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Open Subsets in a Stein Space with Singularities

Jing Zhang

Abstract. Serre proved that a domain Y in Cn is Stein if and only if Hi(Y,OY ) = 0 for

all i > 0. Laufer showed that if Y is an open subset of a Stein manifold of dimension n

and Hi(Y,OY ) is a finite dimensional complex vector space for every i > 0, then Y

is Stein. Vâjâitu generalized these theorems to singular Stein space of dimension n.

In this paper, we consider singular Stein spaces X with arbitrary dimension and give

necessary and sufficient conditions for an open subset Y in X to be Stein. We show

that if Y is an open subset of a reduced Stein space X with arbitrary dimension and

singularities, then Y is Stein if and only if Hi(Y,OY ) is a finite dimensional complex

vector space for every i > 0. Without cohomology condition, if X − Y is a closed

subspace of X, then we show that the geometric condition of the boundary X − Y
determines the Steinness of Y . More precisely, we show that if X is normal and the

boundary X − Y is the support of an effective Q-Cartier divisor, or X − Y is of pure

codimension 1 and does not contain any singular points of X, then Y is Stein.

1. Introduction

We work over the field C of complex numbers.

Let X be a Hausdorff topological space. (X,OX) is a complex space if every point of

X has a neighborhood U such that (U,OU ) is isomorphic to a closed complex subspace

(A,OA) of a domain D ⊂ Cm for some m ∈ N, where A is the support of the analytic

coherent OD sheaf OA = OD/I|A, and I ⊂ OD is an analytic coherent ideal sheaf.

A complex space Y is Stein if it is both holomorphically convex and holomorphically

separable [8, pp. 293—294, Theorem 63.2]. We say that Y is holomorphically convex if

for any discrete sequence {yn} ⊂ Y , there is a holomorphic function f on Y such that

the supremum of the set {|f(yn)|} is ∞. Y is holomorphically separable if for every pair

x, y ∈ Y , x 6= y, there is a holomorphic function f on Y such that f(x) 6= f(y). By

Cartan’s Theorem B, a complex space Y is Stein if and only if H i(Y,F) = 0 for every

analytic coherent sheaf F on Y and all positive integers i [4, p. 124].

Serre proved that a domain Y in Cn is Stein if and only if H i(Y,OY ) = 0 for all

i > 0 [17], where OY is the analytic structure sheaf of Y . Laufer generalized Serre’s
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result to Stein manifolds of dimension m (see [4, pp. 159–160] or [10]). In algebraic

geometry, Neeman showed that a quasi-compact Zariski open subset Y of an affine scheme

X = SpecA (with singularities) is affine if and only if H i(Y,OY ) = 0 for all i > 0 [14],

where OY is the algebraic structure sheaf of Y and A may not be noetherian.

In [10], Laufer also proved: If Y is an n-dimensional Riemann domain over a Stein

manifold such that OY separates points, and for all i > 0, H i(Y,OY ) is a finite dimensional

complex vector space, then Y is a Stein manifold. A dimension n Stein manifold can be

biholomorphicall mapped onto a closed complex submanifold of C2n+1 [7, Ch. 5]. Laufer’s

proof heavily relies on the local coordinates of a complex manifold which cannot be applied

to a singular Stein space.

For an open subset of a Stein space with singularities, we use complex algebraic geom-

etry approach to avoid dealing with singularities directly and show the following result.

Theorem 1.1. If Y is an open subset of a reduced Stein space X of dimension n, then

Y is Stein if and only if H i(Y,OY ) is a finite dimensional complex vector space for every

i > 0.

A complex space X is locally of finite dimension but globally its dimension may not be

finite. If a nonempty complex space X is irreducible, then there is a nonnegative integer

n ≥ 0 such that dimxX = n for all x ∈ X [5, p. 106] and n is the dimension of X. If X has

infinitely many irreducible components, then the dimension ofX: dimX = supx∈X dimxX

[5, p. 94] may not be finite and there are connected complex spaces with dimension ∞ [8,

p. 190]. Without the finite dimension condition, we have

Theorem 1.2. Let Y be an open subset of a reduced Stein space X with arbitrary dimen-

sion and singularities. Then Y is Stein if and only if H i(Y,OY ) is a finite dimensional

vector space over C for all i > 0.

The idea of proof of Theorem 1.2 is the following1. First, by Sard and Remmert’s

theorems, we can construct countably many holomorphic functions f1, f2, . . . such that

each fi defines a (smooth) hypersurface Fi with disconnected components, Gi = Fi ∩ Y is

an open subset in Fi and 1, f1, f2, . . . are linearly independent (see Lemmas 2.9, 2.11, and

3.4). Here every Gi is Stein, using the fact that it has disconnected components, Mayer–

Vietoris sequence and Theorem 1.1 (Lemma 3.7). Then we can show that for all i > 0,

H i(Y,OY ) = 0 by Lemma 3.7 and the dimension counting method of vector spaces due to

1The author was informed by an anonymous referee that Theorem 1.1 was proved by Vâjâitu for complex

spaces (non-reduced) of dimension n in 2010 and by modifying this proof and not using mathematical

induction, the results in [21] hold for complex spaces with arbitrary dimension. The key idea in [21] to

prove holomorphic convexity is to generalize an estimate of Fornæss and Narasimhan and use Wiegmann’s

construction to get a proper surjective morphism from a hypersurface to an n-dimensional Stein space.
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Goodman and Hartshorne [3] (see Lemmas 2.13 and 3.8). Finally, by Nagel’s theorem on

finitely generated property of the ring of holomorphic functions on Y [12], we show that

Y is holomorphically convex (see Theorems 2.3 and 3.9).

