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One of the greatest challenges in the fields of quantum information processing and quantum technologies is

the detailed coherent control over each and all of the constituents of quantum systems with an ever increasing

number of particles. Within this endeavor, the harnessing of many-body entanglement against the detrimental

effects of the environment is a major and pressing issue. Besides being an important concept from a fundamen-

tal standpoint, entanglement has been recognised as a crucial resource for quantum speed-ups or performance

enhancements over classical methods. Understanding and controlling many-body entanglement in open sys-

tems may have strong implications in quantum computing, quantum simulations of many-body systems, secure

quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical

transition, and other important questions of quantum foundations.

In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics

of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and

we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We

analyse several scenarios, corresponding to different families of states and environments, which render a very

rich diversity of dynamical behaviours.

In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymp-

totically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement

display an exponential decay with the number of particles when subject to local noise, which poses yet another

threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be ex-

tremely robust against local noise. Theoretical results and recent experiments regarding the difference between

local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws,

statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a

broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimen-

talist inside and outside the field of quantum information.
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I. INTRODUCTION

Since the seminal paper by Albert Einstein, Boris Podolski,
and Nathan Rosen [1] in 1935, and the famous series of papers
published by Erwin Schrödinger in the years 1935 and 1936
[2–4], entanglement has occupied a central position in quan-
tum physics. This peculiar phenomenon has posed formidable
challenges to several generations of physicists. In fact, it took
about 30 years since the 1935 papers for this mathematical
property to gain a physical consequence, as was demonstrated
by John S. Bell [5, 6]; and nearly 30 further years for it to be
identified as a resource for quantum information processing
and transmission [7–14].

Schrödinger summarized, in a way that in modern terms
would be based on the notion of information, the main ingre-
dient of this phenomenon. In the first paper of the series of
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three published in Naturwissenchaften in 1935 [2], he states
that “this is the reason that knowledge of the individual sys-
tems can decline to the scantiest, even to zero, while knowl-
edge of the combined system remains continually maximal.
Best possible knowledge of a whole does not include best pos-
sible knowledge of its parts - and that is what keeps coming
back to haunt us.”

This is the case for a singlet state of two spin one-half par-
ticles. Even though the two-party state is completely known
(pure state, corresponding to a total spin equal to zero), each
part is described by a statistical mixture with a 50-50 chance
for each particle to have spin up or down. On the other hand,
measurement of the spin of one of the particles determines the
spin of the other, even if the two parties are far apart. This was
referred to by Einstein, in a letter to Born in 1947 [15], as a
“spooky action at a distance.”

Evolving from a daunting concept to a useful resource, en-
tanglement is nowadays known to be at the heart of many po-
tential applications, such as the efficient transmission of infor-
mation through dense coding [8, 16] or teleportation [9, 17–
20], the security of transmitted data through entanglement-
based quantum cryptography [7, 21], including the recent de-
velopment of device-independent quantum cryptography [22–
24], as well as both device-independent randomness gener-
ation [25, 26] or amplification [27–29], quantum metrology
[30–33], the efficient solution of the factorization problem
[10], the efficient quantum simulation of many-body phys-
ical problems that may be classically intractable [34–43],
or of sampling problems proven (modulo widely accepted
complexity-theoretical assumptions) classically hard [44], and
universal quantum computing in general [13].

Motivated by these potential applications, and also by the
fundamental role played by entanglement in quantum me-
chanics, important experimental results have been obtained
in the last few years, concerning the generation of multi-
party entangled states, the transfer of entanglement between
two systems, macroscopic signatures of entanglement, and
the dynamics of entangled states under the influence of the
environment. These results were made possible by the de-
velopment of experimental methods that allowed measuring
and manipulating individual quantum systems, pioneered by
David Wineland and Serge Haroche, awarded the Nobel Prize
in Physics in 2012. Examples are the step-by-step genera-
tion of multiparticle entanglement among atoms and photons
in a microwave cavity [45], the demonstration of entangle-
ment between a single neutral atom – or charged ion – and
its spontaneously-emitted single photon with the assistance of
an optical cavity [46–48], between two photons sequentially
emitted by the same single atom in the cavity [49], and even
between a charged ion and its emitted photon without the as-
sistance of any cavity [50], the mapping of photonic entan-
glement into and out of an atomic-ensemble quantum mem-
ory [51–53], the generation of multiparticle entanglement of
trapped ions [54–57], of multiphoton entangled states [58–
69], of entanglement among separate atomic samples [70, 71],
of artificial-atom [72] and photonic [73] entanglement in on-
chip integrated circuits, and the demonstration that the mag-
netic susceptibility at low temperatures yields information on

the ground-state entanglement of magnetic materials [74].

And yet many fundamental problems remain unsolved.
Among them, the characterization of entanglement for mul-
tiparticle systems or bipartite systems of large dimensions in
general (mixed) states, and the dynamics of entanglement for
a system in contact with its environment. This last problem
is the main focus of this paper. It is directly related to impor-
tant practical questions: the robustness of quantum commu-
nication schemes, quantum simulators and quantum comput-
ers, and the ultimate precision in the estimation of parameters,
subject at the core of quantum metrology. It also concerns a
fundamental problem in modern physics: the subtle relation
between the classical and the quantum world.

This very question is present in one of the first papers pub-
lished by Schrödinger in 1926 [75], where, considering the
behavior of the eigenfunctions of the harmonic oscillator, he
remarks that “at first sight it appears very strange to try to de-
scribe a process, which we previously regarded as belonging
to particle mechanics, by a system of such proper vibrations.”
In order to demonstrate “in concreto the transition to macro-
scopic mechanics,” he then remarks that ”a group of proper
vibrations” of high-order quantum number n and of relatively
small-order quantum number differences may represent a par-
ticle executing the motion expected from usual mechanics,
i. e. oscillating with a constant frequency. This “group of
proper vibrations” was actually a coherent state, later studied
by Glauber [76, 77] in great detail.

Schrödinger realized however that this argument was not
enough to guarantee that the new quantum physics would cor-
rectly describe the classical world. In Section 5 of his three-
part essay on “The Present Situation in Quantum Mechanics,”
published in 1935 [2], he notes that “an uncertainty originally
restricted to the atomic domain has become transformed into
a macroscopic uncertainty, which can be resolved through di-
rect observation.” This remark was prompted by his famous
Schrödinger-cat example, in which a decaying atom leads to a
coherent superposition of two macroscopically distinct states,
corresponding respectively to a cat that is either dead or alive.
He adds that “this inhibits us from accepting in a naive way a
‘blurred model’ as an image of reality... There is a difference
between a shaky or not sharply focused photograph and a pho-
tograph of clouds and fogbanks.” This problem is also men-
tioned by Einstein in a letter to Max Born in 1954 [15], where
he considers a fundamental problem of quantum mechanics
“the inexistence at the classical level of the majority of states
allowed by quantum mechanics,” namely coherent superposi-
tions of two or more macroscopically localized states.

These comments are very relevant to quantum measurement
theory, as pointed out by Von Neumann [78, 79]. Indeed, let
us assume for instance that a microscopic two-level system
(states |+〉 and |−〉) interacts with a macroscopic measuring
apparatus in such a way that the pointer of the apparatus points
to a different (and classically distinguishable!) position for
each of the states |+〉 and |−〉. That is, we assume that the the
joint atom-apparatus initial state transforms into

|+〉| ↑〉 → |+〉′| ր 〉 ,
|−〉| ↑〉 → |−〉′| տ 〉 , (I.1)
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where we allow for a change in the state of the system due to
the interaction. The linearity of quantum mechanics implies
that, if the system is prepared in say the coherent superposi-
tion |Ψ〉 = (|+〉+ |−〉)/

√
2, the final state of the joint system

should be a coherent superposition of two product states, each
of which corresponds to a different position of the pointer:

(1/
√
2)(|+〉+ |−〉)| ↑〉

→ (1/
√
2)(|+〉′| ր 〉+ |−〉′| տ 〉)

.
= (1/

√
2)(| ր 〉′ + | տ 〉′) . (I.2)

In the last step, it is assumed that the two-level system is in-
corporated into the measurement apparatus after their inter-
action (for instance, an atom that gets stuck to the detector).
One gets, therefore, as a result of the interaction between the
microscopic and the macroscopic system, a coherent super-
position of two classically distinct states of the macroscopic
apparatus. This would imply that one should be able in prin-
ciple to get interference between the two states of the pointer:
it is precisely the lack of evidence of such phenomena in the
macroscopic world that motivated Einstein’s concern.

One knows nowadays that decoherence plays a fundamen-
tal role in the emergence of the classical world from quan-
tum physics [80–84]. Theoretical [80–83, 85, 86] and exper-
imental [87–89] research have demonstrated that a coherent
superposition of two macroscopically distinguishable states (a
“Schrödinger-cat-like” state) decays to a mixture of the same
states with a characteristic time that is inversely proportional
to some macroscopicity parameter. The decay law is, within a
very good approximation, exponential.

An important question remains, however, about the ulti-
mate limits of applicability of quantum mechanics for macro-
scopic systems [90]. Recent experiments, involving entangle-
ment between macroscopic objects [70, 91], or micro-macro
entanglement between a single photon and a macro system in-
volving up to a hundred million photons [92–94], have pushed
these limits further. Micro-macro entanglement is precisely
the one involved in Eq. (I.1). Pushing quantum superpositions
or entangled states to ever increasing macroscopic scales sub-
mits quantum physics to stringent tests, involving for instance
probing the effect of the gravitational field, when massive ob-
jects like micro-mirrors are involved [95–97]. Controlling de-
coherence in this case is of utmost importance.

For multiparty entangled states, the environment may af-
fect local properties, like the excitation and the coherences of
each part, and also global properties, like the entanglement of
the state. The above-mentioned studies on decoherence lead
to natural questions regarding the dynamics of entanglement:
What is the decay law? Is it possible to introduce a decay
rate, in this case? How does the decay of entanglement scale
with the number of entangled parts? How robust is the entan-
glement of different classes of entangled states, and are there
efficient ways to improve such robustnesses? Under which
conditions does entanglement grow due to the interaction with
the environment?

Recent theoretical [98–157] and experimental [57, 158–
165] work, involving both continuous and discrete variables,
has given partial answers to these questions. It is now known

that the dynamics of entanglement can be quite different from
that of a single particle interacting with the environment. The
pioneer contributions of Rajagopal and Rendell [98], who an-
alyzed the dynamics of entanglement for two initially entan-
gled harmonic oscillators, under the action of local environ-
ments, and Życzkowski et al. [99], who considered the dy-
namics of entanglement for two two-level systems under the
action of local stochastic environments, represented the first
studies specifically focussed on entanglement dynamics of
which we have record. They established that entanglement
may disappear before coherence decays, and also showed that
revivals of entanglement may occur. Different models have
been studied since then, involving particles interacting with
individual and independent environments [101–105, 107–
138, 140–142, 144–146, 148–154, 156, 160, 162, 163], or
with the same environment [106, 121, 131, 147, 166] or yet
combinations of both situations [57, 121].

The preliminary conclusions in [98, 99] turned out to be
quite general. Entanglement decay with time does not follow
an exponential law, even in the Markovian regime, and may
vanish at finite times, much before coherence disappears. Ini-
tially entangled states may decay under the action of indepen-
dent local environments, while particles may become entan-
gled when interacting with the same environment. Revivals of
entanglement may also occur [98, 99, 121]. Finite-time dis-
entanglement, sometimes referred to as “entanglement sud-
den death” [116, 149], has been experimentally demonstrated
[158, 159, 161, 162]. Moreover, the entanglement of impor-
tant classes of multipartite states exhibit, for a fixed time, an
exponential decay with the number of parties [107, 143, 167],
which contributes to the concerns regarding the viability of
large-scale quantum information processing. For the case of
collective decoherence, however, it is possible to construct
decoherence-free subspaces of entangled states immune to
the noise [168, 169]. Furthermore, it is possible to produce
and protect quantum states by engineering artificial reservoirs
[170–173]; and, remarkably, through similar techniques, even
to implement dissipation-induced universal quantum compu-
tation [174–176]. Feedback control has also been proposed
for the purpose of stabilizing entanglement [177, 178]. The
stabilization of entanglement through engineered dissipation
has been demonstrated in recent experiments [179, 180].

Stabilization techniques may help increase the robustness
of quantum communication and information processing tasks,
and may also be applied to quantum metrology, where the
presence of decoherence tends to drive the precision in the
estimation of parameters from the ultimate quantum limit
(sometimes called the “Heisenberg limit”) [30, 181, 182], to
the classical standard limit [32, 183, 184]. The use of entan-
gled states in quantum metrology has been advocated by sev-
eral authors, especially for frequency estimation in ion traps
[31, 185, 186] or Ramsey spectroscopy [187], and phase esti-
mation in optical interferometers [188–190]. The proposed
states are however highly sensitive to decoherence [189].
Knowledge of techniques to sustain entanglement is crucial
for further developments of this field.

The aim of this review article is to specifically address the
dynamics of the entanglement in quantum open systems. We
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have tried to make this review self-contained and pedagogic
enough so that it is accessible to both theorists and experi-
mentalists within and outside the subfield of quantum infor-
mation. However, we have refrained from an encyclopaedic
treatment of the subject. Excellent reviews, previously pub-
lished, cover in detail the mathematics and physics of entan-
glement [113, 191–196] and decoherence [81–84, 197]. We
direct the reader to these references for further details. Here,
in contrast, we focus on the effects of decoherence on entan-

glement.

In Section II, we discuss the concept of entanglement, its
quantification and measurement. In Section III, we consider
open-system dynamics, as well as the different families of
noise channels. Section IV reviews the theory of entanglement
dynamics of bipartite systems, while Section V addresses the
theory of multipartite entanglement decay. Experimental re-
sults are reviewed in Section VI. Finally, in Section VII, we
present some perspectives and open problems, and summarize
the conclusions of the paper.

II. THE CONCEPT OF ENTANGLEMENT

In this section we introduce the basic concepts about entan-
glement, as well as some of the existing criteria to detect it,
and the main methods to quantify it in its different classes. As
mentioned in the introduction, the goal of this report is not to
focus on entanglement itself but on its dynamic features under
decoherence, therefore the brief revision about the formalism
of entanglement presented in this section cannot – and must
not – be considered exhaustive. For excellent and in-depth re-
views on the formalism of entanglement we refer the reader to
Refs. [113, 192–196].

A. Definition

Let us consider a multipartite system S of N parties. The
corresponding space of states is a Hilbert space HS resulting
from the tensor product of the N individual Hilbert spaces of
the subsystems: HS ≡ H1 ⊗ ... ⊗HN , where Hi, with 1 ≤
i ≤ N , is the di-dimensional Hilbert space associated to the i-
th subsystem. The dimension dS of the total space HS is dS ≡
∏N

i=1 di. One should note that for many systems of interest –
like for instance harmonic oscillators – the dimension di may
be infinite. Due to the vector nature of the total Hilbert space
(stemming from the quantum superposition principle), not all
its elements are necessarily products of some others. In other
words, calling |ji〉, with 0 ≤ ji ≤ di − 1, the j-th element
of some convenient basis of Hi, the superposition principle
allows to write the most general N -partite quantum state as:

|Ψ〉 =
∑

j1 ... jN

Ψj1 ... jN |j1〉 ⊗ ... ⊗ |jN 〉. (II.1)

The product basis |j1〉⊗ ...⊗|jN 〉, for which we use the short-
hand notation |j1〉 ... |jN 〉, or simply |j1 ... jN 〉, depending on
convenience, is called from now on the computational basis

of HS . State (II.1) cannot in general be written as a product
of the individual states of the subsystems. In other words, it
is in general not possible to attribute a state vector to each
individual subsystem, which is precisely the formal statement
of the phenomenon of entanglement:

Definition 1 (Separable pure states) A pure state |Ψ〉 ∈ HS
is separable if it is a product state. That is, if it can be ex-

pressed as

|Ψ〉 = |Ψ1〉 ⊗ ... ⊗ |ΨN 〉, (II.2)

for some |Ψ1〉 ∈ H1, ... and |ΨN 〉 ∈ HN .

Definition 2 (Entangled pure states) A pure state |Ψ〉 ∈ HS
is entangled if it is not separable.

For any pure state |Ψ〉 of a bipartite system, there always ex-
ists a product basis |φ1jφ2j 〉 in terms of which one can write

|Ψ〉 =
∑r−1

j=0 ςj |φ1jφ2j 〉, with integer r ≤ d
.
= min{d1, d2}

(the dimension of the smallest subsystem) and ςj > 0 for all
j. This is the well-known Schmidt decomposition [198], and
r and ςj are called respectively the Schmidt rank and Schmidt
coefficients of |Ψ〉. A pure state is entangled if and only if
r > 1. For finite-dimensional systems, the maximally entan-
gled states are all the pure states whose Schmidt decomposi-
tion is given by

|Φ+
d 〉 ≡

1√
d

d−1∑

j=0

|φ1jφ2j 〉. (II.3)

Infinite-dimensional maximally entangled states will be dis-
cussed in Sec. II B 2. Since all product bases are connected
through local unitary transformations, the maximally entan-
gled states are the ones local-unitarily related to |Φ+

d 〉. Ar-
guably the most popular example of maximally entangled
states is given for the case of two qubits (d1 = 2 = d2) by
the four Bell states, expressed in the computational basis as:

|Ψ±〉 ≡ 1√
2
(|01〉 ± |10〉) and |Φ±〉 ≡ 1√

2
(|00〉 ± |11〉),

(II.4)
which constitute a maximally entangled basis of H1 ⊗H2.

Maximally entangled states possess a remarkable property:
the reduced density matrix of the smallest subsystem is given,
for finite-dimensional systems, by the maximally mixed state
11
d , with 11 the identity operator. This contains no informa-
tion at all (maximal entropy) and therefore any measurements
on it yield completely random outcomes. Still, the available
information about the whole two-qubit system is maximal, be-
cause the state is pure (zero entropy). This is the formal state-
ment of Schrödinger’s quotation already mentioned in the in-
troduction: “The best possible knowledge of a whole does not

include best possible knowledge of its parts”. Furthermore,
there are correlations between local measurements on both
subsystems that cannot be described by models based on lo-
cal hidden-variables, which would determine the values of the
local observables at each run of the experiment. As we will
see in the following sections, these peculiarities constitute the
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strongest manifestations of how much the notion of quantum
entanglement defies classical intuition.

All in all, mixed states are much more abundant than
pure ones (in fact, they describe realistic laboratory situa-
tions, where decoherence and imperfect operations lead to
incomplete information about the state vector describing the
system). They are represented by trace-1 normalised den-
sity matrices ̺ belonging to the space D(HS) of positive-
semidefinite operators acting on a Hilbert space HS . The def-
inition of entanglement for mixed states is more subtle then
the one for pure states, and is given by [199]:

Definition 3 (Separable states) A state ̺ ∈ D(HS) is sepa-

rable if it can be expressed as a convex combination of pure

product states, i.e. if

̺ =
∑

µ

pµ|Ψµ1〉〈Ψµ1| ⊗ ... ⊗ |ΨµN 〉〈ΨµN |, (II.5)

for some |Ψµi〉 ∈ Hi, and pµ ≥ 0 such that
∑

µ pµ ≡ 1.

Expression (II.5) can be thought of as a pure-state ensemble
decomposition of ̺. In that case, |Ψµi〉 is the state of particle
i in the µ-th member of the ensemble in question.

Definition 4 (Entangled states) A state ̺ ∈ D(HS) is entan-

gled if it is not separable.

The multipartite scenario is much richer, as a variety of
separability subclasses arises there. We introduce the cor-
responding sub-classifications beginning with the following
definitions.

Definition 5 (k-separability with respect to a partitioning)

For any 2 ≤ k ≤ N , a state ̺ ∈ D(HS) is k-separable

with respect to a particular k-partitioning of the N parts if it

can be expressed as a convex combination of pure states all

k-factorable in the partition. That is, if

̺ =
∑

µ

pµ|Ψ′
µ1
〉〈Ψ′

µ1
| ⊗ ... ⊗ |Ψ′

µk
〉〈Ψ′

µk
|, (II.6)

for some |Ψ′
µi
〉 ∈ H′

i, where subindex 1 ≤ i ≤ k labels now

each of the k subsets, H′
i is the composite Hilbert space of the

parts in the i-th subset, and pµ ≥ 0 such that
∑

µ pµ ≡ 1.

For example, consider three qubits shared among parts A, B
and C, conventionally called Alice, Bob, and Charlie, respec-
tively, in the composite state |ΨABC〉 .

= |Φ+
AB〉 ⊗ |0C〉 ∈

HS = HA ⊗ HB ⊗ HC . In the notation of (II.6), this
corresponds to a single term µ, H′

1
.
= HA ⊗ HB , and

H′
2

.
= HC . That is, Alice and Bob share the Bell state

|Ψ′
1〉 .

= |Φ+
AB〉 ∈ HA ⊗ HB and Charlie has the pure state

|Ψ′
2〉 .

= |0C〉 ∈ HC . The composite state is not separa-
ble because it possesses entanglement, but it clearly factorizes
with respect to the splitting “Alice and Bob versus Charlie”.
It is therefore k-separable for k = 2, commonly referred to as
biseparable, in the split AB|C.

Definition 6 (k-separable states) For any 2 ≤ k ≤ N , a

state ̺ ∈ D(HS) is k-separable if it can be expressed as a

convex combination of states each k-separable with respect to

at least one of the k-partitions. That is, if

̺ =
∑

µ

pµ|Ψ′
µ1
〉〈Ψ′

µ1
| ⊗ ... ⊗ |Ψ′

µk
〉〈Ψ′

µk
|, (II.7)

for some |Ψ′
µi
〉 ∈ H′

µi
, where subindex 1 ≤ i ≤ k labels

again each of the k subsets, but with the subsets now in gen-

eral varying with µ, so that H′
µi

is now the composite Hilbert

space of the parts in the i-th subset of the µ-th k-splitting (that

of the µ-th member of the decomposition), and pµ ≥ 0 such

that
∑

µ pµ ≡ 1 as usual.

In this terminology, the separable states of Definition 3 are
called N -separable, or simply fully separable.

Analogously, entanglement also admits sub-classifications
in terms of the number of parts actually taking place in the
correlations:

Definition 7 (Blockwise M -party entanglement) Given

any 2 < M ≤ N , and a particular M -partitioning of the N
parts, a state ̺ ∈ D(HS) is blockwise M -partite entangled

with respect to the M -partition, if it cannot be expressed as a

convex combination of states each biseparable with respect to

some bipartition of the M blocks.

When M = N , this definition reduces in turn to the following
crucial case.

Definition 8 (Genuine multipartite entanglement) A state

̺ ∈ D(HS) is N -partite entangled, or genuinely multipar-

tite entangled, if it is not biseparable.

Once again, three qubits are enough for a very illustrative
example of how the above sub-classifications apply. Consider
the mixed state [195]

̺ABC =
1

3

(
|Φ+

AB〉〈Φ+
AB | ⊗ |0C〉〈0C |

+ |Φ+
BC〉〈Φ+

BC | ⊗ |0A〉〈0A|
+ |Φ+

CA〉〈Φ+
CA| ⊗ |0B〉〈0B |

)
, (II.8)

It is immediate to verify (for instance, with the PPT criterion
discussed in Sec. II B 1) that this state is entangled in all its
three bisplittings. However, since it is a convex combination
of biseparable states with respect to the three splits, it is by
definition biseparable and therefore not genuinely multipartite
entangled. This simple example teaches us a very important
lesson: The presence of entanglement in all the bipartitions
does not imply genuine multipartite entanglement. The situ-
ation is pictorially represented in Fig. 1 for the three-qubit
scenario.

On the other hand, two archetypical examples of genuinely
multipartite entangled states are the GHZ states

|GHZN 〉 .= 1√
2

(
|000 . . . 0〉+ |111 . . . 1〉

)
, (II.9)
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Figure 1. Schematic representation of three-qubit states. There are

three convex sets (in thin dashed blue) of states separable with re-

spect to each bipartition, A|BC, B|AC, and C|AB. The minimum

convex set containing these three sets, i. e. their convex hull (in thick

dashed blue), is the set of biseparable states. Each biseparable set is

in turn contained by the set of states that are PPT with respect to the

corresponding bipartition (in thin solid red). Their convex hull forms

the set of PPT mixtures (in thick solid red). Reprinted figure with

permission from B. Jungnitsch, T. Moroder, and O. Gühne, Phys.

Rev. Lett. 106, 190502 (2011). Copyright (2011) by the American

Physical Society.

named after Greenberger, Horne, and Zeilinger, who were the
first to introduced this state in its three-qubit version [200–
202]; and the W states

|WN 〉 .= 1√
N

(|00 ... 01〉+ |00 ... 10〉+

... +|01 ... 00〉+ |10 ... 00〉), (II.10)

originally introduced, also in its three-qubit version, by Dür,
Vidal, and Cirac in Ref. [203].

Interestingly, the two states (II.9) and (II.10) cannot be ob-
tained from each other through stochastic local operations and
classical communication, that is, probabilistic operations car-
ried out locally on each part and eventually coordinated (cor-
related) among all parts by means of classical communication.
In this sense, they represent two inequivalent classes of gen-
uine multipartite entanglement [203]. The concept of local
operations and classical communication will be developed in
Sec. II B 6. Other families of genuine multipartite entangled
states will be encountered in Chapter V.

B. PPT-ness, entanglement witnesses, biseparability criteria,

PPT mixtures, free and bound entanglement

The zoology of criteria [194] establishing sufficient condi-
tions for entanglement (or, equivalently, necessary ones for
separability) is tremendously vast. Nevertheless, there exists
yet no criterium that allows one to unambiguously or – spe-

cially – efficiently1 guarantee if a generic state, in the case of
more than two particles, or two particles of arbitrary dimen-
sions, is or not entangled. In what follows, we briefly describe
just the best-known criteria.

1. The positive-partial-transpose criterion

The criterion of the positive partial-transpose (PPT), first
discovered by Peres [205], establishes a necessary condition
for separability in the general bipartite case. It involves a sim-
ple algebraic calculation without any optimization and is ca-
pable of detecting a large family of entangled states, called the
negative partial-transpose (NPT) states. For an arbitrary state
̺ ∈ D(HS), and any splitting of S into two subgroups of par-
ticle, A and B, with respective Hilbert spaces HA and HB ,
such that HA ⊗HB

.
= HAB = HS , it is stated as follows.

Criterion 9 (Positive-Partial-Transpose) If ̺ ∈ D(HS) is

separable in the split A : B, then its partially transposed ma-

trix with respect to B, ̺TB , of matrix elements

̺TB

jAjBj′Aj′B
≡ 〈jA|〈jB |̺TB |j′A〉|j′B〉
.
= 〈jA|〈j′B |̺|j′A〉|jB〉
≡ ̺jAj′Bj′AjB , (II.11)

for {|jA〉} and {|jB〉} any orthonormal bases of HA and HB ,

respectively, is also in D(HS).

That is, it asserts that ̺TB is also a bounded, positive-
semidefinite, trace-1 normalized operator acting on HAB . The
operation TB , called partial transposition with respect to sub-
system B, corresponds to the transposition of the matrix in-
dices associated only to HB . Any state satisfying the criterion
is called a PPT state (with respect to the bipartition in ques-
tion). The criterion automatically implies that if the partially
transposed matrix of a state is negative (possesses at least one
negative eigenvalue), then the state must necessarily be entan-
gled. These are precisely the NPT states mentioned above.

The simplicity of the criterion makes it arguably the most
popular separability criterion of all. Indeed, it is simple to un-
derstand how it works. Consider then an arbitrary state sep-
arable in the bipartite cut A : B: ̺AB ≡ ∑

µ pµ̺Aµ ⊗ ̺Bµ .

Next, partially transpose it to obtain ̺TB

AB ≡ ∑

µ pµ̺Aµ⊗̺TBµ
.

