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We develop a general theory describing the thermodynamical behavior of open quantum systems
coupled to thermal baths beyond perturbation theory. Our approach is based on the exact time-
local quantum master equation for the reduced open system states, and on a principle of minimal
dissipation. This principle leads to a unique prescription for the decomposition of the master equa-
tion into a Hamiltonian part representing coherent time evolution and a dissipator part describing
dissipation and decoherence. Employing this decomposition we demonstrate how to define work,
heat and entropy production, formulate the first and second law of thermodynamics, and establish
the connection between violations of the second law and quantum non-Markovianity.

I. INTRODUCTION

Quantum thermodynamics is concerned with the basic
laws of equilibrium and nonequilibrium thermodynamics
in the quantum regime [IH5]. One of the topical fun-
damental problems in this field is a unique and consis-
tent definition of work, heat and entropy production for
nonequilibrium processes in open quantum systems [6]
coupled to thermal reservoirs. Despite numerous pro-
posals, a satisfactory and generally accepted definition
of these quantities has not yet been advanced, in par-
ticular in the regime of strong system-reservoir interac-
tions, and the topic remains highly controversial (see,
e.g., Refs. [B] [THI5]). The case of equilibrium thermody-
namics, which is presently dominated by the formalism
of the so-called Hamiltonian of mean force [16] even at a
quantum level [I7], also points at uncertainties in the def-
initions of such quantities in the strong coupling regime
[18] [M9], with discussions still emerging [20, 2T]. More-
over, while a straightforward extension of the formalism
to some non-equilibrium situations has been put forward
[20], its legitimacy has already been contested [22], and
the matter seems far from resolved.

For weak couplings between the open system and the
environmental baths one can often model the behavior
of the open system by a quantum Markov process which
leads to physically well-founded definitions of thermody-
namic quantities and to corresponding formulations of
the first and second law of quantum thermodynamics
[23H25]. However, for strong system-environment cou-
plings, structured environmental spectral densities or low
temperatures these definitions are no longer legitimized,
as non-Markovian dynamics and memory effects become
relevant |26, 27] and the treatment through a Markovian
master equation fails. Above all, the absence of a unique,
physically justified prescription for the treatment of the
interaction energy between system and heat baths, which
is non-negligible in this context, leads to ambiguities in
the definitions of thermodynamic quantities [10, [16].

Here, we propose an alternative strategy to develop a

general theory for the quantum thermodynamics of open
systems, which is valid for arbitrary system-environment
couplings, temperatures and driving fields. Our approach
is based on the exact time-convolutionless quantum non-
Markovian master equation for the open system, and on
a general method of quantifying dissipation recently pro-
posed by Hayden and Sorce [28]. This method leads to a
decomposition of the quantum master equation into co-
herent (reversible) and dissipative (irreversible) motion
which is uniquely determined by a minimal size of the
dissipator, which we therefore refer to as principle of min-
imal dissipation. The application of this principle allows
us to identify uniquely the contributions describing work
and heat, to define entropy production and to formu-
late a first and second law of quantum thermodynamics.
In addition we also discuss the connection between non-
Markovian dynamics of the open system and the emer-
gence of negative entropy production rates, a topical issue
which has attracted a lot of interest recently [12HI4], [29].

The paper is organized as follows. In Sec. [l we re-
capitulate the basic features of the description of open
quantum systems by means of exact time-local master
equations. The principle of minimal dissipation is intro-
duced and discussed in Sec. [[TT, which then enables us
to define in Sec. [[V] all relevant thermodynamics quan-
tities, namely internal energy, work, heat and entropy
production rate, and to formulate a first and second law.
Here, we also discuss the relation between quantum non-
Markovianity and negative entropy production rates. As
a simple illustrative example we discuss in Sec. [V]a two-
state system interacting with a bosonic mode initially
in a thermal equilibrium state. Finally, in Sec. [VI] we
draw our conclusions and indicate directions of further
research. The appendix contains all relevant mathemat-
ical details about the invariance transformations of the
generator of the master equation and the principle of
minimal dissipation.