In [22–24], we investigated a question raised by J.-P. Serre [17]: Let Y be a complex

manifold with H i(Y,Ωj
Y ) = 0 for all j ≥ 0 and i > 0 (where Ωj

Y is the sheaf of holomorphic

j-forms), then what is Y ? Is Y Stein? If Y is an algebraic manifold (i.e., an irreducible

nonsingular algebraic variety defined over C) and Ωj
Y is the sheaf of regular j-forms, we

know that Y is not an affine variety in general. In fact, if the dimension of Y is d and X is

a smooth projective variety containing Y , then X may have d−j algebraically independent

nonconstant rational functions which are regular on Y , where j = 1, 3, . . . , d− 2, d if d is

odd or j = 0, 2, . . . , d− 2, d if d is even. But the Steinness question is still open except for

the trivial case when the dimension is one. By Theorem 1.1, we have

Corollary 1.3. If Y is a nonsingular open subset of a Stein space X with dimension n

such that H i(Y,Ωj
Y ) = 0 for all j ≥ 0 and i > 0, then Y is Stein.

Simha proved that an open subset of a normal Stein surface obtained by removing

a closed analytic subspace of pure codimension one is a Stein surface [18]. This result

does not hold for higher dimensional complex spaces with singularities (see an example in

Section 3). For a normal Stein space, we have

Theorem 1.4. Let Y be an open subset of a normal Stein space X such that the comple-

ment X − Y is a closed analytic subspace of X.

(1) If X − Y is the support of an effective Q-Cartier divisor, then Y is Stein.

(2) If X − Y is of pure codimension 1 and does not contain any singular points of X,

then Y is Stein.

In order to prove Theorem 1.2 in Section 3, we first prove Theorem 1.1 in Section 2 by

algebraic geometry approach. In Section 2, we also prove Theorem 2.3 for an open subset

in a Stein space with arbitrary dimension and several lemmas which will be used in the

proof of Theorem 1.2 in Section 3.

2. Preparations

A ring R is local if it has exactly one maximal ideal M. Every stalk Ox of the structure

sheaf OX of a complex space X is a local ring: the maximal idealMx ⊂ Ox consists of all

germs at x which can be represented in a neighborhood of x by a holomorphic function.

In fact, Ox is a local C-algebra: the composition

φ : C · 1→ Ox → Ox/Mx
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is an isomorphism of fields (see [5, pp. 5–7] or [8, p. 66, p. 97]).

Let CX be the sheaf of germs of complex valued continuous functions on a Hausdorff

topological space X. Then CX is a local C-algebra [5, p. 5]. Since the stalk

Ox = C⊕Mx,

every germ fx ∈ Ox can be uniquely written in the form

fx = cx +mx,

where cx is the complex value of fx at x and mx ∈ Mx [5, p. 8]. For a holomorphic

function f on an open subset U of X, define a function [f ] : U → C by [f ](x) = cx for

x ∈ U . Then f induces a continuous function [f ] ∈ CX(U) [5, p. 9].

We need a theorem of Nagel [12].

Let Y be a topological space, and let A be a sheaf of local C-algebras on Y . We

assume:

(a) For every y ∈ Y , the maximal ideal of the stalk Ay is My, and the composition

φ : C · 1→ Ay → Ay/My

is an isomorphism.

(b) For every global section f ∈ Γ(Y,A), the associated complex valued function [f ] is

continuous, where [f ](y) is the residue class of the germ of f at y in Ay/My.

(c) For all i > 0, H i(Y,OY ) = 0.

Lemma 2.1 (Nagel). Let A be a sheaf of local C-algebras on Y such that the above three

conditions are satisfied. Suppose that I is an ideal in Γ(Y,A), and that there is a finite

subset {f1, f2, . . . , fm} ⊂ I, so that for every y ∈ Y , there is an fj such that fj(y) 6= 0.

Then I = (f1, f2, . . . , fm) = Γ(Y,A).

Lemma 2.2. Let Y be an open subset of a Stein space X such that H i(Y,OY ) = 0 for all

i > 0. If h ∈ H0(Y,OY ) is not a zero divisor of the stalk Oy at every point y ∈ Y , then

H i(Z,OZ) = 0 for all i > 0, where Z = {y ∈ Y, h(y) = 0} is the hypersurface defined by

the holomorphic function h.

Proof. If h is a unit in H0(Y,OY ), then h does not vanish on Y and Z is an empty set.

We assume that h is not a unit on Y . The multiplication by h defines an injective map

from OY to itself. Z is a hypersurface of pure codimension 1 on Y [5, p. 100] and we have

a short exact sequence

0 −→ OY −→ OY −→ OY /hOY ∼= OZ −→ 0,
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where the first map is defined by the non-zero divisor (a holomorphic function) h on X.

Since H i(Y,OY ) = 0 for all i > 0, the corresponding long exact sequence gives

0 −→ H0(Y,OY ) −→ H0(Y,OY ) −→ H0(Y,OZ) −→ 0,

and H i(Z,OZ) = 0.

A holomorphic map f : X → X ′ is proper if for every compact subset K ∈ X ′, the

inverse image f−1(K) ⊂ X is a compact subset in X. Remmert’s Proper Mapping Theo-

rem states that for any proper holomorphic map f : X → X ′ between complex spaces, the

image f(X) is an analytic subset of X ′ [5, p. 213].

In Theorem 2.3, the dimension of the Stein space X is arbitrary.

Theorem 2.3. If Y is an open subset of a Stein space X such that every accumulation

point P0 ∈ X − Y of a discrete sequence in Y is the only common zero of finitely many

holomorphic functions f1, . . . , fm on X, then Y is Stein if and only if H i(Y,OY ) = 0 for

all i > 0.

Proof. If Y is Stein, then for any coherent analytic sheaf F on Y and all i > 0, by Theorem

B, H i(Y,F) = 0. By Oka’s theorem, the structure sheaf OY is coherent [5, p. 60] so

H i(Y,OY ) = 0. We only need to show that if H i(Y,OY ) = 0 for all i > 0, then Y is Stein.

Y is holomorphically separable since holomorphic functions on X separate points on the

open subset Y . We will show that Y is holomorphically convex.

Let S = {P1, P2, . . . , Pk, . . .} be a discrete sequence in Y . If S has no accumulation

points in X, then there is a holomorphic function f on X such that f is not bounded

on S. We are done. We may assume that S has an accumulation point P0 ∈ X − Y .

