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In the perturbative formulation of string theory the partition function
in the background of D-branes can be expanded as

Zstring =
∑
g,b

g−2+2g+b
s Zg,b . (1)

Here Zg,b is the value of the diagram given by a Riemann surface of genus
g with b boundary components. One way to compute the numbers Zg,b is
to work in conformal gauge. In this gauge one obtains a conformal field
theory (CFT) living on the string world sheet, and the Zg,b result from
integrating correlators of this CFT over the moduli space of the Riemann
surface. In order for this approach to make sense, the CFT has to be
well defined on surfaces of arbitrary genus and with an arbitrary number
of boundaries. For type I strings also non-orientable surfaces have to be
included in the expansion (1). In this note we restrict ourselves to type
II strings and orientable world sheets.

With this motivation in mind we set ourselves the aim to construct
a CFT consistent on all surfaces relevant in (1). This can be treated
entirely as a problem in CFT. We will not worry about whether a par-
ticular CFT actually appears in the conformal gauge description of some
string background.

1



2

One approach to obtain CFT correlators on all surfaces is via sewing.
Denote the space of closed string states (i.e. the space of states associated
to a circle) by Hclosed and the space of open string states (associated to
an interval) byHopen

α,β . Here α, β belong to a set B of boundary conditions
we want to allow at either end of the open string. By repeatedly cutting
along circles and intervals one can decompose every orientable world
sheet into the following building blocks:
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Cijk : cαβγ
abc : Bα
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Here i, j, k ∈ Hclosed, α, β, γ are boundary conditions and a, b, c, d are
open string states. By conformal invariance the building blocks (2) can
be mapped to the correlators of three bulk fields on the sphere, three
boundary fields on the disc, and one bulk plus one boundary field on the
disc, respectively. Again by conformal invariance, these are determined
by three sets of constants Cijk, cαβγ

abc and Bα
ia. From these constants

together with the factors arising from the conformal transformation one
can obtain the correlator on the original world sheet X by summing over
all intermediate states on the cuts.

Conversely, one can ask the question when a given a set of data

Hclosed , B , Hopen
α,β , Cijk , cαβγ

abc and Bα
ia (3)

leads to a CFT that is consistent on all surfaces. For this to be the case
the correlator on X obtained from sewing the building blocks (2) must
be independent of the way one has chosen to cut up the world sheet X.
This leads to an infinite set of nonlinear constraints on the infinite set
of constants (3).

In a rational CFT one can obtain a finite system of equations. In such
theories the symmetry algebra A is large enough to decompose the state
spaces Hclosed and Hopen

α,β into finitely many irreducible representations.
The nonlinear constraints can then be formulated in terms of a finite
subset of the constants (3), namely those which only involve primary
fields. Constants involving non-primary fields are related to the former
by A. In this way one can obtain a finite, sufficient and necessary set of
polynomial relations for the data (3), the sewing constraints [1, 2].

One of the sewing constraints is the well known requirement that the
torus partition function has to be modular invariant. To construct a con-
sistent CFT via the method of sewing it is however necessary to work
out the full set of sewing constraints, which in general is a difficult prob-
lem since they form an overdetermined system of non-linear equations.
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From this point of view it would be nice to have a simple criterion to
ensure that a set (3) of data solves the sewing constraints. One of the
results in [3, 4] is that in order to construct a CFT consistent on all
orientable Riemann surfaces, it is enough to find consistent amplitudes
of boundary fields on a disc:

Select a rational chiral algebra A. If one can find constants cααα
abc for

one boundary condition α preserving A such that the correlator of four
boundary fields on the disc is consistent with the two different ways of
sewing, then one can construct all the remaining data in (3), where B
will be the set of all elementary boundary conditions preserving A.

There are several surprising points about this result. First, it is possi-
ble to construct a consistent bulk theory starting only from the constants
cααα
abc fixing the 3-point functions of boundary fields. Second, the consis-

tency requirement on the cααα
abc is a constraint arising from a correlator

on a disc, i.e. a constraint at genus zero. Still the CFT constructed by
the method in [3, 4] is consistent on surfaces of arbitrary genus. Third,
starting from a single boundary condition preserving the chiral algebra
A one obtains all other boundary conditions with this property. As an
input for the construction of the CFT one needs to work out the repre-
sentation theory of A (a hard problem in itself), as well as to give the
constants cααα

abc . But once this has been achieved, the computation of
the data (3) is reduced to solving linear problems.

Below we give a brief sketch of how to obtain the above result. The
proof makes extensive use of results of [5, 6]. It has four ingredients,
which we will present for the special case of WZW models.

(i) The correlator on a world sheet X is an element of the space of
conformal blocks H(X̂) on the complex double X̂ of X. Conformal
blocks are multivalued analytic functions which are obtained as solutions
to the Knizhnik-Zamolodchikov equations. The double X̂ of a surface X
is a double cover of X with the two sheets identified along the boundary
of X. For example for X = S2 one has X̂ = S2 t S2, and for X a disc
one finds X̂ = S2.

(ii) In Chern-Simons theory there is a space of states associated to each
two-dimensional boundary of the original three-manifold. It turns out
that this space of states can be identified with the vector space H(X̂) of
conformal blocks on the surface X̂ [7].

(iii) To describe an element in the space H(X̂) one can use the Chern-
Simons path integral. One considers a three-manifold M with embedded
Wilson graph so that the boundary ∂M is X̂. The Wilson lines are
allowed to end on the boundary, at the insertion points of chiral fields
for the conformal blocks.
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(iv) Given a surface X, possibly with field insertions and boundaries,
there is a systematic construction of a three-manifold MX (the connect-
ing manifold) and a Wilson graph in MX such that ∂MX = X̂ and such
that the conformal block in H(X̂) described by the Chern-Simons path
integral for MX is precisely the correlator on X [6, 3].

One may wonder where the constants cααα
abc enter in this procedure.

They are needed in the construction of the Wilson graph in (iv) as they
determine the representation labels attached to some of the Wilson lines
as well as the intertwiners to be used at points where three of those
Wilson lines meet.

In fact we do not need to restrict ourselves to WZW models and
Chern-Simons theory. Instead one can use directly the functorial defini-
tion of a three-dimensional topological field theory. The idea is to use
(the conjecture) that the representation category of a rational vertex
algebra A is a modular category. To each modular category one can
assign a 3d TFT which is defined as a functor from a cobordism cate-
gory to the category of vector spaces [8]. In this way one avoids having
to think about path integrals and actions, and the objects one uses are
mathematically well defined and convenient for computations.
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