II. EXACT MASTER EQUATIONS

We consider an open quantum system .S which is cou-
pled to an environment E representing a heat bath ini-
tially in a thermal equilibrium state at temperature 7.
Let @; be the quantum dynamical map which propagates
the open system’s initial states pg(0) at time ¢ = 0 to the
corresponding states at time ¢ > 0, i.e. pg(t) = P+[ps(0)].
For technical simplicity we assume in the following that
the Hilbert space ¢ of the open system is finite dimen-
sional and that the initial states of the total system S+ F
are given by a tensor product psg(0) = ps(0) ® pr(0),
where pg(0) is a fixed thermal equilibrium (Gibbs) state
of temperature T'. It is well known that in this case the
dynamical maps ®; represent a family of completely pos-
itive and trace preserving (CPT) maps [6]. We assume
that the total system S + E is closed and governed by a
Hamiltonian of the general form

H(t) = Hs(t)+ Hg + H;(2), (1)

where Hg and Hg are the free Hamiltonians of system
and environment, respectively, and H; is the interaction
Hamiltonian. Note that system and interaction Hamilto-
nian are allowed to depend explicitly on time to include,
e.g., an external driving or a turning on and off of the
system-environment interaction.

The general evolution of the reduced density matrix
can be described through an exact time-convolutionless
(TCL) master equation:

“ps(t) = Lulps(t), 2

where the generator is related to the dynamical map by
means of £, = &, P, L We remark that the existence
of the inverse of the dynamical map is a very weak as-
sumption which may be assumed to hold in the generic
case [30H32]. From the requirement of Hermiticity and
trace preservation, analogously to the treatment in [33],
one finds that the generator has the following general
structure [31], B2],

Ly =Hi + Dy, (3)
where

Hilps] = —i[Ks(t), ps] (4)

represents a Hamiltonian part, given by the commutator
of the density matrix with some effective system Hamil-
tonian Kg(t), and

Dilps) = 3 w0) [La00ps L) — 5{LLWOLi(1), p5}]
k

()
is a so-called dissipator involving a set of generally time
dependent rates 5 (t) and Lindblad operators Ly (t). The
master equation describes the full non-Markovian
quantum dynamics of open systems [26] and, hence,

all kinds of memory effects although there is no time-
convolution over a memory kernel as, e.g., in the
Nakajima-Zwanzig equation [34,[35]. Master equations of
this time-local form can be derived from the microscopic
Hamiltonian by means of the time-convolutionless
projection operator technique [36], B7]. If the decoher-
ence rates 7, the Lindblad operators Ly and the effective
system Hamiltonian Kg are time independent the mas-
ter equation obviously reduces to a master equation
in the Gorini, Kossakowski, Sudarshan, Lindblad form
[33, B8] provided the ~y; are positive. However, in gen-
eral the rates -, (t) can become negative without vio-
lating the complete positivity of the dynamical map ®;
[6, 26]. Many exact master equations of the time-local
form are known in the literature, such as the Hu-
Paz-Zhang master equation for quantum Brownian mo-
tion [39,40], and the master equations for noninteracting
bosons (fermions) linearly coupled to bosonic (fermionic)
environments [41], [42], for specific spin-boson models [43],
for general pure decoherence models [44] [45], and for cer-
tain spin bath models [46].