Since the transposition is a positive operation, the trans-
posed ̺TBµ

of any density operator ̺Bµ
∈ D(HB) is also in

D(HB). Therefore, the partially transposed composite oper-

ator ̺TB

AB constitutes a valid element of D(HA) ⊗ D(HB) ≡
D(HAB) = D(HS). Thus, at the heart of the efficacy of
the criterion is the fact that the transposition is positive but
the partial transposition is not. Technically, this means that
the transposition does not belong to the more general family

1 Distinguishing between separable and entangled mixed states is indeed

known to be NP-Hard problem [204].

http://link.aps.org/doi/10.1103/PhysRevLett.106.190502
http://link.aps.org/doi/10.1103/PhysRevLett.106.190502
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of completely-positive operations, which will be discussed in
Sec. II B 6.

With the PPT criterion, Peres established a necessary con-
dition for separability. Soon afterwards, the Horodecki family
complemented it [206] with the fundamental discovery that,
for the particular cases of arbitrary-dimensional bipartite sys-
tems in pure states, or systems of dimensions 2 × 2 or 2 × 3
in arbitrary states, it actually provides both necessary and suf-
ficient conditions for separability.

The continuous-variable-system version of the PPT crite-
rion, discussed in the following, sets also both necessary and
sufficient conditions for entanglement in the particular case of
Gaussian states [100, 207]. In these cases, the criterion pro-
vides a complete characterization of the state’s entanglement.
Beyond these particular cases though, mixed entangled states
are known that are PPT2.

2. Entanglement, PPT-ness, and separability in

continuous-variable systems

A thorough discussion of entanglement in continuous-
variable (CV) systems may be found for instance in Refs.
[211, 212]. Here we limit ourselves to a very short introduc-
tion to this subject.

A maximally entangled CV state, corresponding to two
quantum modes, or qumodes, with position quadrature opera-
tors q1 and q2, and momentum quadrature operators p1 and p2,
is a common eigenstate of the operators q1 + q2 and p1 − p2,
with [qj , pk] = iδjk, for j, k ∈ {1, 2}, where δ is the Kro-
necker delta. This implies that the sum of the variances of
these two operators (total variance) should be zero. However,
this state, often called EPR state, after Einstein, Podolski, and
Rosen, who introduced it in their famous 1935 paper [1], is
not physical, since it involves infinite energies. It is rather
used as an abstract limit which physical states can approach.
Physical, non-maximally entangled, approximations of it cor-
respond to two-mode squeezed states [213, 214], for which
the total variance is different from zero but approaches it as
the degree of squeezing increases. This suggests that the to-
tal variance could lead to a criterium for separability. Indeed,
this is the approach taken by Duan et al. in Ref. [100], who
lower-bounded the total variances of separable states through
the following criterion.

Criterion 10 (Separability of generic two-qumode states)

For any separable two-mode state ̺, and EPR-like operators

u and v defined by

u = aq1 +
1

a
q2 ,

v = ap1 −
1

a
p2 , (II.12)

2 Examples of criteria capable of detecting some PPT entangled states are

the range criterion [208] and the computable cross norm, or realignment,

criterion [209, 210].

with a any positive real, the total-variance bound

〈(∆u)2〉̺ + 〈(∆v)2〉̺ ≥ a2 +
1

a2
(II.13)

holds, where ∆u
.
= u− 〈u〉̺ and ∆v

.
= v − 〈v〉̺.

An alternative approach was followed by Simon [207],
who formulated the Peres-Horodecki criterium in the CV set-
ting. To this end, he considered the Wigner function, which
offers a phase-space representation of states equivalent to
the density operator representation. For the particular case
two qumodes, for instance, it is defined in terms of ̺ as
W (q, p) = π−2

∫
d2q′〈q − q′|̺|q + q′〉 exp(2iq′ · p), where

q = (q1, q2) ∈ R
2 and p = (p1, p2) ∈ R

2 are respec-
tively the real and imaginary parts of the coordinates of points
in the associated two-dimensional complex phase space. He
showed that, for CV mode states, the transposition operation
is equivalent to the mirror reflection in phase space of the mo-
mentum coordinate, or, which is the same, to time reversal
of the Schrödinger equation. That is, for a two-mode state ̺
with by a Wigner description W (q, p), the partial transposi-
tion of the corresponding density matrix with respect to the
second mode is equivalent to the Wigner-distribution trans-
formation W (q1, p1, q2, p2) → W(q1, p1, q2,−p2). Thus,
Criterion (9) translates to the CV case as the necessary con-
dition that the mirror-reflected function W (q1, p1, q2,−p2)
also be a valid Wigner distribution, for any separable ̺. That
is, W (q1, p1, q2,−p2) must describe a trace-one positive-
semidefinite operator.

A necessary condition for this, in turn, is that the phase-
space distribution renders the correct uncertainty relations.
This is convenient because these can be expressed in a concise
way in terms of just the second moments of the distribution,
as

γ + iΩ ≥ 0 , (II.14)

where γ is a 4×4 real symmetric matrix, called the covariance

matrix of ̺, with matrix entries

γij = 〈∆ǫi∆ǫj +∆ǫj∆ǫi〉 . (II.15)

Here, operator ǫi, for 1 ≤ i ≤ 4, is the i-th component of the
vector ǫ = (q1, p1, q2, p2), ∆ǫi = ǫi −〈ǫk〉̺. The expectation
value 〈O〉̺ .

= Tr[̺O] of a generic operatorO can be evaluated
explicitly in the Wigner representation as the convolution of
W (q, p) with the Wigner function of O [211, 212]. Ω, in
turn, is the 4×4 antisymmetric matrix

Ω
.
= ω1 ⊕ ω2, where ωi

.
=

(
0 1
−1 0

)

(II.16)

is the symplectic matrix of mode i, for i = 1, 2. When no
particular mode is specified, one typically refers to Ω simply
as the symplectic matrix.

Transformation p2 → −p2 corresponds to ω2 → −ω2 in
(II.14), which leads us finally to the best-known form of the
PPT criterion for CV systems:
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Criterion 11 (Positive-Partial-Transpose for two qumodes)

If ̺ ∈ D(HS) is a separable two-mode state with covariance

matrix γ, then

γ + i(ω1 ⊕−ω2) ≥ 0 . (II.17)

The operation of mirror reflection of the Wigner distribution,
and therefore also Criterion 11, is straightforwardly general-
ized to any bipartition NA|NB of a system with NA + NB

qumodes.
Criteria 10 and 11 provide necessary conditions for sep-

arability, but, remarkably, for Gaussian states these condi-
tions become also sufficient [100, 207]. Gaussian states play
a crucial role in quantum information and quantum optics
[211, 212]. They are defined as those whose Wigner represen-
tation is a Gaussian function. For these states, the covariance
matrix captures all the correlations and completely determines
the state up to local unitary displacements. Covariance matri-
ces transform according to symplectic transformations, which
describe the transformations of phase-space coordinates asso-
ciated to the physical transformations of quantum states. This
are characterised by the group of all 4×4 real matrices F such
that FΩFT = Ω, with FT the transposed of F . Williamson’s
Theorem guarantees that any covariance matrix can be diag-
onalised by a symplectic transformation [211]. This is called
symplectic diagonalization, and the (non-negative) eigenval-
ues obtained, ei, are the symplectic eigenvalues of γ. In terms
of these, condition (II.17) expresses as “ei ≥ 1 for all i”,
which constitutes an equivalent formulation of the PPT crite-
rion.

For arbitrary Gaussian states of 1 + N qumodes, Werner
and Wolf showed that PPTness of a bipartition 1|N is a nec-
essary and sufficient condition for biseparability in the bi-
partition [215]. Furthermore, if symmetries are present, the
PPT criterium can be shown to be equivalent to biseparability
for more general partitions. This is the case for bisymmetric
NA + NB-mode Gaussian states, which are invariant under
internal permutations of the qumodes in each subset A or B.
Then, it can be shown that PPTness is a necessary and suffi-
cient condition for separability in the splitNA|NB [216]. This
implies that, for a fully symmetrical mixed Gaussian state,
of an arbitrary number of qumodes, PPTness is equivalent to
biseparability with respect to all bipartitions of the modes.

To end up with, Shchukin and Vogel [217] derived a general
hierarchy of necessary and sufficient conditions for separabil-
ity of two-qumode states. This can be expressed in terms of
higher-order momenta of the two modes involved and is appli-
cable to non-Gaussian states. Indeed, it has been used to test
the separability of non-Gaussian states in optical experiments
[218].

3. Entanglement witnesses

Entanglement witnesses [195, 206, 219–221] constitute a
very useful tool for the detection of entangled states in both
the bipartite and multipartite cases. They give sufficient con-
ditions for states to be entangled and possess a remarkable
property: they can be directly obtained in the laboratory

Figure 2. Schematic representation of the internal geometry of the

set of density matrices D(HS). Since the set of k-separability is con-

vex, there always exists a hyper-plane such that the set lies entirely

at one side of it. Associated to the hyper-plane, there is an entangle-

ment witness Wk that detects a non-k-separable state ̺. Adjacent to

the set of k-separability in turn there is a hyper-plane that maximizes

the distance to ̺. This corresponds always to some optimal witness

Wkopt.

as the expectation value of physical observables, as is dis-
cussed in Sec. II D 2. That is, for every non-k-separable state
̺ ∈ D(HS), with 2 ≤ k ≤ N , there exists a Hermitean oper-
ator Wk acting on HS such that [206]

Tr[Wk̺sep] ≥ 0, (II.18)

for every k-separable ̺sep ∈ D(HS), and

Tr[Wk̺] < 0. (II.19)

One says then that the non-k-separability of ̺ is “witnessed”
(detected) by the negative expectation value of the witness.
If on the other hand the expectation value of some particular
witness is positive nothing can be concluded about the state
being or not entangled.

Unfortunately, every witness succeeds to detect only a re-
stricted portion of states. However, it is precisely this property
what can make entanglement witnesses able to detect not only
if a given state is entangled, but also if it belongs specifically
to some particular entanglement family of interest. For exam-
ple, if, for k = 2, some W2 detects ̺ (that is, Tr(Wk.̺) < 0),
then it is known not only that ̺ is entangled, but also that it
is genuinely N -partite entangled. More generally, if ̺ is de-
tected by someWk, then it is revealed to be genuinely l-partite
entangled, with l such that N/(k − 1) ≤ l, for N an integer
multiple of k − 1, and ⌈N/(k − 1)⌉ ≤ l otherwise, being
⌈x⌉ the ceiling of x (the smallest integer greater than, or equal
to, x). Furthermore, witnesses can even be tailored so as to
also discriminate inequivalent classes of genuine multipartite
entanglement [222], as we mention below.

The trace of the product of two Hermitean operators acting
on HS defines their Hilbert-Schmidt inner product. Therefore
the expression Tr[Wk.̺] = 0 can be interpreted as the defin-
ing equation of a hyperplane in D(HS), where Wk plays the
role of the vector orthogonal to the hyperplane and Tr[Wk.̺]
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of the component of ̺ orthogonal to the hyperplane (times the
norm of Wk). Thus, Wk splits D(HS) into two semi-spaces:
one corresponding to the states that it witnesses [Eq. (II.19)],
and the other to those it does not [Eq. (II.18)]. In Fig. 2 we
can see a schematic representation of the internal geometry of
D(HS) according to the sets of k-separability, and including
the division defined by the hyperplane corresponding to Wk.
The dashed segment that goes from state ̺ perpendicularly to
this hyperplane pictorially represents |Tr[Wk.̺]|, which can
also be taken as a distance between the hyper-plane and ̺. In
the figure we can also see that there exists a hyperplane, adja-
cent to the set of k-separability, that maximizes such distance.
This hyper-plane is defined by some optimal witness Wkopt.

More precisely, a witness is said to be optimal if there ex-
ists no other witness finer than it [220], meaning that no other
witness detects all entangled states detected by the former plus
some other(s). This implies that a witness is optimal iff it is
impossible to subtract from it any positive operator in a way
such that the resulting observable is still a witness3 From this
it can be seen thatWk is optimal if all the k-factorable vectors
|Φ〉 in the Kernel of Wk, 〈Φ|Wk|Φ〉 = 0, possess enough lin-
ear independence so as to span the whole of HS . Systematic
recipes for the optimization of witnesses were introduced in
Ref. [220].

Here we just discuss two simple examples of how to con-
struct witnesses. Before that, we introduce the notion of de-

composable witnesses. A bipartite witness WAB is decom-
posable if it can be expressed as WAB = P + QTB , where
P ≥ 0 and Q ≥ 0 are positive semidefinite operators act-
ing on HAB , and TB represents the partial transposition with
respect to B [220]. Observables with this structure automat-
ically satisfy (II.18) for all PPT (and therefore all separable)
states. This comes about because, for any PPT state ̺AB ,
one has Tr[(P + QTB )̺AB ] ≡ Tr[P̺AB ] + Tr[QTB̺AB ] ≡
Tr[P̺AB ] + Tr[Q̺TB

AB ] ≥ 0, where the identity Tr[Q̺TB

AB ] ≡
Tr[QTB̺AB ] was used. Indeed, a bipartite witness can detect
entangled PPT states if, and only if, it is non-decomposable

[220].
The first example concerns witnesses for NPT states. Any

NPT state ̺AB is detected by a bipartite witness of the form
[220]

WAB ≡ |η−〉〈η−|TB , (II.20)

where |η−〉 is an eigenstate of ̺TB

AB with negative eigenvalue.
This follows again from the identity Tr[|η−〉〈η−|TB̺AB ] ≡
Tr[|η−〉〈η−|̺TB

AB ]. Witness (II.20) is by construction optimal
and decomposable (it cannot detect any PPT entangled state).

3 There exists an alternative definition [219] that addresses optimality of wit-

nesses relative to a given state. According to this, the optimal witness

Wkopt for an entangled state ̺ is the one that maximizes −Tr[Wk.̺] over

some compact subset Tk(HS) of witnesses on HS (so that the maximiza-

tion’s convergence is guaranteed). Typical choices can be Tk(HS)
.
=

{Wk s. t. Tr[Wk] = K} or Tk(HS)
.
= {Wk s. t. Wk ≤ K11}, with

K some positive constant. Note that every optimal witness according to

this definition is also optimal accordingly to the denition above, whereas

the converse may not be true.

The second one comes from the intuition that a state suffi-
ciently close to an entangled state should also be entangled.
Given any pure entangled state |Ψ〉, the observable

Wk ≡ αk11 − |Ψ〉〈Ψ|, (II.21)

with αk
.
= max̺ k-separable Tr[̺|Ψ〉〈Ψ|] ≡

max|Φ〉 k-factorable |〈Φ|Ψ〉|2, defines a valid witness. The
previous equivalence is due to the fact that the maximum of
a linear function over a convex set (mixed states) is always
attained at its extremal points (pure states). If the fidelity
Tr[|Ψ〉〈Ψ|̺] = 〈Ψ|̺|Ψ〉 of a state ̺ with |Ψ〉 goes beyond the
critical value αk then ̺ is detected as non-k-separable. For
the bipartite case, the maximization of α2 is known [223] to
be given always by the squared maximal Schmidt coefficient
of |Ψ〉. The maximization of αk in the general multipartite
domain is not a simple task, but yet some analytical results are
known [222]. For instance, if |Ψ〉 is a genuinely three-qubit
entangled state as |W〉 or |GHZ〉 (defined in Sec. V A), then
α2 is 2/3 or 1/2, respectively. Furthermore, for |Ψ〉 = |GHZ〉
and α2 = 3/4, then not only does the resulting witness detect
genuine three-partite entanglement but it also identifies it as
GHZ-type entanglement. It can be shown that witnesses of
the form (II.21) can also only detect NPT entanglement [195].

As we will see in Sec. II D 2, entanglement witnesses con-
stitute one of the most versatile and useful toolboxes for the
experimental detection of entanglement.

4. Biseparability criteria

In Refs. [224, 225], very powerful biseparability criteria
were introduced. These can be tailored to target at differ-
ent genuinely multipartite entangled states. For instance, for
states in the vicinity of GHZ or W states, they take very sim-
ple expressions, which we next present in the form introduced
in [224]:

Criterion 12 (Biseparability of 3 qubits (GHZ)) Any

3-qubit biseparable state ̺ necessarily fulfills

D
|GHZ3〉(̺) ≤ √

̺001̺110+
√
̺010̺101+

√
̺011̺100, (II.22)

where D
|GHZ3〉(̺)

.
= |〈000|̺|111〉|, and ̺k

.
= 〈k|̺|k〉, for

001 ≤ k ≤ 110.

In turn, the W -state version of the criterion is

Criterion 13 (Biseparability of 3 qubits (W)) Any 3-qubit

biseparable state ̺ necessarily fulfills

D
|W3〉(̺) ≤ √

̺000̺011 +
√
̺000̺101 +

√
̺000̺110

+
1

2
(̺001 + ̺010 + ̺100), (II.23)

where D
|W3〉(̺)

.
= |〈001|̺|010〉| + |〈001|̺|100〉| +

|〈010|̺|100〉|, and ̺k
.
= 〈k|̺|k〉, for 000 ≤ k ≤ 110.

In both criteria, the abbreviation D
|Ψ〉(̺) stands for the sum

of the absolute values of the off-diagonal elements in the up-
per triangle of density matrix ̺, for which the corresponding
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entries |Ψ〉〈Ψ| are not null. The violation of either of the cri-
terions implies, of course, genuine 3-qubit entanglement. It
is important to emphasize that both criteria are valid for all
states. The presence of the target states |GHZ3〉 and |W3〉 in
(II.22) and (II.22), respectively, just makes reference to the
fact that Criterion 10 is especially good at detecting genuine
multipartite-entangled states in the vicinity of |GHZ3〉 and
Criterion 11 in the vicinity of |W3〉.

In spite of their simplicity, these criteria are stronger than
all known entanglement witnesses. They can detect some
bound entangled states (separable with respect to all parti-
tions but not fully separable) [224]. Also, (II.23) is vio-
lated by 3-qubit W states mixed with white noise, that is
ρW = (1− p)|W 〉〈W |+ p11/8, for p < 8/17 ≈ 0.471 [224];
whereas the corresponding best known entanglement witness
[195], W = (2/3)(11 − |111〉〈111|) − |W 〉〈W | detects these
states only for p < 8/19 ≈ 0.421. Furthermore, both Crite-
rion 10 and Criterion 11 were observed in [165] to perform
significantly better than the GHZ and W fidelity-based wit-
nesses given by (II.21) in identifying genuine tripartite entan-
glement of experimentally obtained mixed three-qubit states.

In Sec. V A, we present a generalization of Criterion 12
to N -qubit systems, as well as an extension of Criterion 13
to four-qubit W and Dicke states [224]. We also notice that
similar criteria have been derived in Ref. [226] for four-qubit
cluster-diagonal states, defined in Sec. V A 3.

5. Multipartite PPT mixtures

As in the case of entanglement, also for NPT-ness does the
multipartite scenario display some curious features. In anal-
ogy with biseparable states, one defines PPT mixtures as all
possible convex combinations of PPT states. These are con-
tained in the convex hull of the states PPT with respect to
some bipartition, pictorially represented in Fig. 1, together
with the biseparability convex hull, for an exemplary three-
partite system. There, we can see that there exist states that
despite being NPT with respect to all bipartitions still lie in-
side the PPT-mixture region. In fact, as already anticipated,
the example (II.8) studied above is NPT with respect to all
splits but is biseparable and therefore also a PPT mixture.

In Ref. [227], Jungnitsch, Moroder, and Gühne proposed a
powerful approach to characterise PPT mixtures through en-
tanglement witnesses. The idea is to find a witness W such
that (i) Tr[W̺PPT ] ≥ 0 for all PPT mixtures ̺PPT and
(ii) Tr[W̺NPT ] < 0 for some state ̺NPT outside the PPT-
mixture convex hull, of a given multipartite system. A nat-
ural way to automatically satisfy (i) is to demand that W is
decomposable, as defined in Sec. II B 6, with respect to all
the bipartitions, i.e. that there exists operators Pλ ≥ 0 and
Qλ ≥ 0 such that W = Pλ + QTλ

λ for all bipartitions λ,
where Tλ denotes the partial transposition operation with re-
spect to subpart λ. When W allows for such decompositions,
the authors call it a fully decomposable witness. Conversely,
any non-PPT-mixture state ̺NPT can be detected by a fully
decomposable witness [227].

This problem defines a convex optimization that, in contrast

to the characterization of biseparability, can be formulated as
a linear semidefinite program: Given a multipartite state ̺,
find

minTr[W̺] (II.24)

s.t. Tr[W ] = 1,

with W = Pλ +QTλ

λ , Pλ ≥ 0, Qλ ≥ 0 for all λ.

Semidefinite programming is rather efficient and has the ad-
vantage that global optimality of the found solution Tr[Wmin̺]
can be guaranteed. Notice also that decomposability with re-
spect to a bipartition λ automatically implies decomposability
also with respect to the complementary bipartition λ, so that
only half the bipartitions need actually be considered. For
system sizes of up to seven qubits, optimization (II.24) can be
easily handled [226].

This approach thus renders a necessary condition for bisep-
arability of multipartite systems, analogous to the PPT Crite-
rion 9 for separability of bipartite ones:

Criterion 14 (PPT mixtures) If a multipartite state ̺ ∈
D(HS) is biseparable, then

Tr[Wmin̺] ≥ 0, (II.25)

where Tr[Wmin̺] is the solution of (II.24).

For some subfamilies of states, as for instance the four-qubit
cluster-diagonal states, defined in Sec. V A 3, the condition is
also sufficient [226]. In general, as we describe in Sec. II C 5,
the violation of (II.25) can be used to quantify genuinely mul-
tipartite entanglement.

6. Local operations assisted by classical communication

General physical processes will be discussed in Sec. III A 2
in the context of open-system dynamics. At this point, how-
ever, we introduce, for the sake of characterizing entangle-
ment, a prominent subclass of physical processes, described
by the celebrated local operations and classical communi-

cation (LOCCs) [228], operations carried out locally by the
users but with the help of classical communication among
them. The idea of LOCCs is that distant users, each one in
possession of one out of N parts of the system, apply arbi-
trary operations locally but in such a way that different local
operations by each user are coordinated (correlated) among
all parts by means of classical communication. A remarkable
example of an LOCC protocol is the quantum teleportation,
discovered by Bennett et. al. [9]. There, two distant users
– canonically called Alice and Bob – share two qudits (quan-
tum particles of d levels each) in a maximally entangled state
as (II.3). These two qudits constitute the teleportation chan-
nel. Alice wishes to teleport towards Bob’s location another
qudit, in an unknown, arbitrary state. First Alice locally mea-
sures her part of the channel together with this extra qudit in a
basis of maximally-entangled two-qudit states. Next she com-
municates the classical outcome of her measurement to Bob.
Finally, he applies a local operation to his qudit conditioned
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to the outcome communicated by Alice. As a result, the qudit
in Bob’s possession ends up precisely in the state of the ini-
tial qudit Alice wanted to teleport, achieving thus the desired
goal.

The mathematical form of the family of LOCC maps is
rather involved [229]. There exists though a more general
family, called the separable maps, which include all LOCCs
and possesses a much simpler mathematical characterization:

Esep(̺) ≡
∑

µ

K1µ⊗ ... ⊗KNµ̺K1
†
µ⊗ ... ⊗KN

†
µ, (II.26)

with
∑

µK1
†
µK1µ ⊗ ... ⊗ KN

†
µKNµ = 11, so that

Tr[Esep(̺)] ≡ 1 ∀ ̺ ∈ D(HS), and where each operator4

Kiµ acts on Hi, with 1 ≤ i ≤ N . Thus, instead of dealing
directly with LOCCs, one usually deals with separable opera-
tions and concludes properties about the former by inclusion.
Since they involve classical communication, LOCC (as well
as generic separable) operations can increase classical corre-
lations. On the other hand, no separable map can increase
entanglement when acting on pure states [230], or on gen-
eral separable states, of course. More generally, for arbitrary
states, we will see in Sec. II C 2 that entanglement never in-
creases under LOCCs.

Finally, LOCC operations are the deterministic case of a
wider family of operations, the stochastic local operations

and classical communication (SLOCCs) [203, 231], which
describe also LOCC processes, but happening with a probabil-
ity not necessarily equal to one. The map ESLOCC describing
this type of processes is ̺ → ESLOCC(̺)/Tr[ESLOCC(̺)],
with ESLOCC an LOCC map but with the normalization not
necessarily equal one, that is Tr[ESLOCC(̺)] ≤ 1.

7. Distillable, bound, and PPT entanglement

Most protocols for quantum information processing and
quantum communication exploit maximally entangled pure
states. However, in practice, due to non-perfect operations and
noise, only mixed states are at hand. The problem of how to
extract pure-state entanglement from mixed entangled states
was considered in the seminal work by Bennett et al. [232].
They established there the paradigm of entanglement distilla-

tion, also sometimes called entanglement purification or con-

centration. Once again, let us consider two distant users A
and B who share now n identical copies of the state ̺AB con-
taining some noisy entanglement. They can apply an LOCC
protocol EDist acting collectively on all n copies of ̺AB so
as to obtain a smaller number m(n) > 0 of copies of a state
closer to a pure maximally entangled state than the original
state ̺AB . Errors are allowed, but they must vanish in the
asymptotic limit n → ∞, and the obtained state must tend

4 K1µ ⊗ ... ⊗ KNµ are in turn called Kraus operators, which will be

touched upon in detail in Sec. III A 2.

to the target maximally entangled state. When this is possi-
ble, EDist is an entanglement distillation protocol for ̺AB with
efficiency

ηD
.
= lim

n→∞
m(n)

n
. (II.27)

The optimal protocol is the one that maximizes ηD. This opti-
mal efficiency defines in turn the distillable, or free, entangle-

ment ED(̺AB) of ̺AB :

ED(̺AB)
.
= sup

EDist∈LOCC

ηD. (II.28)

Accordingly, ̺AB is said to be distillable, and possesses ED

ebits (entanglement bits) of distillable entanglement.
The inverse process, sometimes called entanglement dilu-

tion, is also possible. Starting from m pure maximally entan-
gled pairs,A andB apply an LOCC map EDil to obtain a larger
number n(m) of identical copies of ̺AB . Then EDil is an en-
tanglement dilution protocol for ̺AB , with a cost, in ebits per
copy, given by the conversion rate

ηC
.
=
m(n)

n
. (II.29)

The optimal protocol is now the one that minimizes ηC , and
the optimal cost defines the entanglement cost EC(̺AB) of
̺AB :

EC(̺AB) ≡ inf
EDil∈LOCC

lim
m→∞

ηC . (II.30)

The natural question that arises is whether entanglement
distillation and dilution are reversible processes or not. Sur-
prisingly, the answer is no. There are mixed entangled states
from which it is not possible to distill any entanglement at
all. It turns out that the Peres-Horodecki PPT criterion is in-
timately related to this curious phenomenon. In fact, it was
again the Horodecki family who soon after the discovery of
the criterion found out [233] that every PPT state is non-

distillable. This means, in view of the fact that for mixed
systems larger than 2 × 3 there exist PPT entangled states,
that there are entangled states that are non-distillable. These
are precisely the celebrated bound entangled states. Clearly,
we have then in general ED ≤ EC , the equality holding nec-
essarily only for pure states, or for systems of d ≤ 2 × 3 in
arbitrary states.

On the other hand, it is not known whether there exist bound
entangled states other than the PPT ones. This is a question
that remains open since the very discovery of bound entan-
glement and has been called “the problem of the NPT bound
entanglement”. Every PPT state is non-distillable, but the con-
jecture [234, 235] is that there could be a gap between the set
of all distillable states and that of the PPT ones. The situation
is described in Fig. 3, which schematically represents the in-
ternal geometry of D(HS) with the borders between the sets
of the separable states, the PPT ones, the hypothetic NPT non-
distillable ones (in dashed), and finally the rest of D(HS): the
distillable states. Proving, or disproving, the conjecture is one
of the big fundamental open questions in entanglement theory.
See [236] for a review on the problem.
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Figure 3. Schematic representation of the inner geometry of the

set of the density matrices D(HS), with the borders between the

sets of the separable states, the PPT ones, the conjectured NPT non-

distillable ones, in dashed line, and finally the rest of D(HS): the

distillable states.