Since there are finitely many holomorphic functions f1, . . . , fm on X such that P0 /∈ Y is

their only common zero, for every point y ∈ Y , at least one fj does not vanish at y. By

Lemma 2.1, f1, f2, . . . , fm generate the ring H0(Y,OY ) = Γ(Y,OY ). Particularly, there

are g1, g2, . . . , gm ∈ H0(Y,OY ) such that

f1g1 + f2g2 + · · ·+ fmgm = 1

on Y .

Every holomorphic function fi is continuous on X and fi(P0) = 0, i = 1, 2, . . . ,m, so

its limit at P0 ∈ X − Y is 0. By the equation, at least one gj has limit infinity at P0.

This implies that gj is not bounded on the discrete sequence S since P0 ∈ X − Y is an

accumulation point of S ⊂ Y .

We show that Y is holomorphically convex so it is Stein.

Lemma 2.4. Let Y be an open subset of a Stein space X with dimension n such that

H i(Y,OY ) = 0 for all i > 0. Then Y is holomorhically convex.
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Proof. Since X is a Stein space of dimension n, there is a one-to-one, proper holomorphic

map from X to C2n+1 [13].

Let S = {P1, P2, . . . , Pk, . . .} be a discrete sequence in Y . As in the proof of Theo-

rem 2.3, we may assume that S has an accumulation point P0 ∈ X−Y . By Narasimhan’s

theorem, let ψ : X → C2n+1 be a one-to-one, proper holomorphic map which is regular at

every uniformizable point [13]. By Remmert’s Proper Mapping Theorem, ψ(X) is a closed

subspace of C2n+1. By affine algebraic geometry, there are m polynomials f1, f2, . . . , fm

in C2n+1 such that the point ψ(P0) in ψ(X) (not in ψ(Y )) is the only point in the zero set

{x ∈ ψ(X), f1(x) = f2(x) = · · · = fm(x) = 0}.

Pull these polynomials back to X by the proper injective holomorphic map ψ, we receive

m holomorphic functions (still denoted by fi for simplicity) f1, f2, . . . , fm in X such that

their only common zero is the point P0 ∈ X − Y . So for every point y ∈ Y , at least one

fj does not vanish at y. By Lemma 2.1, f1, f2, . . . , fm generate Γ(Y,OY ) and the rest of

the proof is the same as proof of Theorem 2.3.

We show that Y is holomorphically convex so it is Stein.

By Lemma 2.4, we have

Theorem 2.5. If Y is an open subset of a Stein space X of dimension n, then Y is Stein

if and only if H i(Y,OY ) = 0 for all i > 0.

Definition 2.6. (1) If I is an ideal of a ring R, then the set

√
I = {r ∈ R, rj ∈ I, j ∈ N}

is an ideal of R called the radical of I in R.

(2) An element r ∈ R is an nilpotent element if there is a positive integer n such that

rn = 0.

(3) The radical N =
√

0 is called the nilradical of R.

(4) The ideal I in a commutative ring R is reduced if for r ∈ R, there is an integer

m ∈ N, rm ∈ I, then r ∈ I.

Definition 2.7. The radical sheaf N =
√

0 of the zero ideal in the structure sheaf OX of

a complex space X is called the nilradical of OX .

By Definition 2.7, the stalk Nx is the ideal of all nilpotent germs in the stalk Ox. For

a complex space X, the nilradical N is a coherent ideal sheaf of OX [5, p. 86]. A complex

space X is reduced at a point x0 ∈ X if the stalk Ox0 is reduced: Ox0 has no nilpotent
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elements. X is reduced if for all points x ∈ X, all stalks Ox are reduced rings, i.e., if

fx ∈ Ox and fmx = 0 for some m ∈ N (m relies on the point x and the function f), then

fx = 0 [8, p. 151].

Definition 2.8. A germ fx ∈ Ox at a point x in a complex space X is active if for every

gx ∈ Ox, with fxgx ∈ Nx, we have gx ∈ Nx.

The set of points of a complex space X where X is not reduced is an analytic subset

of X [5, p. 88]. A holomorphic function f on X is active at a point x ∈ X if there is an

open neighborhood U of x such that f does not vanish at every irreducible component of

X in U [5, p. 98].

Lemma 2.9. Let {1, f1, f2, . . . , fm, . . .} ⊂ V be linearly independent in a vector space V

over C. Then for any constant ai ∈ C, {1, f1−a1, f2−a2, . . . , fm−am, . . .} is also linearly

independent in V .

Proof. For any m ∈ N, let ci ∈ C, i = 0, 1, 2, . . . ,m and

c0 + c1(f1 − a1) + c2(f2 − a2) + · · ·+ cm(fm − am) = 0.

Then

(c0 − c1a1 − c2a2 − · · · − cmam) + c1f1 + c2f2 + · · ·+ cmfm = 0.

Since 1, f1, f2, . . . , fm are linearly independent, we have

c0 − c1a1 − c2a2 − · · · − cmam = c1 = c2 = · · · = cm = 0.

So c0 = c1 = c2 = · · · = cm = 0 and 1, f1 − a1, f2 − a2, . . . , fm − am are linearly indepen-

dent. Similarly, we can show that any finite subset of {1, f1−a1, f2−a2, . . . , fm−am, . . .}
is linearly independent. Therefore, {1, f1 − a1, f2 − a2, . . . , fm − am, . . .} is linearly inde-

pendent.

Lemma 2.10. If X is a Stein space of dimension at least 1, then the dimension h0(X,OX)

of the vector space H0(X,OX) over C is not finite.

Proof. We will construct infinitely many holomorphic functions on X which are linearly

independent.

Let C be an irreducible analytic curve in X and IC be its ideal sheaf in X such that

C ∩ Y is an open subset of C and contains smooth points in X. Then IC is coherent

analytic sheaf on X [5, p. 84]. We have a short exact sequence

0→ IC → OX → OX/IC = OC → 0.