Our first goal is to identify Kg(t) as the operator as-
sociated to the physical effective energy of the system,
and from this construct exact thermodynamic quantities.
The problem with this ambition is that the decomposi-
tion of the generator £; of the master equation is
highly non-unique. In fact, if one performs for each fixed
time ¢ the transformation

Ly — Ly — ol (6)
Vi \
Ky —s Ko + Ek g (akLL _ akLk> TRl (7)

induced by arbitrary time dependent scalar functions
{ak(t)} and S(t), the generator L£; remains invariant,
while the Hamiltonian part Hy, i.e. the effective Hamil-
tonian Kg(t), and the dissipator D; do change in general
in a nontrivial way [47]. If one is to make use of the two
contributions separately, one must find a physical moti-
vation for the particular choice of splitting used, as the
derived physical quantities will have different shapes and
values depending on this choice. In the following we re-
view the method developed in Ref. [28], which leads to a
unique splitting of the generator into Hamiltonian part
and dissipator appropriate for our purpose.

III. PRINCIPLE OF MINIMAL DISSIPATION

As mentioned, the form of the generator of the mas-
ter equation given by Egs. — is a consequence of
Hermiticity and trace preservation. Let &(7) denote
the space of linear maps £ : B(J) — B(J¢), i.e. the
space of superoperators of the open system. Then one
can introduce a real vector space htp(.#°) consisting of
all superoperators £ € &(.°) which are Hermiticity and
trace preserving, i.e., which satisfy the conditions

LIAT] = LIA]T, Tr{L[A]} =0 VAeB(#). (8)
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Figure 1. Decomposition of the generator £ into some Hamil-
tonian contribution H € ham(s#) and a dissipator D. The
dissipator part D can generically admit a component on
ham(S7); the unique dissipator given by the orthogonal de-
composition , defined through the scalar product , is
the one with minimal associated norm ||D|]|.

Generators of quantum master equations are indeed
all elements of htp(s7), although not every element in
htp(S7) is the generator of a completely positive evolu-
tion (or even positive, for that matter).

In order to quantify the size of superoperators one in-
troduces an appropriate norm on the space htp(J#) by
means of the definition

1L117 = (] Ll o) (@112 [4) 9)

proposed recently in Ref. [28]. A nice feature of this norm
is the fact that it is induced by the scalar product

(L1, La) = (W L1[|d) (@] | L2[|) (0] ] [¥), (10)

where L1, Lo € btp(J#), which means that one has
||£]|? = (£,L£). In these definitions |¢) and [+)) are nor-
malized random state vectors and the overline denotes
the corresponding average over the Haar measure on the
unitary group [48]. As argued in [28] the norm ||L]| repre-
sents a measure for the average size of the superoperator
L. This measure is obtained by acting with £ on a ran-
dom input state |¢) (@], squaring the result, taking the
expectation value with respect to another independent
random state [¢) (1], averaging and, finally, taking the
square root. Note that within the averaging procedure
all pure states have equal weight because |¢) and |¢) are
distributed according to the Haar measure.

We can now give a simple geometric picture of the prin-
ciple of minimal dissipation (see Fig. . To this end,
let us define the subspace ham(52) of htp(##) which is
formed by all Hamiltonian superoperators of the form of
H; (see Eq. @), i.e. by all superoperators H € bhtp()
for which there exists a Hermitian operator H such that
H[A] = —i[H, A] VA € B(s). Given a superoperator
L; one defines the Hamiltonian part H; as the orthogo-
nal projection of £; onto the subspace ham(5°) defined
by the scalar product . Denoting the corresponding
projection by II one thus has

Ht = H(Ct)7 Dt == Et - H(,Ct) (11)

Note that this splitting corresponds to the orthogonal
decomposition htp(#) = ham () & ham™* () with re-
spect to the scalar product associated to the norm.