8. Multipartite distillability

It is also possible to define the notion of distillability for
multipartite systems. We consider then N users that apply
an LOCC map on n copies of an arbitrary N -particle state ̺,
with the aim of obtaining m(n) ≤ n copies of some pure en-
tangled target state. The LOCC map acts collectively on all n
copies of ̺, but the “L” in LOCC stands for local with respect
to each of the N parts individually, who can correlate their
local operations only through classical communication, as in
the bipartite case. When, in the asymptotic limit of n → ∞,
m(n) > 0, ̺ is said to be distillable. If the distilled target
pure state is genuinely N -partite entangled, then ̺ is in addi-
tion genuinely multipartite distillable, or N -party distillable.

Interestingly, genuinely multipartite entangled states that
belong to inequivalent entanglement classes at the single-copy
level can be mapped into one another by LOCCs when suffi-
ciently many copies of them are available. In particular, this
is the case for instance of the GHZ and W states for N -qubit
systems (see for instance [237] and references therein). In
general, a necessary and sufficient condition for genuine N -
party distillability is the distillation of a pure maximally en-
tangled state between every pair of parties [238]. The rea-
son behind this fact is that, from sufficiently many copies of
these pairs, any pure genuinely multipartite entangled state
can be obtained with LOCCs, and vice versa. An example
of a bipartite-distillation based protocol for the distillation of
genuine multipartite graph-state entanglement is explicitly de-
scribed in Sec. V C 2. Still, protocols for the direct distillation
of multipartite entangled states exist, as we briefly mention in
Sec. V C 1 (see Ref. [239] for a review). A(n only) necessary
(but much simpler to check) condition for genuine N -partite
distillability is given by the following criterion [238, 240]:

Criterion 15 (Multiparite distillability (necessary)) If an

arbitrary N -qubit state ̺ ∈ D(HS) is N -party distillable,

then each and all of its bipartite splits are NPT.

A simple way to convince oneself of the validity of the as-
sertion is because, if any split is PPT, then it is certainly not

possible to distill genuineN -party entanglement. On the other
hand, the converse assertion cannot hold if NPT bound entan-
glement exists, as discussed in the previous subsection.

An important distinction must be made at this point. Gen-
uinely mutipartite distillability and genuinely multipartite en-
tanglement turn out to be inequivalent notions. On the one
hand, mixed states that are PPT with respect to any choice
of bipartite cuts (and therefore not N -party distillable) but at
the same time display genuine N -partite entanglement can
be constructed [241]. On the other hand, there are bisep-
arable states that are N -party distillable. That is, one can
distill genuine-multipartite entanglement from states with no
genuine-multipartite entanglement at all. The reason behind
this is that the distillation of pure maximally entangled states
between every pair, which is sufficient for genuine N -party
distillation, is certainly not enough to guarantee genuine-
multipartite entanglement. This is the case precisely of the
3-qubit state (II.8) studied above. The state is biseparable,
but a pure maximally entangled state between Alice and Bob,
and another between Alice and Charlie, can be distilled. With
them, Alice can teleport one qubit of a locally created GHZ
state to Bob and another to Charlie, thereby obtaining a GHZ
state among all three users. This example also shows that the
set of non-genuinely mutipartite distillable states is not con-
vex, because a convex combination of three non-genuinely
mutipartite distillable states renders a genuinely mutipartite
distillable one.

Both the definition of N -party distillability as well as Cri-
terion 15 can of course be directly extended to blockwise M -
party distillability. There, the N parts are grouped into M
blocks, each of which is treated as a single subpart of larger
dimension, and the aim is to distill a blockwiseM -partite pure
entangled state with respect to the M -partition. Multi-party
distillable states are in general easier to experimentally pre-
pare, or detect, than multipartite entangled ones [195]. For
the same reasons, they can also be much more robust against
noise. These points are elaborated in Sec. V, where in par-
ticular we discuss other criteria for N -party and blockwise
M -party distillability, for GHZ entanglement.

9. Multipartite bound and unlockable entanglement

An N -partite state is bound entangled if it is entangled and
not N -party distillable. One of the first examples was ob-
tained by Bennett et al. in Ref. [242], where an entangled
three-qubit state was found to be separable with respect to all
its bipartitions. This state is clearly not distillable because not
even a singlet between any of the qubits can be extracted with
N -party LOCCs. Another popular example is the Smolin state
[243]:

̺Smolin
ABCD ≡ 1

4

4∑

µ=1

|Ψµ
AB〉〈Ψµ

AB | ⊗ |Ψµ
CD〉〈Ψµ

CD|, (II.31)

for four qubits A, B, C, and D, and where |Ψµ〉 are the four
maximally-entangled Bell states (II.4). By construction, the
split AB : CD is separable. In addition, the state is invariant
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under the permutation of any of its parts. This can be seen by

noticing that ̺Smolin
ABCD ≡ 1

4 (11
⊗4 +

∑3
µ=1 σ

µ⊗4), with σµ the
three Pauli matrices. Therefore, it is separable with respect to
any two-versus-two cut. This implies, again, that no entangle-
ment between any pair of qubits can be extracted withN -party
LOCCs. So the state is non-distillable. However, it is immedi-
ate to check that all its one-versus-three qubit bipartitions are
NPT. So the state is entangled.

The Smolin state features in addition another exotic prop-
erty. From (II.31), one sees that the pairsAB andCD have an
equal probability of being in a Bell state, but without knowing
which one. If, say, parts A and B are brought together, they
can unlock the entanglement between C and D by performing
a joint Bell-state measurement on their qubits and then com-
municating their outcome via a classical channel to C and D.
The outcome works as a flag for C and D, because it marks
onto which Bell state their subsystem has been projected. As a
result, C andD are left with a pure maximally-entangled state
(and they know which one!). This process is known as entan-

glement unlocking, and the bound entanglement of ̺Smolin
ABCD

is said to be unlockable. As discussed in Sec. VI F, state
(II.31) has already been the target of experimental investiga-
tions [163, 244, 245].

Finally, we will see in Sec. V F that multipartite bound en-
tanglement is, exotic as it may seem though, actually a rather
common phenomenon, which can appear due to natural phys-
ical processes. Namely, we will see that multipartite bound
entangled states can arise in multipartite-entangled systems
due to the interaction with the environment.

C. Entanglement measures

The quantification of entanglement of general states hap-
pens to be a formidably difficult task, not less complex than
the separable-versus-entangled problem. It typically involves
optimizations whose required computational effort grows so
fast with the system size that, already for a handful of parti-
cles, calculations for arbitrary states become in practice im-
possible. Given the complexity and importance of the prob-
lem, there exists a wide variety of proposed quantifiers. Some
are based on efficiencies of quantum-information protocols,
some on geometrical aspects, on axiomatic approaches, etc,
and each of them is more advantageous than others in some
particular sense. In this subsection, we present barely some of
the most popular proposals. We refer the interested reader to
Refs. [193, 194] for detailed reviews on the subject.

1. Operational measures

This type of quantifiers is based on the premise that en-
tanglement is a resource for physical tasks. Accordingly, the
entanglement in a given state ̺AB is given by its efficacy as
a resource for a particular task. A simple example of this is
the maximal teleportation fidelity fmax, defined as the fidelity
of teleportation of a qudit attainable when ̺AB is used as the
teleportation channel, averaged over all possible input states

and maximized over all possible teleportation strategies. If
̺AB is maximally entangled, the teleportation is faithful and
fmax(̺AB) = 1. Whereas if ̺AB is separable or bound en-
tangled, the fidelity takes the maximum value attainable by
classical means: fmax(̺AB) =

2
d+1 [246].

The two most important operational quantifiers are the dis-

tillable entanglement ED and the entanglement cost EC , both
defined in Sec. II B 7. ED is more powerful than fmax at
detecting entanglement because, whereas the latter restricts to
the single-copy regime, the former addresses the usefulness
as a physical resource of asymptotically many copies of ̺AB .
On the other hand, EC quantifies the ebits necessary for the
LOCC production, in the asymptotic sense, of ̺AB . Since
LOCCs can only map separable states into separable states,
every entangled state costs a non-null number of ebits. That
is, EC > 0 for every entangled state, including the bound
ones. In this sense, EC is more powerful than both ED and
fmax, which are sensitive only to free entanglement. How-
ever, all these measures involve optimizations that make their
numeric evaluation in practice a very hard problem.

2. Axiomatic measures

Vedral and collaborators introduced in [247] the idea of an
axiomatic definition of an entanglement measure, such that
any function that satisfies some reasonable postulates can be
considered an entanglement quantifier.

The most important postulate, already proposed in [228],
and on which there is absolute consensus within the commu-
nity, is that of

• Monotonicity under LOCCs: Entanglement cannot
increase due to local operations assisted by classical
communication.

Mathematically, if ̺ is any arbitrary state and E(̺) is a mea-
sure of its entanglement, this axiom demands that

E(̺) ≥ E[ELOCC(̺)], (II.32)

for all LOCC maps ELOCC .
There exists also another monotonicity condition that — in

spite of being more restrictive than (II.32) — is satisfied by
all known entanglement measures and used to be considered
as the fundamental requirement. This condition is called

• Strong monotonicity under LOCCs: Entanglement
cannot increase on average due to local operations and
classical communication.

Mathematically,

E(̺) ≥
∑

µ

pµE(σµ), (II.33)

where {pµ, σµ} is the ensemble obtained from ̺ via the LOCC
in question. The idea behind formulation (II.33) of mono-
tonicity is that the system undergoes a local process where
information is gained about which member of the ensemble is
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actually realized. These processes can always be thought of
as general local measurements, which lead to a flagging infor-

mation, so some mixedness is always removed. The available
entanglement is then that of the average over the resulting en-
semble, which is typically higher than, or equal to, the bare
one of the full mixture5 considered in (II.32).

Vidal originally suggested [248] to consider strong LOCC
monotonicity as the only fundamental postulate required by
entanglement measures, all other properties either being de-
rived from this basic axiom or being optional. However,
nowadays there is common agreement [194] that condition
(II.32) is the only fundamentally necessary requirement, as
it concerns directly the amount of entanglement after any
LOCC, even those by which no flagging information is ac-
quired. On the other hand, strong monotonicity is frequently
easier to prove than simple monotonicity and, when the mea-
sure E is convex, the former automatically implies the latter.
Therefore, condition (II.33) is still the most commonly used
formulation and, usually, every function satisfying this condi-
tion is called an entanglement monotone. We denote entan-
glement monotones by M6.

A fundamental property imposed by either monotonicity
conditions, (II.32) or (II.33), and whose importance on its own
deserves an explicit comment, is the following:

• Entanglement is invariant under local unitary transfor-
mations:

E(̺) ≡ E(U1 ⊗ ...⊗ UN̺U
†
1 ⊗ ...⊗ U†

N ), (II.34)

for all local unitary operators U1, U2, ... UN acting respec-
tively on H1, H2, ....HN . To see it, notice that when ELOCC

is a local unitary operation it is invertible, its inverse E−1
LOCC

being simply the inverse local unitary operation. Then the
only way for E to be monotonous under both transformations
̺ → ELOCC(̺) and ELOCC(̺) → E−1

LOCC(ELOCC(̺)) ≡ ̺
is necessarily to remain invariant in such processes. This is
a very sensible characteristic of an entanglement quantifier,
since local unitary transformations are nothing but local basis
changes.

Since every separable state can be transformed into any
other separable state via LOCCs [248], E must be constant
over the set of separable states. In addition, this constant must
set the minimal entanglement, because every separable state
can be obtained from any other state via LOCCs. It is then
convenient to set this constant as zero, so that the entangle-
ment of a separable state is null. That is, if ̺ is separable,
then E(̺) ≡ 0. Note that, except for the arbitrariness in the
exact value of the constant, this property is fully derived from
monotonicity under LOCCs.

5 Strictly speaking, this is necessarily true only when E is a convex function,

which –as we discuss below– is another very general property satisfied by

most entanglement measures.
6 An important distinction between LOCC and separable maps turns up here:

Pathologic examples have been found of mixed entangled states for which

the value of some particular entanglement monotone can increase under

separable maps [249].

Other possible axioms: There exist other properties that,
while not necessarily required for every entanglement mea-
sure, can be convenient and natural in certain contexts. They
are essentially [113, 193, 194, 250] the following ones:

• Convexity. The entanglement is a convex function in
D(HS):

E(p̺+ (1− p)̺′) ≤ pE(̺) + (1− p)E(̺′), (II.35)

for 0 ≤ p ≤ 1. Up to recently, convexity used to be con-
sidered a necessary ingredient for monotonicity. These
days, it is just a convenient mathematical property satis-
fied by most measures. Indeed, almost all entanglement
measures mentioned in this review – except perhaps for
the distillable entanglement, whose convexity is still an
open question related to the existence of NPT bound
entanglement [251, 252] – are convex.

• Continuity. The entanglement is a continuous function:

||̺− σ|| → 0 ⇒ |E(̺)− E(σ)| → 0, ∀ σ, ̺ ∈ D(HS),
(II.36)

where “|| ||” stands for the trace norm.

• Additivity. The entanglement contained in k copies of ̺
is equal to k times the entanglement of ̺:

E(̺⊗k) ≡ kE(̺). (II.37)

This axiom is sometimes called weak additivity, the
term additivity being reserved for the more restrictive
condition E(̺⊗ σ) ≡ E(̺) + E(σ), with ̺ and σ any
two states of arbitrary systems.

• Subadditivity. For any two systems in arbitrary states,
̺ and σ, the total entanglement is not greater than the
sum of both individual entanglements:

E(̺⊗ σ) ≤ E(̺) + E(σ). (II.38)

Monotonicity for pure states: For pure states strong
monotonicity reduces to

E(Ψ) ≥
∑

µ

pµE(Ψµ), (II.39)

where {pµ, |Ψµ〉} is the ensemble obtained from |Ψ〉 via any
LOCC. Indeed, for pure bipartite states there exists a recipe
for the construction of entanglement monotones [248]. Let
|ΨAB〉 be a pure bipartite state, and ̺R ∈ D(HR) the reduced
density matrix of subsystem R = A or B. Then any function
f(̺R) : D(HR) → ℜ that is

• unitarily invariant, meaning that f(̺R) ≡ f(U̺RU
†),

for all unitary operator U acting on HR, and

• concave in D(HR), meaning that f(̺R) ≥ pf(σR) +
(1 − p)f(σ′

R), for any σR and σ′
R ∈ D(HR) such that

̺R = pσR + (1− p)σ′
R, and with 0 ≤ p ≤ 1,
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yields an entanglement monotone. Notice that given the in-
variance of f under unitary operations, it can only be a func-
tion of unitary invariants, i.e., of the spectrum of ̺R. Con-
sequently, here it is not necessary to distinguish between ̺A
and ̺B , because they both have the same non-null eigenval-
ues. For this reason we can simply use subindexR in a generic
way or, alternatively, refer directly to |Ψ〉: M(Ψ) ≡ f(̺R).

The most prominent choice satisfying the above conditions
is the von Neumann entropy S, defined as

S(̺R) ≡ −Tr[̺R ln(̺R)]. (II.40)

This entropy is the formal quantifier of the uncertainty, or lack
of information, in ̺R. In the context of entanglement theory,
it is frequently called entanglement entropy, or simply entan-

glement, of |Ψ〉, EE(Ψ).
Another important choice is the linear entropy SL:

SL(̺R) ≡ 1− Tr[̺2R]. (II.41)

The trace of the squared reduced matrix in (II.41) measures
the purity of the reduced state. For this reason the linear en-
tropy is frequently called also as the mixedness (or degree of

mixedness).
The idea of quantifying the entanglement of pure states via

the impurity of their reduced subsystems is another direct con-
sequence of Schrödinger’s seminal observation that entangled
pure states give us more information about the system as a
whole than about any of its parts (see Sec. II A). Thus, for
pure states, lack of information of the subsystems can only be
due to entanglement of the composite system.

Monotonicity of mixed states: the “convex roof”:
Whereas for pure states there is a relatively simple recipe for
the construction of entanglement monotones, for mixed states
it is much more difficult to discriminate between classical and
quantum correlations. Vidal showed [248] that an entangle-
ment monotone for an arbitrary mixed state ̺ can be defined
by taking any valid pure-state monotone and extending it to
mixed states by means of the so-called convex roof (or convex

hull) construction [228, 253]:

M(̺) ≡ inf
{pµ,Ψµ}

∑

µ

pµM(Ψµ), (II.42)

where the infimum is over all possible pure-state decomposi-
tions {pµ,Ψµ} of the state, ̺ =

∑

µ pµ|Ψµ〉〈Ψµ|. It yields

the infimum average entanglement7. The search of such in-
fimum is typically a high-dimensional optimization problem,
and this is the root of the difficulty in numerically evaluating
these measures.

Entanglement of formation and concurrence: The most
popular entanglement quantifier is the entanglement of forma-

tion EF [228]. It can be defined via Vidal’s recipe for mono-
tones described above with the von Neumann entropy (II.40)

7 Notice that if {pµ,Ψµ} is the ensemble resulting from an LOCC on some

pure state, expression (II.42) is equivalent to the minimization of the right-

hand side of (II.33).

as M:

EF (̺AB) ≡ inf
{pµ,Ψµ}

∑

µ

pµS(̺Rµ) ≡ inf
{pµ,Ψµ}

∑

µ

pµEE(Ψµ),

(II.43)
with ̺Rµ the reduced state corresponding to subsystems A or
B of |Ψµ〉. That is, the entanglement of formation is the infi-
mum average entropy of entanglement over all possible pure-
state decompositions of the state.

For pure states the entanglement of formation coincides
with the entanglement cost [228]. Therefore, EF (̺AB) quan-
tifies the cost in ebits of the formation of ̺AB via LOCCs in
a restricted scenario where each member |Ψµ〉 of the ensem-
ble composing ̺AB is formed independently (and then later
on all members mixed with probabilities pµ). This is where
the term “of formation” historically came from. Furthermore,
the asymptotically regularized version of EF has long been
known to coincide with EC [254]:

lim
k→∞

EF (̺
⊗k
AB)

k
≡ EC(̺AB); (II.44)

and over the years it was believed [255, 256] that EF should
be additive, i. e. that both sides of (II.44) should actually be
identically equal to EF (̺AB).

Very recently, Hastings solved [257] this long-standing
problem, known as the “additivity conjecture”. He was able
to show formally that counterexamples to this conjecture exist
and thatEC can actually be strictly less thanEF . This, in sim-
ple words, means that it takes less ebits to form many copies of
̺AB simultaneously than one by one. The above-mentioned
strategy with each pure-state member of the ensemble being
formed independently is non-optimal. Today, we know that in
general the inequalities

ED ≤ EC ≤ EF (II.45)

hold, with the equalities necessarily holding only in the case
of pure states.

Unfortunately, EF is no exception in terms of the compu-
tational difficulty in its calculation, except for the two-qubit
case. For two qubits there exists a closed analytical expres-
sion for EF in terms of an auxiliary quantity of immediate al-
gebraic evaluation, the concurrence C. It was first introduced
in Ref. [258] for the case of matrices of rank 2, and later gen-
eralized in Ref. [259] to any two-qubit state. It is defined as

C(̺AB) ≡ max{0,Λ} , (II.46a)

Λ ≡ ξ1 − ξ2 − ξ3 − ξ4 , (II.46b)

where ξ1, ξ2, ξ3, and ξ4 are the square roots, in decreas-
ing order, of the eigenvalues of the matrix ̺AB . ˜̺AB , being
˜̺AB ≡ Y ⊗ Y ̺∗ABY ⊗ Y , with Y the second Pauli matrix,
and “∗” the complex conjugation in the computational basis.
It is clear that concurrence coincides with Λ when Λ ≥ 0 and
is equal to zero when Λ < 0. Once obtained the concurrence
of the state in question, an analytical formula for EF exists
[259]:

EF (̺AB) ≡ H2

(1

2
+

1

2

√

1− C2(̺AB)
)

, (II.47)
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where H2 is the dyadic Shannon entropy function, defined as

H2(x) =

{
x log x− (1− x) log(1− x), ∀ x ∈ (0, 1], e
0, for x = 0.

Owing to the simplicity of its algebraic evaluation, concur-
rence (II.46) constituted a big step forward in the quantifi-
cation of entanglement and, though originally motivated by
the calculation of EF , it is an alternative monotone that has
gained the status of entanglement measure in its own right
[259]. Its monotonicity stems from the fact that, for pure
states ̺AB = |ΨAB〉〈ΨAB |, concurrence (II.46) becomes
[260]:

C(̺AB)≡ C(ΨAB) ≡
√

1− Tr[̺2A] + 1− Tr[̺2B ]

≡
√

2(1− Tr[̺2R]) ≡
√

2SL(̺R), (II.48)

with SL the linear entropy (II.41). As a matter of fact, ex-
pression (II.48) can also be considered an alternative defini-
tion of C and, as such, can be generalized to the arbitrary-
dimensional bipartite [253, 260] or multipartite [107, 261,
262] case.

We next present one such generalization [107]. Notice that
the square root in the bipartite definition (II.48) contains the
sum of the linear entropies of both reduced subsystems. Anal-
ogously, for an arbitrary N -partite system in a pure, normal-
ized state |Ψ〉, the N -partite concurrence CN can be defined
as [107]

CN (|Ψ〉) .= 21−N/2

√

(2N − 2)−
∑

I

Tr̺2RI
, (II.49)

where subindex I labels the 2N − 2 possible non-trivial sub-
partitions of the system, and ̺RI

is the reduced density oper-
ator of the I-th subset for state |Ψ〉. The radicand in (II.49)
is the average linear entropy of all reduced subsets of the N -
partite system. Therefore, the multipartite concurrence CN

is said to quantify the average mixedness upon partial trace
over all subsystems. The extension to mixed states in turn is
achieved via the convex roof construction. Finally, apart from
its simplicity, a particularly advantageous feature of general-
ization (II.49) is that, as will be seen in Sec. II D 4, it allows
for direct experimental evaluations through projective mea-
surements when two copies of the state are simultaneously
available.

3. Geometric measures

This class of quantifiers is based on geometrical aspects of
D(HS), involving the notion of proximity among states. They
rely on the very intuitive idea that the further away a state is
from the separable states, the more entangled it should be.
They apply to possibly-mixed, arbitrary-dimensional states ρ
with any number N of constituent subsystems. We concen-
trate here on the relative entropy of entanglement [263, 264],
which relies on how distinguishable state ρ is from its closest
separable. This approach was originally formulated in terms

of separable states, but here we present it in a more general
way, regarding k-separable ones.

The notion of proximity is realized by the use of a for-
mal distance ∆ in D(HS). The distance between ̺ and
the set of k-separability is defined as the minimum distance
minζ ∆(̺||ζ) between ̺ and any k-separable state ζ. A pic-
torial representation is given in Fig. 2 as the dashed seg-
ment joining ̺ with its closest state ζ on the border of the k-
separability set. Such distance leads, upon a proper choice of
metric, to a measure of the entanglement for ̺. A prominent
choice for this metric is the von Neumman relative entropy
SR(̺||ζ) ≡ Tr[̺(log(̺)− log(ζ))], which quantifies how dis-

tinguishable ̺ and ζ are [247]. This yields the relative entropy

of entanglement [263, 264]:

ER
k (̺)

.
= min

ζ k-separable
SR(̺||ζ). (II.50)

Besides SR, other choices of mathematical distances are
also possible [263, 264]. In particular, if one restricts to pure
states, the notion of distance between states becomes equiv-
alent to that of the angle between vectors. This allows one
to quantify entanglement in terms of the overlap between
̺ ≡ |Ψ〉〈Ψ| and its closest state ζ ≡ |Φ〉〈Φ|, with |Φ〉 a k-
factorable vector8, leading to a pure-state entanglement mono-
tone known as the geometric measure of entanglement [265]:

EG
k (̺) ≡ EG

k (Ψ) ≡ 1− max
|Φ〉 k-factorable

|〈Ψ|Φ〉|2, (II.51)

generalizable to the mixed-state case through the convex-roof
extension (II.42).

Geometric quantifiers feature by definition the desirable
property of detecting all non k-separable states. However,
their numeric evaluations require not only optimizations but
also being able to establish if a state is k-separable, for which,
as we know, there is no general efficient criterion.

4. Negativity

There are some quantifiers that do not fit straightforwardly
into any of the two categories (axiomatic and geometric quan-
tifiers) described so far. An important one is the negativity

[266], originally introduced in [267]. It is the known mono-
tone of simplest algebraic evaluation, as even for mixed states
it does not involve any optimization. Given state ̺AB , it is
defined as [266]

Neg(̺AB)
.
=

||̺TB

AB || − 1

2
, (II.52)

where ||̺TB

AB || is the trace norm – the sum of the absolute value

of each eigenvalue – of ̺TB

AB . Negativity is based on Criterion
9. It can be recast as the absolute value of the sum of the
negative eigenvalues of ̺TB

AB . That is, Neg(̺AB) quantifies

8 Notice that this overlap is nothing but αk of Eq. (II.21).
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how much ̺AB fails to satisfy the PPT criterion, and as such
it is only sensitive to NPT entanglement. This implies that,
for arbitrary-dimensional bipartite systems in pure states, or
systems of 2× 2 or 2× 3 levels in general states, Neg is able
to detect all the bipartite entanglement content; but for mixed
states of dimension dS > 6 it fails to detect all PPT entangled
states.

As already mentioned, the list of entanglement measures
proposed in the literature is simply huge. In addition, the in-
terplay between different members of this zoo features very
curious peculiarities. For example, two different states can
be assigned two different orderings depending on which en-
tanglement measure orders them [268–272]. This can happen
even for the simple case of 2-qubit mixed states [268, 272],
or for pure states of larger dimensionality [271]. Negativity,
for instance, coincides exactly [273] with concurrence, stud-
ied in Sec. II C 2, for two-qubit pure states, but gives some
pairs of 2-qubit mixed states opposite orderings to the latter
[272]. General conditions for equality between negativity and
concurrence have been established in Refs. [270, 274]. For de-
tailed treatments of the connections among different measures
we refer the interested reader once again to Refs. [193, 194].

5. Multipartite negativity

A generalization of the negativity to the genuinely multipar-
tite case was proposed by Jungnitsch, Moroder, and Gühne in
Ref. [227]. For any multipartite state ̺, it can be defined as

NegMulti(̺)
.
= min{−Tr[Wmin̺], 0}, (II.53)

where Tr[Wmin̺] is given by (II.24). Despite not possessing
a closed analytical expression, Tr[Wmin̺] can be found rather
efficiently through semidefinite programming, as described in
Sec. II B 6. NegMulti(̺) quantifies how much ̺ fails to sat-
isfy Criterion 14, necessary for membership of the PPT mix-
tures, and therefore also for biseparability, so it is analogous
to the negativity. As a matter of fact, it reduces (up to nor-
malisation) to negativity (II.52) for the bipartite case. Addi-
tionally, it is shown to be non-increasing under LOCCs, i.e.
an entanglement monotone [227]. For these reasons, it can
be taken as a valid measure of genuinely multipartite entan-
glement. For instance, GHZ states have maximal multipartite
negativity (equal to 1/2). Other states with NegMulti = 1/2
are mentioned in Sec. V E 4.

D. Experimental detection of entanglement

In this subsection we mention the main techniques for the
experimental verification of entanglement. Again, since this
is not the central topic of this review, we treat it very briefly.
For an excellent review on the subject, we refer the interested
reader to Ref. [195].

