7Lw

AB̄ζ
Aζ̄B̄ (2.99)

and that the Kähler potential should be modified accordingly,

K ∋ ln
[

−i
(

Sw − S̄w
)

− 2iκ2
4τD7Lw

AB̄ζ
Aζ̄B̄

]

(2.100)

This correctly reproduces the quadratic-order kinetic terms for the axio-dilaton and D7

deformation moduli.

Turning now to the Wilson line and Wilsonini, their Kähler metric can be found from

the Wilson line action. In the S4 = T2
i ×T2

j case, the components of the 1-form potential

A in complex coordinates are

Aa =
i

2 Im (τa)

(

τ∗aAa+3 −Aa+6

)

(2.101)

for a = i, j. Converting (2.50) to the Einstein frame, we find that the action for the

massless modes is

Swl
D7 = − k2

κ2
4Vw

∫

R1,3

d4x ĝab̄
T4η

µν∂µwa∂νw
∗
b̄

∫

T4

dv̂olT4W (0)
a W

∗(0)

b̄
(2.102)

which finally gives the Kähler metric

κ2
4Kab̄ =

k2

Vw

∫

T4

dv̂olT4W (0)
a W

∗(0)

b̄
ĝab̄
T4 (2.103)

where the indices a and b are not summed over.

In the Calabi-Yau case, the Wilson lines of a D7 wrapping S4 can be expanded as

AadA
a = wI (x)W I (y) + wĪ (x)W

Ī
(y) (2.104)

where
{

W I
}

is a basis of harmonic (1, 0)-forms on S4. The kinetic term for the Wilson

lines in the unwarped case is [37]

i
2τD7k

2

V

∫

R1,3

CIJ̄
α vαdwI ∧ ∗4dwJ̄ (2.105)
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where V is the (unwarped) Calabi-Yau volume. If we now expand the Kähler form in a

basis {ωα} of harmonic 2-forms

JCY = vαωα (2.106)

we can express CIJ̄
α as

CIJ̄
α =

∫

S4

P [ωα] ∧W I ∧W J̄
(2.107)

In the warped toroidal case, the effect of the warping on the Wilson line kinetic terms is

to simply replace the volume with the warped volume. Again, from Sec 2.3, this result is

independent of the shape of unwarped internal geometry so that in the warped Calabi-Yau

case, the kinetic term for the Wilson lines is

i
2τD7k

2

Vw

∫

R1,3

CIJ̄
α vαdwI ∧ ∗4dwJ̄ (2.108)

where now the warped volume Vw appears in the denominator.

One may again wonder how these open string modes combine with the closed string

ones in the full Kähler potential. In analogy with the results for the unwarped Calabi-Yau

case, we would now expect that Wilson lines combine with the Kähler moduli. However, as

pointed out in [37] it is not an easy problem to derive the Kähler metrics from the general

form of the Kähler potential. Let us instead consider the particular case of X6 = T6,

S4 =
(

T2
)

i
×
(

T2
)

j
. In the unwarped case, the Kähler potential can be written as

K ∋ − ln
[

TΛ + TΛ

]

− ln
[

Ti + T i − 6iκ2
4τD7k

2CIJ̄
i wIwJ̄

]

(2.109)

− ln
[

Tj + T j − 6iκ2
4τD7k

2CIJ̄
j wIwJ̄

]

where Tα are a combination of Kähler moduli and D7’s Wilson lines. Indeed,

Tα + Tα =
3

2
Kα + 6iκ2

4τD7k
2CIJ̄

α wIwJ̄ (2.110)

where Kα control the the volume of the 4-cycles of the compactification. More precisely, if

we express an unwarped Calabi-Yau volume in terms of the vα defined in (2.106),

V =
1

6
Iαβγv

αvβvγ (2.111)

then we have that, in general,

Kα = Iαβγv
βvγ (2.112)

and in particular this expression applies for the Kähler moduli of T6.

Expanding (2.109) up to second order in the D7-brane Wilson lines wI we obtain that

their unwarped Kähler metrics are given by

κ2
4τD7k

2
∑

α

3iCIJ̄
α

Tα + Tα

wIwJ̄ (2.113)

Comparing to our result (2.108), it is easy to see that a simple generalization that would

reproduce the Wilson line warped metric is to replace

Tα + Tα → Tw
α + T

w
α =

3

2
Iw

αβγv
βvγ + 6iκ2

4τD7k
2CIJ̄

α wIwJ̄ (2.114)
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in (2.109). Here we have defined the warped intersection product20

Iw
αβγ =

∫

X6

Z ωα ∧ ωβ ∧ ωγ (2.115)

that defines the warped volume as

Vw =
1

6
Iw

αβγv
αvβvγ (2.116)

One may then wonder whether this way of writing the warped Kähler potential is a

particular feature of toroidal-like compactifications. A possible caveat is that the modifi-

cation (2.114) is clearly different from the modification of the gauge kinetic function (2.87)

and that both quantities, Tw
α and fD7, should have a simple dependence on the Kähler

moduli of the compactification.21 Indeed, the warp factor of the gauge kinetic function is

integrated only over S4, while the warp factor in the definition of Tw
α is integrated over the

entire internal space. In fact, both definitions of warped volume can be put in the same

form

Volwξ (S4) = −1

2

∫

X6

ξ ∧ J ∧ J (2.117)

where [ξ] is Poincaré dual to [S4], and J = Z1/2JCY is the warped Kähler form. Because

J2 is not closed, (2.117) depends on the representative ξ ∈ [ξ]. In particular, for Tw
α ξ is

the harmonic representative, while for fD7 ξ should have δ-function support on S4.

Despite this discrepancy there is not necessarily a contradiction between (2.87) and

our definition of Tw
α . For instance, if one takes the definition of Kähler moduli given in [38],

that in the present context translates into the shift J∧J → J∧J+tα[ωα], [ωα] ∈ H2,2(X6),

we see that Tw
α and fD7 have exactly the same dependence on tα, which suggest that they

could differ by a holomorphic function of the compactification moduli. Indeed, for the case

of a single Kähler modulus the results in [23] (see also [39]) show that one can express the

warped volume of S4 as

Vw
S4

=

∫

S4

Z dvolS4 = Tw
α + T

w
α + [ϕ+ ϕ] (2.118)

where ϕ is a holomorphic function of D-brane position moduli. Hence, the real part of ϕ

is precisely the difference between both choices of ξ in (2.117). It would be interesting to

try to extend (2.118) to compactifications with several Kähler moduli.

In fact, compactifications with one Kähler modulus provide a further test to the above

definition of warped Kähler potential. There, the unwarped Kähler potential reads [37]

−3 ln
[

TΛ + TΛ − 6iκ4τD7k
2CIJ̄

Λ wIwJ̄

]

(2.119)

where the single four-cycle SΛ is wrapped by the D7 brane. According to our prescription

(2.114), in the warped case this should be modified to

−3 ln
[

Tw
Λ + T

w
Λ − 6iκ4τD7k

2CIJ̄
Λ wIwJ̄

]

(2.120)

20An alternative possibility would have been to set Iw
αβγ = (Vw/V)Iαβγ , although this would imply a

very mild modification of the Kähler potential with respect to the unwarped case.
21Let us stress out that we are not identifying Tw

α with the Kähler moduli of a warped compactification,

but rather with the quantities that encode their appearance in the Kähler potential.
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and, in the absence of a D7 brane where wI = 0, this becomes

−3 ln
[

Tw
Λ + T

w
Λ

]

(2.121)

Note that this reproduces is the results of [14]. Indeed, from our definition of Tw
α we have

that, in the absence of D7-branes,

twΛ =
3

4
I w

ΛΛΛ

(

vΛ
)2

(2.122)

where twΛ is the real part of Tw
Λ . This real part of the universal Kähler modulus can be

identified as an R
1,3-dependent shift c in the warp factor [9, 12, 14]22

Z (x, y) = Z0

(

y
)

+ c
(

x
)

(2.123)

Integrating this equation over X6 gives an expression for the fluctuating warped volume

Vw (x) = V0
w + c

(

x
)

V (2.124)

As shown in [14], the universal Kähler modulus is orthogonal to the other metric fluctua-

tions so we can freeze the value of V to the fiducial value V0. With this identification,

I w
αβγ = I w0

αβγ + cIαβγ (2.125)

where

I w0
αβγ =

∫

X6

Z0 ωα ∧ ωβ ∧ ωγ (2.126)