Since X is Stein, H1(X, IC) = 0 and we have a surjective map H0(X,OX)→ H0(C,OC).
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Let P0 be a smooth point of the curve C and X and z be the local coordinate at

P0 on C. Now C is a Stein curve so there is a nonconstant holomorphic function f on

C such that f(z) = z + z2g(z) near P0 [4, p. 151], where g(z) is holomorphic near P0.

Then 1, f, f2, . . . , fm, . . . are holomorphic functions on C and linearly independent over

C. Since h0(C,OC) =∞, we have h0(X,OX) =∞.

Lemma 2.11. If X is a reduced Stein space of arbitrary dimension, then there are in-

finitely many holomorphic functions 1, f1 − a1, f2 − a2, . . . , fm − am, . . . on X such that

they are linearly independent in H0(Y,OY ) and each of f1 − a1, f2 − a2, . . . , fm − am, . . .
defines a reduced hypersurface on Y .

Proof. By Lemma 2.10, there are holomorphic functions 1, f1, f2, . . . , fm, . . . on X such

that they are linearly independent in the vector space H0(X,OX) over C. Each function

fi gives a nonconstant holomorphic map from X to C. By open mapping theorem, if fi

is not a constant near a point p ∈ X, then the map fi : X → C is open near p [5, p. 109].

So the image fi(X) contains an open subset V of C. By the Sard type theorem, there is

a countable subset B ⊂ C such that for every point ai ∈ C − B, the fiber (hypersurface)

Xai = f−1i (ai) is reduced [11]. We may choose suitable ai such that each fi − ai defines a

reduced hypersurface in Y .

By the construction in the proof of Lemma 2.10, we may choose these holomorphic

functions so that they are linearly independent on an irreducible curve C (i.e., linearly

independent in H0(C,OC)) in X such that C ∩ Y is an open subset of C, then they are

linearly independent in H0(Y,OY ). This is because if we have

c0 + c1f1 + c2f2 + · · ·+ cmfm = 0,

on Y , then c0+c1f1+c2f2+· · ·+cmfm = 0 on the curve C∩Y . By the Identity Theorem [5,

p. 170], the equation holds on the irreducible curve C. But these functions are linearly

independent on C, we have c0 = c1 = · · · = cm = 0 and they are linearly independent

on Y . By Lemma 2.9, {1, f1 − a1, f2 − a2, . . . , fm − am, . . .} is linearly independent in

H0(Y,OY ).

Lemma 2.12. Let Y be an open subset of a Stein space X of arbitrary dimension such

that H i(Y,OY ) is a finite dimensional vector space over C for all i > 0, then the dimen-

sion hi(Z,OZ) < ∞ for every hypersurface Z defined by a holomorphic function h on Y

which is not a zero divisor of Oy at every point y ∈ Y .

Proof. Since h is not a zero divisor on Y , we have a short exact sequence

0 −→ OY −→ OY −→ OY /hOY ∼= OZ −→ 0,
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where the first map is defined by h. The corresponding long exact sequence gives

0 −→ H0(Y,OY ) −→ H0(Y,OY ) −→ H0(Z,OZ) −→ H1(Y,OY ) −→ H1(Y,OY )

α−→ H1(Z,OZ)
β−→ H2(Y,OY ) −→ H2(Y,OY ) −→ H2(Z,OZ) −→ · · · .

The sequence is exact at H1(Z,OZ) so the relationship between the image of α and

kernel of β is

im(α) = α(H1(Y,OY )) = ker(β) ⊂ H1(Z,OZ)

and

dimC ker(β) = dimC im(α) ≤ h1(Y,OY ) <∞.

β is a homomorphism from the vector space H1(Z,OZ) to the vector space H2(Y,OY ) [16,

pp. 627–629], so the image vector space im(β) is a subspace of H2(Y,OY ). This implies

dimC im(β) ≤ h2(Y,OY ) <∞.

By the rank theorem in linear algebra, these two inequalities give h1(Z,OZ) <∞. Using

the fact that the sequence is exact at H i(Z,OZ) and hi(Y,OY ) < ∞ for all i > 0,

hi(Z,OZ) <∞ can be similarly proved.

Lemma 2.13. Let Y be an open subset of a reduced Stein space X of dimension n such that

H i(Y,OY ) is a finite dimensional vector space over C for all i > 0, then H i(Y,OY ) = 0.

Proof. For every holomorphic function f ∈ H0(Y,OY ), the multiplication by f induces a

homomorphism:

f∗i : H i(Y,OY ) −→ H i(Y,OY )

and the map f → f∗i is a C-homomorphism (see [3] or [16, pp. 627–629])

H0(Y,OY ) −→ EndC(H i(Y,OY )),

where EndC(V ) is the set of all vector homomorphisms (linear transformations) from a

vector space V over C to itself. Since H i(Y,OY ) is a finite dimensional vector space over

C for all i > 0, EndC(H i(Y,OY )) is also a finite dimensional vector space over C for all

i > 0.

By Lemma 2.11, there are infinitely many holomorphic functions 1, f1, f2, . . . , fm, . . . on

X such that they are linearly independent and each of them defines a reduced hypersurface

on X. Each fj defines a homomorphism f∗ij from the vector space H i(Y,OY ) to itself.

But EndC(H i(Y,OY )) is a finite dimensional vector space over C for all i > 0, so for each

i, there is an fli ⊂ {f1, f2, . . . , fm, . . .} such that it induces a zero map from H i(Y,OY ) to

itself. By the choice of the functions, fli defines a reduced hypersurface Zli .
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We will use mathematical induction on the dimension of X to show that for all i > 0,

H i(Y,OY ) = 0.

If X is a Stein curve, then Y is an open subset of X and for any coherent sheaf F on

Y and all i > 0, H i(Y,F) = 0 [19] so H i(Y,OY ) = 0 for all i > 0.