1. Bell inequalities

As mentioned in the introduction, in 1964 Bell was able
to formalize the EPR argument [1], and to disprove it. He de-
rived simple inequalities satisfied by any local hidden variable
(LHV) model that is to reproduce the perfect correlations of
the singlet; and showed that quantum mechanics violates these
inequalities [5]. This is nowadays known as Bell’s Theorem

[6]. Even though it was enough to formally rule out any at-
tempt of completion of quantum theory with subjacent LHVs,
the experimental violation of these inequalities would involve
the observation of perfect correlations. It was thus five years
later when – inspired by Bell – Clauser, Horne, Shimony and
Holt (CHSH) came up [275, 276] with a remarkable family
of new inequalities satisfied by any LHV model, without any
assumption of consistency with quantum correlations. Again,
the new inequalities were violated by quantum mechanics, but
in addition their violation did not require perfect correlations,
providing thus the first experimentally-checkable criteria to
conclusively rule out interpretations based on any sort of LHV
models. These inequalities belong to what is today known as
Bell inequalities, or non-locality tests. As we see below, en-
tanglement is a necessary condition for quantum correlations
to violate any of them. Therefore, non-locality tests constitute
in fact the oldest criteria for entanglement detection.

Let us briefly formalize these notions. Suppose that Alice
and Bob, in space-like separated laboratories, perform local
measurements on their systems. Alice measures one of two
arbitrary dichotomic observables A0 and A1, each one with
outcomes a = 1 or a = −1, and BobB0 orB1, with outcomes
b = 1 or b = −1. The correlations between both systems
are encapsulated in the joint probability P (a, b|x, y) of Alice
obtaining a and Bob b, given that she measuredAx and heBy ,
for x, y = 0 or 1. The most general description of P (a, b|x, y)
by any LHV model –from now on referred to simply as local

model– is given by

P (a, b|x, y) ≡
∑

λ

P (E)P (a|x, λ)P (b|y, λ), (II.54)

where λ is a short-hand notation for all LHVs that may char-
acterize the composite state. Expression (II.54) manifests the
constraint that the measurement outcomes should at most be
classically correlated through E , whose values might have re-
sulted from some local interaction in the past (in some com-
mon region in the past of both measurement’s light cones). In
turn, for any local correlations of the form (II.54), it is im-
mediate to show that the following statistical inequality must
hold:

〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉 ≤ 2, (II.55)

where 〈AxBy〉 ≡ ∑

a,b=−1,1 a × b × P (a, b|x, y). This is
the CHSH inequality mentioned above [275, 276], the best-
known and simplest non-locality test.

Let us next bring quantum physics back into scene. In
the quantum formalism the left hand side of (II.55) is ex-
pressed as the expectation value 〈βCHSH〉 .

= 〈Ψ|βCHSH|Ψ〉,
with respect to some quantum state |Ψ〉, of the “Bell operator”



18

βCHSH
.
= A0 ⊗B0 +A1 ⊗B0 +A0 ⊗B1 −A1 ⊗B1, where

Ax and By are now dichotomic Hermitian quantum observ-
ables. It is immediate to check that if for instance A0 = Z,
A1 = X , B0 = X+Z√

2
, B0 = X−Z√

2
, and |Ψ〉 = |Ψ−〉, then

〈βCHSH〉 = 2
√
2. This value is in fact the maximum attainable

by any quantum state and is known as the Tsirelson bound
[277]. Thus, quantum mechanics violates the CHSH inequal-
ity by a factor of

√
2.

As mentioned, Bell inequalities are based exclusively on
the assumption of locality. Therefore, their violation only tells
us that the observed correlations are non-local, i. e. cannot be
written as (II.54). However, if these correlations come from
a quantum state, then in addition the state must be entangled.
To see this consider again the definition of a separable state,
̺AB =

∑

µ pµ̺Aµ
⊗ ̺Bµ

. For it, one has P (a, b|x, y) .
=

〈ax|⊗〈by|̺AB |ax〉⊗|by〉 =
∑

µ pµ〈ax|̺Aµ
|ax〉〈by|̺Bµ

|by〉,
with |ax〉 and |by〉 respectively the eigenstates of Ax and By

of eigenvalues a and b. Next, identify µ with λ, pµ with
P (λ), 〈ax|̺Aµ

|ax〉 with P (a|Ax, λ), and 〈by|̺Bµ
|by〉 with

P (b|By, λ). With this, one readily recognizes P (a, b|x, y)
given explicitly in the form (II.54). This simple considera-
tion shows that all separable states exhibit only local corre-
lations, which in turn implies that non-local quantum states
cannot be separable. The same argument extends of course
to greater numbers of measurement-settings, outcomes, users,
and to general non-orthogonal measurements.

For the pure-state case the converse is also true: every pure
entangled state violates a Bell inequality [278–280]. This
is today known as Gisin’s Theorem, after Gisin formalized
the result in Refs. [278, 279], but the fact is known for
the bipartite case since long before (seee for example [281]).
The extension to the multipartite case is due to Popescu and
Rohrlich [280]. In the general mixed-state case, in contrast,
there are mixed entangled states whose correlations are local
[199, 282–284]. Consider, for instance, the two-qubit Werner
state [199]

̺Werner(p) ≡ p|Ψ−〉〈Ψ−|+ (1− p)
11

4
, (II.56)

where p is some probability. This state is NPT (and therefore
entangled) for any p greater than 1

3 , but it is known to violate

the CHSH inequality9 only for p > 1√
2
≈ 0.71 and another

two-outcome Bell inequality involving more settings only for
p > 0.7056 [286]. Furthermore, all its correlations revealed
by two-outcome measurements can be explicitly accounted
for by Werner’s original local model [199] for p ≤ 1

2 , for von
Neumann projective measurements, and by more recent lo-
cal models for p ≤ 0.6595, for both von Neumann [283] and
general measurements [284]10. That is, for 1

3 < p ≤ 0.6595
̺Werner(p) is entangled but local under dichotomic measure-
ments. In the gap 0.6595 < p < 0.7056 in turn, nothing of its

9 The optimal measurement settings of the CHSH inequality for any two-

qubit state were characterized in Ref. [285].
10 For the fully general case of multi-outcome non-projective measurements

a local model is known that simulates the correlations in ̺Werner(p) for

p ≤ 5
12

[282].

non-local nature is known. It is both disappointing and at the
same time exciting that such fundamental problems still re-
main open even for the simplest composite system of all, two
qubits.

The CHSH inequality was successfully violated in a first
experiment [287] by Freedman and Clauser and, later on, in
the conclusive works by Aspect and collaborators [288, 289].
Since then, several remarkable experiments around the world
have repeatedly confirmed the violation of (II.55) [290–295]
and of other important bipartite Bell tests with different num-
bers of settings or outcomes [296–299]. On the multipartite
side in turn several violations of locality have been reported
[58, 300–304], including the violation of Mermin’s inequality
[305] by 39 standard deviations [303], and of Svetlichny’s in-
equality [306], which accounts for genuine three-partite non-
locality, by 3.6 standard deviations [304]. All these experi-
ments have shown not only that nature does not admit local
descriptions but also that it turns out instead to follow quan-
tum mechanics. It seems therefore that, on the grounds of
physical fact, one is forced to abandon the “comfort of LHVs”
and accept the counter-intuitiveness of quantum non-locality.
Nevertheless, it is important to mention that open loopholes
exist, which in principle allow nature to “confabulate” against
us, in such way that all reported experiments are still describ-
able by LHV models. The most important two are the locality
loophole and the detection, or fair-sampling, loophole. The
detection loophole has been closed in experiments with mat-
ter qubits: with ions [293], superconducting circuits [307] and
atoms [308], where highly efficient detection is possible. Sep-
arately, the locality loophole has been closed in photonic ex-
periments [291, 292, 294], which naturally allow for greater
distances between the qubit. Up to date a fully loophole-free
experimental Bell violation is still an open challenge. How-
ever, more recently, a particular type of Bell inequality, due
to Eberhard [309], that is more resistant to lower detection ef-
ficiencies allowed for experimental violations with entangled
photons that closed the detection loophole [310, 311]. These
may be considered an important step towards eventually clos-
ing, in a same experiment, both main loopholes together. See
Ref. [312] for an excellent recent review on non-locality.

2. Entanglement witnesses and other criteria

As first pointed out by Terhal [219], there is an intimate
connection between Bell inequalities and entanglement wit-
nesses. As a matter of fact, Bell inequalities are, for a given
choice of measurement settings, non-optimal entanglement
witnesses. For example, the two-qubit observable

WCHSH = 211 − βCHSH, (II.57)

where βCHSH = Z⊗X+Z√
2

−X⊗X+Z√
2

−Z⊗X−Z√
2

+X⊗X−Z√
2

is the CHSH Bell operator defined in the previous subsection,
constitutes an entanglement witness. This witness detects all
entangled states whose correlations upon measurements along
A0 = Z or A1 = X for Alice and B0 = X+Z√

2
or B1 =

X−Z√
2

for Bob violate inequality (II.55), i. e. those sufficiently
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close to the singlet |Ψ−〉. It is of course a non-optimal witness
though, as is clear from the discussion about entangled local
states (II.56).

Something readily manifest in expression (II.57) is that it
explicitly provides the local bases in which each user must
measure so as to reconstruct the expectation value of the wit-
ness. Indeed, in experimental scenarios, entanglement wit-
nesses are most-usefully taken advantage of when decom-
posed into local, fully factorable observables (otherwise one
runs into the impractical situation of having to measure in en-
tangled bases, in order to detect entanglement). In general,
any complete basis of D(HS) composed exclusively of prod-
ucts of single-particle observables yields one such decompo-
sition. For example, in the case ofN -qubit systems, this could
be the set of all products of Pauli or identity operators of
each particle. However, for large N this is also impractical,
because the number of local measurement settings required
grows exponentially with N . The general problem of find-
ing the optimal decomposition of witnesses, with the mini-
mal amount of local measurement settings, has been studied
in Refs. [313, 314]. There, the authors obtained analytical
solutions for some small-sized bipartite [313, 314] and mul-
tipartite [314] systems, including some examples capable of
witnessing bound entangled states.

The first experimental demonstration of an entanglement
witness was reported in Ref. [315] for two-qubit photonic
systems, where the entanglement of states close to the Werner
state was characterized with only three local measuring set-
tings. Three and four-photon genuine multipartite entangle-
ment was detected and classified in Ref. [223], again us-
ing witnesses decomposed into few local measurements. Up-
to-six-qubit photonic Dicke [64, 316, 317], GHZ [61, 318]
and graph [61] states have also been detected with the help
of witnesses. Using non-linear entanglement witnesses, non-
linear properties as the Renyi entropy were extracted from
two-photon entangled states in Ref. [319]. In atomic sys-
tems, three- [320], four- [54] and six-ion [55] GHZ states, up
to eight-ion W-states [56], and fourteen-ion [57] GHZ states
have been detected with the help of entanglement witnesses,
as discussed in Sec. VI F. Graph and Dicke states are genuine
multiqubit-entangled states. They, as well as the W and GHZ
states of more than three qubits, are discussed in detail Sec.
V A.

Finally, apart from entanglement witnesses, other entan-
glement criteria have been very helpful in the experimen-
tal verification of entanglement, with different criteria often
used in a same experiment. For instance, GHZ entanglement
in the experimental fourteen-ion states of [57] was corrobo-
rated with three different methods: using the GHZ fidelity-
based witnesses (II.21); with biseparability Criterion 17 of
Sec. V A 1, which is the N -qubit generalisation of Criterion
12 of Sec. II B 4; and with N -distillability Criterion 16, also
in Sec. V A 1. The common advantage of the three criteria
is that only partial information about the experimental state
is necessary for their evaluation, which is in striking contrast
with the entanglement criteria whose evaluation require the
full reconstruction of the state’s density matrix, as discussed
in the next subsection. However, it is important to keep in

mind that, since every entanglement witness or criteria is sen-
sitive only to a restricted subset of entangled states, in practice
some knowledge of the state to measure is always required
in advance. This is the main drawback of these technique.
Still, when there is indeed some prior knowledge available,
witnesses and these other efficiently evaluable criteria consti-
tute an extremely useful tool for state characterization with
economic detection resources, as proven by the experiments
mentioned above.

3. State tomography

The full experimental reconstruction of any density matrix
can always be done via quantum state tomography [321–323].
The way this is typically accomplished is by measuring a com-
plete set of local orthonormal observables, from which all the
inputs of the density matrix can be derived. For example, any
density matrix describing a two-qubit system can be decom-
posed as:

̺ =
1

4

3∑

i,j=0

̺i,j σ
i ⊗ σj ; (II.58)

where σ0 = 11, and σi with i = 1, 2, 3 are respectively the
Pauli matrices X , Y , and Z. These matrices satisfy the or-
thogonality condition Tr[σi.σj ] = 2δi,j , where δi,j is the
Kronecker delta. The task is to determine the real coeffi-
cients ̺i,j that define ̺, subject to ̺0,0 = 1 for normal-

ization and
∑3

i,j=0 ̺
2
i,j ≤ 4 for positiveness. This can be

done by measuring all the correlation functions 〈σi ⊗ σj〉
on the state, i.e. the expectation value of every observable

σi ⊗ σj : Tr[̺σk ⊗ σl] =
1
4

∑3
i,j=0 ̺i,j Tr[σiσk ⊗ σjσl] =

∑3
i,j=0 ̺i,jδi,kδj,l = ̺k,l.
In Fig. 4 we can see the three measured density matrices

of photonic-polarization two-qubit systems done in the exper-
iment [322]. The density matrices are expressed in the local
basis {|H〉, |V 〉}, with H and V corresponding respectively
to horizontal and vertical polarizations of a photon. Once the
complete density matrix has been reconstructed one can apply
any valid entanglement criterion, or calculate the value of any
valid entanglement quantifier, to see for its entanglement. In
fact, many experiments where the presence of entanglement
is verified using witnesses or other criteria, as for example
some of the ones mentioned above [56, 304, 316, 319, 320],
do not directly measure the witnesses or quantities involved
in the criteria but rather perform state tomography and apply
the witnesses or criteria to the tomographically-reconstructed
states.

Notice that all measurements involved are local and that
the method does not require any prior knowledge at all of the
state in question. In addition, quantum state tomography ex-
tends of course to higher dimensions, including continuous
variables [324–327], and to multipartite systems. However,
since the number of measurement settings grows exponen-
tially with the number of system components, the technique
has disadvantageous scaling properties. This was clearly ev-
idenced in the eight-ion experiment of Ref. [56]. There,
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Figure 4. Real and imaginary parts of the elements of to-

pographically reconstructed density matrices corresponding to the

experimentally created entangled states a) |H〉|H〉 + |V 〉|V 〉, b)

|H〉|H〉 + 0.3|V 〉|V 〉 and c) |H〉|H〉 − i|V 〉|V 〉 (normalization

omitted). Reprinted figure with permission from A. White et al.,

Phys. Rev. Lett 83, 3103 (1990). Copyright (1990) by the American

Physical Society.

ten hours of data aquisition – implementing measurements
in 38 = 6561 detection bases, each one involving a differ-
ent laser-pulse configuration –, followed by computationally
expensive data processing, were necessary to reconstruct the
experimentally prepared eight-ion state. This bare approach
is therefore not scalable in practice to more than a few par-
ticles. Recently, tomographic methods exploiting t-designs
[328, 329] and compressed sensing [330] have been investi-
gated. The experimental or computational resources required
by these methods still scale (at least) exponentially with the
system-size, but the methods are significantly more efficient
than conventional tomography.

4. Direct detection using copies of the state

The last approach we briefly describe is that in which the
entanglement of an unknown state is directly assessed through
projective measurements when two copies of the state are si-
multaneously at hand. The basic idea behind this technique
comes from the fact that any polynomial function of the ele-
ments of a density matrix can be directly accessed via projec-
tive measurements on as many copies of the state as the degree
of the polynomial [331]. Among all entanglement quantifiers,
concurrence presented in Sec. II C plays a unique roll in this
context, since for pure states its square is given by a quadratic
function of the density matrix inputs, as is clear from Eqs.
(II.48) and (II.49). This implies that the squared concurrence
of any pure state can be directly determined via projective
measurements on only two copies of the state.

These projective measurements, as was shown by Mintert
and collaborators [113, 332], turn out to be local measure-
ments of the parity of each constituent part of the system to-
gether with its counterpart in the copy. Furthermore, Aolita

!
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Figure 5. Direct experimental quantification of entanglement in

an exemplary trapped-ion scenario. An eight-qubit pure state ̺, to-

gether with its copy, is encoded for example in strings of two-level

ions, and is subject to Bell-state measurements (BSMs) on each pair.

The concurrence of ̺ depends exclusively on the joint probability p8+
of simultaneous appearance of 8 triplets. Reprinted figure with per-

mission from L. Aolita, F. Mintert, and A. Buchleitner, Phys. Rev. A

78, 022308 (2008). Copyright (2008) by the American Physical So-

ciety.

and Mintert showed [333] that multipartite concurrence can
be directly quantified by the expectation value of a single fully

factorizable observable. They showed that, for an arbitrary-
dimensional N -partite pure state ̺ ≡ |Ψ〉〈Ψ|, concurrence
(II.49) can be expressed as

CN (̺) = 2

√
√
√
√〈Ψ| ⊗ 〈Ψ|

(
11 −

N⊗

j=1

P j
+

)
|Ψ〉 ⊗ |Ψ〉, (II.59)

where P j
+, with 1 ≤ j ≤ N , is the projector onto the symmet-

ric subspace Hj ⊙ Hj – corresponding to all states invariant
under the exchange of both copies of j – of the Hilbert space
Hj ⊗ Hj of two copies of the j-th subsystem, and 11 is the
identity operator in H ⊗ H.Expression (II.59) implies that a
single local-measurement setting is required throughout the
entire detection process. Indeed, pure-state concurrence de-
pends only on a unique probability pN+ , of finding each and all
of the N particles in a symmetric state with their respective

copies: CN (|Ψ〉〈Ψ|) = 2
√

1− pN+ . For example, for N -

qubit systems each local symmetric subspace is spanned by
the triplet states |Ψ+〉, |Φ+〉 and |Φ−〉, defined in Eqs. (II.4),
and the detection protocol reduces thus to Bell-state measure-
ments on each particle-copy subsystem, as is schematically
sketched in Fig. 5. This is to be compared for example with
the exponential number of settings required for state tomogra-
phy.

This technique bears of course the built-in drawback of re-
quiring two simultaneous copies of ̺, which in view of the
impossibility of unknown-state perfect cloning [334, 335] ap-
pears as a fundamental obstacle. Nevertheless, since several
copies of the state must be created anyway, to build up the
measurement statistics, one can keep a copy of the state un-
til the next copy is available, and then collectively measure
both copies, instead of measuring individually in a sequential
way. Another possibility is to create two copies of the state at
the same time. The latter was demonstrated by Walborn et al.

in Ref. [336], constituting the first direct experimental quan-

http://link.aps.org/doi/10.1103/PhysRevLett.83.3103
http://link.aps.org/doi/10.1103/PhysRevA.78.022308
http://link.aps.org/doi/10.1103/PhysRevA.78.022308
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tification of entanglement. There, two copies of a two-qubit
almost-pure state were simultaneously encoded respectively
in the polarization and spatial degrees of freedom of two pho-
tons, and Bell-state detection was carried out between these
two degrees of freedom of the same photon.

Even though the detection with copies described above is
not able to yield the exact value of concurrence when the state
is mixed, the technique can be used to obtain considerably
tight lower [337, 338] and upper [339, 340] bounds, some of
which have already been useful in experiments [339]. The
general theory of measurements with two copies of a quantum
state has been studied in Ref. [341].

The generalization of this procedure to mixed states of two
quits was presented in [342]. There, collective measurements
of up to eight copies of the state are necessary, in order to
obtain the concurrence through direct measurements.

All in all, direct detection with copies of the state appears
as a versatile method that complements the other approaches
previously mentioned, specially when scaling properties are a
matter of concern.

III. OPEN SYSTEM DYNAMICS

In this section we review conceptual and formal aspects of
the evolution of quantum systems in contact with the environ-
ment. Our treatment is a non-exhaustive one. For a more com-
plete and detailed description we refer the interested reader to
Refs. [81, 83, 197, 214, 343] and references therein.

A. Completely-positive maps as the most general physical

evolution

1. Open-system dynamics and entanglement

We consider first a simple example that illustrates the rela-
tion between open-system dynamics and entanglement. Let a
system S , associated to Hilbert space HS , be initially in a co-
herent superposition of two orthonormal states, |χ1〉 and |χ2〉,
and another system R, associated to Hilbert space HR, be in
some generic state denoted by |0〉R. The total state of the
composite system is then given by the product

|Ψ(0)〉 = (α|χ1〉+ β|χ2〉)⊗ |0〉R, (III.1)

with |α|2 + |β|2 = 1. This implies that, initally, the two sys-
tems are uncorrelated. Now, suppose that S and R interact
during a time t, undergoing a unitary evolution such that

|χ1〉|0〉R → |χ1〉|φ1〉 ,
|χ2〉|0〉R → |χ1〉|φ2〉 , (III.2)

where |φi〉, with i = 1 or 2, represent two possible evolved
states for |0〉R. These equations are a special case of (I.1): we
assume here for simplicity that the states |χ1〉 and |χ2〉 of the
system do not change. The coherent superposition of these
two state does change however, as in (I.2):

|Ψ(t)〉 = α|χ1〉|φ1〉+ β|χ2〉|φ2〉. (III.3)

Any observable acting non-trivially only on S can be mea-
sured without resort to R. Its expectation value depends only
on the reduced state ̺(t) of S , obtained by tracing R out, and
given by

̺(t) = TrR
[
|Ψ(t)〉〈Ψ(t)|

]
=

(
|α|2 αβ∗〈φ2|φ1〉

α∗β〈φ1|φ2〉 |β|2
)

,

(III.4)
where the matrix representation on the right-hand side is in the
basis {|χ1〉, |χ2〉}. We observe that the coherences in the off-
diagonal elements are now proportional to the scalar product
of the state vectors of R. In particular, if both evolved states
for R coincide, |〈φ1|φ2〉| = 1, we have a product state as
in the initial situation. However, if both states are different,
|〈φ1|φ2〉| < 1, S and R have have become entangled. In this
case the coherences have decreased and the system state is
no longer pure. In the extreme case when |〈φ1|φ2〉| = 0 the
coherences vanish and ̺(t) becomes equivalent to a classical
probability distribution.

This simple example conveys an important conceptual mes-
sage that will appear repeatedly throughout this review: The
generation of entanglement between two systems under a uni-
tary evolution (so that the composite system is closed) implies
that the evolution of either of them individually is not unitary,
because the composite evolution does not preserve the purity
of each subsystem. If one has access to both parties the com-
posite evolution can be reversed by applying the inverse uni-
tary transformation that maps state (III.3) onto (III.1), there-
fore disentangling S and R. In contrast, when system R is
actually an environment that surrounds S , typically with very
many degrees of freedom and a complex internal dynamics,
one does not have control of it. In this case only the subsys-
tem under scrutiny is at one’s disposal and its dynamics is irre-
versible, which characterizes an open system. From now on,
subsystem R will denote the reservoir and, unless explicitly
specified, the term system will be reserved for the subsystem
of interest S .

In the example above only the coherences of the system
state are affected. The effects due to an arbitrary interac-
tion with the environment may be more intricate though, as
in the examples described in Sec. III C, but they are still often
lumped under the term decoherence. In general, the system is
described by the reduced state

̺(t) = TrR
[
̺SR(t)

]
, (III.5)

where ̺SR(t) is a general composite state of S and R at time
t. However, since one has no access to the composite-system
state, one cannot explicitly describe the system dynamics from
this expression. Therefore, a formulation that accounts for
the interaction with the environment but involves the states of
the system alone is required. Completely positive channels

provide such a formulation.

2. Superoperators, complete positivity, the Choi-Jamiołkowsky

isomorphism, and the Kraus representation

Quantum channels are transformations E(t) acting on
D(HS) that satisfy three fundamental properties, described
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Figure 6. Schematic description of superoperators. a) An input state

̺(0) undergoes the action of a dynamical map E(t), which describes

for instance a time evolution over some time period t. The output

state is ̺(t)
.
= E(t)̺(0). b) The most general physical evolution for

the open system S can be thought of as an arbitrary unitary evolution

in a larger Hilbert space that includes an auxiliary system R in some

state |0〉R, playing the role of an effective environment. The trash

can represents the partial trace over R.

below: convex linearity, trace preservation, and complete pos-

itivity. They constitute a linear input-output theory for the
transmission/evolution of quantum states under generic open-
system conditions, and are often called quantum operations,
dynamical maps, quantum channels, or simply superopera-

tors, explicitly referring to the fact that they operate on den-
sity operators. The general picture is schematically shown in
Fig. 6. As in the example discussed in the beginning of this
section, superoperators give rise to non-unitary evolutions of
the system, due to the generation of correlations between the
system and its environment. A useful expression for superop-
erators can be obtained by assuming again that S and R are
initially uncorrelated, with S in a generic initial state ̺(0) and
R in some generic pure state |0〉R〈0|. The composite evolu-
tion during a time period t can be expressed in terms of a uni-

tary operator USR as ̺SR(t) = USR
(
̺(0) ⊗ |0〉R〈0|

)
U†
SR.

From this and Eq. (III.5), one obtains an explicit characteri-
zation of the reduced dynamics for S alone:

̺(t) = TrR
[

USR
(
̺(0) ⊗ |0〉R〈0|

)
U†
SR

]

≡
∑

µ

〈µ|USR|0〉R ̺(0) 〈0|U†
SR|µ〉R

.
=

∑

µ

Kµ̺(0)K
†
µ
.
= E(t)̺(0) , (III.6)

which defines the corresponding linear dynamical map E(t).
Here, the trace over R has been taken in an orthonormal ba-
sis {|µ〉R} of HR and the operators Kµ = 〈µ|USR|0〉R have
been introduced. These operators, which act solely on HS ,
are called the Kraus operators, while the Kraus representa-

tion [344] of E(t), also referred to as operator-sum representa-
tion [13, 345], is defined by Eq. (III.6). We previously men-
tioned it in Sec. II B 6 in the context of LOCC operations –

see (II.26). Since this representation depends on the particu-
lar basis of HR chosen to take the trace, it is non-unique.

As anticipated, every superoperator satisfies three funda-
mental properties. The Kraus form (III.6) allows one to see it
immediately:

• Convex linearity: This means that E(t)[λ̺1 + (1 −
λ̺2] = λE(t)̺1 + (1− λ)E(t)̺2, for all 0 ≤ λ ≤ 1.

• Trace preservation: E(t) preserves the trace norm of
all states, i.e. Tr[E(t)̺] = Tr[̺], ∀ ̺ ∈ D(HS).

To see this, notice first that

∑

µ

K†
µKµ =

∑

µ

〈0|USR|µ〉R〈µ|U †
SR|0〉R

= 〈0|USRU
†
SR|0〉R = 11S . (III.7)

Here we have used that {|µ〉R} is a complete basis and that
USR is unitary. Then

Tr[E(t)̺] ≡ Tr
[
∑

µKµ̺K
†
µ

]

= Tr
[(

∑

µK
†
µKµ

)

̺
]

= Tr [11S̺] = Tr [̺] ,

where we have used the linearity and invariance under cyclic
permutations of the trace. �

• Complete-positivity: The trivial extension of E(t) to
any auxiliary system A of Hilbert space HA preserves
the positivity of all states, i.e. E(t) ⊗ 11Aρ ≥ 0, ∀ ̺ ∈
D(HS ⊗HA).

Complete positivity was previously mentioned in Sec. II B 1
in the context of partial transposition. It expresses the funda-
mental requirement that if a map represents a physically valid
transformation then its trivial extension to any auxiliary sys-
tem, where the main system undergoes the transformation and
the auxiliary system is not affected, should also render a phys-
ically valid transformation. By “physically valid” we refer to
transformations that map positive-semidefinite operators into
positive-semidefinite operators.