It is clear that the above construction yields unique
expressions for the Hamiltonian part and the dissipator
of the master equation. Moreover, among all possible
decompositions of the generator into a Hamiltonian part
and a dissipator, the one given by Eq. has the least
norm of the dissipator. This is why we call this the prin-
ciple of minimal dissipation: it states that we uniquely
define the dissipator of the master equation, which will
be associated with heat exchange, by making its average
effect on physical states as small as possible, shifting as
much as possible into the Hamiltonian contribution. In
view of this interpretation the choice of the particular
norm @ is physically reasonable because it is a demo-
cratic norm which measures the size of superoperators
by giving equal weight to all pure states. Most remark-
able, it has been demonstrated in Ref. [28] that a mini-
mal norm of the dissipator exactly corresponds to taking
traceless Lindblad operators (for an alternative proof see
Appendix . Thus, to satisfy the principle of minimal
dissipation in practice one only has to ensure that the
Lindblad operators are traceless for all times, which can
always be achieved by a suitable transformation of the
form @ We note that the Lindblad operators are often
already traceless when the master equation is derived
perturbatively from a microscopic model. This is the
case, for example, for the standard weak-coupling semi-
group master equation in Lindblad form [6] whose Lind-
blad operators are eigenoperators of the system Hamil-
tonian Hg and, hence, are automatically traceless.

IV. FIRST AND SECOND LAW OF
THERMODYNAMICS

Fixing the unique splitting of the generator into H;
and D; according to the principle of minimal dissipation
allows us to identify the associated Hamiltonian Kg(t)
as an effective Hamiltonian for the system, that encom-
passes the collective effects of the bath onto it. The
variation of internal energy of the system can be then
defined as AUs(t) = Tr{Ks(t)ps(t)} — Tr{Ks(0)ps(0)}
such that the first law arises naturally as

AUs(t) = dWs(t) +0Qs(1) (12)
by defining work and heat contributions as
t
sws(0) = [ arT{Kstrpso)}, (1)
0

Qs (t) :/0 dr Tr{Ks(7)ps ()} (14)

Here, the heat contribution turns out to be only due to
the dissipative part of the evolution of the density matrix
since the above can be written as

5Qs(t) = / dr Te{ Ks()D, [ps()]}.  (15)

It is worth mentioning that it is possible for the ef-
fective Hamiltonian Kg to be time dependent even if the



original system Hamiltonian Hg is not. For instance, this
is the case for the example discussed in Sec. [V] Through
this our approach admits the appearance of effective work
done on the system as a result of the interaction with the
bath. This feature is shared with other approaches (see,
e.g., [0, 9, [I0]). Note that this does not contradict the
idea that a change in internal energy of a closed sys-
tem should be identified with work. It is a well-known
fact, which holds of course also in our formalism, that
a change in the internal energy of the total system can
only be due to explicit time dependencies of the total
system Hamiltonian. However, contrary to what is as-
sumed in many alternative approaches [I4] [19, [20], this
does not imply that the change in internal energy of the
total system should be identified with work done on the
open system only. As emerges from our formalism the
environment can perform work on the open system, even
when the total system Hamiltonian is time independent
and, hence, the internal energy of the total closed sys-
tem does not change: In such a case there is an exchange
of energy between the open system and its environment
which manifests itself in the time dependence of the effec-
tive system Hamiltonian Kg(t) and must be interpreted
as mechanical work.

As a result of the above definition of heat exchange,
the entropy production is defined as

Ys(t) = ASs(t) — BoQs(t) , (16)

with ASs(t) = S(ps(t))—S(ps(0)) the change of the von
Neumann entropy of the reduced system and g = 1/kgT
the inverse temperature of the bath. For simplicity we as-
sume here that the environment is sufficiently large such
that its temperature can be regarded as effectively con-
stant as has been discussed recently [49]. An alternative
expression for the entropy production is given by

Bs(t) = S(ps(0)]1p§(0)) — S(ps ()15 (1))