If X is a Stein surface and hi(Y,OY ) <∞ for all i > 0, then the hypersurface Z defined

by a holomorphic function (non-zero divisor) f on Y is Stein [19] so H1(Z,OZ) = 0 and

H2(Z,OZ) = 0. Since Y is an open surface, H i(Y,OY ) = 0 for all i > 1 [19].

By the above long exact sequence,

f∗1 : H1(Y,OY )→ H1(Y,OY )

is surjective. Now for all j ∈ N, we have infinitely many surjective group homomorphisms

f∗1j of a finite dimensional vector space H1(Y,OY )

f∗1j : H1(Y,OY )→ H1(Y,OY )

induced by each fj ∈ {f1, f2, . . . , fm, . . .}. Because EndC(H i(Y,OY )) is a finite dimen-

sional vector space over C for all i > 0, by counting the dimensions of vector spaces, we see

that there is a k ∈ N such that f∗1k = 0 [3]. But f∗1k is a surjective map from H1(Y,OY )

to itself. We see H1(Y,OY ) = 0.

We receive H i(Y,OY ) = 0 for all i > 0.

By mathematical induction, we may assume that if dimension of X is n − 1, and

hi(Y,OY ) <∞ for all i > 0, then H i(Y,OY ) = 0 for all i > 0.

Let X be a Stein space of dimension n in the lemma and hi(Y,OY ) <∞ for all i > 0.

By Lemma 2.12, any reduced hypersurface Z defined by a holomorphic function satisfies

hi(Z,OZ) < ∞ for all i > 0. By inductive assumption, H i(Z,OZ) = 0 for all i > 0.

Using the long exact sequence, for every fj ∈ {f1, f2, . . . , fm, . . .} we have infinitely many

surjective maps

f∗1j : H1(Y,OY )→ H1(Y,OY )

and isomorphisms

f∗ij : H i(Y,OY )→ H i(Y,OY )

for i > 1. By counting the dimensions of the vector spaces, we see that for all i > 0,

H i(Y,OY ) = 0 because EndC(H i(Y,OY )) is a finite dimensional vector space over C for

all i > 0.

Lemma 2.14. Let Y be an open subset of a reduced Stein space X of dimension n such

that H i(Y,OY ) is a finite dimensional vector space over C for all i > 0, then the ring

of holomorphic functions on Y is finitely generated: there are holomorphic functions

f1, f2, . . . , fm on Y such that they generate H0(Y,OY ).
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Proof. By Lemma 2.13, H i(Y,OY ) = 0 for all i > 0. By Lemma 2.1 and proof of

Lemma 2.4, H0(Y,OY ) is generated by finitely many holomorphic functions f1, f2, . . . , fm

on Y .

Theorem 2.15. Let Y be an open subset of a reduced Stein space X with dimension n.

Then Y is Stein if and only if H i(Y,OY ) is a finite dimensional complex vector space for

every i > 0.

Proof. By Lemma 2.13, if H i(Y,OY ) is a finite dimensional complex vector space for every

i > 0, then H i(Y,OY ) = 0. By Theorem 2.5, Y is Stein.

In Section 3, we will prove that Theorem 2.15 holds if the dimension of X is not finite.

3. Spaces with arbitrary dimension

We will first prove Theorem 1.2 in this section.

By Remmert’s Proper Mapping Theorem (see [5, p. 213] or [15, Satz 23]), if f : X → Y

is a proper holomorphic map, then the image of any analytic set in X is again analytic in

Y . If f is not proper, this is not true.

Definition 3.1. A subset A of a complex space X is said to be analytically meagre if

A ⊂
⋃
i∈NAi, where each Ai is a locally analytic subset of X with codimension at least 1.

An analytically meagre subset of a curve is a countable set [11]. If f is not proper,

Remmert proved (see [11] or [15, Satz 20]).

Lemma 3.2 (Remmert). If f : X → Y is a holomorphic map between complex spaces and

Z is an analytic subset of X, then f(Z) is a countable union of locally analytic subsets of

Y . In particular, if the interior of f(Z) is empty, then f(Z) is analytically meagre.

An analytic subset Z in a complex space X is always nowhere dense in X if Z is at

least 1 codimensional in X and Z contains interior points of X if Z contains an irreducible

component of X [5, pp. 102–103].

Lemma 3.3 (Sard). If X is a complex mani]old and f : X → C is a holomorphic function,

then there exists a countable subset A ⊂ C such that for each c ∈ C − A, the fiber Xc =

f−1(c) is a manifold.

The following construction is inspired by Remmert and Sard’s theorems.

Lemma 3.4. Let Y be an open subset of a reduced Stein space X, then there is a holo-

morphic function h on X such that for any a ∈ C− A, the hypersurface defined by h− a
on X is a complex manifold H = H1 ∪H2 ∪ · · · of codimension 1 in X and for all i 6= j,

Hi ∩Hj = ∅, where A is a countable subset in C.
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Proof. Since X is reduced, the singular locus Xsing of X is a nowhere dense analytic

subset of X (i.e., for every open subset U in X, U ∩ Xsing is not dense in U) such that

the local dimension at x: dimxXsing < dimxX [5, p. 117]. Let X = X1 ∪ X2 ∪ · · ·
be the decomposition of X into irreducible components [4, p. 19]. The singular locus

Xsing consists of all intersection points of Xi ∩Xj , i 6= j and the singular points of each

component Xi [5, p. 117].

First, we claim that there is a holomorphic function h on X such that it is not a

constant on Y and h(Xsing) is nowhere dense in C. In fact, let C be a holomorphic curve

in X such that C ∩ Y is an open subset of C and C ∩Xsing is empty (that is, C contains

no singular points of X). Let B = C ∪ Xsing, then B is a closed subspace of X locally

defined by holomorphic functions [5, p. 15]. Let IB be the ideal sheaf of B, then we have

a short exact sequence

0 −→ IB −→ OX −→ OC∪Xsing −→ 0.