A powerful tool to, among other things, check if a given
map is completely positive is the Choi-Jamiołkowsky isomor-

phism [346]. It states that a channel E(t) acting on D(HS) is
completely-positive iff its trivial extension on D(HS ⊗HA),
with HA of the same dimension dS as HS , applied to the max-
imally entangled state |Φ+

dS
〉 ∈ HS ⊗HA, renders a positive-

semidefinite operator ̺E(t)
∈ D(HS ⊗HA), i.e. iff

̺E(t)

.
= E(t) ⊗ 11|Φ+

dS
〉〈Φ+

dS
| ≥ 0. (III.8)

This state-channel dualism holds even if E(t) is not trace-
preserving (in which case ̺E(t)

is not normalised). When E(t)
is trace-preserving then ̺E(t)

is necessarily restricted to fulfil

TrS [̺E(t)
] = 11/dS . Conversely, the dualism also guarantees

that for every positive-semidefinite operator ̺ ∈ D(HS⊗HA)
there exists a unique completely-positive channel E̺, acting
on D(HS), such that ̺ = E̺ ⊗ 11|Φ+

dS
〉〈Φ+

dS
|. Thus, a bipar-

tite mixed state and the corresponding single-partite channel
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contain equivalent information. One says that ̺ is the dual
state of channel E̺, and vice versa.

We show next that every superoperator in the Kraus form is
completely positive. For all |ψ〉 ∈ HS ⊗HA, one has

〈ψ|E(t) ⊗ 11Aρ|ψ〉 ≡ ∑

µ(〈ψ|Kµ ⊗ 11A)̺(K†
µ ⊗ 11A|ψ〉)

.
=

∑

µ〈ψ′
µ|̺|ψ′

µ〉 ≥ 0,

where we have used that every |ψ′
µ〉

.
= K†

µ⊗ 11A|ψ〉 is a (non-
normalized) pure state in HS ⊗HA. Conversely, in turn, ev-
ery completely positive map has a Kraus representation. The
implication in both directions is known as the Kraus represen-

tation theorem [344]: A convex linear map E(t) is completely-
positive if, and only if, it can be expressed in the form (III.6).

With the Kraus representation one can for instance find pu-
rifications of E(t) in the sense of Fig. 6 b), i.e. unitary oper-
ators U ′

SR′ and auxiliary environmental systems R′ such that
the reduced system dynamics is given by E(t). To this end,
one first chooses an orthonormal basis {|φi〉S} of HS and an
orthonormal basis {|µ〉R′ , with 0 ≤ µ ≤ dR′} of an arbitrary
Hilbert space HR′ . The dimension dR′ of HR′ , associated
to R′, is given by the number of Kraus operators Kµ in the
particular Kraus decomposition. One then defines an operator
U ′
SR′ such that

U ′
SR′ |φi〉S |0〉R′ =

∑

µ

Kµ|φi〉S |µ〉R′ . (III.9)

It is easy to check, by using (III.7), that U ′
SR′ is inner-product

preserving in S . This implies that it can be extended to a
unitary operator in HS ⊗ HR [13, 345]. Furthermore, one
can trivially verify that, upon taking the partial trace over R′

in the basis {|µ〉R′}, this evolution yields exactly the Kraus
form defined by the Kraus operators Kµ. In contrast, if the
partial trace is taken in another basis, a different Kraus de-
composition to the starting one is obtained. However, since
the trace operation is independent of the particular basis, the
new Kraus form still corresponds to the same process E(t). It is
important to emphasize that the effective reservoir dimension
dR′ in a given purification of E(t) may in general be smaller
than the (possibly infinite) dimension of the real reservoir R
originally giving rise to E(t) in the derivation above. Indeed,
the maximum number of Kraus operators required to repre-
sent any superoperator E acting on a system S of dimension
dS is equal to d2S . This comes from the facts that the number
of linearly independent operators in D(HS) (its dimension) is
d2S and that E(t) is a linear map [13, 345].

Superoperators satisfy a final crucial property:

• Semigroup property: The set of completely positive
trace-preserving maps on D(HS) forms a semigroup
with respect to the map composition.

A given set, together with an operation, is said to form a semi-
group if: (i) the set is closed under the operation (closure), (ii)
the operation is associative over the set (associativity), (iii)
there is an identity element in the set with respect to the oper-
ation (identity). Completely positive maps, together with their
multiplication (composition), define a semigroup. Indeed, (i)

the composition of any two completely positive maps yields
a completely positive map; (ii) the composition of two com-
pletely positive maps composed with a third one is equivalent
to the composition of the first one with the composition of the
second with the third one; and (iii) the identity map is a com-
pletely positive map. The missing condition for a semigroup
to be a group is invertibility, i.e. that every element has an
inverse within the set, with respect to the operation. A gen-
eral completely positive trace-preserving map cannot be in-
verted (by another completely positive trace-preserving map).
The only completely positive trace-preserving maps with an
inverse within the set are the subset of unitary maps.

The fact that generic completely positive maps cannot be
inverted can be intuitively understood as follows. Since a su-
peroperator is defined by the partial trace over a unitary oper-
ation on an extended space, there is loss of information that is
in general irreversible. This is pictorially represented in Fig. 6
b) with the trash can. This means that, in general, due to the
interaction with an uncontrollable environment, an arrow of
time naturally appears: A system can loose coherence due to
its interaction with the environment, but, in the limit of infi-
nite environmental degrees of freedom, the environment never
restores this coherence. The exception is of course given by
the particular case of evolutions for which system and envi-
ronment decouple. There, the partial trace is redundant and
the reduced system dynamics is left unitary, as already men-
tioned. For example, in Sec. III B 3 we discuss a simple case
in which two qumodes subsequently entangle and disentangle
in a periodic way. Analogously, control schemes on messo-
scopic environments can restore coherence by disentangling
system and environment, as shown in [347]. However, this
requires full control over all parts involved, which is excluded
in our description of an environment as a very large system
whose internal dynamics is out of our control.

3. Entanglement-breaking channels

An exemplary family of completely positive maps that is
important for the study of entanglement dynamics is that of
entanglement-breaking channels. A map E on D(HS) is
called entanglement-breaking (EB) if its trivial extension to
D(HS)⊗D(HS), E ⊗ 11, outputs only separable states. That
is, if for every state ̺ ∈ D(HS) the output state E ⊗ 11(̺) ∈
D(HS)⊗D(HS) is separable.

These channels are fully understood for any system dimen-
sion dS [348]. In particular, in order to know if an arbi-
trary map E is EB it is not necessary to inspect the output of
11 ⊗ E for all possible inputs. Using the Choi-Jamiołkowsky
isomorphism (III.8), it is possible to show that E is EB iff
E ⊗ 11|Φ+

dS
〉〈Φ+

dS
| is separable. This is used in Sec. IV D to

calculate the time at which paradigmatic noise models as the
depolarising or phase-damping channels become EB, for any
dS .

Also, an explicit decomposition of EB channels is known.
A map E is EB iff it can be written as

E̺ =
∑

k

〈φk|̺|φk〉|ψk〉〈ψk|, (III.10)
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where |φk〉 and |ψk〉 are arbitrary normalized pure states, with
∑

k |φk〉〈φk| ≤ 11. In the particular case
∑

k |φk〉〈φk| = 11,
the EB map is in addition trace-preserving and {|φk〉} de-
fines a positive-operator valued measure (POVM). Expression
(III.10) is called the Holevo form, since it was originally intro-
duced by Holevo [349]. It describes the situation where one
first applies the measurement defined by {|φk〉} and then, for
each measurement outcome k, one prepares the state |ψk〉.

B. Quantum Markov processes

1. Quantum dynamical semigroups

The semigroup property in the general form presented
above is satisfied by all completely positive trace-preserving
maps. However, dynamical maps very often fulfill a yet
more restrictive condition: the additive-composition dynam-
ical semigroup property. More precisely, we have seen that
the complete time evolution of S over any time period t ≥ 0
is given by a one-parameter family E .

= {E(t)|0 ≤ t} of dy-
namical maps. The term “one-parameter” is due to the fact
that each member of the semigroup is specified only by the
time period t. The additive composition rule means that each
element of E satisfies

E(t+t̃) = E(t̃) ◦ E(t), ∀ t, t̃ ≥ 0. (III.11)

If this is the case, E is typically referred to as a quantum dy-

namical semigroup. Trivial examples thereof are all unitary
transformations generated by time-independent Hamiltonians.

Notice that property (III.11) automatically implies that the
evolution is local in time. That is, for any arbitrarily small t̃,
the system state ̺(t+t̃) = E(t+t̃)̺(0) at time t + t̃ can be di-
rectly obtained (through E(t̃)) from the state ̺(t) = E(t)̺(0)
at time t, without any regard of the previous history of the
system. This is the quantum analogue of the classical local-
in-time probabilistic Markov processes. The essential idea
behind quantum Markov processes [350] is that the time τR
over which all reservoir correlation functions decay is much
shorter than any relevant time of the system’s dynamics,
characterized by the characteristic time τS . Therefore, in a
coarse-grained time regime with temporal resolution τcg, with
τR << τcg << τS , reservoir-memory effects on the evolution
of S can be neglected. This approximation is known as the
Markovian approximation. The precise physical conditions
underlying the Markovian approximation can be stated more
rigorously through microscopic derivations of the Markovian

quantum master equation. The latter is a linear, first-order,
differential equation for the time evolution of S , which gen-
erates quantum dynamical semigroups in the same way as
the Schrödinger equation generates unitary evolutions. Mi-
croscopic derivations are in turn those where the semigroup
generator is obtained from first principles explicitly from the
system-environment interaction Hamiltonian. Such deriva-
tions involve some approximations, apart from the Marko-
vian one, as well as certain assumptions (for detailed discus-
sions see for instance Refs. [197, 351, 352]). In this review,
we adopt an axiomatic approach, taking condition (III.11)

as the definition of quantum Markov processes, and deriv-
ing the Markovian quantum master equation from it. The
physics behind the main approximations required for micro-
scopic derivations are however discussed in Sec. III B 3 with
the help of some examples.

Let us first show that any dynamical semigroup must be
generated by a linear, first-order differential equation. The
explicit form of the generator is saved for Sec. III B 2. We
first derive both sides of Eq. (III.11) with respect to t̃. Since
the left-hand side depends exclusively on the sum t + t̃, its
derivative with respect to t̃ is identically equal to its derivative
with respect to t. This gives Ėt+t̃ ≡ E ′

t̃
◦ E(t), where Ėt+t̃

.
=

dE(t+t̃)

dt and E ′
(t̃)

.
=

dE(t̃)

dt̃
. Since this holds for any t̃ ≥ 0, we

can take the limit t̃→ 0 and obtain

Ė(t) = Ė(0) ◦ E(t), ∀ t ≥ 0, (III.12)

where we have used that E ′
(0) = Ė(0). There are two pos-

sibilities: Either Ė(0) = 0 or Ė(0) 6= 0, where 0 stands for
the null map. If the former is true, then Eq. (III.12) yields
Ė(t) = 0, ∀ t ≥ 0 ⇒ E(t) ≡ 11, ∀ t ≥ 0. Here 11 denotes
the identity superoperator, corresponding to the trivial situa-
tion where the system does not evolve. Whereas if the latter is
true, one has that

Ė(t) 6= 0, ∀ t ≥ 0, (III.13)

unless E(t) = 0 for some t ≥ 0. Nevertheless, we know that
E(t) 6= 0, ∀ t ≥ 0, because E(t) preserves the trace. Thus,
the time derivative of E(t) is always different from zero and
(constantly) proportional to E(t). This allows us to explicitly
parametrize the entire semigroup in the exponential form

E(t) = eLt, (III.14)

∀ t ≥ 0, where we have introduced the constant linear map
L .

= Ė(0) 6= 0, the generator of the semigroup. In turn, this
parameterization immediately renders the desired first-order
linear differential equation:

ρ̇(t) = Lρ(t), (III.15)

∀ t ≥ 0. This is the Markovian master equation.
Finally, a comment on the assumptions used in the deriva-

tion of (III.15) is in place. For (III.12), we implicitly assumed
that semigroup E is continuous and differentiable at all t ≥ 0.
Continuity and differentiability are always granted when S
and R form an isolated composite system, as the composite
dynamics is then governed by a time-independent Hamilto-
nian. However, the assumptions must be explicitly made in
the fully general case. In addition, in Eq. (III.13), we explic-
itly used the trace-preservation property of dynamical maps
discussed in Sec. III A 2. We show now how the other essen-
tial property of dynamical maps, complete-positivity, allows
one to obtain an explicit form for the generator L.

2. Markovian master equation: the Limdbladian

The superoperator L generates the quantum dynamical
semigroup through the Markovian master equation (III.15). It
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can be thought of as the open-system generalization of the Li-
ouvillian generator of the unitary-evolution, given essentially
by the commutator between ρ(t) and the Hamiltonian in the
Schrödinger equation. Here, we derive the most general form
of L. We follow a particularly simple approach similar to that
of [345].

From (III.14), and for a sufficiently small dt > 0, we must
have E(dt) = 1 + Ldt, so that

ρ(t+dt) ≡ E(dt)ρ(t) = ρ(t) +O(dt). (III.16)

From this, it follows that the most general Kraus decomposi-
tion of E(dt) can be given by a Kraus operatorK0 = 11+O(dt)

and all other Kraus operators of order
√
dt. Therefore, without

loss of generality, we can write the Kraus operators of E(dt) as

Kµ
.
=

{
11 + (−iH + C)dt for µ = 0,√
γµLµ

√
dt for 0 < µ < d2S ,

(III.17)

where H and C are time-independent Hermitian operators,
time-independent operators Lµ have been taken of unit trace-
norm, γµ > 0, for all 0 < µ < d2S , and dS is the dimension of
the system, assumed to be finite. Kraus operatorsKµ, for µ >
0, describe the possible incoherent transitions that S might
undergo with probability of order dt; and at a rate γµ. These
transitions are also called quantum jumps, and the operators
Lµ quantum jump operators [352]. In turn, the operator C can
be univocally determined using the normalization condition
(III.7):

11 ≡
∑

µ≥0

K†
µKµ = 11 + dt

(
2C +

∑

µ>0

γµL
†
µLµ

)
, (III.18)

which renders

C = −1

2

∑

µ>0

γµL
†
µLµ. (III.19)

Next, using (III.15), (III.16), and the definition of the time
derivative, we write

Lρ(t) = lim
dt→0+

E(dt)ρ(t) − ρ(t)

dt
, (III.20)

and substitute E(dt)ρ(t) by its explicit decomposition in terms
of Kraus operators (III.17) normalized by (III.19). This, rear-
ranging terms, immediately yields

Lρ(t) = −i[H, ρ(t)] +
∑

µ>0

γµ

(

Lµρ(t)L
†
µ−

1

2

{
L†
µLµ, ρ(t)

})

.

(III.21)
The generator of any quantum dynamical semigroup can al-
ways be written in this form, referred to as the Lindblad form.
Accordingly, L is often called the Lindbladian, master equa-
tion (III.15) the Lindblad equation, and jump operators Lµ

also the Lindblad operators. The first term of (III.21) is re-
sponsible for the coherent part of the dynamics, generated
by operator H as a Hamiltonian. The second term accounts
for the dissipative part, and it contains two types of contribu-
tions. The first one, involving terms of the form Lµρ(t)L

†
µ,

is associated to quantum jumps, while the anticommutators
{L†

µLµ, ρ(t)}, which stem from the non-Hamiltonian part C
of K0 in (III.17), contribute to a non-unitary evolution of the
density operator between quantum jumps [352]. The coeffi-
cients γµ play the role of relaxation rates of the open system
for its different decay modes.

The assertion that expression (III.21) is the most general
form of the generator of a quantum dynamical semigroup is
known as Lindblad theorem. This was proven in Ref. [353]
for finite-dimensional systems (as in our simple derivation)
and in Ref. [354] for general bounded generators. This is not
often the case in physical situations: both H and the Lindblad
operators can in general be unbounded, as discussed in the ex-
amples of Sec. III B 3. Nevertheless, all known generators of
quantum dynamical semigroups can be cast into the Lindblad
form (III.21) [197].

3. The physics behind Markovian versus non-Markovian

dynamics: two simple examples

As discussed in Sec. III B 1, the Markovian master equa-
tion can alternatively be obtained through microscopic deriva-
tions. There, instead of taking the the semigroup property
(III.11) as the basic hypothesis, one starts from a concrete
system environment Hamiltonian and works out the reduced
system dynamics with the help of some approximations and
assumptions. All of these, which are in practice very well
satisfied by many quantum-optical systems, have been pre-
viously discussed in depth in the literature (see for instance
Refs. [197, 350–352]). Here, we just briefly mention the two
most important ones: the Markovian and the Born approxi-

mations. The first one was already mentioned in Sec. III B 1,
and consists of neglecting all reservoir-memory effects so as
to make the dynamics of S local in time. This approximation
is to hold in a coarse-grained time regime with temporal res-
olution τcg, and is based on the assumption that the reservoir-
correlations decay time τR is much shorter than this resolu-
tion. In addition, in order to resolve the system’s evolution,
its characteristic time scale τS must be much longer than τcg.
Altogether, the approximation is sustained by the Markovian
assumption that

τR << τcg << τS . (III.22)

The second one consists of approximating, at each time t, the
composite system-reservoir state as

ρSR(t) ≈ ρ(t) ⊗ ρR, (III.23)

with ρR the state of the reservoir, for the purpose of calcu-
lating the density matrix ρSR(t+τcg) in the successive time
t + τcg . The initial factorized-state condition ρSR(0) =
ρ(0) ⊗ ρR is implicit. This approximation relies not only on
assumption (III.22), but is also to hold in a weak coupling
regime where R, which is infinitely larger than S , is affected
by S negligibly. The idea is that, for weak system-reservoir
couplings and short reservoir-correlations decay times, the de-
cay time of any correlation established between system and
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environment at time t is much smaller than τcg , so that the
initial state for the evolution between t and t + τcg can be
considered as uncorrelated. So, as far as its influence on the
reduced dynamics of S is concerned, the environmental state
appears effectively constant.

The fact that the correction to the density matrix in (III.16)
is assumed to be proportional to dt, implying that the Kraus
operatorsKµ, with µ 6= 0, are proportional to dt, as displayed
in (III.17), is also a consequence of the coarse-grained de-
scription. Indeed, this implies, according to (III.9), that if one
monitored continuously the environment, the probability of a
quantum jump from the initial state |0〉R to the state |µ〉R in a
time dt should depend linearly on dt. But this seems to con-
tradict first-order time-dependent perturbation theory, accord-
ing to which this probability should be proportional to (dt)2.
What happens in fact is that the condition dt ≥ τcg ≫ τR im-
plies that the transition time dt is sufficiently large so that the
Fermi Golden applies, that is, one is in the regime where time-
independent rates can be associated to the transitions from
|0〉R to |µ〉R.

The two approximations mentioned above are usually ap-
plied together, receiving the joint name Born-Markov approx-

imation. In what follows, we illustrate its validity with two
simple exemplary situations.

Resonant Jaynes-Cummings interaction: a non-

Markovian case. The Jaynes-Cummings (JC) model de-
scribes the coherent interaction between a two-level system,
for instance an atom, and a single quantized electromagnetic
mode [355, 356]. A single electromagnetic mode is certainly
not a complex environment with infinitely many degrees of
freedom. However, we force here the identification of it with
an effective reservoir R so as to illustrate when the Born-
Markov approximation can fail. The atom is taken as the main
system S . In the resonant case where the atomic transition fre-
quency ω coincides with the frequency of the field, and in the
rotating wave approximation [355, 356], the JC Hamiltonian
reads

HJC = ~ω

(

a†a+
1

2

)

− ~
ω

2
σ3 − i~

Ω0

2

(
σ+a− σ−a†

)
.

(III.24)
Here the first two terms represent the free energies of the elec-
tromagnetic field and the atom, respectively, and the third one
the interaction. For simplicity, we have chosen a real coupling
constant Ω0. Operators a and a† are respectively the annihila-
tion and creation operators corresponding to the electromag-
netic field, while σ+ = |1〉〈0| and its adjoint σ− = |0〉〈1| de-
note the raising and lowering operators of the atom, where the
computational basis states |0〉 and |1〉 are taken as the ground
and excited states of the atom, respectively, being eigenstates
of σ3 with eigenvalues +1 and −1. In the interaction picture
with respect to the free energy ~ω(a†a + 1/2 − σ3/2), the
Hamiltonian is given solely by the interaction term

HJC
int = −i~Ω0

2

(
σ+a− σ−a†

)
, (III.25)

which describes the processes of excitation of the atom in
tandem with the annihilation of one photon (absorption) and

decay of the atom accompanied by the creation of a photon
(emission). The corresponding unitary evolution, in the in-
teraction picture, is U JC

SR(t) = exp[−(Ω0t/2)(σ
+a− σ−a†)].

Maps that describe the joint evolution of system and environ-
ment can be readily written due to the fact that this evoution
separates the Hilbert space into non-communicating sectors.
Notice first that the ground state |0〉S |0〉R of no atomic or
photonic excitations is a dark state of the evolution. That is, it
is an eigenstate of Hamiltonian (III.25) with eigenvalue zero.
Therefore, it is invariant under the unitary evolution. Second,
notice that Hamiltonian (III.25) connects |0〉S |n〉R only with
|1〉S |n−1〉R, where {|n〉R} refers to the photonic Fock basis,
with n the number of photons in the mode. In particular, the
subspace with the field in the vacuum state evolves as

U JC
SR(t)|0〉S |0〉R = |0〉S |0〉R, (III.26a)

U JC
SR(t)|1〉S |0〉R = cos

(
Ω0

2
t

)

|1〉S |0〉R

+ sin

(
Ω0

2
t

)

|0〉S |1〉R . (III.26b)

One clearly sees from Eq. (III.26b) that, for the initial state
|1〉S |0〉R, the relevant time of the system dynamics is the
time of atomic population inversion (half a Rabi oscillation):
τS ≈ π

Ω0
. Now, it is also clear that the time τR over which

the environmental correlations [created by Rabi oscillations
(III.26b)] vanish is τR ≈ π

2Ω0
, which is of the same order of

magnitude as τS . Needless to say, the state of the reservoir is
in addition far from constant during the time τS . Therefore,
the Born-Markov approximation is not expected to hold here.

Indeed, comparing Eqs. (III.26a) and (III.26b) with (III.9),
one readily obtains the (time-dependent) Kraus operators of
the corresponding dynamical map E(t) for the evolution of S:

K0 = |0〉〈0|+ cos
(Ω0

2
t
)

|1〉〈1| and

K1 = −i sin
(Ω0

2
t
)

σ−. (III.27)

These two Kraus operators satisfy the normalization condition
(III.7) and provide a complete characterization of the reduced
evolution, including coherent Rabi cycles. However, as the
reader can immediately check, the semigroup of superopera-
tors defined by them does not satisfy the Markovian composi-
tion rule (III.11).

Spontaneous emission: a Markovian case. A good model
for the environment of a two-level atom is given by an infinite
collection of independent harmonic oscillators representing a
continuum of electromagnetic modes of frequencies ωk. As in
the previous example, we assume the atom is coupled to every
mode via the JC interaction. However, each mode k may now
have, apart from a different natural frequency ωk, a differ-
ent coupling constant Ωk. The Hamiltonian of the composite
atom photon-bath system in the rotating wave approximation
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[355, 356] reads

HPB = ~

∑

k

ωk

(

a†kak +
1

2

)

− ~
ω

2
σ3

− i~
∑

k

Ω(ωk)

2

(

σ+ak − σ−a†k

)

, (III.28)

where the index PB stands for photonic bath. As opposed
to (III.25), the interaction representation of the photonic-bath
Hamiltonian (III.28) with respect to any non-trivial free en-
ergy is not time-independent and does not commute with it-
self at different times. Nevertheless, the two remarks about
the coherent JC case still apply. Namely, first, the ground
state |0〉S |0〉R, with |0〉R the vacuum state of the photonic
bath, is still a dark state of the evolution. Second, |1〉S |0〉R
only couples to |0〉S |1〉R, where |1〉R represents now a single
excitation coherently shared among the infinite field modes
according to some distribution that depends on Ω(ωk). The
dynamical behavior of the system depends crucially on the
dependence of Ω(ωk) on ωk. The inverse of the width of this
function corresponds approximately to the correlation time of
the environment. Therefore, if the width of Ω(ωk) is suffi-
ciently large, so that the condition τR << τcg << τS is
verified, the Markovian approximation holds, and one does
no longer expects Rabi oscillations, as in the resonant single-
mode case. Under these conditions, environmental memory
effects can be safely neglected. We assume this to be the case
in the following.

This simple heuristics suffices to grasp the main features
of the composite unitary evolution, from which the desired
reduced map can be obtained. For states initially in the elec-
tromagnetic vacuum, it must be

UPB
SR(t)|0〉S |0〉R = |0〉S |0〉R ;

UPB
SR(t)|1〉S |0〉R =

√
1− p(t)|1〉S |0〉R +

√
p(t)|0〉S |1〉R,

(III.29)
where UPB

SR(t) is the evolution operator, in the interaction pic-

ture, corresponding to (III.28), and the parameter 0 ≤ p(t) ≤
1 is the probability of emitting a photon up to time t. As be-
fore, the Kraus operators of the reduced dynamical map EAD

(t)

are readily given by:

KAD
0

.
= |0〉〈0|+

√
1− p(t)|1〉〈1| and

KAD
1

.
=

√
1− p(t)|0〉〈0|+ |1〉〈1|. (III.30)

Accordingly, an arbitrary pure state |ψ〉 = α|0〉+β|1〉 evolves
as

EAD
(t) |ψ〉〈ψ| = |α|2 + p(t)|β|2|0〉〈0|

+ αβ∗√1− p(t)|0〉〈1|
+ α∗β

√
1− p(t)|1〉〈0|

+ (1− p(t))|β|2|1〉〈1|, (III.31)

where the matrix representation in the right-hand side is in
the computational basis, as usual. From this, it is clear
that one must have the boundary conditions p(0) = 0 and

limt→∞ p(t) → 1. That is, the stationary state is always the
ground state. To derive the exact behavior of p(t) through-

out the dynamics, we consider the composition [EAD
(dt)]

M of

M times EAD
(dt), with dt an infinitesimal time period such that

M × dt = t. Next, we consider the evolution (III.31) of |ψ〉
again and invoke the semigroup property (III.11), obtaining

EAD
(Mdt)|ψ〉〈ψ| ≡ EAD

(dt)

M .
= EAD

(dt) ◦ EAD
(dt) · · · ◦ EAD

(dt)
︸ ︷︷ ︸

M

|ψ〉〈ψ|

= |α|2 +
(
1− (1− p(dt))

M
)
|β|2|0〉〈0|

+ αβ∗√1− p(dt)
M |0〉〈1|

+ α∗β
√

1− p(dt)
M |1〉〈0|

+ (1− p(dt))
M |β|2|1〉〈1|. (III.32)

From Eqs. (III.31) and (III.32), one gets 1 − p(t) = (1 −
p(dt))

M . In addition, from (III.13) one knows that ṗ(t)
.
=

γ 6= 0 for all t, with γ some real constant. This, together
with p(0) = 0, implies that, for sufficiently small dt, one has
p(dt) ≈ γdt. Thus, in the limit M → ∞, and for dt = t/M ,

one gets that 1 − p(t) = (1 − γdt)M → e−γt. This gives

the sought time dependence, p(t) ≡ 1 − e−γt, therefore fully

characterizing EAD
(t) for all t through Eqs. (III.30) and (III.31).

Notice, in particular, from (III.31), that the amplitude of the
excitation |1〉 is exponentially damped from β to 0, at the rate
γ. This explains the reason of the superscript “AD” in chan-
nel EAD, which stands for amplitude damping. As a matter
of fact, the exponential amplitude decay is in agreement with
the original treatment by Weisskopf and Wigner [357] of the
spontaneous emission of a photon by a two level atom into
the electromagnetic vacuum. Since the latter is nothing but a
thermal bath at zero temperature, the proportionality constant
γ is typically called zero-temperature dissipation rate. Indeed,
in Sec. III C, we discuss channel AD as the zero-temperature
case of dissipation into a thermal bath at arbitrary temperature.

One should note that the condition ṗ(t) 6= 0, ∀ t ≥ 0, is
implied by the linear dependence with dt in (III.16), which
as seen before is a consequence of the transition-rate regime
associated with the coarse-grained evolution.