- /O dr Tr{ps(md; mp$(n)},  (17)

with S(pal|pp) the relative entropy of the states p4 and
pB, and where one utilizes the instantaneous Gibbs states
associated to the effective Hamiltonian Kg(t), namely
pS(t) = e PEs(M) /Z4(t). Tt is important to note that the
structure of expression for the entropy production
is the same as the one derived in Ref. [50]. The crucial
difference is, however, that in our expression the effective
Hamiltonian Kg(t) appears, while in [50] this Hamilto-
nian is replaced by the microscopic system Hamiltonian
Hs(t) (see Eq. (I))). As a consequence of the fact that
Ks(t) contains the effective influence of the bath on the
open system, our expression is valid also outside of the
weak-coupling regime. As expected, in the limit of van-
ishing coupling our expression for the entropy pro-
duction reduces for arbitrary driving to the one obtained
in [50]. To see this we recall that the master equation
(2) and, in particular, the effective Hamiltonian Kg(t)
can be derived from the total Hamiltonian by means

of the time-convolutionless projection operator technique
[6, [36L B7]. This technique leads to a perturbation expan-
sion for the effective Hamiltonian Kg(¢, A) in powers of
the size A\ of the system-environment interaction which
takes the following form,

Ks(t, )\) = Hs(t) + >\2Gs(t) + O()\4) (18)

This shows that in the limit A — 0 the effective Hamilto-
nian reduces to the bare Hamiltonian Hg(t) of the open
system, appearing in the microscopic Hamiltonian (/1)) of
the total system. Consequently, in this limit also (L7]) re-
duces to the expression derived in [50]. Moreover, if Hg
is time independent and the open system dynamics is de-
scribed by a quantum Markovian semigroup we recover
the earlier results of Ref. [23].

Taking the time derivative of Eq. we obtain the
entropy production rate

o) = Sis(t) = —1-|  Slostt+ o5 (1)

7=0
= —Tr{Di[ps ()] (In ps(t) —mp§ () } . (19)

The expression given in the first line relates the entropy
production rate to the derivative of the relative entropy,
where the notation indicates that pg should be regarded
as a constant under the time derivative, while the sec-
ond line connects it directly to the dissipator of the mas-
ter equation. Let us assume that the Gibbs state p§ ()
represents an instantaneous fixed point of the evolution
[13], [61], namely that there is no instantaneous dissipa-
tion for this state: L[p§ (t)] = Di[pg (¢)] = 0. Under this
condition one can show that the entropy production rate
is positive if the dynamical map ®; is P-divisible [26],
i.e., one has

os(t) >0, (20)

which corresponds to the second law. Note that we as-
sociate here the second law with the positivity of the
entropy production rate, which implies an increase of en-
tropy over all time intervals (see, e.g., Ref. [I1]). To prove
one uses the fact that the relative entropy decreases
under the application of a positive trace preserving map
to both of its arguments [52].

Finally, it might be interesting to discuss how possi-
ble violations of the second law are related to the non-
Markovianity of the underlying dynamics, i.e. to the
presence of quantum memory effects [26]. To this end,
we employ the definition for quantum non-Markovianity
based on the information flow between the open sys-
tem and its environment [26, 53]. The key idea is to
characterize Markovian behavior in the quantum regime
through a continuous loss of information, i.e. by a flow
of information from the open system to the environment.
Correspondingly, quantum memory effects feature a flow
of information from the environment back to the sys-
tem. Quantifying the information content by means of
the distinguishability of quantum states as measured by



the Hellstrom matrix, one can show that Markovianity
of quantum processes in open systems is equivalent to P-
divisibility of the corresponding dynamical map [54) [55].
Recall that P-divisibility means that the propagator ®; g
which maps the open system states at time s to the open
system states at time ¢ is a positive map for all t > s > 0.
One the other hand, we have just seen that under the con-
dition that the Gibbs state is an instantaneous fixed point
P-divisibility implies positivity of the entropy production
rate. We conclude that in order for Eq. to be violated
the process must break P-divisibility and, hence, must be
non-Markovian. Thus, we see that non-Markovianity, i.e.
memory effects are a necessary condition for violations of
the second law.