Since X is Stein and IB is a coherent ideal sheaf, H1(X, IB) = 0. We have a surjective

map H0(X,OX) � H0(B,OC∪Xsing). By the fact that C and Xsing are disconnected, we

may construct a holomorphic function h on B such that h is not a constant on C and

h(Xsing) is nowhere dense in C (for example, we may choose h such that it is a constant

on every connected component of Xsing).

By Lemma 3.2, h(Xsing) = A1 is a countable union of locally analytic subsets so is a

countable subset of C. For any a ∈ C − A1, the fiber Xa = h−1(a) has no intersection

points with the singular locus Xsing of X. But the hypersurface Xa ⊂ X − Xsing may

have singular points as a closed subspace of X. Now the restriction h : X −Xsing → C is

a holomorphic function on the complex manifold X − Xsing. By Sard’s Theorem, there

exists a countable subset A2 ⊂ C such that for each c ∈ C−A2, the fiber

Xc ∩ (X −Xsing) = h−1(c) ∩ (X −Xsing) ⊂ X −Xsing

is a manifold. h may be a constant at some irreducible component of X. Since X has

at most a countably many irreducible components [4, p. 19], there is a countable subset

A3 ⊂ C such that for every a ∈ C−A3, the fiber Xa = h−1(a) is of pure codimension 1 in

X. Let A = A1∪A2∪A3, then A is the union of three countable subsets so is a countable

subset of C. For all a ∈ C − A, the fiber Xa = h−1(a) is of pure codimension 1 in X,

smooth and can be decomposed into the union of disjoint complex manifolds. Therefore

H = Xa = H1 ∪H2 ∪ · · · is a smooth hypersurface in X, each Hi is irreducible and for all

i 6= j, Hi ∩Hj = ∅.

Lemma 3.5. Let Y be an open subset of a reduced Stein space X such that H i(Y,OY ) is a

finite dimensional vector space over C for all i > 0. In above lemma, for every irreducible
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component Hj of hypersurface H, let Z = Y ∩H and Zj = Y ∩Hj, then Zj is an open

subset in Hj and

hi(Zj ,OZ) <∞.

Proof. We may assume that X contains no isolated points since X is Stein then every

connected component of X is Stein [4, p. 125]. Let Z = H ∩ Y = Z1 ∪ Z2 ∪ · · · , where

Zi = Y ∩ Hi is either empty or an open subset in Hi (the subspace topology on Hi is

induced from the topology on X since Y is open in X and Hi is a closed subspace of X).

If Zj is an empty set or a set of points, then the inequality is true. We may assume

that the dimension of Zj is at least one. Let Z = Zj ∪ Z ′j , where Z ′j = Z − Zj is the

complement of Zj in Z. By the construction in Lemma 3.4, Zj ∩ Z ′j is empty and by

Mayer–Vietoris sequence [1, p. 30], we have

0 −→ H0(Z,OZ) −→ H0(Zj ,OZ)⊕H0(Z ′j ,OZ) −→ H0(Zj ∩ Z ′j ,OZ)

−→ H1(Z,OZ) −→ H1(Zj ,OZ)⊕H1(Z ′j ,OZ) −→ H1(Zj ∩ Z ′j ,OZ)

−→ H2(Z,OZ) −→ H2(Zj ,OZ)⊕H2(Z ′j ,OZ) −→ H2(Zj ∩ Z ′j ,OZ) −→ · · · .

Since Zj ∩ Z ′j = ∅, H i(Zj ∩ Z ′j ,OZ) = 0 for all i ≥ 0, we have

H i(Z,OZ) ∼= H i(Zj ,OZ)⊕H i(Z ′j ,OZ).

By Lemma 2.12, for all i > 0,

hi(Z,OZ) <∞,

so hi(Zj ,OZ) <∞, and hi(Z ′j ,OZ) <∞.

Lemma 3.6. In above lemma, for every irreducible component Hj of hypersurface H such

that Zj = Y ∩Hj 6= ∅, Zj is a Stein subset in Hj.

Proof. The hyersurface H in X is Stein [4, p. 125]. Since H = H1 ∪H2 ∪ · · · and for all

i 6= j, Hi ∩Hj = ∅, every irreducible (thus connected) component Hi is Stein [4, p. 125].

For each irreducible component Hi, its dimension is a constant [5, p. 169] even though the

dimension of H may not be finite. By Lemma 3.5 and Theorem 2.15, the nonempty open

subset Zj in Hj is a Stein open subset in Hj .

Lemma 3.7. In above lemmas, the hypersurface Z = H ∩ Y in the open subset Y is

holomorphically convex therefore is Stein.

Proof. Let S = {P1, P2, . . . , Pk, . . .} be a discrete sequence in Z = Z1 ∪ Z2 ∪ · · · , where

Zi = Hi∩Y . As in the proof of Theorem 2.3, we may assume that it has an accumulation

point P0 in X.
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If there is an irreducible hypersurface Zj ⊂ Hj ⊂ H such that Zj∩S ⊂ Hj∩S contains

infinitely many points of S, then there is a holomorphic function f on Zj such that f is

not bounded on Zj ∩ S. By Mayer–Vietoris sequence,

H i(Z,OZ) ∼= H i(Zj ,OZ)⊕H i(Z ′j ,OZ),

we can extend f to the complement Z ′j of Zj in Z by zero since Zj and Z ′j are disconnected.

In this way, we receive a holomorphic function f on Z such that it is not bounded on S.

Now we assume that every nonempty component Zi only contains finitely many points

of S and S has an accumulation point P0 in X. Choose a subsequence {Pni}∞i=1 in S such

that P0 ∈ X−Z is its limit point. Let the holomorphic function h define the hypersurface

H in X. Since h(Pi) = 0 for all i, we have h(P0) = 0. This implies that P0 is a point on

some irreducible component Hk of H. By Lasker–Noether Decomposition Theorem, there

is an open subset U 3 P0 in X such that in U , H has only finitely many components:

H ∩ U = Hi1 ∪Hi2 ∪ · · · ∪Him [5, pp. 78–79]. But each irreducible component in H ∩ U
contains only finitely many points of S, P0 cannot be an accumulation point of S. The

contradiction implies that if S = {P1, P2, . . . , Pk, . . .} ⊂ Z has an accumulation point in

X, then there is a component Hj such that Hj ∩S is not a finite set. By the above proof,

we show that there is a holomorphic function f on Z such that it is not bounded on S.