While in general the warp factor may provide significant corrections to Iαβγ , in the case

of a single Kähler modulus Λ the correction is simply a rescaling with the warped volume

I w0
ΛΛΛ = IΛΛΛ

V0
w

V0
(2.127)

where V0 is again the fiducial volume of the unwarped Calabi-Yau. This allows us to write

twΛ =
(

c+
V0

w

α′3

)3

4
IΛΛΛ

(

vΛ
)2

(2.128)

so that the warping correction to the single Kähler modulus is an additive shift proportional

to
V0

w

V0
(2.129)

And so, up to a multiplicative constant, we recover the result of [14], where all warping

corrections to the Kähler potential for the universal Kähler modulus were summarized in

an additive shift for the latter. We find it quite amusing that, at least in the case of a

single Kähler modulus, such result can be reproduced by means of a DBI analysis. It

would be interesting to see if the same philosophy can be applied to compactifications with

several Kähler moduli, as well as to Kähler potentials that involve Kähler moduli beyond

the universal one.
22As explained in [9, 12, 14], compensators are need to be added for consistency with the equations of

motion for the closed string fluctuations. These are however unimportant for the discussion here since to

quadratic order in fluctuations, the open string kinetic terms depend only on the background values of the

closed string moduli.
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2.7 A simple warped model

Let us now apply the above results to a model based on D7-branes which, besides a non-

trivial warp factor, allows for semi-realistic features like 4D chiral fermions and Yukawa

couplings. This will not only allow us to show the effects that warping can have on the 4D

effective theory, but also to check that our results for the Kähler potential are compatible

with the computation of physical quantities like Yukawa coupling. A simple way of con-

structing such model is to consider unmagnetized D7-branes in toroidal orbifolds. That is,

we consider an internal manifold of the form X6 = T6/Γ, where Γ is a discrete symmetry

group of T6, and place a stack of N D7-branes wrapping a T4 in the covering space. For

trivial warp factor the phenomenological features of such models have been analyzed in

[40]. We would now like to see how 4D quantities change after introducing a warp factor.

Let us then illustrate the warping effects by focusing in a particular toroidal model,

namely the Pati-Salam Z4 toroidal orbifold model considered in [33], Sec 9.1. In this model,

the internal space is locally X6 = T6/Z4 where the Z4 action is

θ :
(

z1, z2, z3
)

7→
(

e2πi/4z1, e
2πi/4z2, e

πiz3
)

(2.130)

and the T6 has been factorized into three T2
i . The gauge group and matter arise from a

stack of eight D7-branes wrapping (T2)1 × (T2)2 and located at an orbifold fixed point

on the third torus. The orbifold action on the gauge degrees of freedom break the initial

gauge group U(8) → U(4)×U(2)L ×U(2)R, producing at the same time two quark/lepton

generations F i
L = (4, 2̄, 1), F j

R = (4̄, 1, 2) i, j = 1, 2, a Higgs multiplet H = (1, 2, 2̄), and

Yukawa couplings ǫijHF
i
LF

j
R. The latter can be understood as arising from orbifolding and

dimensionally reducing of the 8D SYM term
∫

d8ξ
√
g θ̄Γα[Aα, θ] (2.131)

present in the initial U(8) D7-brane theory.23

When introducing the warp factor Z, the open string wavefunctions of this model will

no longer be constant but develop a warp factor dependence following the analysis of Sec

2.2. In particular, FL,R arise from (orbifolded) U(8) Wilson line multiplets, whereas H

arises from the transverse modulus + modulino. By Table 1, we have that the warp factor

dependence of their internal wavefunctions is given by

H = (h, ψH)4D → (Z0, Z3/8), F = (f, ψF )4D → (Z0, Z−1/8). (2.132)

These wavefunctions must be inserted in the D7-brane fermionic action, where an analogous

term to (2.131) gives

SYuk
D7 = τD7

∫

d8ξ
√
geΦ0ǫij

(

θ̄HΓ1̄Ai
FL
θj
FR

+ θ̄HΓ2̄Ai
FR
θj
FL

+ h.c.
)

(2.133)

23In fact, not all Yukawa couplings can be understood like this. In unwarped backgrounds without fluxes,

a way to guess the missing Yukawas is to start from a 10D SYM action and reduce it to 8D in order to

produce couplings beyond (2.131), as in [41]. We will however not discuss such approach, as (2.131) will be

enough for the purposes of this subsection.

– 30 –



and where both Γ-matrices contain a factor of Z−1/4. It is then easy to see that the full

warp factor dependence cancels in the integral, performed upon dimensional reduction, and

that one is left with an 4D effective action of the form

SYuk
D7 = τD7

α′6

V2
w

eΦ0(ĝ11̄
T4)

1/2

∫

R1,3

d4x f i
Lψ̄Hψ

j
FR
ǫij

∫

T4

dv̂olT4 WFL
η†HηFR

+ . . . (2.134)

where s and η are constant bosonic and fermionic internal wavefunctions, respectively, and

where we have converted all quantities to the 4D Einstein frame. From Sec 2.2 we know

that the normalization constants of such wavefunctions are

NηH
=

(

eΦ0α′9/2V−3/2
w

∫

T4

dv̂olT4Z

)−1/2

(2.135)

NηFR
=

(

eΦ0α′9/2V−3/2
w

∫

T4

dv̂olT4

)−1/2

(2.136)

NWFL
=

(

k2α′3V−1
w ĝ11̄

T4

∫

T4

dv̂olT4

)−1/2

(2.137)

and so, by imposing that our 4D fields are canonically normalized, we obtain the physical

Yukawa coupling

yHFLFR
=

(

2π
)3/2

k
(

∫

T4 dv̂olT4 Z
)1/2

∼ gD7 (2.138)

that should be compared to the standard supergravity formula

yijk = eK/2
(

KīiKjj̄Kkk̄

)−1/2
Wijk (2.139)

and the results from subsection 2.6. Indeed, we see that by setting WHFLFR
= 1 and using

eqs.(2.90) and (2.103), as well as K = (2.100) + (2.109), we can derive (2.138).

As emphasized in [9, 12, 13], compensators are needed for consistency of the equations

of motion for the closed string fluctuations, and thus the field space metrics for the closed

string sector are in general highly complex. However, in comparing (2.138) and (2.139), we

do not need to evaluate derivatives of the Kähler potential K with respect to closed string

moduli and so the issue of compensators do not concern us here.

In this particular model, the Higgs field propagates throughout the worldvolume of

the D7. In contrast, in the Randall-Sundrum scenario the Higgs is confined to or near the

IR end of the geometry. As discussed in section 2.2.3, the 5D masses of the bulk fermions

(except for the gaugino) is a free parameter, though is related to the masses of the bulk

scalars. The mass mΨ = cK controls the profile of the fermion in the bulk, with modes

for c > 1
2 being localized toward the IR and modes with c < 1

2 being localized towards the

UV [42]. This localization controls the overlap with the Higgs and hence the 4D Yukawa

couplings depend sensitively on c so that this mechanism provides a model of the fermion

mass hierarchy. However, the bosonic and fermionic actions for D-branes do not have such

mass terms. Instead, the localization can be controlled by either using gauge instantons

(as suggested in [17]) or by localizing the matter fermions on intersections of D7 branes

(as used for example in [43]).
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3. Magnetized D7-branes

3.1 Allowing a worldvolume flux

As we have seen, D7-branes in warped backgrounds of the form (2.8) provide a wealth of

gauge theories with warped internal wavefunctions. This is however far from being the most

general possibility when producing such theories. Indeed, as discussed before the D7-brane

action depends on a generalized field strength F = P [B] + 2πα′F living on the D7-brane

worldvolume R
1,3×S4, which contains the 8D gauge boson degrees of freedom via the usual

relation F = dA. Now, instead of consider a vanishing vev for F as in the previous section,

one may allow a nontrivial vev for such worldvolume flux. Clearly this does not spoil 4D

Poincaré invariance if we choose the indices of 〈F〉 to be along S4 and, in fact, this is an

essential ingredient to obtain 4D chiral fermions via D7-brane intersections. Finally, such

“magnetized” D7-brane will be a stable BPS object if, in addition to demanding that S4

is volume minimizing we impose that [44, 28]

F = ∗S4F (3.1)

where here and henceforth we omit the brackets to refer to the vev of F . That is, magnetized