V. EXAMPLE

To illustrate our theory we briefly discuss the model of
a two-state atom, regarded as the open system, coupled
to a single harmonic oscillator mode, which is also known
as Jaynes-Cummings model. The total Hamiltonian is
time independent and of the form of Eq. . The time
independent system Hamiltonian is given by

Hg = wpoyo_, (21)

where wy denotes the transition frequency of the two-
state system with excited state |1) and ground state
|0), while o4 are the usual Pauli raising and lowering
operators. The environmental Hamiltonian is given by
Hp = wb'h, where w is the eigenfrequency of the har-
monic oscillator and b, b' denote the annihilation and
creation operator, respectively. Finally, the time inde-
pendent interaction Hamiltonian is taken to be of the
Jaynes-Cummings form

H; =g(o b+ o_b), (22)
where g is a coupling constant.
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Figure 2. Left: Change of internal energy AUg, work dWg
and heat 6Qs as a function of time for the Jaynes-Cummings
model with effective system Hamiltonian . Right: Com-
parison between the entropy production rate os according to
Eq. and its weak-coupling version o§ for the same model.
Parameters: g = 0.1wo, w = 0.9wo, kpT = wo, p5 (0) = 0.25
and pg(0) = 0.

Assuming the oscillator to be initially in a thermal
equilibrium state at a certain temperature 7" one can
derive an exact master equation for the dynamics of
the two-state system [56] which is of the form given
by Eqgs. —. The dissipator of the master equation
can be written in terms of the three traceless and time-
independent Lindblad operators Ly = o_, Lo = 04 and
L3 = 0, with corresponding time dependent rates ~yx(t),
k = 1,2,3. The effective system Hamiltonian takes the
form

Ks(t) = [wo + Aw(t)]oyo_. (23)

Comparing Egs. and we see that the interac-
tion of the system with the environmental mode leads to
a time dependent frequency shift Aw(t), which in gen-
eral depends on the system-environment coupling g and
on temperature T. Further details and the expression
for the frequency renormalization Aw(t) may be found
in [56]. Here, we plot the results for the decomposition
of the change of internal energy into work and
heat , and the comparison between the entropy pro-
duction rate and its weak-coupling counterpart [23],
see Fig. 2l We observe that there is a significant contri-
bution of work to the change of internal energy, although
the total Hamiltonian is time independent, which is due
to the time dependence of the effective system Hamilto-
nian . We also see that the magnitude of the entropy
production rate is substantially larger than the one given
by the weak-coupling expression.

VI. CONCLUSIONS AND REMARKS

We have formulated a general nonperturbative ap-
proach to the quantum thermodynamics of open systems
based on the exact time-convolutionless master equation
of the open system and on the principle of minimal dis-
sipation, which allows to develop unique expressions for
work, heat and entropy production. As we have demon-
strated the principle of minimal dissipation leads to a
unique effective system Hamiltonian Kg(¢) which gen-
erates the coherent part of the open system dynamics
and defines the internal energy of the system as it results
from the cooperative effect of system and environment.
As we have seen the effective system Hamiltonian Kg(t)
can be time dependent even though the total microscopic
system Hamiltonian H in Eq. is time independent.
Thus, for non-Markovian dynamics the environment can
do work on the open system, or extract work from it,
as is illustrated in the example of Sec. [V] In our opin-
ion this is an important consequence of our approach
which could lead to interesting applications. We further
emphasize that our strategy of constructing an effective
open system Hamiltonian can also be applied to approx-
imate time-local master equations, such as the quantum
optical, the Brownian motion, the Redfield, or, more gen-
erally, the TCL master equations in any finite order of
perturbation theory [6].



An important feature of our theory is the fact that it
only refers to open system variables, i.e., only degrees
of freedom of the open system enter the definitions of
thermodynamic quantities. Thus, in contrast to other ap-
proaches (see, e.g., Ref. [§]) the application of our method
does not require the control or measurement of environ-
mental variables. As a consequence we were able to es-
tablish under certain conditions a connection of our for-
mulation of the second law with the concept of quantum
non-Markovianity based on the information flow between
system and environment. This connection yields a natu-
ral information theoretic interpretation because it implies
that a backflow of information from the environment to
the open system is a necessary condition for violations of
the second law.