C. Noise models

We are now in a good position to discuss concrete examples
of maps that model physically relevant processes, as well as
some of their main classifications:

1. Independent versus collective maps

In the previous subsections, we have studied the reduced
dynamics of the main system S without regard to any inter-
nal substructure. However, since we are ultimately interested
in studying entanglement dynamics, it is crucial to explicitly
take into account the fact that the superoperators act on com-
posite systems of N subparts. In this respect, the first dis-



28

tinction we make is between independent and collective pro-
cesses. We use the following notation. Unless otherwise ex-
plicitly specified, maps acting on the space D(HS) of density
operators ̺ of S are denoted by E , whereas the ones acting on
the space D(Hi) of those of the i-th subsystem carry in addi-
tion the subindex of the corresponding subsystem, as Ei. As
we have seen, every physical process can be described by a
completely-positive trace-preserving map E , which admits in
turn a Kraus representation as (III.6):

Eρ =
∑

µ

KµρK
†
µ, (III.33)

with Kraus operators Kµ with support on HS , and µ running

from 0 to dS ≡ ∏N
i=1 di, being di the dimension of the i-

th subsystem’s Hilbert space Hi as usual. It is convenient to
explicitly decompose µ as a multipartite multi-index: µ ≡
µ1 ... µN , with µi running from 0 to di.

When the Kraus operators of (III.33) admit in turn a decom-
position Kµ ≡ K1µ1

⊗ ... ⊗KNµN
, where every Kiµi

has
support only on Hi, we say that E is an independent map. That
is, the superoperator describes an independent process if it can
be factorized as the tensor product of individual single-partite
superoperators, each one acting independently on a different
subpart:

Eρ =
∑

µ1 ... µN

K1µ1
⊗ ... ⊗KNµN

ρK1
†
µ1

⊗ ... ⊗KN
†
µN

≡ E1 ⊗ E2 ⊗ . . .⊗ ENρ. (III.34)

Otherwise, we say that E is a collective map. In physical
terms, independent maps can be thought of as describing the
situations where each subpart is coupled to its own indepen-
dent environment, whereas collective maps as those where a
same environment is coupled to more than one subpart, so that
correlations between the subparts may be developed due to the
action of the bath.

Naturally, analogously to the case of k-separable states,
multipartite maps also admit sub-classifications in terms of
the multipartitions for which they factorize. For example, in
Sec. V C 3 we study maps that decompose as tensor prod-
ucts of two channels acting on two subgroups of neighboring
particles. However, for simplicity, unless otherwise explic-
itly specified, we reserve the term “independent” for the fully-
factorizable case described by (III.34). On the other hand, it
is important to mention that all independent maps are neces-
sarily separable, as defined by (II.26), but a generic separable
map needs not factorize in the form (III.34). That is, inde-
pendent maps can not introduce any correlations whatsoever
between the subparts, whereas separable maps are allowed to
generate correlations and may therefore belong to both the in-
dependent or collective classes.

2. Pauli maps

An important family of separable maps for qubits is that of
the Pauli maps, defined as those where every Kraus operator

is proportional to a tensor product of N single-qubit Pauli or
identity operators:

Kµ ≡ √
p(µ1 ... µN ) σ1

µ1 ⊗ . . .⊗σNµN
.
=

√
pµ σ

µ, (III.35)

with σi
0 = 11i, the identity operator on qubit i, σi

1 = Xi,
σi

2 = Yi, and σi
3 = Zi, the three Pauli operators of qubit

i, as usual, and p(µ1 ... µN ) ≡ pµ any normalized probability
distribution. When this distribution factorizes as pµ = p1µ1

×
... × pNµN

, with piµi
a single-partite distribution associated

to the i-th qubit, the Pauli map is also an independent map.
In addition, if piµi

is the same for all i, then the composite
dynamics is fully characterized by the single-qubit channel.

The best-known examples of single-qubit Pauli channels
are the depolarizing (D) and phase-damping (PD) (or dephas-
ing) channels. Channel D describes the situation where the
qubit is probabilistically subject to white noise. That is, it
remains untouched with a certain probability 1 − p, or is
completely depolarized – i.e., transformed into the maximally
mixed state 11i/2 – with probability p. Complete depolariza-
tion happens when the qubit is subject to bit-flip (Xi), phase-
flip (Zi), and bit-phase-flip (Yi) errors with the same probabil-
ity. Therefore, the channel is characterized by pi0 = 1−p and
pi1 = pi2 = pi3 = p/3. Channel D describes the most detri-
mental kind of noise, as not only the coherences are destroyed
but also the populations are completely mixed. In turn, chan-
nel PD describes the processes where the qubit scatters elas-
tically with the reservoir constituents, which may induce the
loss of quantum coherence, with probability p, but without
any exchange of population in the computational basis (im-
plying that the energy of the system is conserved). The pro-
cess is thus less detrimental than depolarization, as the (clas-
sical) information encoded in the population of the compu-
tational basis’ elements is preserved. It is characterized by
pi0 = 1 − p/2, pi1 = 0 = pi2, and pi3 = p/2, so that off-
diagonal density-matrix coherence elements vanish at p = 1.
A close relative of channel PD is the phase-flip (PF) channel,
which, as its name suggests, describes the process by which
coherent superpositions of |0i〉 and |1i〉 are probabilistically
subject to a π-phase shift. It is characterized by pi0 = 1 − p,
pi1 = 0 = pi2, and pi3 = p, so that the off-diagonal elements
change sign at p = 1.

Other popular single-qubit Pauli channels are for instance
the bit-flip (BF) and bit-phase-flip (BPF) channels, which are
equivalent to the phase-flip channel but in rotated bases. They
are defined respectively by pi0 = 1 − p, pi2 = 0 = pi3, and
pi1 = p, and pi0 = 1 − p, pi1 = 0 = pi3, and pi2 = p. The
Kraus operators of all these, and other, single-qubit channels
are summarized in table I.

Finally, the probability p in all the channels above can be
interpreted as a parameterization of time, where p = 0 refers
to the initial time 0 and p = 1 to the asymptotic limit t→ ∞,
where the system reaches a steady state. A common such pa-
rameterization is p ≡ p(t)

.
= 1 − e−ξt, for some constant

decay rate ξ. This choice, which corresponds to a Markovian
dynamics, implies that the channels satisfy the Markovian ad-
ditive composition rule (III.11).
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Channel Kraus Operators Associated Physical Process

Generalized

Amplitude

Damping

(GAD)

K0 ≡
√

n+1
2n+1

(|0〉〈0|+√
1− p|1〉〈1|),

K1 ≡
√

n+1
2n+1

p σ−,

K2 ≡
√

n
2n+1

(
√
1− p|0〉〈0|+ |1〉〈1|),

K3 ≡
√

n
2n+1

p σ+.

For p ≡ 1− e−
1
2
γ(2n+1)t, describes diffusion and dissipation, in the

Born-Markov approximation, with a thermal bath of ave-rage excita-

tion n. Constant γ is the zero-temperature dissipation rate, associated

to spontaneous emission (channel AD, obtained by setting n = 0).

Phase

Damping

(PD)

K0 ≡
√

1− p/2 11,

K1 ≡
√

p/2 σ3,

Also called Dephasing. Describes the elastic scattering (no excitation

exchange) with the environment. With probability p, the off-diagonal

coherences are destroyed. With probability 1− p, nothing happens.

Phase Flip

(PF)

K0 ≡ √
1− p 11,

K1 ≡ √
p σ3,

Close relative of channel PD. Describes relative π-phase errors in the

computational basis. With probability p, the off-diagonal coherences

change sing. With probability 1− p, nothing happens.

Bit Flip

(BF)

K0 ≡ √
1− p 11,

K1 ≡ √
p σ1,

Same as channel PF but in a rotated basis. Describes relative π-phase

errors in the X eigenbasis.

Bit-Phase

Flip

(BPF)

K0 ≡ √
1− p 11,

K1 ≡ √
p σ2,

Same as channels PF and BF but in yet another basis. Describes rela-

tive π-phase errors in the Y eigenbasis.

Depolarizing

(D)

K0 ≡ √
1− p11,

K1 ≡
√

p/3 σ1,

K2 ≡
√

p/3 σ2,

K3 ≡
√

p/3 σ3.

The most detrimental kind of noise, where all three errors, PF, BF, and

BPF, can happen. With probability p, the system is depolarized to the

maximally mixed state. With probability 1− p, nothing happens.

Table I. Brief description of the most popular single-qubit channels. All of them are described in detail in the text.

3. Independent thermal baths

An important example of a non-Pauli single-qubit chan-
nel is the generalized amplitude-damping (GAD) channel. It
describes the processes of energy diffusion and dissipation,
in the Born-Markov approximation, with a thermal bath into
which the qubit is individually immersed. It is characterized
by the four Kraus operators

Ki0 ≡
√

n+ 1

2n+ 1
(|0i〉〈0i|+

√

1− p|1i〉〈1i|), (III.36a)

Ki1 ≡
√

n+ 1

2n+ 1
p σ−

i , (III.36b)

Ki2 ≡
√

n

2n+ 1
(
√

1− p|0i〉〈0i|+ |1i〉〈1i|), (III.36c)

Ki3 ≡
√

n

2n+ 1
p σ+

i , (III.36d)

with σ+
i

.
= |1i〉〈0i| and σ−

i
.
= |0i〉〈1i|, as usual. Here, n

is the average number of excitations in the bath, p ≡ p(t)
.
=

1 − e−
1
2γ(2n+1)t is the probability of the qubit exchanging a

quantum with the bath from time 0 until time t, and γ is the
zero-temperature dissipation rate already mentioned in Sec.
III B 3 when spontaneous emission was discussed. As a mat-
ter of fact, channel GAD is nothing but the extension to finite
temperature of the purely dissipative AD channel introduced
there. Indeed, the AD Kraus operators (III.30) are recovered
from (III.36) in the zero-temperature limit n = 0. On the
other hand, the purely diffusive case is obtained in the op-
posite limit: n → ∞, γ → 0, and nγ = Γ, where Γ is
the diffusion constant. In this limit, channel GAD becomes

a Pauli channel, characterized bu single-qubit probabilities
pi0 = 1

2 (1 − p(t)/2 +
√
1− p(t)), pi1 =

p(t)

4 = pi2, and

pi3 = 1
2 (1− p(t)/2−

√
1− p(t)). As a matter of fact, in this

limit, channel GAD becomes similar to channel D, with both
channels having the completely mixed (infinite-temperature
thermal) state as the only steady state, for instance.

Table I summarizes the Kraus operators of all the single-
qubit channels discussed in this section, together with a brief
description of the physical process associated to each of them.

IV. THEORY OF OPEN-SYSTEM DYNAMICS OF

ENTANGLEMENT: BIPARTITE SYSTEMS

We dive now into the main topic of the review: the dynam-
ics of entanglement under the effect of the environment. The
first attempt to study the dynamics of entanglement in open
systems of which we have record was done by Yi and Sun,
in Ref. [358]. In that article, the authors study the Hilbert-
Schmidt distance from a bipartite state ρAB(t) at time t to the
tensor product of its reduced states ρA(t) ⊗ ρB(t). Although
this distance is not an entanglement measure, with these pi-
oneering study the authors aimed at capturing some features
of the open-sytem entanglement dynamics. The first real ac-
counts of entanglement dynamics in open systems of which
we have record are due to Rajagopal and Rendell, who ana-
lyzed, in Ref. [98], the dynamics of entanglement for two ini-
tially entangled harmonic oscillators under the action of local
environments; and to K̇yczkowski and the Horodecki family,
who analyzed, in Ref. [99], the evolution of the average en-
tanglement of formation of random 2⊗ 2 states undergoing a
sequence of global unitary evolutions periodically interlaced
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with a noisy channel.
Both papers showed that entanglement might vanish at fi-

nite times, while coherence, for the same classes of noisy pro-
cesses, would vanish asymptotically in time. Many distinct
cases were discussed in [99]: when the unitary part was not
present, then, depending on the noisy process, the average
entanglement could vanish asymptotically or at finite time;
when the global unitary was switched on, entanglement re-
vivals could be observed. Since then, many theoretical studies
on the dynamics of bipartite entanglement appeared, involv-
ing the interaction with local environments [101–105, 107–
138, 140–142, 144–146, 148–154, 156, 160, 162, 163], or
with collective ones [57, 106, 121, 131, 147, 166], or yet a
combination of both [121], as discussed in the introduction.

In this section, refraining from an exhaustive compilation
of results, we describe some of the principal aspects of the
theory of entanglement evolution in bipartite open systems.
We treat the multipartite case in the following section.

A. Two qubits under amplitude damping

The subtle properties of the dynamics of entanglement,
and its striking differences to the dynamics of coherences,
are exhibited in the paradigmatic example of spontaneous
atomic decay [108, 115, 116]. As discussed in Secs. III B 3
and III C, this dynamics is well approximated by the ampli-
tude damping channel EAD. Consider now a bipartite sys-
tem S , composed of two qubits, A and B, initially in state
|Ψ〉 = α|00〉 + β|11〉. Under independent AD channels of
the same damping strength p on each qubit, the latter state
evolves, according to (III.31), to the mixed state






|α|2 + p2|β|2 0 0 (1− p)αβ∗

0 (1− p)p|β|2 0 0
0 0 (1− p)p|β|2 0

(1− p)α∗β 0 0 (1− p)2|β|2




 ,

(IV.1)
with the matrix written in the computational basis.

Channel AD does not create new coherences, the only non-
null off-diagonal elements in density matrix (IV.1) are those
of the initial coherence between |00〉 and |11〉, damped by the
factor 1 − p. One can directly quantify the entanglement of
the two qubits throughout their evolution by calculating the
concurrence, as given by expression (II.46), as a function of
p, which gives:

C(p) = max{0, 2(1− p)|β|(|α| − p|β|)} . (IV.2)

Importantly, in this particular example, the negativity and the
concurrence coincide for all p [270, 274]. Concurrence (IV.2)
features two distinct dynamical regimes: If (i) |β| ≤ |α|, then
entanglement vanishes only asymptotically, i.e. at p = 1.
Whereas if (ii) |β| > |α|, then entanglement vanishes at a
finite-time, more precisely at p = |α/β| < 1. We will
encounter these two disentanglement behaviours repeatedly
throughout this review.

Interestingly, since at p = 0 concurrence (IV.2) depends
only on the product of α and β, and not on themselves, the

two different types of decay are consistent with a same ini-
tial entanglement. Finite-time disentanglement is also called
some times “entanglement sudden death” [116, 120]. Some
intuition of why finite-time disentanglement takes place for
|β| > |α| can be given for channel AD. Inspecting the joint
system-reservoir unitary dynamics (III.29), we see that only
the excited state |1〉 couples to the environment. So, the larger
the population |β|2 of the excited state, the faster the devel-
opment of system-environment entanglement, which leads in
turn to a faster reduction of system entanglement. In Sec.
IV I 1, we give in addition a simple geometrical explanation
of why this distinction of decay types arises.

Since the joint system-environment state is pure, the rise
of system-environment entanglement can be easily verified by
calculating the concurrence between system S and environ-
ment R through formula (II.48). This yields

CSR(p) = 2
√
2|β|

√

p(1− p)
√

1− |β|2p(1− p) ,
(IV.3)

which increases with |β|. Furthermore, the entanglement be-
tween each qubit and its own environment increases with |β|2:

CSARA
(p) = CSBRB

(p) = 2|β|2
√

p(1− p).

It is also useful to inspect the dynamics of the entanglement
between the two environments [124, 132, 160]. At p = 1, the
state of the system (and therefore its entanglement) is com-
pletely transferred to the environment [124, 132]:

(α|00〉+ β|11〉)S ⊗ |00〉R p=1−→ |00〉S ⊗ (α|00〉+ β|11〉)R .
(IV.4)

For p < 1, the entanglement between the two environmental
qubits is quantified by the concurrence [160]

CRARB
(p) = max{0, 2p|β|[|α| − (1− p)|β|]} . (IV.5)

Remarkably, this concurrence shows that when system dis-
entanglement occurs at p < 1, it is accompanied by the ap-
pearance of environment entanglement at some 0 < p < 1.
The latter has some times been called “entanglement sud-
den birth” (ESB), in contraposition with entanglement sudden
death” (ESD). The times for which ESD and ESB occur are re-
lated by pESB = 1−pESD. Thus ESB may occur before, simul-
taneously, or after ESD, depending on whether pESD > 1/2,
pESD = 1/2, or pESD < 1/2, respectively.

To end up with, for baths at non-zero temperature, well ap-
proximated by the generalized amplitude damping channel,
EGAD, as discussed in Sec. III C 3, the calculations are some-
what more involved but can still be carried out exactly. For
instance, in Ref. [135], it was shown that for a two-qubit sys-
tem initially in anX-state, i.e. with density matrix in the com-
putational basis having non-zero elements only along the di-
agonals, then, for independent thermal baths at any positive
temperature, there is finite-time disentanglement. Finally, in
Ref. [112], it was shown that the steady-state entanglement
of any two-qudit system in touch with independent thermal
baths at any non-zero finite temperature always vanishes, for
arbitrary interactions between the qudits and the environment.
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B. Two qubits under dephasing

Another paradigmatic noise channel is the dephasing chan-
nel EPD. In this case the dynamics of entanglement be-
tween two qubits A and B, again initially in the state |Ψ〉 =
α|00〉+ β|11〉, is characterized by the concurrence

C(p) = 2(1− p)|αβ| , (IV.6)

which vanishes only at p = 1, that is, asymptotically in time.
In contrast to the AD case discussed in the previous subsec-

tion, here the decrease of entanglement in the two-qubit sys-
tem is accompanied by the generation of genuine four-partite
entanglement among the two system qubits and the two envi-
ronmental ones. For instance, we note that while (IV.6) de-
creases with p, the total concurrence among all four qubits, as
given by (II.49), is

CS1S2R1R2
(p) = |αβ|

√

4 + 4p− p2 , (IV.7)

which increases monotonously with p. Furthermore, at p = 1,
the joint system-reservoir state evolves towards

(α|00〉+ β|11〉)S |00〉R p=1−→ α|00〉S |00〉R + β|11〉S |11〉R .
(IV.8)

This is a state of the GHZ type, as defined by (II.9), which is
genuinely four-partite entangled and for which all two-qubit
entanglements, between both system qubits, each of them and
its own environmental qubit, and between both environmental
qubits, are null. A detailed analysis for different initial states
was made in [160].

C. Two interacting qubits: entanglement decay and revival

For logical qubits encoded in two-level atoms, their dipole-
dipole coupling, as well as the interaction between the atoms’
respective environments, can be neglected whenever the dis-
tance r12 between them is much larger than the resonance
wavelength λ. However, when r12 . λ, neither can the atom-
atom interaction be neglected nor do the environmental modes
resolve the two particles any longer. In this situation, a de-
scription based on a common environment becomes neces-
sary. As the two qubits now effectively interact, both directly
and via the environment, a competition between entanglement
decay and generation takes place, so that entanglement might
reappear in the system after vanishing at some finite time.

Several scenarios where qubit entanglement undergoes re-
vivals have been recently studied in the context of quan-
tum information [106, 121, 152, 359–362]. However, the
effect of dipole-dipole interactions has been previously ex-
tensively considered within the framework of superradiance
[363], whose first studies trace back to Dicke’s work in the
fifties [364]. Since the baths are collective, decoherence-free
subspaces may be found, i.e. some entangled states may be
immune against the action of the environment (corresponding
to the sub-radiant states of [364]).

Fig. 7 shows results of [121], where two two-level atoms
are assumed to interact with a collective amplitude damp-
ing environment and with each other through dipole-dipole

Figure 7. Concurrence (solid line) of a pair of two-level atoms in-

teracting via dipole-dipole coupling and under a collective AD envi-

ronment, as a function of γt. The initial state is |Ψ〉 =
√
α|11〉 +√

1− α|00〉, with α = 0.9. The dashed line represents the concur-

rence of the same initial state but without the dipole-dipole coupling

and for local AD environments. For short times both dynamics are

similar, with the local coupling prevailing over the global one. For

longer times, however, the interaction through the collective environ-

ment leads to entanglement revivals. Reprinted figure with permis-

sion from Z. Ficek and R. Tanaś, Phys. Rev. A 74, 024304 (2006).

Copyright (2006) by the American Physical Society.

coupling. It displays the entanglement dynamics for the ini-
tial state |Ψ〉 =

√
α|11〉 +

√
1− α|00〉, with α = 0.9 and

for r12 = λ/20. As usual, |0〉 and |1〉 correspond to the
atomic ground and excited states, respectively. The entan-
glement decays and vanishes at finite-time, as for the case of
two non-interacting atoms under independent AD discussed in
Sec. IV A. However, here, in contrast, entanglement shows re-
vivals. Another exotic example of entanglement creation via
the action of both dipole-dipole coupling and collective AD
environment takes place when α = 1. In this case, the initial
state is separable, but a sudden birth of system entanglement
can take place after some time lag [121].

D. Two-qudit isotropic states under local depolarisation or

dephasing

Despite the fact that for high-dimensional bipartite systems
an exact entanglement evaluation is in general not feasible,
there are several interesting families of states for which rel-
evant results exist. These particular states illustrate features
of entanglement dynamics that can appear also in the gen-
eral case. One such case is that of isotropic states [365].
These are two-qudit states that fulfil the special symmetry
̺iso = U ⊗U∗̺isoU

†⊗U∗†, with U any single-partite unitary
operator. The entire family can be parametrized by a single
parameter 0 ≤ f ≤ 1 as

̺iso(f) =
1− f

d2 − 1

(
11 − |Φ+

d 〉〈Φ+
d |
)
+ f |Φ+

d 〉〈Φ+
d |. (IV.9)

Parameter f is called the fidelity, or the singlet fraction, of
̺iso(f), as it gives the overlap of ̺iso(f) with the maximally

http://link.aps.org/doi/10.1103/PhysRevA.74.024304
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entangled state |Φ+
d 〉. For states (IV.9), different entangle-

ment measures have been evaluated exactly [366–368]. For
instance, their concurrence reads

C(̺iso(f)) =

{
0 for f ≤ 1/d

(f − 1/d)
√

2d/(d− 1) for 1/d ≤ f ≤ 1.
(IV.10)

Interestingly, as noted by Ann and Jaeger in Ref. [369], ex-
perimentally relevant noise types, as the PD and the D chan-
nels map any isotropic state into another isotropic state (of
lower singlet fraction). Therefore, the entanglement dynam-
ics of ̺iso(f) can be fully monitored. A simple but instructive
example is the D channel ED acting on only one of the qu-
dits of ̺iso(f). From (IV.10), one straightforwardly calculates
the disentanglement time of any isotropic state under ED ⊗ 11.
For instance, for the isotropic state of maximal singlet frac-
tion f = 1, i.e. the maximally entangled state |Φ+

d 〉, and for

a depolarising strength p = 1 − e−d2γt, the disentanglement
time is

tDEB = ln(d+ 1)/d2γ. (IV.11)

Note that tDEB decreases with the dimension d, which is in
accordance with the fact that entanglement tends to become
more fragile as the macroscopic limit is approached. The
subindex EB in tDEB stands for “entanglement breaking,” since
the disentanglement time induced by ED ⊗ 11 on |Φ+

d 〉 de-
fines the time at which ED becomes EB, as discussed in Sec.
III A 3. With the same treatment, one obtains the disentangle-
ment time of isotropic states under EPD⊗11 and therefore also
the time at which EPD becomes EB.

E. CV systems: two qumodes interacting with local thermal

baths

The dynamics of entanglement for two harmonic oscilla-
tors has also been extensively studied in the literature. The
dynamics displays some similarities with the case of discrete
variables. For example, Refs. [98, 109, 129, 370] show that
the entanglement between two qumodes interacting with in-
dependent environments may vanish asymptotically or at fi-
nite time. Entanglement revivals were also demonstrated for
CV systems in the presence of global environments, both in
the Markovian [104, 119, 371] and non-Markovian [126, 372–
374] regimes.

In Refs. [140, 145], Paz and Roncaglia drew a general pic-
ture of the different “phases” of CV entanglement dynamics
for two qumodes coupled to the same thermal bath at tem-
perature T , and initialized in the two-mode squeezed Gaus-

sian state e−r(a†
1a

†
2−a1a2)|0〉, where r is the squeezing param-

eter, |0〉 represents the vacuum state, subindices 1 and 2 label

the two modes in question, and ai and a†i , i = 1, 2, are re-
spectively the annihilation and creation operators correspond-
ing to mode i. See Fig. 8. The coupling to the reservoir
is described by the quantum Brownian motion master equa-
tion [375, 376]. Since this dynamics maps Gaussian states
onto Gaussian states, the behavior of entanglement for dif-
ferent r and T can be directly assessed from the symplectic

Figure 8. Entanglement phase diagram for two oscillators undergo-

ing a quantum Brownian motion under the action of a common envi-

ronment (Ω is the renormalized oscillator frequency, here set equal to

1). Depending on the initial squeezing and temperature, the evolution

may induce finite-time disentanglement – sudden-death (SD) phase

–, asymptotic disentanglement or an entangled steady state – both

characterized by the no-sudden-death (NSD) phase –, or a periodic

series of entanglement revivals – sudden-death and revival (SDR)

phase. The dotted and dashed lines are related to the width and posi-

tion of the different entanglement phases as a function of the temper-

ature (see [140] for details). Reprinted figure with permission from

J. P. Paz and J. A. Roncaglia, Phys. Rev. Lett. 100, 220401 (2008).

Copyright (2008) by the American Physical Society.

eigenvalues, as defined in Sec. II B 2, of the covariance matrix
of the steady state. Three qualitatively different entanglement
phases were identified: (i) Sudden-death (SD) – the entangle-
ment vanishes at finite-time; (ii) no-sudden-death (NSD) – the
entanglement either decays asymptotically or it remains finite
throughout the evolution; and (iii) sudden-death and revival
(SDR) – the entanglement undergoes an infinite series of peri-
odic vanishments and revivals. Also as in the discrete-variable
case, the generation of entanglement from two initially sepa-
rable modes due to the interaction with the common bath is
possible.

F. Robust entanglement

Distinct initial states with the same amount of entanglement
and under the the same type of noise may undergo quite dif-
ferent entanglement dynamics. This opens the possibility to
search for the most robust states, i.e. those whose entangle-
ment decays the slowest. A simple two-qubit example was
studied by Yu and Eberly in Ref. [123]. As a similar example,
we can compare the entanglement dynamics of the Werner
state

̺Werner
.
= (1− λ)11

4 + λ|Ψ−〉〈Ψ−| (IV.12)

with that of the local-unitary equivalent state

11 ⊗X̺Werner11 ⊗X
.
= (1− λ)11

4 + λ|Φ−〉〈Φ−| ,
(IV.13)

with λ ∈ [0, 1], under independent AD channels. Although
both initial states have, by definition, identical entanglements,
their entanglement evolution differs, as shown in Fig. 9 for

http://link.aps.org/doi/10.1103/PhysRevLett.100.220401
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Figure 9. Concurrence of two local unitarily equivalent two-qubit

states under the same independent AD channels of strength p, as a

function of p. The black solid line corresponds to the Werner state

̺Werner, whereas the gray dashed line to 11 ⊗X̺Werner11 ⊗X . The

entanglement of the latter decays faster than that of the Werner state

and vanishes at finite time.

the exemplary case of λ = 0.75. Since ̺Werner has only one
excitation shared between both qubits, it gets less affected by
the AD noise than 11⊗X̺Werner11⊗X , which possesses two
excitations shared between the qubits. Accordingly, the en-
tanglement of the former turns out to be more robust than that
of the latter. In conclusion, a local unitary transformation be-
fore the noise acts may have a significant positive effect on the
entanglement resistance against the noise.

The two-qudit case was numerically studied by Mintert in
Ref. [377]. There, he applied lower bounds to the concur-
rence to search for robust states under independent PD and
AD channels. For multipartite states, ingenious techniques to
find robust states have been obtained [378–381]. We discuss
these in Secs. V B 7, V B 8, and V E 4.