So the hypersurface Z in the open subset Y is holomorphically convex.

Lemma 3.8. Let Y be an open subset of a reduced Stein space X such that H i(Y,OY ) is

a finite dimensional vector space over C for all i > 0, Then

H i(Y,OY ) = 0.

Proof. By the construction in Lemmas 2.11 and 3.4, let f1, f2, . . . , fm, . . . be holomorphic

functions on X such that 1, f1, f2, . . . , fm, . . . are linearly independent in H0(Y,OY ) and

for every i, each image fi(Xsing) in C is nowhere dense. By Lemma 3.4, choose aj ∈ C
such that each fiber Xaj = f−1i (aj) defines a pure codimension 1 complex manifold Xaj

in X. By Lemma 2.9, 1, f1 − a1, f2 − a2, . . . , fm − am, . . . are linearly independent in

H0(Y,OY ). By Lemmas 3.4–3.7, each Yaj = Y ∩ Xaj is a smooth Stein hypersurface

on Y , so hi(Yaj ,OYaj ) = 0 for all i > 0. Using the idea of the proof of Lemma 2.13,

multiplicating by each fj − aj from OY to itself for all j ∈ N, we have infinitely many

surjective C-homomorphisms (fj − aj)∗1 of a finite dimensional vector space H1(Y,OY )

(fj − aj)∗1 : H1(Y,OY )→ H1(Y,OY )

and infinitely many C-isomorphisms

(fj − aj)∗i : H i(Y,OY )→ H i(Y,OY ),
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which are induced by each fj − aj ∈ {f1 − a1, f2 − a2, . . . , fm − am, . . .} for i > 1 [3].

Comparing the dimensions of vector spaces, for all i > 0, we have H i(Y,OY ) = 0.

Theorem 3.9. Let Y be an open subset of a reduced Stein space X such that H i(Y,OY ) is

a finite dimensional vector space over C for all i > 0. Then Y is holomorphically convex

therefore is Stein.

Proof. Let S = {P1, P2, . . . , Pk, . . .} be a discrete sequence in Y and P0 be its accumulation

in X. Since X is Stein, X is holomorphically spreadable, that is, there exist finitely many

holomorphic functions f1, f2, . . . , fm on X such that P0 is an isolated point in the zero

set A = {x ∈ X, f1(x) = f2(x) = · · · = fm(x) = 0} [8, pp. 293–294]. We can write

A = B∪{P0} then B∩{P0} is an empty set. Let IA be the ideal generated by f1, f2, . . . , fm

in X, then we have a short exact sequence

0 −→ IA −→ OX −→ OX/IA = OA −→ 0.

The ideal sheaf IA is coherent on the Stein space X [5, p. 84]. The long exact sequence

and H1(X, IA) = 0 give

0 −→ H0(X, IA) −→ H0(X,OX) −→ H0(A,OA) −→ 0.

Let fm+1 ∈ H0(A,OA) such that fm+1(P0) = 0 and B ∩ {x ∈ X, fm+1(x) = 0} = ∅. Then

there is a holomorphic function (still denoted by fm+1) on X such that it vanishes at P0

and does not vanish at every point of B.

Now f1, f2, . . . , fm, fm+1 are holomorphic on X and have a unique common zero P0 on

X. They have no common zeros on Y . By Lemma 3.8, for all i > 0, H i(Y,OY ) = 0. By

Theorem 2.3, Y is Stein.

We have proved

Theorem 3.10. Let Y be an open subset of a reduced Stein space X with arbitrary dimen-

sion and singularities. Then Y is Stein if and only if H i(Y,OY ) is a finite dimensional

vector space over C for all i > 0.

Next we will prove Theorem 1.4.

Definition 3.11. A Weil divisor on a reduced complex space X is a locally finite linear

combination with integral coefficients of irreducible reduced analytic subspaces of codi-

mension 1 in X such that every subspace is not contained in the singular locus of X.

The set of all Weil divisors form an abelian group. If D is a Weil divisor, then we

can write D =
∑∞

i=1 niDi, where ni ∈ Z and each Di is an irreducible reduced analytic
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subspace of codimension 1 in X which is not contained in the singular locus of X (see [2], [4,

pp. 139–140], [6, pp. 130–143], or [20, pp. 35–36]).

The support of a Weil divisor D is the union of all closed subspaces Di such that

ni 6= 0. D is an effective divisor, written D > 0, if every coefficient ni ≥ 0 and D is not a

zero divisor. Two Weil divisors D ≥ D′ if D−D′ ≥ 0, i.e., D−D′ is an effective divisor or

a zero divisor in the space. When every coefficient ni = 1, D =
∑
Di is called a reduced

divisor.

A reduced point x ∈ X is a normal point of X if the stalk Ox is integrally closed in its

quotient ring. A reduced complex space is normal if every point in the space is a normal

point [5, p. 8]. If X is a compact normal reduced complex space, then a Weil divisor D is

a finite sum on X: D =
∑N

i=1 niDi [20, p. 35].

If X is normal, then the singular locus of X is a closed subspace of codimension at

least 2 in X [5, p. 128]. A Weil divisor is well-defined as a linear combination of irreducible

codimension one closed subspaces on a normal complex space X.

A Cartier divisor D on a complex space X is a global section of the sheaf M∗X/O∗X ,

where M∗X is the sheaf of germs of not identically vanishing meromorphic functions on

X and O∗X is the sheaf of germs of nowhere vanishing holomorphic functions on X. A

Cartier divisor D on a complex space X can be described by an appropriate open cover

{Ui}i∈I of X and a collection of meromorphic functions fi on Ui, i ∈ I such that on

Ui ∩ Uj 6= ∅, fi
fj

and
fj
fi

are holomorphic (see [4, p. 138] or [20, p. 30]). D is an effective

Cartier divisor, written D > 0, if every fi is a holomorphic function and at least one of

them has zeros [20, p. 31].