D7-branes in warped backgrounds of the form (2.8) are BPS if F is a self-dual 2-form of

their internal dimensions S4.
24

It is easy to see that adding a non-trivial F will change the zero mode equations for

both fermions and bosons. In particular, the Einstein frame fermionic action is not longer

of the form (2.10), but rather (see [20] and Appendix A)

S fer
D7 = τD7

∫

d8ξ eΦ
√

∣

∣det M
∣

∣ Θ̄PD7
− (F)

(

ΓµDµ + (M−1)abΓa

(

Db +
1

8
ΓbO

))

Θ (3.2)

where as before µ stands for a R
1,3 index and a, b for indices in S4. The worldvolume flux

dependence enters via the operators25

M =P [G] + e−Φ/2F (3.3a)

M =P [G] + e−Φ/2Fσ3 (3.3b)

PD7
± (F) =

1

2

(

I ∓ ΓF
(8) ⊗ σ2

)

(3.3c)

ΓF
(8) = Γ(8)

√

∣

∣

∣

∣

detP [G]

detM

∣

∣

∣

∣

(

I − e−Φ/2 /F ⊗ σ3 +
3

2
e−Φ /F2

)

(3.3d)

that clearly reduce to those in (2.10) when taking F → 0. Note that terms that do not

appear with a tensor product implicitly act as the identity on the bispinor space. Finally,

one can show that PD7
± (F) are still projectors, and that (3.1) is equivalent to impose the

usual BPS condition PD7
+ (F)ǫ = 0, with ǫ given by the Killing spinor (2.70) [44, 28, 27].

24More precisely, F = ± ∗S4
F if 2 dvolS4

= ∓P [J2] (see footnote 13), and the choice taken in [28] was

such that a BPS D7-brane should host an anti-self-dual flux F . Our conventions match those of [27], where

the derivation of the D7 BPS conditions were also carried out for more general supergravity backgrounds.
25The operator M corresponds to M̃ in [20] and, while the definition here and in [20] slightly differ, they

are equivalent. For an expression of the fermionic action closer to that in [20] see the appendix.
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3.2 Warped flat space

Paralleling our previous discussion for unmagnetized D7-branes, let us first consider the

case where our D7-brane wraps a conformally flat four-cycle S4 = T4 inside the warped

internal manifold X6 = T6 which is also conformally flat, and so that the metric on the

D7-brane worldvolume is of the form (2.11). Let us further simplify this situation by taking

a factorizable setup where S4 = (T2)i × (T2)j and

P [J ] = dvol(T2)i
+ dvol(T2)j

(3.4a)

F = bi dv̂ol(T2)i
+ bj dv̂ol(T2)j

(3.4b)

where as before dvolT2 = Z1/2dv̂olT2 stand for warped and unwarped volume elements. It

is then easy to see that with the choice dvolS4 = −dvol(T2)i
∧ dvol(T2)j

the BPS condition

(3.1) is equivalent to F ∧ P [J ] = 0, which is solved for b = bi = −bj . If in addition we

consider a vanishing background B-field, then F = 2πα′f , where f is a U(1) field strength

of the form

f = 2πmi

dv̂ol(T2)i

v̂ol(T2)i

+ 2πmj

dv̂ol(T2)j

v̂ol(T2)j

(3.5)

and where, because of Dirac’s charge quantization, mi,mj ∈ Z. The BPS conditions above

then translate into the more familiar condition mi/v̂ol(T2)i
+mj/v̂ol(T2)j

= 0 used in the

magnetized D7-brane literature.

3.2.1 Fermions

Following the steps taken in subsection 2.2.1, we have that the dilatino and gravitino

operators entering the fermionic action are again given by (2.12). Hence, plugging them

in (3.2) and taking the κ-fixing gauge (2.15), one finds a Dirac action of the form (2.16),

where now
√

det gT4

detMT4

/D
w

= /∂
ext
4 + (M−1

T4 )abΓa

(

∂b −
1

8
∂b lnZ

)

+
1

4
Λ(−F)ΓExtra(M

−1
T4 )baΓa∂b lnZ

− 1

2

(

1 − 1

4
(M−1

T4 )abΓaΓb

)

/∂ lnZ

+
1

2
Λ(−F)ΓExtra

(

1 − 1

4
(M−1

T4 )baΓaΓb

)

/∂ lnZ (3.6)

where

Λ(F) =

√

det gT4

detMT4

(

I + e−Φ0/2 /F +
3

2
e−Φ0 /F2

)

MT4 = gT4 + 2πα′e−Φ0/2f (3.7)

and gT4 = Z1/2ĝT4 stands for the warped T4 metric.

Using now the factorized ansatz T4 = (T2)i × (T2)j and (3.4), it is easy to see that

MT4 =

(

M
T

2
i

0

0 M
T

2
j

)

(3.8a)

M
T2

i
= 4π2α′

[

Z1/2R2
i

(

1 Re τi
Re τi |τi|2

)

+ e−Φ0/2

(

0 mi

−mi 0

)]

(3.8b)
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In terms of the complex coordinates zm = ym+3 + τmy
m+6 this reads

M
T

2
i

=
1

2
(4π2α′)Z1/2R2

i

(

0 1 + iBi

1 − iBi 0

)

with Bi = Z−1/2e−Φ0/2bi (3.9)

Then, also in this complex basis26

1

2
(M−1

T4 )abΓaΓb =
I − iBiΓT

2
i

|1 + iBi|2
+

I − iBjΓT
2
j

|1 + iBj |2
(3.10)

where Γ
T

2
i

= −id /vol(T2)i
is the chirality matrix for T2

i . Similarly, we have

Λ(F) =
I + iBiΓT

2
i

|1 + iBi|
·

I + iBjΓT
2
j

|1 + iBj |
= e

iφiΓT
2
i · e

iφjΓ
T

2
j (3.11)

where we have defined φi ≡ arctanBi. Notice that, unlike in the usual magnetized D-brane

literature, φi is not a constant angle, having a non-trivial dependence on the warp factor.

Finally we can express ΓExtra = d /volS4
= Γ

T
2
i
Γ

T
2
j
.

We can now implement the dimensional reduction scheme of subsection 2.2.1, taking

again the ansätze (2.18) and (2.19). In order to find the eigenmodes of the Dirac operator,

one first notices that given the setup above the first line of (3.6) can be written as

/∂
ext
4 + (M−1

T4 )abΓa

[

∂b −
1

8
∂b lnZ (1 + 2Λ(−F)ΓExtra)

]

(3.12)

In addition, considering the case where the worldvolume flux F satisfies the BPS conditions

Bi = −Bj ⇐⇒ φi +φj = 0, it is easy to see that the second plus third lines of (3.6) vanish

identically. Hence, we find a 6D internal eigenmode equation similar to (2.20) where the

main differences come from the substitution ĝ−1
T4 → M−1

T4 and the insertion of Λ(−F). In

particular, the zero mode equation amounts to27

[

∂b −
1

8
∂b lnZ (1 + 2Λ(−F)ΓExtra)

]

θ0
6D = 0 (3.13)

whose solutions are

θ0
6D =

Z−1/8

1 + iBiΓT
2
i

η− for ΓExtra η− = −η− Wilsonini (3.14a)

θ0
6D = Z3/8η+ for ΓExtra η+ = η+ gaugino + modulino (3.14b)

where η± are again constant 6D spinor modes with ± chirality in the D7-brane extra

dimensions. In particular, for a D7-brane extended along 01234578, we have that S4 =

(T2)1 × (T2)2 ⊂ (T2)1 × (T2)2 × (T2)3 = X6 and so the fermionic zero modes will have

the following internal wavefunctions

θ0,0
6D = Z3/8 η−−− θ0,3

6D = Z3/8 η++− (3.15)

26Here i, j denote particular T
2’s and so there are no sums implicit in this kind of expressions.

27The same discussion in Sec 2.2.4 applies here as well.
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and

θ0,1
6D =

Z−1/8

1 − iB
η−++ θ0,2

6D =
Z−1/8

1 + iB
η+−+ (3.16)

where B = B1 = −B2, and again using the 6D fermionic basis defined in Appendix A.

Notice that the new Wilsonini wavefunctions do not amount to a simple constant

rescaling, as the ‘density of wordvolume flux’ B depends nontrivially on the warp factor.