We finally remark that the pillars of our approach,
namely the TCL master equation and the principle of
minimal dissipation, have been formally proven only for
open systems with finite-dimensional Hilbert spaces. The
generalization of the method developed here to the case of
(bounded or even unbounded) generators on an infinite-
dimensional Hilbert space represents a challenging math-
ematical project, but is extremely interesting and rele-
vant from a physical point of view.
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Appendix A: Invariance of the generator

The generator £ = —i[K, ] + D is invariant under
the addition of a time dependent constant to the Lind-
blad operators, and a consequent additional term to the
Hamiltonian K, although this is not the most general in-
variance. In fact, it is also permitted to modify the dissi-
pator by absorbing the rate amplitudes into the Lindblad
operators, or to mix them through a generalized unitary
transformation which preserves the sign of the rates. To
see this, let us first rewrite the dissipator at a fixed time
t, in particular by grouping the Lindblad operators asso-
ciated to positive rates to lower indices, such that we can
express it in the following way:

1
ij

where we defined the matrix describing the sign of the
rates

(A2)

and where p (¢) is taken to be the number of positive
(negative) rates. Note that this exact division into pos-
itive and negative rates may depend on time; still, this
description is applicable at any fixed time ¢. Defining the
bilinear form

(U, W) := v Juw (A3)
and absorbing the rates \/|7y;| into the definition of the
Lindblad operators, we can formally rewrite the dissipa-
tor as
I 1 = =

where we have defined L as the vector of all N2 —1 Lind-
blad operators.

It is straightforward to prove that the generator L is
at each time invariant under the transformation

L—TYL+a (A5)
1 = —
K— K+ [(&*, YI) - (@, T*LT)] +5  (A6)

given by the parameters (@ € CN*-1 Y ¢ U(p,q),8 €
R), where U(p, q) is the indefinite (sometimes also called
generalized) unitary group of matrices satisfying

TJr=17. (A7)

The transformations of the generator obey the following
group property

@, 1, 8)(a, T, 8) = (@+Y'a, 1T, ++m(a, Y'd)) .

(A8)
When the dynamics happens to be CP-divisible, namely
when J = I, this invariance reduces to the one of a gen-
erator of a Lindblad master equation [6] where T is a
unitary transformation, albeit still with time dependent
parameters.

Appendix B: Derivation of the dissipator of minimal
norm

The space of generators of quantum master equations
can be orthogonally decomposed into

bip() = ham () & ham™ () , (B1)

such that at fixed time ¢, any generator £ can be written
as L =M + D, with # € ham(s#). To find the unique
decomposition such that D is in the orthogonal subspace
ham® (), we project the generator onto ham(.52):

H=TI(L) =Y H;(H; L), (B2)

with {H; };V:Ql_l an orthonormal basis of ham(H7),
through the scalar product on htp(J7)

(X1, X2) = (P Xi[|9) (¢l]X2[|6) (4] [) - (B3)



Here, |¢) and |¢)) are random Haar states

‘¢> =U |¢0> )

with |¢o) a fixed normalized state and U € U(N) a ran-
dom unitary, while (¢| X |¢) denotes the Haar average of
an operator X over |¢).

As a recurring tool, let us notice that, as a consequence
of Schur’s Lemma and the invariance of the Haar mea-

sure under multiplication with unitaries, it holds for any
operator X € B() that

(B4)

X' ::/du(U)UTXU:cJI, ceC, (B5)
so that, by taking the trace of the above, one finds
Tr{X
/d,u(U)UTXU _ X, (B6)

Naturally this entails that the Haar average of X is sim-

ply given by

TrX
N )

and that the norm associated to the scalar product (B3]

reads:

(W1 X ) =

(B7)

el = e {2y 0l (B3)

To find the expression for the Hamiltonian K gener-
ating H = —i[K,‘], we exploit the fact that ham(s?)
is isomorphic to the space of traceless hermitian opera-
tors Hermy (/#) = {H € B()|H' = H, Tr{H} = 0}.
With this we can exploit the connection between a ba-
sis of superoperators in ham(°) and one of operators in
Hermy () found in the following Lemma.