G. Harnessing entanglement dynamics

Instead of searching for the most robust state, one may try
to actively counteract the influence of the environment, so as
to slow down the decay of entanglement as much as possible
or even to revert it. A variety of strategies have been pro-
posed [160, 177, 178, 382–386]. Here we expose two qualita-
tively different important paradigms for the coherent control
of entanglement.

1. Passive spontaneous-emission based distillation

Consider a single two-level atom, initially in the state
α|0〉+β|1〉, interacting with a zero-temperature thermal bath,
where |0〉 and |1〉 stand respectively for the ground and excited
states, as usual. Furthermore, assume that a perfect detector,
able to detect every photon that might eventually be emitted,
is placed in the vicinity of the atom. The absence of a click

corresponds to a projection onto the vacuum state of the pho-
tonic bath. This in turn renders some information about the
atom, i.e. it represents a weak measurement of it, and, as
such, changes its state. The longer one waits for a click, the
higher the probability to project the atom onto |0〉.

This effect can be employed to distill entanglement [160,
385]. One considers two atoms separated enough to approx-
imate their reservoirs as independent. The initial state is
|Ψ(0)〉 = α|00〉+β|11〉, with |α| < |β|. As before, two detec-
tors continuously monitor each atom’s reservoir. Without this
monitoring, the dynamics would be ruled by the independent
AD channel of strength p = exp(−γt), but because of the
monitoring the system is continuously projected onto a pure
state.

Proceeding as in (III.29) with each atom, we see that, if up
to time t no photon is detected by either detector, the joint
system state becomes

|Ψ(t) =〉α|00〉S + β(1− p)|11〉S
√

|α|2 + (1− p)2|β|2
. (IV.14)

If at time tmax = γ−1 ln |β/α|, corresponding to pmax =
1 − |α/β|, no decay is registered, then the system collapses
to the maximally entangled state with |α| = |β|. The con-
tinuous “no-click” detection reduces the population of |11〉,
balancing it with that of |00〉. In this way, just by locally ob-
serving the environment in the vacuum state, one increases the
entanglement of the system. Of course, this scheme succeeds
only probabilistically. No click up to time tmax happens just a
fraction 1− [|α|2 + (1− p)2|β|2)] of the trials. This fraction
thus defines the success probability of this particular distilla-
tion scheme. An important drawback of the protocol is that
maximal entanglement is obtained at a single instant of time.
An interesting improvement of this method, also in connection
to weak measurements, was proposed in Ref. [387], where a
technique to revert the environment-induced change of entan-
glement was proposed. The experimental implementation of
the latter was reported in [388].

2. Active feedback

Another possibility is to exploit feedback, i.e. to actively
operate on the system depending on the outcomes of measure-
ments on its environment. The idea goes in a similar direction
as quantum error-correction. However, here one is mainly in-
terested in the entanglement and not so much in the state itself.
An example of such a strategy was proposed by Carvalho and
Hope in Refs. [177, 178]. They considered the specific setup
depicted in Fig. 10 a). There, two non-interacting two-level
atoms, a and b, are resonantly coupled, with coupling constant
g, to a cavity, and are simultaneously driven by a classical field
of amplitude Ω. The atoms spontaneously decay into the en-
vironment with respective decay rates γa and γb, and into the
cavity output mode with decay rate κ. Both γa and γb are
assumed much smaller than κ. So, the dominant decay chan-
nel is through the cavity output mode, with an effective decay
rate Γ = g2/κ. This is called the Purcell regime. The cavity
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a) b)

Figure 10. Slowing down the decay of entanglement of two two-

level atoms inside a leaky cavity through active feedback control. a)

The atoms’ spontaneous emission rates are γa and γb, while the de-

cay rate of the cavity field is κ, with γa, γb << κ. Any photon

emitted by the cavity output is registered by a perfect detector D.

This activates the application of the unitary operation Ufd on one of

the atoms. b) Entanglement as a function of Γt, with and without

the feedback control, for the initial state |Ψ−〉, Ω = 3Γ, and feed-

back unitary Ufb = 11 ⊗ exp(−iπX/2). The three cases plotted

are (C1) γ = 0.001Γ, (C2) γ = 0.01Γ, and (C3) same as (C2) but

with an atomic dephasing rate γdeph = γ additionally taken into ac-

count. Reprinted figure with permission from A. R. R. Carvalho and

J. J. Hope, Phys. Rev. A 76, 010301 (2007). Copyright (2007) by

the American Physical Society.

output is in turn continuously monitored by a perfect detector
D, which, upon photon click, fires the application of the uni-
tary operation Ufb on the system. The first difference with the
scheme of the previous sub-subsection is that the atoms effec-
tively decay through a collective channel, and the second one
is the active application of Ufb.

The best choice of Ufb requires an optimization, but some
simple considerations are sufficient to chose a feedback uni-
tary that preserves high values of entanglement despite of the
local and global environments. First note that both the uni-
tary dynamics and the global noise do not mix the symmetric
and anti-symmetric subspaces of the two-qubit system. Fur-
thermore, with only the global decay, the maximally entan-
gled state |Ψ−〉 is a steady state. The steady-state solution
on the symmetric subspace is also entangled, but the over-
all stationary entanglement turns out to be low (∼ 0.1 when
quantified by concurrence). When one then considers the lo-
cal decays, the split between the subspaces is broken. The
idea is then to chose a feedback unitary that coherently shifts
highly entangled states from the anti-symmetric subspace into
the symmetric subspace. This is obtained, for example, by
choosing the feedback to act only in a single qubit by taking

Ufb = 11⊗e− iπX
2 . As shown in the plot, a significant enhance-

ment of the entanglement robustness is obtained, even when
atomic local dephasing is additionally considered.

More recently, a similar scheme was proposed, in
Ref. [386], but with the application of a time-dependent feed-
back Hamiltonian instead of a fixed unitary operations. The
Hamiltonian is optimized at each instant of time so as to max-
imize the amount of entanglement. In this way, it is possible to
design optimal control strategies for the entanglement dynam-
ics. This is an interesting example within the field of quantum

dynamical control, which has recently seen an upsurge of ac-
tivity [389–394].

H. An equation of motion for entanglement

In Refs. [395, 396] , a dynamical equation for the evolu-
tion of the concurrence of two qubits was derived. With this,
the entanglement of the system, initially in any pure state, and
under the action of any single-sided channel, is totally deter-
mined by that of a maximally entangled state undergoing the
same dynamics. More precisely, it was shown that

C(11 ⊗ E|Ψ〉〈Ψ|) = C(|Ψ〉) C(11 ⊗ E|Φ+〉〈Φ+|) , (IV.15)

for any completely positive single-qubit map E and pure state
|Ψ〉.

Equation (IV.15) is appealing because of its simplicity. It
factorizes into a contribution from the initial state, C(|Ψ〉), and
another due to the channel, C(11⊗E|Φ+〉〈Φ+|). Indeed, by the
Choi-Jamiołkowsky isomorphism discussed in Sec. III A 2,
ρE

.
= 11 ⊗ E|Φ+〉〈Φ+| is the dual state of channel E and

therefore contains all the information about it. This is cru-
cial for the efficacy of decomposition (IV.15). As a corollary
of (IV.15), one knows that the only single-sided channels E
that map pure entangled states into separable states are the
entanglement-breaking channels, that is, those for which the
dual state ρE is separable, as discussed in Sec. III A 3.

In the general scenario of two-sided channels and initially
mixed states, due to the convexity of C, one gets instead the
upper bound

C(E1⊗E2̺) ≤ C(̺) C(E1⊗11|Φ+〉〈Φ+|) C(11⊗E2|Φ+〉〈Φ+|).
(IV.16)

Remarkably, this bound was shown to be tight in some experi-
mentally relevant cases [396]. In turn, this bound has been ex-
perimentally verified with entangled photon pairs [144, 397],
as discussed in Section VI B.

Decompositions (IV.15) and (IV.16) can both be general-
ized to two-qudit systems of arbitrary dimensions d1 × d2 for
the G-concurrence [398, 399], and even to multipartite sys-
tems for entanglement measures with some particular struc-
tures [400, 401]. The G-concurrence is one of the generaliza-
tions for d1×d2 systems of the two-qubit concurrence (II.46),
and reduces to the latter when d1 = d2 = 2. In spite of being
an entanglement monotone, it does not detect the entangle-
ment of some entangled states for d1 × d2 > 2 × 2. For
this reason, it fails to be a well-behaved entanglement mea-
sure. However, it has been shown that, for short times, there
is a connection between the G-concurrence and the usual C-
concurrence, which may in turn give useful information about
the decay of the latter for longer times [402].

I. Geometry of entanglement decay

An elegant way to extract generic features of entanglement
dynamics is to study the geometrical aspects of the set of states
D(HS). In the next sub-subsections we discuss two such as-
pects.

http://link.aps.org/doi/10.1103/PhysRevA.76.010301
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1. Topological view of entanglement trajectories

The set of states D(HS) is a closed convex set to which
a metric can be assigned [191]. Its boundary is defined by
all the states for which an arbitrarily small perturbation suf-
fices to take them out of D(HS). These are all non-full-rank
states, defined as those whose rank is smaller than d2S , which
is equivalent to having at least one null eigenvalue. An arbi-
trarily small perturbation maps them into negative operators.
In particular, all pure states are rank-1 and therefore non-full-
rank. Analogously, the interior of D(HS) is given by the usual
definition of the interior of a set: all states around which a ball
of some positive radius exists such that every element inside
the ball belongs to D(HS). Clearly, these are the full-rank
states, as one can always perturb them in any parameter direc-
tion by a quantity small enough to get another full-rank state.
Any state ̺ ∈ D(HS) can always be expressed as a convex
combination of two non-full-rank states or, equivalently, as
many rank-1 pure extremal points as the rank of ̺.

The subset of separable states in D(HS), in turn, also forms
a closed convex set of non-zero volume [267, 403]. The char-
acterisation of its boundary is of course more intricate as that
of D(HS), because apart from containing non-full-rank sepa-
rable states it also contains full-rank separable states that are
arbitrarily close to being entangled. We have already sketched
pictorial representations of the geometry of D(HS) and its
subset of separable states in Sec. II B, such as for instance the
one in Fig. 3.

Pictorial as they are though, these simple considerations al-
low one to visualise some general features of the entangle-
ment dynamics. For instance, one concludes that any dy-
namic process whose steady state lies within the interior of
the set of separable states necessarily induces finite-time dis-
entanglement on all initial states. Because then the intersec-
tion between the state trajectory and the border of separability
necessarily happens at some finite time p < 1. This is the
case of both the independent channels D and GAD at infinite
temperature, whose unique final state is the maximally mixed
state. Furthermore, even for any non-null finite temperature
the steady state of the GAD channel lies in the interior set of
separable states, as shown by Yu and Eberly in Ref. [404]. So
finite-time disentanglement is always present there too.

In contrast, when the steady state of the evolution lies at the
boundary of the separability set, the dynamic trajectory may
never enter the interior of the separability set. Due to the com-
plexity of D(HS), an intuitive picture of when this happens is
in general difficult to grasp. For instance, for the independent
PD channel acting on any pure entangled state of the form
|Ψ〉 = α|00〉 + β|11〉, the evolved state is never full rank.
Therefore, the entire trajectory from p = 0 to p = 1 is tangen-
tial to the boundary of D(HS). In this case, disentanglement
is observed always at p = 1, as discussed in Sec. IV B. On the
contrary, for the independent PD channel composed with in-
dependent AD channel, the state is full rank for all 0 < p < 1,
goes towards the pure state |00〉, and disentanglement is ob-
served always at p < 1, as will be discussed in Sec. V B 1 for
the multipartite case. However, also for the independent AD
alone is the state full rank for all 0 < p < 1, as matrix (IV.1)

in Sec. IV A shows, and goes towards |00〉, but the disentan-
glement time depends on the initial coefficients α and β. In
Sec. V B 1, we will see that these generic conclusions remain
valid also in the multipartite scenario with initial states of the
form |Ψ〉 = α|00 . . . 0〉+ β|11 . . . 1〉.

Of course other types of dynamic trajectories are possible,
as for instance those induced by the collective decay of nearby
atoms, discussed in Sec. IV C. There, the dynamic trajecto-
ries may repeatedly enter and exit the separability set during
the whole evolution. Another example was given by Fine,
Mintert and Buchleitner, in Ref. [112], who, based solely on
geometrical arguments, showed that for any bipartite system
interacting with a collective thermal bath, there exists a finite
temperature for which the dynamics induces finite-time disen-
tanglement on all initial states. Their argument relies on the
fact that, for a sufficiently high temperature, the steady state
must be close enough to the maximally mixed state (the steady
state for infinite temperature) to also lie within the (finite-
volume) set of separable states. A detailed account of the pos-
sible trajectories was given by Drummond and Terra Cunha in
Refs. [130, 148].

2. Concentration of entanglement trajectories

In Ref. [405], Hayden, Leung, and Winter showed that if
one samples pure states at random from the uniform Haar dis-
tribution11, with very high probability the sampled state is
highly entangled in any bipartition. In addition, this proba-
bility increases extraordinarily fast with the system size. That
is, the distribution of entanglement on the space of pure states
concentrates very fast around the maximally entangled states.
Following them, in Ref. [136], Tiersch, de Melo and Buch-
leitner showed that for entanglement measures that abide by
a strong form of continuity known as Lipschitz continuity, the
entanglement trajectories of pure random states under any ar-
bitrary completely positive trace-preserving channel concen-
trate around the mean entanglement, with the average taken
after the evolution under the same map.

More precisely, a function E is said to be Lipschitz con-
tinuous if there exists a constant ηE > 0, called the Lipschitz

constant of E, such that, for all ̺, σ ∈ D(HS),

|E(̺)− E(σ)| ≤ ηE ||̺− σ||, (IV.17)

where “|| ||” stands for the trace norm, as usual. The rela-
tive entropy of entanglement (II.50) or the negativity (II.52),
studied in Sec. II C, are Lipschitz continuous entanglement
measures, for instance [406].

From (IV.17), and by the contraction property of the
trace norm, i.e. the fact that it is non-increasing under any

11 The Haar distribution is the uniform probability distribution over the pure

state vectors. Thus, sampling from this distribution renders pure states

randomly distributed in a uniform way over all the space of pure states

vectors. It defines also a metric, the Haar measure, which is the unique

uniform measure on the space of pure state, i.e. the only one invariant

under any unitary transformation.
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Figure 11. Evolution of the negativity distribution for the bipartition

of the first qubit versus the others. For N = 3 or 5, 100000 states

were randomly chosen from the uniform distribution, whereas, for

N = 7, 30000. In all cases all qubits undergo independent PD chan-

nels with dephasing strength p. For all p, the concentration around

the mean gets sharper as the number of qubits grows. Adapted from

M. Tiersch, F. de Melo and A. Buchleitner, J. Phys. A: Math. Theor.

46, 085301 (2013).

completely-positive trace-preserving channel [191], one im-
mediately gets that

|E(E(|Ψ〉〈Ψ|))−E(E(|χ〉〈χ|))| ≤ ηEκE |||Ψ〉〈Ψ|− |χ〉〈χ|||;
(IV.18)

where κE ≥ 0 is a Lipschitz-like constant, but now for the dis-
tance between any two states after the action of the channel E .
When the entanglement decay of state |χ〉 under E is known,
inequality (IV.18) allows one to estimate the trajectory of the
entanglement of |Ψ〉 under E , and vice versa. Note that the
smaller the distance between the initial states, the better the
estimate. In this way, instead of calculating the entanglement
of a given state, one can look for a nearby state with some
particular symmetry due to which the entanglement evalua-
tion happens to be simpler, and then exploit (IV.18).

Furthermore, (IV.18) gives the necessary ingredient to ap-
ply Levy’s Lemma (see for instance [407]), which dictates
how Lipschitz continuous functions concentrate around their
mean when their argument is sampled randomly. When ap-
plied to entanglement dynamics, one sees an exponential con-
centration around the average entanglement at any time and
for any trace-preserving CP map. More precisely, for any
ǫ > 0 and total system dimension d, the authors obtain the

bound

Pr
(∣
∣E[E(|Ψ〉〈Ψ|)]− 〈EE〉

∣
∣ > ǫ

)
≤ 4e

−C 2d−1

4η2
E

κ2
E

ǫ2

, (IV.19)

where 〈EE〉 :=
∫
dψE[E(|ψ〉〈ψ|)] is the entanglement of

E(|ψ〉〈ψ|) averaged over all |ψ〉 weighted with the uniform
Haar measure dψ, and C is a positive constant that can be
taken as (24π2)−1 [406]. Bound (IV.19) tells us that the prob-
ability that, for a randomly chosen |Ψ〉, E[E(|Ψ〉〈Ψ|)] devi-
ates from 〈EE〉 by more than ǫ, is exponentially small in d and
ǫ2. Thus, the average 〈EE〉 defines the typical entanglement
trajectory, i.e. the one that pure random states follow with the
highest probability. Moreover, for large enough d, all random
states follow essentially the same entanglement trajectory, so
that knowing the entanglement dynamics of a single typical
state is sufficient to infer, with an exponentially small failure
probability, that of any other typical state. Figure IV I 2 de-
picts the evolution of the distribution of negativities for the
bipartition of the first qubit versus the rest, for systems of dif-
ferent number of qubits under independent PD channels. A
clear tendency to concentrate around the mean as the system
dimension grows can be seen there.

V. THEORY OF OPEN-SYSTEM DYNAMICS OF

ENTANGLEMENT: MULTIPARTITE SYSTEMS

In the multipartite scenario, the system may have arbitrarily
many constituents. In such contexts, system isolation is even
more strenuous and decoherence effects can by no means be
neglected. On the other hand, in most quantum optical imple-
mentations of multipartite quantum systems, the spatial sepa-
ration among the different particles is such that each subsys-
tem interacts, up to good approximation, locally with its own
environment, and that the different environments do not inter-
act with one another. This type of noise is described by inde-
pendent maps, as defined in Sec. III C 1, and is certainly the
best-understood case. This is the case we mainly cover in this
section. In the next section, however, we discuss some exam-
ples of experimental studies with collective noise processes.

In this section, we have opted for classifying each differ-
ent main subject into a single subsection. This means that
papers treating different subjects can be repeatedly acknowl-
edged through different subsections, and that chronological
order is sometimes violated. Before diving into the details of
multipartite-entanglement decay though, we first briefly intro-
duce some basic definitions of multipartite-entangled states,
as well as some basic facts of Pauli maps. The familiarised
reader may skip the following subsection. Finally, through-
out the section, unless explicitly specified, we consider exclu-
sively qubit systems.

http://dx.doi.org/10.1088/1751-8113/46/8/085301
http://dx.doi.org/10.1088/1751-8113/46/8/085301


37

A. Preliminaries

In 2000, Dür, Vidal, and Cirac realized [203] that the three-
qubit W state

|W3〉 .=
1√
3

(
|001〉+ |010〉+ |100〉

)
(V.1)

and Greenberger-Horne-Zeilinger (GHZ) state [200]

|GHZ3〉 .=
1√
2

(
|000〉+ |111〉

)
, (V.2)

already defined in Sec. II A, cannot be transformed into one
another by SLOCC operations, discussed in Sec. II B 6. Fur-
thermore, they realized that any genuinely-tripartite entan-
gled pure state of three qubits can be transformed via some
SLOCC into either one of these two states. They thus re-
ferred to the W and the GHZ types of entanglement as two
inequivalent classes of genuinely-multipartite entanglement.
In fact, such fundamental inequivalence makes itself mani-
fest when one considers the reaction of both families to noise.
The extremal example is provided when the states are subject
to particle-loss noise. Suppose the system, initially in either
|W〉 or |GHZ〉, looses one particle, mathematically described
by tracing that particle out. Since both states are symmetric
with respect to the exchange of particles, it does not matter
which particle is traced out. For the W state, the remaining
two qubits end up in ̺ = 1

3

(
|00〉〈00| + 2|Ψ+〉〈Ψ+|

)
, where

|Ψ+〉 = 1√
2
(|01〉 + |10〉), as defined in (II.4). The reduced

two-qubit state ̺ is NPT. Therefore, it is entangled. On the
other hand, for the GHZ state, the remaining qubits goes to
the separable state 1

2

(
|00〉〈00|+ |11〉〈11|

)
. This simple exam-

ple illustrates that W-type entanglement bears a sort of built-in
robustness as compared to the GHZ type, something that, as
we will see in the forthcoming subsections, is also manifest
against other types of noise.

In addition, the number of inequivalent classes of multipar-
ticle entanglement grows very rapidly with the system size
(see Ref. [408], where the SLOCC classification for pure ar-
bitrary N -qubit states has been recently worked out, and ref-
erences therein). This makes the characterization of multipar-
tite entanglement decay an even harder problem than the bi-
partite case. In what immediately follows, we introduce only
the most popular families of genuinely-multiqubit entangled
states.

1. GHZ, generalized GHZ, and generalized GHZ-diagonal states

GHZ states provide simple models of the celebrated
Schrödinger-cat state [2, 55], they are also crucial resources
for multipartite quantum communication protocols and dis-
tributed computing problems [409–411], and have been ex-
perimentally produced with up to 14 trapped ions [57] and
up to 8 photons from parametric down-conversion [67, 69].
As mentioned before, GHZ states were originally introduced
by Greenberger, Horne, and Zeilinger in Ref. [200] for three

qubits. As already defined in (II.9), they straightforwardly ex-
tend to N qubits as:

|GHZN 〉 .= 1√
2

(
|00 . . . 0〉+ |11 . . . 1〉

)
. (V.3)

Any local unitary spin-flip does not alter the class of entangle-
ment. Thus, formally, the superposition (|k〉+|k̄〉)/

√
2, where

0 ≤ k ≤ 2N−1−1 is to be understood in binary representation
inside the kets, and k̄

.
= 2N − 1 − k is its bit-wise comple-

ment, follows the spirit of the GHZ construction in precisely
the same manner. If, in addition, we include possible phase
differences of π, distinguishing states of even and odd parity,
we arrive at the GHZ basis, of elements

|ψ±
k 〉

.
= (|k〉 ± |k̄〉)/

√
2. (V.4)

Since they form a complete orthonormal basis, any convex
combination of them renders a diagonal state in the basis.
Nevertheless, the term GHZ-diagonal states is typically re-
served to only a particular form of combination [238, 412]:

ρ =
2N−1−1∑

k=0

(
E+
k |ψ+

k 〉〈ψ+
k |+ E−

k |ψ−
k 〉〈ψ−

k |
)
, (V.5)

with E+
k ≡ E−

k for all k 6= 0. The coefficients E±
k represent

the probabilities with which each GHZ state (V.4) appears in
the mixture, and are therefore positive and sum up to one.
These states play an important role in the derivation of lower
bounds for the entanglement of arbitrary N -qubit density ma-
trices, as will be shown in the following. Mixtures (V.5) have
the peculiarity that their matrix representation in the compu-
tational basis has only one non-null off-diagonal coherence
element:

∆
.
= 〈00 . . . 0|ρ|11 . . . 1〉 = E+

0 − E−
0 . (V.6)

This inherent symmetry makes these states remarkable for
several reasons. First, it allows for a complete characteriza-
tion of their entanglement and distillability properties. For all
states of the form (V.5), the following hold [238, 412, 413]:

• (i) PPT-ness of any bipartition is necessary and suffi-
cient for biseparability in the bipartition;

• (ii) biseparability of all bipartitions implies full separa-
bility;

• (iii) necessary and sufficient for the distillation of a
pure maximally entangled state between any two dis-
joint blocks of qubits is that each and all of the bipartite
splits of the N parts for which the two blocks lie on
opposite sides of the split are NPT.

An immediate consequence of property (iii) is that Criterion
15, studied in Sec. II B 8, which gives a necessary condition
for genuine multipartite distillability of arbitrary states, be-
comes also sufficient for states (V.5). The same happens, of
course, for the extension of Criterion 15 for blockwise M -
party distillability. For properties (i)-(iii), the evaluation of
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PPT-ness is crucial. Fortunately, also this evaluation simpli-
fies enormously for these states. Each 1 ≤ k ≤ 2N−1 − 2
naturally gives a bipartite split, defined by the set of zeros ver-
sus the that of ones in the binary representation of k. With this
identification, PPT-ness evaluations for reduce to:

bipartition k of state (V.5) is PPT ⇔ Ek ≥ ∆/2. (V.7)

Second, it holds that [238, 412, 413]

• (iv) any arbitrary N -qubit density matrix ̺ can be de-
cohered to the form (V.5) without changing any of the
diagonal elements Ek or the off-diagonal element ∆ by
a sequence of fully local operations.

This property allows one to lower-bound the entanglement
and distillability properties of arbitrary states in terms of
those of their locally-dephased GHZ-diagonal correspondent.
That is, since neither entanglement nor distillability can in-
crease under LOCCs, one arrives at the following criterion
[238, 412, 413].

Criterion 16 (Multipartite distillability (sufficient)) If, for

an arbitrary N -qubit state ̺, Ek > ∆/2 for every biparti-

tion k of M given subsets of qubits, with 2 ≤ M ≤ N , then

the state is blockwise M -party distillable with respect to the

M -partition. In addition, if ̺ is of the form (V.5), then the

converse implication is true too.

A further generalization of (V.4) consists of allowing for
different amplitudes, which defines the generalized GHZ

states [143, 167]

|ψ±
k (α, β)〉

.
= α|k〉 ± β|k̄〉, (V.8)

with α and β any complex amplitudes such that |α|2 + |β|2 =
1. Because α is not necessarily equal to β, one now does
not run into redundancies by letting k run from 0 to 2N − 1,
instead of 2N−1 − 1 as in (V.4) and (V.5). So, in (V.8), one
has 0 ≤ k ≤ 2N − 1 and k̄

.
= 2N − 1− k. For each α and β,

the 2N+1 generalized GHZ states (V.8) form an over-complete
non-orthogonal basis of HS . Arbitrary mixtures of them have
in turn been dubbed generalized GHZ-diagonal states [167].

ρ =

2N−1∑

k=0

(
E+
k |ψ+

k (α, β)〉〈ψ+
k (α, β)|

+ E−
k |ψ−

k (α, β)〉〈ψ−
k (α, β)|

)
, (V.9)

as they generalize GHZ-diagonal states (V.5) (E+
k and E−

k are
no longer necessarily equal for all k 6= 0) . In contrast to the
latter, the computational-basis matrix representation of (V.9)
can have all the anti-diagonal elements different from zero.
However, as we discuss in Sec. V B 6, analytical scaling laws
for the decay under independent noise of the entanglement in
their bipartitions can still be derived [167]. Furthermore, their
genuine-multipartite entanglement can also be fully charac-
terized, since the necessary Criterion 12, discussed in Sec.
II B 4, becomes also sufficient for generalized GHZ-diagonal
states [224]. Its full N -qubit version takes the following form
[224, 225]:

Criterion 17 (Biseparability of N qubits (GHZ)) If a N -

qubit state ̺ is biseparable, then

D
|GHZN 〉(̺) ≤

2N−1−1∑

k=1

√
̺k̺k, (V.10)

where D
|GHZN 〉(̺)

.
= |〈00 . . . 0|̺|11 . . . 1〉|, ̺k .

= 〈k|̺|k〉,
and ̺k

.
= 〈k|̺|k〉. In addition, if ̺ is of the form (V.9), then

the converse implication is true too.

Notice that all the diagonal matrix elements appear in the sum
except for the ones corresponding to 0 (k = 0) and N (k =
2N − 1) excitations. As in the three-qubit case of Sec. II B 4,
the above criterion is valid for all states, and the presence of
|GHZN 〉 just makes reference to the fact that inequality (V.10)
is violated specially by states in the vicinity of |GHZN 〉.

Criterion 17 is more powerful than Criterion 16 above in
that it addresses multipartite entanglement, instead of distil-
lability addressed by the latter. Both criteria however bear
the common advantageous property that only the diagonal el-
ements, plus a single off-diagonal element, of the density ma-
trix are required for their evaluation. This precisely has been
the crucial feature that enabled to use these criteria in practice
to, for instance, corroborate the presence of both multipartite
entanglement and distillability in experimental GHZ states of
N as high as 14 [57], as described in Sec. VI H.