This dependence is however the one needed to cancel all warp factor dependence in the

Wilsonini 4D kinetic terms. Indeed, by inserting (3.14a) into the κ-fixed fermionic action

(2.16) we obtain again

S fer
D7 = τD7 eΦ0

∫

R1,3

d4x θ̄4D/∂R1,3θ4D

∫

T4

dv̂olT4 η†−η− (3.17)

where we have taken into account the new volume factor appearing in the r.h.s of (3.6),

which in the BPS case reads
√

det gT4

detMT4

= |1 + iB|2 (3.18)

and where we are again expressing everything in terms of complex coordinates, as in (3.9).

Regarding the gaugino and the modulino, the above factor does not cancel and so we have

a kinetic term of the form

S fer
D7 = τD7 eΦ0

∫

R1,3

d4x θ̄4D/∂R1,3θ4D

∫

T4

dv̂olT4 |Z1/2 + ie−Φ0/2b|2η†+η+ (3.19)

that generalizes that obtained in (2.25). As we will now see, such results can be rederived

by analyzing the D7-brane bosonic wavefunctions.

3.2.2 Bosons

In the presence of a world-volume flux, the 8D gauge boson Aα enters into the D7-brane

action through the field strength F = P [B] + 2πα′f + 2πα′F where f = 〈F 〉 is the

background field strength and F = dA. The transverse oscillations again enter through

the pullback of the metric as in (2.26). In the case of B = 0 and constant dilaton Φ = Φ0,

the action for the D7-brane up to quadratic in fluctuations order becomes

S bos
D7 =

[

SD7

]

0
+ S scal

D7 + S photon
D7 (3.20a)

where the action for the position moduli is

S scal
D7 = −

(

8π3k2
)−1

∫

d8ξ
√

|detM | 1

2
eΦ0Gij

(

M−1
)(αβ)

∂ασ
i∂βσ

i (3.20b)

and the action for the 8d gauge boson is

S gauge
D7 = −1

2

(

8π3k2
)−1

∫

d8ξ

{

√

|detM |
[

1

2

(

(

M−1
)[αβ]

Fαβ

)2
+
(

M−1
)αβ(

M−1
)γδ

FαδFβγ

]

− 1

2

[

C int
4 ǫµνρσFµνFρσ + Cext

4 ǫabcdFabFcd

]

− 1

16
C0ǫ

abcdfabfcdǫ
µνσρFµνFσρ

}

(3.20c)
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where we have again used (2.28) and have separated the action between a zero energy part

and a part with derivatives. In general, there are three more contributions to the action

up to quadratic order including a term that is linear in the field strength,

1

2

(

8π3k2
)−1

∫

d8ξ
(

eΦ0/2Z−1
√

|detMT4 |
(

M−1
T4

)[ab]
kFab +

1

2
ǫabcdCext

4 fabFcd

)

(3.21)

an interaction between the position moduli and the 8D gauge boson,

1

2

(

8π3k2
)−1

∫

d8ξ

(

∂i

(

eΦ0/2Z−1
√

|detMT4 |
(

M−1
T4

)[cd])
+
k

2

(

∂iC
ext
4

)

ǫabcdfab

)

Fcdσ
i (3.22)

and a potential term for the position moduli

−
(

8π3k2
)−1

∫

d8ξ
(1

k
σi∂i +

1

2
σiσj∂i∂j

)(

eΦ0Z−1
√

|detMT4 | − 1

8
Cext

4 ǫabcdfabfcd

)

(3.23)

However, when the world-volume flux is self-dual, all three of these contributions vanish

up to surface terms. This is most easily seen by inserting the fluxes explicitly.

Expanding out the action for the position moduli,

S scal
D7 = −1

2

(

8π3k2
)−1

eΦ0

∫

d8ξ
√

|detM |ĝij

(

Zηµν∂µσ
i∂νσ

j + Z1/2
(

M−1
)(ab)

∂aσ
i∂bσ

j

)

(3.24)

we obtain the 8D equation of motion

�R1,3σi + |detMT4|−1/2 ∂a

[

Z−1/2
√

|detMT4 |
(

M−1
T4

)(ab)
∂bσ

i
]

= 0 (3.25)

As in the unmagnetized case (2.32), performing a KK expansion gives the eigenmode

equation

∂a

[

Z−1/2
√

|detMT4|
(

M−1
T4

)(ab)
∂bs

i
ω

]

= −
√

|detMT4|m2
ωs

i
ω (3.26)

This depends on the warp factor and the magnetic flux, but for the massless modes, the

only well-defined solution is si
0 = const. The resulting 4D kinetic term for the zero mode

is

S scal
D7 = −1

2

(

8π3k2
)−1

∫

R1,3

d4x ĝijη
µν∂µζ

i
0∂νζ

j
0

∫

T4

dv̂olT4 eΦ0
∣

∣Z1/2+ie−Φ0/2b
∣

∣

2
si
0s

j
0 (3.27)

which again matches with kinetic term for the modulino (3.19).

Also as in the unmagnetized case, the action contains an interaction piece between the

4D photon Aµ and the 4D Wilson lines Aa which, after integrating by parts twice, is

(

8π3k2
)−1

∫

d8ξ ∂a

(

Z−1/2
√

|detMT4|
(

M−1
T4

)(ab)
ηµνAb∂νAµ

)

(3.28)

In analogy with the unmagnetized case, this can be gauged away by considering the class

of RΞ gauges with gauge-fixing term

SΞ
D7 =

(

8π3k2
)−1

∫

d8ξ
√

|detM |GΞ

(

A
)

(3.29)
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where we take

GΞ

(

A
)

=
1

2Ξ

[

∂µAµ + ΞZ1/2 |detMT4 |−1/2 ∂a

(
√

|detMT4 |
(

Z−1/2M−1
T4

)(ab)
Ab

)

]2

(3.30)

The form of the gauge fixing is chosen so that the equations of motion for Aµ decouple from

the equations of motion for Aa for any value of Ξ and so that it reduces to gauge-fixing

term in the unmagnetized case (2.38). For Aµ, the equation of motion in the RΞ gauge is

�R1,3Aν −
(

1 − 1

Ξ

)

ηµσ∂ν∂µAσ + |detMT4|−1/2 ∂a

(

Z−1/2
√

|detMT4 |
(

M−1
T4

)(ab)
∂bAν

)

= 0

(3.31)

while for Aa, the equation is

Z−1/2
√

|detMT4|
(

M−1
T4

)(ab)
�R1,3Ab

+ ∂b

[

Z−1
√

|detMT4 |
(

M cbad
T4 Fcd −

1

2

(

M−1
T4

)[cd](
M−1

T4

)[ab]
Fcd

)]

+ ǫabcd∂b

(

Z−1Fcd

)

+ Ξ

[

Z−1/2
√

|detMT4|
(

M−1
T4

)(ab)
∂b

[

|detMT4 |−1/2 ∂c

(

Z−1/2
√

|detMT4|
(

M−1
T4

)(cd)
Ad

)

]

= 0

(3.32)

where we have defined

Mabcd =
1

2

(

M−1
)ab(

M−1
)cd − 1

2

(

M−1
)ac(

M−1
)bd

(3.33)

Note that the presence of warping and background world-volume flux together has made

the equation of motion rather complex, even in the case of flat space. With this gauge

choice, the KK modes for the 4D gauge boson satisfy

∂a

(
√

|detMT4|Z−1/2
(

M−1
T4

)(ab)
∂ba

ω
)

= −
√

|detMT4|m2
ωa

ω (3.34)

so that the zero mode a0 has a constant profile on the internal dimensions. This gives a

gauge kinetic function

fD7 =
(

8π3k2
)−1

∫

T4

dv̂olT4
√

ĝT4

(
∣

∣Z1/2 + ie−Φ0/2b
∣

∣

2
+ i
(

C int
4 − C0b

2
) (

α0
)2

(3.35)

The real part matches the kinetic term for the gaugino (2.25) and in the absence of warping

agrees with that found in, e.g., [45, 46].