Lemma 1. FEach element of an orthonormal basis
{H; }j.v:fl of ham(3°) with respect to the scalar product
is such that

My = _i[Hj ] ) (B9)

N?—1 . L
where {H;};_; " is an orthogonal basis with respect to

the Hilbert-Schmidt product on Hermy) () satisfying
N(N +1)
2
Proof. From and the normalization of |¢), one has
that
1
(. Hy) =T L0 O 10) (01}

= %Tr {{sz Hj}W}

(a)
nlnmemme) . e
(b)

The second moment term (a) is simply given by
+Tr{H;H,;} through identity (B6), while the fourth
moment Haar integral found in (b) is less straightforward
to calculate. One can make use of the following general
formula (see, e.g., Ref. [57]):

/ dp(D)UX\UT XU X3UT =
C NTr{X3X:} — Tr{X, }Tr{Xs}
— 3 NV 1) 3 (Tr{Xo}) 1
NTr{X;}Tr{X3} — Tr{X3X,}
N(Ng_ 5 U X, , (B12)

and the tracelessness of H; to find that (b) reads
—mTr {H;H;}. Imposing the orthogonality of the
basis of Hermy (2#) (B10]), one recovers

(Hi, Hj) = 05 - (B13)

O

It is then straightforward that the Hamiltonian opera-
tor associated to H is given by

K=Y Hj(H;L). (B14)

J

To find the expression for the coefficients (H,;, L), we
make use of the pseudo-Kraus representation for the gen-
erator, which states that any Hermiticity preserving map
can be written as Lp] =), 'ykEka,Z with some opera-
tors Ej and real (not necessarily positive) coefficients 7y
[58]. Employing we then find

(M, £) = = L wTe{[H;.|9) (611w |9) (6] E] }
= — e ST H16) (0] B ) (91E]
—H, Eilo) (9] E[19) (9]}
=~y o WIr{H;Yi} (B15)

where we used again expression (B12)) for the fourth mo-
ment Haar integral and have defined the operators
Yy, = i(Tr{Ex }E] — Tr{E[}E}) . (B16)

From the completeness of the basis H; and Lemma
and since each operator Y} is in Hermy)(.57), one has

(N+1)

N
ZHjTI‘{Hij} = 5 Yk s (Bl?)
J

so that the expression for the Hamiltonian generating the
projection of £ onto ham(J#) reads

1
K= ijvk (Te{B Bl - B[ E . (B18)



Then, the physical dissipator will be given by the remain-
ing contribution and will have minimal norm:

Dlp] =L[p] — I(L]p])
= wEkpE]

1 .
T
+ 5 Zk:yk [Tr{Ek}Ek — Te{EIVEy, p
(B19)
From the requirement that £ € btp(.2°), which means
that £ is not only Hermiticity but also trace preserving,

one gets the additional condition on the set of pseudo-
Kraus operators:

> WwElEy =0.
k

(B20)

With this, one can rewrite the dissipator in the desired

form

Dl = " [Lka,L—;{LLLk,p} . B2

k
where the Lindblad operators are found to be traceless:

Tr{Ek} I.

Ly =Ey — N

(B22)

Given a generator, fixing the Lindblad operators to be
traceless at all times also fixes the expression for the
Hamiltonian K (up to a time-dependent constant). Ab-
sorption of the rates 7, or a mixing of the Lindblad op-
erators are still allowed, but leave the dissipator and the
Hamiltonian separately invariant. Therefore, the dissi-
pator which has minimal norm is unique, and is
written in terms of traceless Lindblad operators Ly.
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