Every Cartier divisor on a normal reduced complex space X defines a Weil divisor and

if X is nonsingular, then every Weil divisor is Cartier, i.e., locally it is defined by one

equation. But if X is not a complex manifold, then the Weil divisor D is not a Cartier

divisor in general, i.e., it is not locally defined by one equation [20, p. 36].

A Weil divisor D is Q-Cartier if there is an n ∈ N such that nD is a Cartier divisor,

i.e., nD is locally defined by one equation.

Example 3.12. Let X ∈ C4 be a quadric threefold defined by

X = {z = (z1, z2, z3, z4) ∈ A4
k, p(z) = z21 + z22 + z23 + z24 = 0}.

The structure sheaf

OX = OC4/p(z)OC4 .

X is a normal Stein variety with a unique isolated singularity at 0. Let H be a hypersurface

through 0 defined by

H = {z = (z1, z2, z3, z4) ∈ X, z1 = iz2, z3 = iz4}.
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H cannot be defined by a single holomorphic function and X −H is not Stein [4, p. 130].

Example 3.12 shows that the open subset Y = X − A in a normal Stein space X

obtained by removing a pure codimension 1 subspace A of X is not Stein in general if the

dimension of X is at least 3. We give a sufficient condition:

Theorem 3.13. If Y is an open subset of a normal Stein space X such that the comple-

ment X − Y is a closed analytic subspace of X and the support of an effective Q-Cartier

divisor, then Y is Stein.

Proof. Let D′ be the effective Q-Cartier divisor with support X − Y on X. Then there

is an n ∈ N such that D = nD′ is an effective Cartier divisor with support X − Y on

X [20, pp. 36–38].

Let {Ui}i∈I be a Stein open cover of X and let fi be the holomorphic function on Ui

defining D|Ui . Then for every point x ∈ Ui, the stalk of the invertible sheaf (coherent)

OX(D) is defined by [20, p. 30]

OX(D)x =
1

fi
Ox ∼= Ox.

Let S = {P1, P2, . . .} ⊂ Y be a discrete sequence on Y with an accumulation point

P0 ∈ (X − Y ) ∩ Ui for some i ∈ I. Since OX(D) is a coherent sheaf on X, by Cartan’s

Theorem A [4, p. 124], the module of global sections H0(X,OX(D)) generates every stalk

OX(D)x. There is a meromorphic function f ∈ H0(X,OX(D)) (holomorphic on Y with

poles in X − Y ) and a local holomorphic function g ∈ OP0 such that near P0 [4, p. 129],

1

fi
= fg.

Now fi is a holomorphic function on Ui ∩ Y and vanishes at P0. So f(fig) = 1 near

P0 in Y . From fi(P0) = 0, we see that f is not bounded near P0 on the sequence S in Y .

We show that Y is holomorphically convex therefore is Stein.

Remark 3.14. A Stein open subset of an algebraic affine variety is not an algebraic affine

variety in general. For example, let X = Cn, let Z be the closed analytic subvariety of X

defined by f(z) = sin z1, where (z1, z2, . . . , zn) are coordinates in Cn. Then Y = X −Z is

Stein but not an algebraic variety.

Surprisingly, Neeman constructed an example: there is a scheme U of finite type over

C such that U is a Zariski open subset of an affine scheme and the associated analytic

complex space U ′ of U is a Stein space, but U is not an affine scheme [14].

Theorem 3.15. If Y is an open subset of a Stein space X such that the complement

X − Y is a closed analytic subspace of X with pure codimension 1 and X − Y does not

contain any singular points of X, then Y is Stein.
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Proof. By Reduction Theorem [4, p. 154], X is Stein if and only if its reduction is Stein.

The normalization of a reduced complex space is a finite surjective holomorphic map [4,

p. 22]. So a complex space is Stein if and only if its normalization is Stein [8, p. 313,

Prop. 73.1]. The normalization X̃ of X is a disjoint union of irreducible components

and it is Stein if and only if every irreducible component is Stein [8, p. 308, Cor. 71.14].

Therefore we may assume that X is an irreducible normal (reduced) Stein space.

Let Xsing be the set of singular points of X. Then Xsing is of codimension at least 2 in

X [5, p. 128], and X − Y ⊂ X −Xsing is a closed subspace of pure codimension 1 in the

complex manifold X −Xsing. Since every point in X −Y is smooth in X, (X −Y )∩Xsing

is an empty set. So X − Y is support of an effective Cartier divisor D in the complex

manifold X −Xsing [20, p. 36].

Let {(Ui, fi)}i∈I be a representive of D in the complex manifold X − Xsing, where

{Ui}i∈I is a Stein open cover of the complex manifold X −Xsing, each fi is a holomorphic

function on Ui, at least one fi has zeros, and fi/fj is a holomorphic function on Ui ∩ Uj
for all i, j ∈ I.

Let {Vj}j∈J be a Stein open cover ofXsing in Y : Xsing ⊂ ∪jVj ⊂ Y . On each Vj∩Ui 6= ∅,
fi|Vj∩Ui is nowhere zero. In particular, on every Vj − Vj ∩ Xsing, we have [20, p. 36,

Thm. 4.13]

OVj−Vj∩Xsing(D) ∼= OVj−Vj∩Xsing .

Now the codimension of Vj ∩ Xsing is at least 2 in Vj , therefore the invertible sheaf

OVj−Vj∩Xsing(D) can be extended to Vj uniquely [9]. This implies that we have an invert-

ible sheaf OX(D) on X, i.e., D is an effective Cartier divisor on X [6, p. 144, Prop. 6.13].

By Theorem 3.13, Y is Stein.

Corollary 3.16. If Y is an open subset of a Stein manifold X such that the complement

X − Y is a closed subspace of X with pure codimension 1, then Y is Stein.
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