The equation of motion for the Wilson lines simplify further in the 4D Lorenz gauge

Ξ = 0 though even then the equation of motion is difficult to solve in general. However, if

we focus on the zero-modes which satisfy

�R1,3w0
a = 0 (3.36)

then the equation of motion for the internal profiles becomes

∂b

[

Z−1
√

|detMT4 |
(

M cbad
T4 F 0

cd−
1

2

(

M−1
T4

)[cd](
M−1

T4

)[ab]
F 0

cd

)]

+ǫabcd∂b

(

Z−1F 0
cd

)

= 0 (3.37)
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In the unmagnetized case, we deduced that the solution satisfied F 0
ab = 0 and this is clearly

a solution in the magnetized case as well. This again determines the solution to be of the

form w0
a = const. up to the residual gauge freedom Aa → Aa − ∂aΛ where ∂µΛ = 0. This

residual freedom will not effect the 4D effective action,

Swl
D7 = −1

2

(

8π3k2
)−1

∫

R1,3

d4x ηµν∂µw
0
a∂νw

0
b

∫

T4

dv̂olT4

∣

∣Z1/2+ie−Φ0/2b
∣

∣

2
Z−1/2

(

M−1
T4

)(ab)
W 0

aW
0
b

(3.38)

For Ξ 6= 0, there is an additional term in the equation of motion for the internal wavefunc-

tion W 0
a that depends on Ξ

Ξ

[

Z−1/2
√

|detMT4 |
(

M−1
T4

)(ab)
∂b

[

|detMT4|−1/2 ∂c

(

Z−1/2
√

|detMT4 |
(

M−1
T4

)(cd)
Ad

)

]

(3.39)

However, when the world-volume flux is self-dual or anti-self-dual, the combination

Z−1/2
√

|detMT4|
(

M−1
T4

)(cd)
(3.40)

is constant implying that Aa = const. is still a solution for arbitrary Ξ. After complexifying

the Wilson lines (2.101) the kinetic term matches the kinetic term for the Wilsonini (3.17)

for any choice of RΞ gauge.

3.3 More general warped backgrounds

Let us now consider magnetized D7-branes in more general warped backgrounds. Just as

in the unmagnetized case, it proves useful to compute the D7-brane wavefunctions via an

alternative choice of κ-fixing. Let us first do so for warped flat space. In this case, and

before any κ-fixing, the operator in (3.2) between Θ̄ and Θ is given by

PD7
− (F)

[

/∂
ext
4 + (M−1

T4)
abΓa

(

∂b + ∂b lnZ
(

1
8 − 1

2P
O3
+

)

)]

−PD7
− (F)

(

1 − 1
4 (M−1

T4)
abΓaΓb

)

/∂ lnZPO3
+

(3.41)

just like the last two lines of (3.6), the second line of (3.41) vanishes when we impose the

BPS condition on the worldvolume flux F . As a result, for BPS D7-branes such term

can be discarded independently of the κ-fixing choice. Let us in particular take the choice

PD7
− (F)Θ = 0, as in subsection 2.2.5. This allows to remove PD7

− (F) from (3.41), and so

we find an fermionic action of the form (2.59), with a Dirac operator

/D
w

=

√

detMT4

det gT4

[

/∂
ext
4 + (M−1

T4)
abΓa

(

∂b + ∂b lnZ

(

1

8
− 1

2
PO3

+

))]

(3.42)

Hence, the main difference on /D
w

with respect to the unmagnetized case (2.14) comes from

substituting g−1 → M−1. As M−1 is obviously invertible, one would näıvely say that the

zero mode internal wavefunctions are the same as in the unmagnetized case.

Note however that the κ-fixing condition PD7
− (F)Θ = 0 depends on F , and so will the

set of 10D bispinors Θ that enter our fermionic action. Indeed, following [47] one can write

ΓF
(8) ⊗ σ2 = e

− i
2

„

φiΓ
T

2
i
+φjΓ

T
2
j

«

⊗σ3 (

Γ(8) ⊗ σ2

)

e
i
2

„

φiΓ
T

2
i
+φjΓ

T
2
j

«

⊗σ3

(3.43)
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where we have used the explicit form of Λ(F) in (3.11). Hence, the bispinors surviving the

projection PD7
− (F)Θ = 0 are given by

Θ = e
− i

2

„

φiΓT
2
i
+φjΓT

2
j

«

⊗σ3

Θ′ where PD7
− Θ′ = 0 (3.44)

and where PD7
− stands for the unmagnetized D7-projector (2.7). We thus need to consider

a basis of bispinors ‘rotated’ with respect to the one used for unmagnetized D7-brane.

As the rotation only acts on the internal D7-brane coordinates, one can still make the

decomposition (2.61), with the 4D spinor θ4D intact and the 6D bispinor Θ6D rotated as

in (3.44). In particular, if we impose the BPS condition φi + φj = 0, Θ6D takes the form

Θ6D,− =
ψ−√

2
e
−iφiΓ

T
2
i
⊗σ3

(

η−
iη−

)

for ΓExtraη− = −η− (3.45a)

Θ6D,+ =
ψ+√

2

(

iη+

η+

)

for ΓExtraη+ = η+ (3.45b)

and so the bispinors Θ6D,+ with positive extra-dimensional chirality are exactly those of

the unmagnetized case, while those of negative chirality Θ6D,− are rotated by a (warping

dependent) phase.

From the above, it is easy to see that the zero modes coming from Θ6D,+ have as

wavefunction ψ0
+ = Z3/8, just like in the unmagnetized case. On the other hand, plugging

(3.45a) into (3.42) we obtain a zero mode equation quite similar to that found Wilsonini

in subsection 3.2.1, and so we find that ψ0
− = Z−1/8|1 + iBi|−1. As a result, the zero mode

wavefunctions are given by

Θ0
6D,− =

Z−1/8/
√

2

1 + iBiΓT
2
i
⊗ σ3

(

η−
iη−

)

for ΓExtraη− = −η− Wilsonini (3.46a)

Θ0
6D,+ =

Z3/8

√
2

(

iη+

η+

)

for ΓExtraη+ = η+ gaugino + modulino (3.46b)

where, via matching of the 4D kinetic functions, we have identified the fermionic 4D zero

modes that they correspond to. Note that again the Wilsonini have an extra warp factor

dependence with respect to the unmagnetized case, which is contained in Bi.

On can then proceed to generalize the above computation to the case of a D7-brane in

a warped Calabi-Yau. Imposing the κ-fixing choice PD7
− (F)Θ = 0 and the BPS condition

∗S4F = F , the Dirac operator reads

/D
w

=

√

detMT4

det gT4

[

/∂
ext
4 + (M−1

S4
)abΓa

(

∇CY
b + ∂b lnZ

(

1

8
− 1

2
PO3

+

))]

(3.47)
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where we have removed the term coming from the second line of (3.41), using the fact that

it vanishes for a BPS worldvolume flux F .28

In addition to the Dirac operator, one needs to know how the worldvolume fermions

satisfying PD7
− (F)Θ = 0 look like. From our discussion above we know that this κ-fixing

choice selects bispinors of the form

Θ =

(

Λ(−F)1/2

Λ(F)1/2

)

Θ′ with PD7
− Θ′ = 0 (3.49)

where again PD7
− stands for (2.7). In general, the rotation Λ(F) will be an element of

Spin(4) = SU(2)1 × SU(2)2. If we identify SU(2)1 with the SU(2) inside the holonomy

group U(2) of S4, then following [41] we can classify our fermionic modes in terms of

Spin(4) representations as

PO3
− Θ′ = 0 Θ′ transforms as (1,2)

PO3
+ Θ′ = 0 Θ′ transforms as (2,1)

(3.50)

In addition, if we impose the BPS condition ∗S4F = F then Λ(F) ∈ SU(2)1, and so

bispinors projected out by PO3
− are left invariant by the rotation in (3.49). In particular,

this applies to the bispinor (2.71), that describes the D7-brane gaugino for the unwarped

Calabi-Yau case. As discussed in section 2.3, this same fermionic wavefunction will be

a solution of the unmagnetized, warped Dirac operator (2.74) if we multiply it by Z3/8.

Finally, since (2.71) satisfies PD7
− Θ = 0 and (2.74) and (3.47) imply the same zero mode

equation, it follows that the wavefunction of the D7-brane gaugino is also of the form

Θ = Z3/8

[

θ4D ⊗ 1√
2

(

iηCY
−

ηCY
−

)

− iB∗
4θ

∗
4D ⊗ 1√

2

(

ηCY
+

iηCY
+

)]

(3.51)

as already pointed out in [30].

On the other hand, bispinors of the form (2.73a) are projected out by PO3
+ and so are

non-trivially rotated by Λ(∓F) even assuming the BPS condition for F . One can then see

that the corresponding zero modes, which correspond to the D7-brane Wilsonini, should

have as wavefunction

Θ = Z−1/8 1

4
(M−1

S4
)abΓaΓb

[

B∗
4θ

∗
4D ⊗ 1√

2

(

iηW

ηW

)

− iθ4D ⊗ B6√
2

(

η∗W
iη∗W

)]

(3.52)

28Indeed, even if we are no longer in flat space, there is locally always a choice of worldvolume vielbein

where [20]

1

2
(M−1

S4
)abΓaΓb =

I − iBiσ
i
3

|1 + iBi|2
+

I − iBjσ
j
3

|1 + iBj |2

Λ(F) = ei(φiσi
3
+φjσ

j
3)

where σ1
3 ≡ σ3 ⊗ I2 ⊗ I2, σ2

3 ≡ I2 ⊗ σ3 ⊗ I2 and σ3
3 ≡ I2 ⊗ I2 ⊗ σ3 act on the 6D spinor basis (A.27). In

this basis ∗S4
F = F is equivalent to φi + φj = 0, and so all the algebraic manipulations carried out for flat

space also apply. In particular, the second line of (3.41) identically vanishes.
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which is the obvious generalization of the warped flat space solution (3.46a). Again, the

warp factor dependence of this solution is contained in both Z−1/8 and in M−1
S4

, and both

cancel out with
√

det MS4/det gS4 when computing the Wilsonini 4D kinetic term.

Finally, one may consider fermionic wavefunctions of the form (2.73b), also invariant

under the rotation (3.49), and whose zero modes give rise to D7-brane modulini. The

analogy with flat space, suggests that to any zero mode of the unwarped case a factor of

Z−3/8 should be added to obtain the warped zero mode. Let us however point out that, by

the results of [48, 49] one would expect that many of these would-be moduli and modulini

are lifted due to the presence of the worldvolume flux F and to global properties of S4.

Thus, the question of which are the zero mode profile of modulini is a tricky one even in

the unwarped case, and so we will refrain from analyzing them in detail.

3.4 Warped Kähler metrics

Let us now proceed to compute the warped Kähler metrics for open strings on magnetized

D7-branes, following the same approach taken in Sec 2.6 for unmagnetized D7-branes. One

first realizes that the gauge kinetic function is given by

fD7 =
(

8π3k2
)−1

∫

S4

dv̂olS4
√

ĝS4

(
√

|detMS4 | − i(C int
4 + C0 f ∧ f)

)

(3.53)

where again f = 〈F〉. This can be written as a holomorphic function by using the BPS

condition

dv̂olS4

√

|detMS4 | =
1

2

(

−P [J ∧ J ] + e−Φ0F ∧ F
)

(3.54)

and the identity (2.118). Note that J = Z1/2JCY is the warped Kähler form, and that the

only dependence of fD7 in the warp factor is contained in J2. Hence, the extra piece in

fD7 that comes from the magnetic flux is precisely as in the unwarped case.

Regarding the position modulus and modulino, they again combine into an N = 1

supermultiplet. In the toroidal case, assuming the setup of (3.4) and the BPS condition

b = bi = −bj, we have a the Kähler metric of the form

κ2
4Kζζ̄ =

k2

Vw

∫

T4

dv̂olT4eΦ0
∣

∣Z1/2 + ie−Φ0/2b
∣

∣

2
s0s

∗
0 (ĝT4)kk̄ (3.55)

that can be read from the corresponding kinetic term. Note that

eΦ0
∣

∣Z1/2 + ie−Φ0/2b
∣

∣

2
= eΦ0Z + b2 (3.56)

and so we again have a warp-factor independent extra term. In order to find out how this

generalizes to D7-branes in warped Calabi-Yau backgrounds, let us first recall the results

for the unwarped Calabi-Yau. Following [50], one can see that the presence of the magnetic

flux F modifies the kinetic term (2.92) to

τD7

∫

R1,3

iLAB̄

(

eΦ0 + 4GabBaBb − vΛ

V Qf̃

)

dζA ∧ ∗4dζ̄
B̄ (3.57)
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Here the background world-volume flux has been split as

f = fX6 + f̃ = fa
X6
P [ωa] + f̃ (3.58)

where ωa is a basis of (1,1)-forms of X6
29 to be pulled-back into the D7-brane 4-cycle S4,

and f̃ is the component of f that cannot be seen as a pull-back. One then defines

Ba = ba − kfa
X6

B = ba ωa (3.59)

where B is the bulk B-field as well as

Gab =
1

4V

∫

X6

ωa ∧ ∗6ωb (3.60)

where V is the volume of the unwarped Calabi-Yau, and

Qf̃ = k2

∫

S4

f̃ ∧ f̃ (3.61)

Finally, recall that vΛ is defined by (2.106), ωΛ corresponding to the Calabi-Yau harmonic

2-form Poincaré dual to S4. Then, from the explicit computation of the kinetic term in

the toroidal case, it is easy to see that the natural generalization of (3.57) to warped

compactifications is

τD7

∫

R1,3

(

iLw
AB̄eΦ0 + iL̃w

AB̄GabBaBb − vΛ

Vw
Qf̃

)

dζA ∧ ∗4dζ̄
B̄ (3.62)

in agreement with the (string frame) Kähler metric derived in [51]. As before, we have that

Lw
AB̄ =

∫

S4
Z mA ∧mB̄

∫

X6
Z ΩCY ∧ Ω̄CY

(3.63)

while we have also defined

L̃w
AB̄ =

∫

S4
mA ∧mB̄

∫

X6
Z ΩCY ∧ Ω̄CY

(3.64)

Note that both terms involve the warped internal volume which comes from moving to the

4D Einstein frame while the first term has an additional power of the warp factor in the

integral over the internal profiles, as we found in the toroidal case.

Finally, the Wilson lines and Wilsonini also combine into N = 1 chiral supermultiplets.

For the factorizable torus, the kinetic term for the complexified Wilson lines defined in

(2.101) is

Swl
D7 = − k2

κ2
4Vw

∫

R1,3

d4xĝab̄
T4η

µν∂µwa∂νw
∗
b̄

∫

T4

dv̂olT4W (0)
a W

∗(0)

b̄
(3.65)

The presence of the magnetic flux cancels out, as found for the Wilsonini in (3.17) and in

the warped Calabi-Yau case. This gives the Kähler metric for the Wilson supermultiplets

κ2
4Kab̄ =

k2

Vw

∫

T4

dv̂olT4WaW
∗(0)

b̄
ĝab̄
T4 (3.66)

We thus find that kinetic term for the Wilsonini is then unchanged with the addition of

magnetic flux, and so the kinetic terms are the same as those found in Sec 2.6.
29More precisely, as the analysis of [50] takes place in the context of orientifold compactifications, ωa ∈

H
(1,1)
− (X6, R), that is to those (1,1)-forms that are odd under the orientifold involution.
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4. Conclusions and Outlook

In this paper we have analyzed the wavefunctions for open string degrees of freedom in

warped compactifications. In particular, we have focused on type IIB supergravity back-

grounds with O3/O7-planes, and explicitly computed the zero mode wavefunctions for open

strings with both ends on a probe D7-brane. Such analysis has been performed for both

the bosonic and fermionic D7-brane degrees of freedom, in the case of warped flat space,

warped Calabi-Yau and warped F-theory backgrounds, and finally in the case of D7-branes

with and without internal worldvolume fluxes.

One clear motivation to carry out such computation is the fact that models of D7-

branes in warped backgrounds provide a string theory realization of the Randall-Sundrum

scenario. In particular, they reproduce the basic features of 5D WED models where gauge

bosons and chiral fermions are allowed to propagate in the bulk. On the other hand, since

by considering D7-branes we are embedding such WED scenarios in a UV complete theory,

one may naturally wonder if new features may also arise. Indeed, string theory/supergravity

contains a sector of RR antisymmetric fields which is not present in the RS 5D construc-

tion, and whose field strengths are required to be non-trivial in warped backgrounds by

consistency of the equations of motion. We found that such background RR fluxes couple

non-trivially to the fermionic wavefunctions, leading to qualitatively different behavior de-

pending on their extra-dimensional chirality. We have shown that these different behaviors

are not accidental, but are necessary in order to provide a sensible description of SUSY

or spontaneously broken SUSY 4D theories upon dimensional reduction, and in particular

to produce models where the kinetic terms for bosons and fermions can be understood in

terms of a 4D Kähler potential.

In fact, computing the open string Kähler potential turns out to be a very fruitful

excercise since, as we have shown, it suggests a general method of extracting the closed

string Kähler potential from (an often simpler) open string computation. Indeed, from

this point of view the open strings serve as probes of the background geometry, as the

consistency of their couplings to the closed string degrees of freedom enable us to use

their Kähler metrics to deduce their closed string counterparts. We have shown that this

simple procedure reproduces the recently derived closed string results of [12, 14], which

were obtained in a highly complicated way. Moreover, we expect our open-closed string

method to be useful in probing the structure of Kähler potentials in more general cases.

Returning to the WED perspective, the present work can be viewed as an initial step

in the studies of the Warped String Standard Model. Such studies should involve the

computation of phenomenologically relevant quantities like Yukawa couplings and flavor

mixing. Even if we have illustrated such kind of computations in a very simple class of

models, namely D7-branes at singularities, our results are also relevant for more realistic

constructions like those in [52], that involve backgrounds fluxes and magnetized intersecting

D7-branes. Note, however, that the chiral sector in this latter kind of constructions arises

from the intersection of D7-branes, for which a worldvolume action is still lacking. It would

then be very interesting to extend our analysis to describe the degrees of freedom at the

intersection of D7-branes in the presence of bulk fluxes.
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Finally, let us point out that we have focussed our discussions to supersymmetric back-

grounds for the sake of simplicity, but that our analysis is applicable to non-supersymmetric

models as well. In such non-SUSY models, warping provides an alternative mechanism of

generating the electroweak hierarchy [1], which by way of the gauge/gravity duality can

be understood as a dual description of technicolor theories. The above wavefunctions and

their overlaps allows us to compute via a weakly coupled theory interactions in the strongly

coupled dual, and may then offer insights into technicolor model building. Hence, other

than realizing the Standard Model, constructing chiral gauge theories in warped back-

grounds may also help in understanding the physics of strongly coupled hidden sectors, an

element in many SUSY breaking scenarios. For instance, recent work [43] has shown that

the strongly coupled hidden sector in general gauge mediation [53] can be holographically

described in terms of the dual warped geometries. The open string wavefunctions obtained

here can thus play an important role in determining the soft terms in such supersymmetry

breaking scenarios.
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L. Martucci, P. Ouyang, D. Simić, and G. Torroba for helpful discussions. The work of

PM and GS was supported in part by NSF CAREER Award No. PHY-0348093, DOE

grant DE-FG-02-95ER40896, a Research Innovation Award and a Cottrell Scholar Award

from Research Corporation, a Vilas Associate Award from the University of Wisconsin,

and a John Simon Guggenheim Memorial Foundation Fellowship. GS thanks the theory

division at CERN for hospitality during the course of this work. PM and GS also thank

the Stanford Institute for Theoretical Physics and SLAC for hospitality and support while

this work was written.

– 44 –



A. Conventions

A.1 Bulk supergravity action

The bosonic sector of type IIB supergravity consists of the metric GMN , 2-form BMN and

dilaton Φ in the NS-NS sector and the p-form potentials C0, C2, and C4 in the R-R sector.

The string frame action for these fields is

SIIB =SNS + SR + SCS (A.1a)

SNS =
1

2κ2
10

∫

d10x e−2Φ
√

∣

∣detG
∣

∣

{

R + 4∂MΦ∂MΦ − 1

2
H 2

3

}

(A.1b)

SR = − 1

4κ2
10

∫

d10x
√

∣

∣detG
∣

∣

{

F 2
1 + F 2

3 +
1

2
F 2

5

}

(A.1c)

SCS = − 1

4κ2
10

∫

C4 ∧H3 ∧ F3 (A.1d)

where 2κ2
10 = (2π)7α′ 4 and

F1 =dC (A.2a)

F3 =dC2 −H3 (A.2b)

F5 =dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (A.2c)

and H3 = dB2. Here for any p-form ω we define ω2 = ω · ω, where · is given by

ωp · χp =
1

p!
ωM1...Mpχ

M1...Mp (A.3)

Finally, R is the Ricci scalar built from the metric G.

A.2 D-brane fermionic action

The fermionic action for a single Dp-brane, up to quadratic order in the fermions and in

the string frame, was computed in [54]. I was shown in [20] that one can express it as

Sfer
Dp = τDp

∫

dp+1ξ e−Φ
√

∣

∣det
(

P [G] + F
)
∣

∣ Θ̄PDp
− (F)

(

(

M−1
)αβ

ΓβDα − 1

2
O
)

Θ (A.4)

where τ−1
Dp = (2π)p α′

p+1
2 is the tension of the Dp-brane, P [. . . ] indicates a pull-back into

the Dp-brane worldvolume, and Θ is a 10D Majorana-Weyl bispinor,

Θ =

(

θ1
θ2

)

(A.5)

with θ1, θ2 10D MW spinors. Gamma matrices act on such bispinor as

ΓMΘ =

(

ΓMθ1
ΓMθ2

)

(A.6)
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This action involves the generalized field strength F = P [B]+2πα′F (where F is the world-

volume field strength of the U(1) gauge theory) through several quantities. An obvious one

is the integration measure det(P [G] + F) that substitutes the more conventional volume

element. A more crucial quantity for the analysis of Sec 3 is Mαβ = Gαβ +FαβΓ(10) ⊗ σ3,

that encodes the D-brane world-volume natural metric in the presence of a non-trivial F .

Finally, F also appears in the projection operators

PDp
± =

1

2

(

I ± ΓDp

)

(A.7)

where ΓDp can be written as [55]

ΓDp =

(

0 Γ̆−1
Dp

Γ̆Dp 0

)

(A.8)

with

Γ̆Dp = i(p−2)(p−3)Γ
(0)
Dp

√

∣

∣detP [G]
∣

∣

√

∣

∣det (P [G] + F)
∣

∣

∑

q

Γα1...α2q

q!2q
Fα1α2 · · · Fα2q−1Fα2q (A.9)

and

Γ
(0)
Dp =

ǫα1...αp+1Γα1...αp+1

(p+ 1)!
√

|detP [G]|
(A.10)

Then, for p = 2k + 1,

i(p−2)(p−3)Γ
(0)
Dp = i(p−1)/2Γ(p+1) (A.11)

with Γ(p+1) as defined in footnote 5. Hence, for D3 and D7-branes with F = 0 we have

that

ΓD3 =

(

0 −iΓ(4)

iΓ(4) 0

)

= Γ(4) ⊗ σ2 and ΓD7 = −Γ(8) ⊗ σ2 (A.12)

so that eqs.(2.7) and (2.66) follow from (A.7).

The operators O and Dα are defined from the dilatino and gravitino SUSY variations

δψM =DM ǫ =

[

∇M +
1

4
( /H3)Mσ3 +

1

16
eΦ

(

0 /F

−σ(/F ) 0

)

ΓMΓ(10)

]

ǫ (A.13a)

δλ =Oǫ =

[

/∂Φ +
1

2
/H3σ3 +

1

16
eΦΓM

(

0 /F

−σ(/F ) 0

)

ΓMΓ(10)

]

ǫ (A.13b)

where

/F p =
1

p!
FM1···MpΓ

M1···Mp (A.14)

indicates a contraction over bulk indices and σ indicates that the order of indices in the

contraction is reversed,

σ
(

/F p

)

=
1

p!
FM1···MpΓ

Mp···M1 (A.15)
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In type IIB theory one then has that

DM =∇M +
1

4
( /H3)Mσ3 +

1

8
eΦ
(

/F 1iσ2 + /F 3σ1 + /F
int
5 iσ2

)

ΓM (A.16a)

O = /∂Φ +
1

2
/H3σ3 − eΦ

(

/F 1iσ2 +
1

2
/F 3σ1

)

(A.16b)

For converting (A.4) to the Einstein frame we have to do the following fermion redefi-

nitions
ΘE = e−Φ/8Θ

OE = eΦ/8O
DE

M = e−Φ/8
(

D − 1
8ΓMO

)

(A.17)

After which we obtain

Sfer
Dp = τDp

∫

dp+1ξ e(
p−3
4 )Φ

√

∣

∣det
(

G+ F
)
∣

∣ Θ̄EPDp
− (F)

(

(

M−1
)αβ

Γβ

(

DE
α +

1

8
ΓαOE

)

− 1

2
OE

)

ΘE

= τDp

∫

dp+1ξ e(
p−3
4 )Φ

√

∣

∣det
(

G+ F
)∣

∣ Θ̄EPDp
− (F)

(

ΓµDE
µ +

(

M−1
)mn

Γn

(

DE
m +

1

8
ΓmOE

))

ΘE

where in the second line we have taken into account that we are reducing to 4D, and where

the Γ’s and M are converted to the Einstein frame. In the unmagnetized case F = 0 we

have

Sfer
Dp = τDp

∫

dp+1ξ e(
p−3
4 )Φ∣

∣det
(

P [G]
)
∣

∣

1
2 Θ̄EPDp

−

(

ΓαDE
α +

p− 3

8
OE

)

ΘE (A.18)

matching (2.10) for the case p = 7. Finally, the gravitino and dilatino operators in the

Einstein frame are

DE
M =∇M +

1

8
eΦ/2

(

G
+
3 ΓM +

1

2
ΓMG

+
3

)

+
1

4

(

eΦ(F1)M +
1

2
/F

int
5 ΓM

)

iσ2 (A.19a)

OE = /∂Φ − 1

2
eΦ/2

G
−
3 − eΦ /F 1iσ2 (A.19b)

where we have defined G
±
3 ≡ /F 3σ1 ± e−Φ /H3σ3.

A.3 Fermion conventions

In order to describe explicitly fermionic wavefunctions we take the following representation

for Γ-matrices in flat 10D space

Γµ = γµ ⊗ I2 ⊗ I2 ⊗ I2 Γm = γ(4) ⊗ γ̃m−3 (A.20)

where µ = 0, . . . , 3, labels the 4D Minkowski coordinates, whose gamma matrices are

γ0 =

(

0 −I2

I2 0

)

γi =

(

0 σi

σi 0

)

(A.21)

m = 4, . . . , 9 labels the extra R
6 coordinates

γ̃1 = σ1 ⊗ I2 ⊗ I2 γ̃4 = σ2 ⊗ I2 ⊗ I2

γ̃2 = σ3 ⊗ σ1 ⊗ I2 γ̃5 = σ3 ⊗ σ2 ⊗ I2

γ̃3 = σ3 ⊗ σ3 ⊗ σ1 γ̃6 = σ3 ⊗ σ3 ⊗ σ2

(A.22)
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and σi indicate the usual Pauli matrices. The 4D chirality operator is then given by

Γ(4) = γ(4) ⊗ I2 ⊗ I2 ⊗ I2 (A.23)

where γ(4) = iγ0γ1γ2γ3, and the 10D chirality operator by

Γ(10) = γ(4) ⊗ γ(6) =

(

I2 0

0 −I2

)

⊗ σ3 ⊗ σ3 ⊗ σ3 (A.24)

with γ(6) = −iγ̃1γ̃2γ̃3γ̃4γ̃5γ̃6. Finally, in this choice of representation a Majorana matrix

is given by

B = Γ2Γ7Γ8Γ9 =

(

0 σ2

−σ2 0

)

⊗ σ2 ⊗ iσ1 ⊗ σ2 = B4 ⊗B6 (A.25)

which indeed satisfies the conditions BB∗ = I and B ΓMB∗ = ΓM∗. Notice that the 4D

and 6D Majorana matrices B4 ≡ γ2γ(4) and B6 ≡ γ̃4γ̃5γ̃6 satisfy analogous conditions

B4B
∗
4 = B6B

∗
6 = I and B4 γ

µB∗
4 = γµ∗, B6 γ

mB∗
6 = −γm∗.

In the text we mainly work with 10D Majorana-Weyl spinors, meaning those spinors

θ satisfying θ = Γ(10)θ = B∗θ∗. In the conventions above this means that we have spinors

of the form

θ0 = ψ0

(

0

ξ−

)

⊗ η−−− − i(ψ0)∗

(

σ2ξ
∗
−

0

)

⊗ η+++ (A.26a)

θ1 = ψ1

(

0

ξ−

)

⊗ η−++ + i(ψ1)∗

(

σ2ξ
∗
−

0

)

⊗ η+−− (A.26b)

θ2 = ψ2

(

0

ξ−

)

⊗ η+−+ − i(ψ2)∗

(

σ2ξ
∗
−

0

)

⊗ η−+− (A.26c)

θ3 = ψ3

(

0

ξ−

)

⊗ η++− + i(ψ3)∗

(

σ2ξ
∗
−

0

)

⊗ η−−+ (A.26d)

where ψj is the spinor wavefunction, (0 ξ−)t is a 4D spinor of negative chirality and ηǫ1ǫ2ǫ3

is a basis of 6D spinors of such that

η−−− =

(

0

1

)

⊗
(

0

1

)

⊗
(

0

1

)

η+++ =

(

1

0

)

⊗
(

1

0

)

⊗
(

1

0

)

(A.27)

etc. Note that these basis elements are eigenstates of the 6D chirality operator γ(6), with

eigenvalues ǫ1ǫ2ǫ3.

In fact, that enters into the fermionic D7-brane action is a bispinor Θ of the form

(2.6), where each of θ1, θ2 is given by (A.26) or a linear combinations thereof. Both

components of the bispinor are however not independent, but rather related by the choice of

κ-fixing. Indeed, note that the fermionic action (A.4) is invariant under the transformation

Θ → Θ+PDp
− κ, with κ an arbitrary 10D MW bispinor. This means that half of the degrees

of freedom in Θ are not physical and can be gauged away. In practice, this amounts to

impose on Θ = PDp
− Θ + PDp

+ Θ a condition that fixes PDp
− Θ.
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Let us for instance consider a D7-brane with F = 0. Taking the κ-gauge PD7
− Θ = 0,

we have that

Θ =

(

θ1
θ2

)

= i

(

Γ(8)θ2
−Γ(8)θ1

)

=

(

θ

−iΓ(8)θ

)

(A.28)

where θ is a spinor of the form (A.26). If in addition the D7-brane spans the coordinates

01234578 with positive orientation, then the 8D chirality operator is Γ(8) = −iΓ01234578,

and so the wavefunctions ψj
i of both spinors are related as

ψ0
2 = −iψ0

1 ψ1
2 = iψ1

1 ψ2
2 = iψ2

1 ψ3
2 = −iψ3

1 (A.29)

so that there are only four independent spinors wavefunctions after imposing this constraint.

If we now define the projectors

PD3
± =

1

2

(

I ± Γ(4) ⊗ σ2

)

PO3
± =

1

2

(

I ± Γ(6) ⊗ σ2

)

(A.30)

with Γ(6) = I4 ⊗ γ(6), then we see that two bispinors satisfy PO3
+ Θ = PD3

+ Θ = 0, namely

Θ1 =

(

θ1

−iΓ(8)θ
1

)

and Θ2 =

(

θ2

−iΓ(8)θ
2

)

(A.31)

and two satisfy PO3
− Θ = PD3

− Θ = 0

Θ0 =

(

θ0

−iΓ(8)θ
0

)

and Θ3 =

(

θ3

−iΓ(8)θ
3

)

(A.32)

Finally, let us recall that to dimensionally reduce a D7-brane fermionic action, one

has to simultaneously diagonalize two Dirac operators: /∂4 and /D
w
, built from Γµ and Γm,

respectively. However, as these two set of Γ-matrices do not commute, nor will /∂4 and /D
w
,

and so we need instead to construct these Dirac operators from the alternative Γ-matrices

Γ̃µ = Γ(4)Γ
µ,= Γ(4)γ

µ ⊗ I2 ⊗ I2 ⊗ I2 Γ̃m = Γ(4)Γ
m = I4 ⊗ γ̃m−3 (A.33)
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[30] D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, “Generalized non-supersymmetric flux

vacua,” JHEP 0811, 021 (2008) [arXiv:0807.4540 [hep-th]].

[31] C. Beasley, J. J. Heckman and C. Vafa, “GUTs and Exceptional Branes in F-theory - I,”

arXiv:0802.3391 [hep-th].

[32] M. Graña and J. Polchinski, “Supersymmetric three-form flux perturbations on AdS(5),”

Phys. Rev. D 63, 026001 (2001) [arXiv:hep-th/0009211].
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