2. Basics of independent maps on generalized-GHZ states

It is immediate to check that the computational-basis matrix
representation of the state ̺ resulting from action of any inde-
pendent Pauli channel on a pure state |ψ±

k (α, β)〉 satisfies the
following: (i) no off-diagonal element increases its absolute
value; and (ii) every diagonal element ̺k is equal to its com-
plementary element ̺k, for all 0 ≤ k ≤ 2N − 1. This means
that these single-qubit channels always dephase generalized
GHZ states into GHZ-diagonal states12. This simple obser-
vation turns out to be of great help in the characterization of
GHZ-entanglement dynamics under physically-relevant types
of noise.

Any GHZ-diagonal state can be decomposed in the conve-
nient fashion

ρ = Eent̺ent + Esep̺sep , (V.11)

where Eent and Esep are non-negative probabilities that sum up
to 1, ̺ent is some entangled state, and ̺sep is some separable
state diagonal in the computational basis. For the particular
cases of depolarizing (D) and phase-damping (PD) channels
the calculation is simple [167] and yields in both cases Eent =
(1− p)N and ̺ent = |ψ±

k (α, β)〉〈ψ±
k (α, β)|.

On the other hand, for the generalized amplitude damping
(GAD) channel, whereas the first statement above is true in

12 This is not to be mistaken for property (iv) of Sec. V A 1, for here the values

of the diagonal and off-diagonal elements do in general change.
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any temperature regime, the second is not, as the relation be-
tween the populations of |k〉 and |k̃〉 varies with the temper-
ature. Still, it turns out [167] to be possible to decompose
any pure state |ψ±

k (α, β)〉 under independent GAD noise as in
(V.11). The expressions for the corresponding coefficient and
state, EGAD

ent and ̺GAD
ent , respectively, are a bit cumbersome but

their calculation is detailed in Ref. [167].

3. Graph and graph-diagonal states

Graph states [414, 415] are quantum states associated to
mathematical graphs. They constitute an important class of
genuinely multipartite entangled states with multiple applica-
tions in quantum information and communication. The most
popular examples are the cluster states, which have been iden-
tified as universal resources for measurement-based one-way
quantum computation [416, 417]. However, other members
of this family can be used as codewords for quantum error
correction [418], to implement secure quantum communica-
tion protocols [419, 420], or to simulate the entanglement
distribution of random states [421], for instance. Moreover,
GHZ states (V.3) constitute also a particular example of this
general family, as they are local-unitarily equivalent to the
graph states associated to both the fully-connected or the star-
like graphs [414, 415]. For all these reasons, a great effort
has been made both to theoretically understand their proper-
ties [414, 415] and to create and coherently manipulate them
experimentally [60, 61, 422–424], including the realization of
different graph states of up to 14 ions [57] or 8 photons [67–
69].

A mathematical graph G ≡ G(V,E) ≡ {V, E} is defined by
a set V of vertices, or nodes, and a set E of edges connecting
pairs of vertices in V . Examples of such graphs are shown in
Figs. 15 and 16. To every mathematical graph we associate
a physical graph state, operationally defined for qubits as fol-
lows. To each vertex i ∈ V we associate a qubit, we initial-
ize all N qubits in the product state |g(V)0

〉 .
=

⊗

i∈V |+i〉,
being |+i〉 .

= (|0i〉 + |1i〉)/
√
2, and, to all pairs {i, j} of

qubits joined by an edge, we apply a maximally-entangling
controlled-Z (CZ) gate, CZij = (|0i〉〈0i| ⊗ 11j + |1i〉〈1i| ⊗
Zj) ⊗ 11ij , with 11j and 11ij the identity operators on qubits
j and all qubits but i and j, respectively. The result is the
N -qubit graph state [414, 415]

|G0 ... 0〉 .=
∏

{i,j}∈E
CZij |g(V)0

〉. (V.12)

There exists an alternative unambiguous definition in terms
of their parent Hamiltonians. Consider the N -qubit Hamilto-
nian

H = −1

2

N∑

i=1

∆iSi, (V.13)

where ∆i > 0 are arbitrary coupling strengths (in arbitrary
units). Operators

Si
.
= Xi ⊗

⊗

j∈Ni

Zj , (V.14)

with Xk and Zk the usual Pauli operators acting on qubit k,
and Nk the first neighbours of k, i. e. directly connected to
it by some edge, generate a group with respect to the operator
multiplication, called the stabilizer. We will abuse notation by
referring to the generators of the stabilizer group as stabilizer
operators. All N stabilizer operators have eigenvalues 1 and
−1 and commute with each other, so that their 2N common
eigenstates form a complete orthonormal basis of the N -qubit
Hilbert space in question. Thus, since ∆i > 0 for all i, Hamil-
tonian (V.13) has a unique ground state. Graph state (V.12)
happens to be the unique common eigenstate of all N stabi-
lizer operators (V.14) with eigenvalue 1, and so the unique
ground state of Hamiltonian (V.13) [414, 415]. The global
ground state of the composite Hamiltonian is the ground state
of each interaction term of (V.13). Any Hamiltonian with this
property is said to be frustration-free. The energy difference
between the first excited and the ground states of (V.13) is in
turn given by minj ∆j , which defines the energy gap of the
Hamiltonian.

Including |G0 ... 0〉, we label the 2N orthonormal eigen-
states of (V.13) by |Gµ〉. Subindex µ, without reference to
any individual qubit, represents the binary string of individual
subindices µ ≡ µ1 ... µN , as usual. These states are related
via the local-unitary transformation

|Gµ〉 .=
N⊗

i=1

Zi
µi |G0 ... 0〉, (V.15)

so they all possess exactly the same entanglement properties.
As mentioned, they define a complete orthonormal basis of
HS , called the graph-state basis for graph G. Any state diag-
onal in this basis defines, in turn, a graph-diagonal state:

ρ =
∑

µ

pµ|Gµ〉〈Gµ|, (V.16)

where pµ is some probability distribution. Any arbitrary N -
qubit state can always be decohered by some separable map
into the form (V.16) [425, 426].

Finally, in Ref. [226], Gühne et al. presented a neces-
sary and sufficient criterion for biseparability of four-qubit
1D-graph-diagonal states of a similar form as that of Cri-
teria 17 and 18. In addition, the authors showed that, for
four-qubit 1D-graph-diagonal, as well as N -qubit Y -graph-
diagonal, states, biseparability and PPT mixture are equiva-
lent. That is, for these family of states, Criterion 14 of Sec.
II B 6, necessary for biseparability, is also sufficient; so that
the solid red and dashed blue convex hulls in Fig. 1 collapse.

4. Basics of Pauli noise on graph-state and generalized-GHZ

entanglement

As mentioned in Sec. V A 3, every graph state (V.15)
is, by definition, eigenstate of generator (V.14) with eigen-
values siµ = 1 or −1. It follows then that Xi|Gµ〉 ≡
siµXi.Xi ⊗ ⊗

j∈Ni
Zj |Gµ〉 ≡ siµ

⊗

j∈Ni
Zj |Gµ〉 and

Yi|Gµ〉 ≡ siµYi.Xi ⊗ ⊗

j∈Ni
Zj |Gµ〉 ≡ siµ(−i)Zi ⊗
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⊗

j∈Ni
Zj |Gµ〉. This implies that any Pauli map E , defined

by Kraus operators (III.35), acting on graph states (V.12), or
graph-diagonal states (V.16), is equivalent to another, modi-
fied Pauli map Ẽ . The latter, in turn, possesses modified Kraus
operators K̃µ, which are obtained from Kµ by the substitu-
tions

Xi →
⊗

j∈Ni

Zj , and (V.17a)

Yi → Zi ⊗
⊗

j∈Ni

Zj , (V.17b)

and then regrouping repeated terms. Notice that different
Kµ’s often contribute to a single K̃µ. Since a Z operator act-
ing on any graph (or graph-diagonal) state always yields an-
other graph (or graph-diagonal) state, it is trivial to see that Ẽ
takes any initial graph (or graph-diagonal) state to a (another)
graph-diagonal state [105, 111]. For example, |G0〉 transforms
as

E|G0〉〈G0| ≡ Ẽ|G0〉〈G0| .=
∑

µ

p̃µ|Gµ〉〈Gµ̃|, (V.18)

where p̃µ is the probability corresponding to each K̃µ in the

modified map Ẽ . The explicit dependence of p̃µ with the prob-
abilities of each Kraus operator in E can be worked out and
takes a rather simple form (see Sec. II.B.1 of Ref. [427]).

In addition, the equivalence also holds for the generalized-
GHZ family: Pauli maps take states (V.8) and (V.9) into mod-
ified generalized GHZ-diagonal states [167].

5. Local dephasing and thermalization as equivalent mechanisms

for graph states

When the Pauli channel corresponds to independent de-
phasing, a curious effect takes place. Namely, the indepen-
dent phase-damping channel EPD always drives graph states
towards a thermal state. More precisely, the thermal graph
state ̺T

.
= e−H/T /Tr

(
e−H/T

)
at temperature T (in units of

Boltzmann constant), with H the graph Hamiltonian (V.13),
is equivalent to the independently-dephased graph state

ρT ≡ EPD|G0 ... 0〉〈G0 ... 0|. (V.19)

Here, |G0 ... 0〉 is the graph state (V.12) and EPD ≡ EPD
1 ⊗

. . . ⊗ EPD
N , with EPD

i the single-qubit PD channel on qubit i
with dephasing strength

pi ≡
2

1 + e∆i/T
. (V.20)

The equivalence was first reported by Raussendorf et al., in
[428], and Kay et al., in [429], for the case of constant cou-
plings ∆i ≡ ∆ for all i, and later by Cavalcanti et al., in
[155], for the arbitrary-coupling case. It can be straight-
forwardly demonstrated by expanding ρT in the eigenba-
sis {|Gµ〉} of Hamiltonian (V.13) and explicitly evaluating
EPD|G0 ... 0〉〈G0 ... 0| in terms of the Kraus decomposition of

the PD channel, given in Table I, and with the help of relation-
ship (V.15).

The equivalence extends analogously to continuous-
variable graph states under independent diffusion along the
q quadrature in phase space, which plays the role of the Z
quit direction, as reported by Aolita et al. in [157]. It con-
stitutes a connection between the processes of thermalization
and independent dephasing.

6. W and Dicke states

W-states (II.10) describe N spin-1/2 particles with a sin-
gle excitation coherent and equiprobably shared among all
N pairs. They can be used to solve distributed computing
problems in quantum networks [411] and have been experi-
mentally generated with up to N = 8 trapped ions [56] and
N = 4 photons [64]13. In addition, apart from their robustness
against particle loss, they can feature more robust violations
(against noise) of Bell inequalities than the GHZ states [430].
Over the forthcoming subsections, we discuss how this intrin-
sic robustness typically also applies for their entanglement.

The three-qubit definition (V.1) extends straightforwardly
to the N -qubits as (II.10):

|WN 〉 .= 1√
N

∑

l

|Pl(00 ... 01)〉, (V.21)

where Pl(00 ... 01) is the l-th permutation of the bit string
00 ... 01, and the summation goes over all possible permuta-
tions.

On the other hand, definition (V.1) can not only be extended
to arbitrary N , but also to the case of arbitrary number k < N
of excitations. This gives the so-called symmetric Dicke states
[431] of k excitations

|DickekN 〉 .= 1
(
N
k

)

∑

l

|Pl(00 ... 0︸ ︷︷ ︸

N−k

11 ... 1
︸ ︷︷ ︸

k

)〉. (V.22)

Dicke states are simultaneous eigenstates of the squared total
angular momentum operator J2 .

= (J1 + J2 + J3)
2, of max-

imal eigenvalue N
2 (

N
2 + 1), with Ji

.
= 1

2

∑N
j=1 σ

i
j (we take

~ ≡ 1), and of the total Z angular momentum operator J3,
with eigenvalue (N − 2k)/2. They have been experimentally
produced with up to N = 6 photons [64]. Of course, W states
are Dicke states of a single excitation.

Biseparability necessary Criterion 13, tailored to test for
genuine multipartite entanglement in the vicinity of three-
qubit W states, can also be extended to four-qubit W and
Dicke states [224]. These give the following.

13 In atomic-ensemble-based quantum memories, single photons are collec-

tively stored among about 109 atoms, in superpositions similar to W states

but with non-equal amplitudes. Such quantum memories have been exper-

imentally demonstrated in for instance Refs. [51–53].



41

Criterion 18 (Biseparability of 4 qubits (W and Dicke))

Any 4-qubit biseparable state ̺ fulfills

D
|W4〉(̺) ≤

∑

|k|=2

√
̺0000̺k +

∑

|k|=1

̺k, (V.23)

as well as

D
|Dicke24〉(̺) ≤ √

̺0000̺1111 +
∑

|k|=1,|l|=3

√
̺k̺l +

3

2

∑

|k|=2

̺k,

(V.24)
where D

|Ψ〉(̺) is the sum of the absolute values of the off-

diagonal elements in the upper triangle of density matrix ̺
for which the corresponding matrix entries in |Ψ〉〈Ψ| are not

null, and where ̺k
.
= 〈k|̺|k〉.

Violation of either (V.23) or (V.24) is a sufficient condition
for genuine 4-partite entanglement. Condition (V.23) is most
commonly violated in the vicinity of |W4〉, whereas (V.24) in
the vicinity of |Dicke24〉.

B. Decay of GHZ entanglement

1. Entanglement lifetime under local noise

The first study of the scaling behaviour with N of the en-
tanglement of multipartite systems under independent open-
system dynamics was performed in the seminal paper [101]
by Simon and Kempe. The authors analyzed multiqubit sys-
tems under the influence of single-qubit depolarization. They
studied the times at which the different bipartitions of W and
Dicke states of 3 and 4 qubits, as well as GHZ states of arbi-
trary N , become PPT, and the times of survival of entangle-
ment for spin-squeezed states [432, 433].

Since channel D drives GHZ states towards GHZ-diagonal
states, for which PPT-ness of all bipartitions implies separabil-
ity, as discussed in Sec. V A 1, the studies of [101] captured
the full-separability properties of independently depolarized
GHZ states. The authors noticed that the more balanced –i.e.
the closer to half-versus-half– a bipartite splitting is, the fur-
ther away from being PPT it is. This can be expressed in terms
of the negativity Negk(p) of a splitting of k versus N − k
qubits by the following identity

Neg1(p) ≤ Neg2(p) ≤ . . . ≤ NegN/2(p), (V.25)

for all depolarization strengths p. Therefore, the critical prob-
ability pD

c at which the fully balanced half-versus-half split-
tings become PPT, gives the disentanglement time, at which
the transition from entangled to fully separable takes place.
The authors found that such time is always finite (pD

c < 1)
and, curiously, that it grows with N .

Later on, Dür and collaborators performed an exhaustive
study of GHZ states under different models of independent
decoherence, briefly described in Ref. [105] and elaborated in
detail in [111]. Those studies focused on genuinely multipar-
tite aspects though, and are discussed in Sec. V B 2.

More recently, Aolita et al. derived, in Ref. [143], analyt-
ical expressions for the disentanglement times of generalized

GHZ states |ψ±
0 (α, β)〉 under channels D, PD and GAD, for

the purely dissipative and fully diffusive regimes, as a func-
tion of α, β and N . Under channel D, these states display
finite-time disentanglement for all α and β:

pD
c = 1−

(
1 + 4|αβ|2/N

)−1/2
. (V.26)

For PD, the authors found the disentanglement time

pPD
c = 1, (V.27)

for all parameter-regimes. That is, PD never induces a sudden
disappearance of entanglement, it drives the state to separabil-
ity only in the asymptotic limit t → ∞. On the other hand,
channel GAD does not map |ψ±

0 (α, β)〉 into GHZ-diagonal
states, but PPT-ness of any bipartite split can still be proven
to imply its biseparability [143]. Furthermore, for the purely
dissipative case of AD, PPT-ness of all splits still implies full
separability [143]. Thus, for AD, two regimes for the disen-
tanglement time pAD

c were encountered. For α ≥ β, entan-
glement vanishes only asymptotically, whereas for α < β,
disentanglement happens always at a finite time:

pAD
c = min{1, |α/β|2/N}. (V.28)

The heuristic explanation for these two different reactions be-
fore AD is the same as in the bipartite case discussed in Sec.
IV A. Only excited state |1〉 couples to a zero-temperature
reservoir, because all the vacuum can do is absorb excitations
from the system. Therefore, the larger the amplitude α of
|00 . . . 0〉, the weaker the effective coupling to the environ-
ment and the longer entanglement persists. In contrast, the
time pDiff

c at which |ψ±
0 (α, β)〉 under GAD in the fully dif-

fusive infinite-temperature limit becomes biseparable with re-
spect to all its bipartite splits is finite for all α and β:

pDiff
c = 1 + 2|αβ|2/N −

√

1 + 4|αβ|4/N . (V.29)

In addition, An and Kim studied, in Ref. [434], generalized
GHZ states (V.8) under the composed action of both PD and
AD simultaneously, and for different environment-coupling
strengths for each qubit. Also in this case, disentanglement
is always found to happen at a finite time.

It is clear from V.26, V.28, and V.29 that the critical value pc
increases with the number N or qubits. In the first two cases,
pc → 1 when N → ∞, that is, in this limit the entanglement
breaking time becomes infinite. On the other hand, in the dif-
fusive limit, pDiff

c → 3 −
√
5 when N → ∞, so one always

have a finite entanglement breaking time. These results imply
that, as opposed to coherence, the decay of entanglement does
not follow an exponential law.

As in the bipartite case, some geometrical intuition of when
finite-time disentanglement can arise comes from consider-
ing the topological structure of the set of density operators
D(HS), as discussed in Sec. IV I 1. There, we saw that any
dynamic process with a steady state in the interior of the sepa-
rability set necessarily induces finite-time disentanglement on
all initial states, since the intersection between the state trajec-
tory and the separability border must happen at some p < 1.
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We saw that this is the case for D and GAD, both at infinite
temperature as well as at any finite positive temperature.

We also mentioned that, in contrast, when the steady state
lies on the boundary of the separability set, the dynamic tra-
jectory may never enter the interior of the separability set and
an intuitive picture is not so straightforward. The same con-
clusions drawn in Sec. IV I 1 for PD and AD acting on the
bipartite state α|00〉 + β|11〉 hold also for the generalized
GHZ states |ψ+

0 (α, β)〉: On the one hand, for PD the state
is never full rank, so that the whole trajectory takes place
on the boundary of D(HS). So, disentanglement is always
asymptotic, at p = 1. On the other hand, for PD and AD si-
multaneously, the state is full rank for all 0 < p < 1, goes
towards pure state |00 . . . 0〉, and disentanglement happens at
p < 1. However, also for AD alone is the state full rank for
all 0 < p < 1 and goes towards |00 . . . 0〉, but the disentan-
glement time is determined by the initial state.

Finally, in the examples of D, AD (for β > α), and GAD
at infinite temperature, where finite-time disentanglement is
seen and analytical expressions are available, the disentangle-
ment times (V.26) and (V.29), as well as the vanishing time
of bipartite entanglement (V.29), all grow with the system’s
size14. This could be interpreted as the entanglement robust-
ness growing with N . We see, however, in the following sub-
sections, that this is actually far from being true.

2. Lifetime of genuine multipartite entanglement under local noise

Dür et al. provided in [105, 111] a new insight as to
how independently-depolarized GHZ states loose entangle-
ment. The authors found that the least robust bipartitions of
one qubit versus the rest become PPT at a critical time that
decreases with N . This time corresponds to the instant when
the state becomes separable with respect to the least stable bi-
partitions, and therefore sets an upper bound on the lifetime
of genuine N -partite entanglement. This bound revealed that,
in spite of the disentanglement time increasing with N , gen-
uine N -partite entanglement in GHZ states under local depo-
larization vanishes at a time that actually decreases with N .
The exact dependence of this critical p with N is given by the
solution of a polynomial equation of order N , which can be
numerically obtained efficiently.

With Criterion 17 (Sec. V A 1), the calculation of the exact
times at which GHZ states under independent noise cease to
display genuine N -partite entanglement became possible for
relevant noise types. For channels D, PD, and AD, for in-
stance, the diagonal elements ̺k and the off-diagonal element
〈00 . . . 0|̺|11 . . . 1〉 can be calculated explicitly [143] and in-
equality (V.10) be checked for. This immediately yields that
GHZ states under PD are biseparable only at the asymptotic
time (V.27), in the steady state, when they become fully sep-
arable too. In turn, the time of biseparability of GHZ states

14 On the other hand, for PD composed with AD, as studied in Ref. [434], for

the particular case of equal environment-coupling strengths, one can show

that the disentanglement time is independent of N .
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Figure 12. Complete entanglement classification of N -qubit GHZ

states under global white noise of strength p. The three differ-

ent regions correspond to markedly different entanglement proper-

ties: In the blue region (bottom), for 0 ≤ p ≤ pGWN
bs , the states

are genuine multipartite entangled. In the grey one (middle), for

pGWN
bs ≤ p ≤ pGWN

c , the states are no longer genuine multipartite

entangled but are still entangled with respect to each and all of their

bipartitions. Finally, in the yellow one (top), for pGWN
c ≤ p ≤ 1,

the states are fully separable. Even though quantitatively different,

the behavior is qualitatively similar to the one observed for indepen-

dent noise models, in the sense that the full-separability time grows

with N whereas the bi-separability one decreases with N . From O.

Gühne and M. Seevinck, New J. Phys. 12, 053002 (2010).

under D is again given by the solution of polynomial equa-
tion of order N , which can be efficiently solved for each N .
Finally, even though GHZ states under AD are not general-
ized GHZ-diagonal, and thus the criterion only gives a nec-
essary condition for biseparability, based on it, Gühne and
Seevinck derived the exact biseparability time [224]: pAD

bs =

(2N−1 − 1)−2/N .

3. Lifetime of genuine multipartite entanglement under global

noise

Criterion 17 made it also possible to complete the entangle-
ment classification of GHZ states under the collective depolar-
izing channel, also called global white noise (GWN). Already
in 2000, the critical time for full separability of these states
was known [238, 435] to be pGWN

c = (1 + 21−N )−1. With
Criterion 17, their time of biseparability can be immediately
obtained [224]: pGWN

bs = [2(1−2−N )]−1. The resulting classi-
fication is graphically represented in Fig. 12, where the three
regions of different entanglement properties, whose borders
are defined by pGWN

c and pGWN
bs , are plotted.

Finally, it is also interesting to note that a method to com-
pute the exact value of the geometric measure of entanglement
(II.51) for GHZ and linear-cluster states of arbitrary N under
collective dephasing is described in Ref. [436].

http://dx.doi.org/10.1088/1367-2630/12/5/053002
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4. Lifetime of blockwise M -party distillability under local Pauli

maps

In Ref. [111], Hein et al. also studied the vanishing time of
blockwise M -party distillable entanglement, with M < N ,
of N -qubit GHZ states subject to channel D. For blockwise
M -party distillability, the system is divided into M blocks of
qubits, each of which is treated as a single subpart of larger
dimension with respect to which LOCCs are defined, as dis-
cussed in Sec. II B 8.

Based on Criterion 16 (Sec. V A 1), the authors found that
the vanishing time of blockwise M -party distillability with
respect to any M -partitioning coincides with the disentangle-
ment time of the bipartition of the smallest of the M sub-
groups versus all the rest. For example, for M -partitionings
where the smallest subgroup is just a single qubit, the van-
ishing time of blockwise M -distillability coincides with the
upper bound on the time of biseparability mentioned in the
beginning of Sec. V B 2. This is due to the fact that the bipar-
titions of one qubit versus the rest are the first ones to disen-
tangle.

Apart from channel D, blockwise M -distillability of N -
qubit noisy GHZ states was studied by Bandyopadhyay and
Lidar in Ref. [437], for the case of arbitrary independent Pauli
maps. The authors found conditions under which the parity of
N can lead to differentM -distillability properties with respect
to those of independent depolarization.

5. Full dynamics of concurrence for few qubits under local noise

So far we have studied disentanglement times for differ-
ent types of entanglement, without regard of how entangle-
ment evolves before disentanglement. The first studies that
assessed the entire dynamics of entanglement were presented
by Carvalho et al. in Ref. [107]. There, GHZ and W states
under the influence of independent thermal baths, at zero and
infinite temperature, and purely-dephasing independent reser-
voirs were considered. An analysis of the entire evolution
from p = 0 to the disentangling time was numerically per-
formed for multiqubit systems of up to N = 7, using multi-
partite concurrence (II.49) as the entanglement quantifier. The
authors calculated decay rates for this concurrence, both in the
case of W or GHZ states. For W states, the scaling of the de-
cay rate with N depends on the specific noise type, and its
details are discussed in Sec. V D 1. For GHZ states, in con-
trast, the decay rate grows approximately linearly with N , re-
gardless of the specific noise model considered. This means
that, even with disentanglement times that increase withN , as
discussed in Sec. V B 1, the concurrence observed in [107] is
exponentially fragile. In Sec. V B 6, we see that, as a matter of
fact, the exponential fragility is actually an intrinsic feature of
GHZ entanglement under these local decoherence models, for
all entanglement measures. One should note, however, that
the decay rate does not faithfully describe the full dynamics
of these processes, since the decay is exponential with N but
approximately exponential with time only for short times.

6. Full dynamics of entanglement under local noise

In Refs. [143, 167], Aolita et al. studied the entire dynam-
ical evolution of N -qubit GHZ entanglement for arbitrary N .
The authors considered generalized GHZ [143, 167] and gen-
eralized GHZ-diagonal [167] states under the three paradig-
matic single-qubit channels, D, PD, and GAD at arbitrary tem-
perature. As entanglement measures, they considered the sim-
ple negativity in [143, 167], and generic convex entanglement
monotones in [167].

The authors showed [143], for all three channels, and for
any α and β such that αβ 6= 0, that the critical probability
pǫ at which the negativity becomes ǫ times the initial one,
Neg(pǫ) = ǫNeg(0), for any arbitrarily small real ǫ > 0,
scales as

pǫ ≈ −κ log(ǫ)/N, (V.30)

in the limit of large N , with κ = 1 for channels D and PD,
and κ = 2 for GAD. The presence of log(ǫ), instead of ǫ, in
(V.30) shows that the scaling law is sensitive more to the order
of magnitude of ǫ rather than to its exact value.

Specifically, the authors showed in [143] that the time at
which the entanglement in any bipartition becomes arbitrarily
small actually decreases with N , independently of finite-time
disentanglement happening earlier, later, or not happening at
all. For all practical purposes, what matters is not that entan-
glement does not vanish but that a significant amount of it is
left, either to be directly used, or to be distilled without an
excessively large overhead in resources. These physical con-
siderations imply that, for multi-particle systems, the amount
of entanglement can become too small to be a useful resource
long before it vanishes. That is, in general, the disentangle-
ment time is by itself not a valid figure of merit for the ro-
bustness of multi-particle entanglement [143]. The entire dy-
namics of entanglement, and specially the initial-time regime,
must be monitored.

The situation is illustrated in Fig. 13, where the negativity
NegN/2 of the most balanced half-versus-half bipartition is
plotted as a function of p and for different N . As discussed
already in Sec. V A 1, the negativity captures all the bipartite
entanglement content of generalized GHZ states under single-
qubit Pauli maps. In addition, even though generalized GHZ
states under GAD are not GHZ-diagonal (so that PPT-ness
does not imply biseparability), when all bipartite splittings be-
come PPT, these states can still be proven to be fully separable
[143]. So, negativity unambiguously detects the entanglement
of the states under scrutiny. The example of Fig. 13 shows an
initial decay rate that grows with N , in agreement with the
findings of Carvalho et al. discussed in Sec. V B 5. This is
in remarkable contrast with the behavior of the disentangle-
ment times, which also increase with N , as can be seen in the
inset of the figure, in agreement with the findings of Simon
and Kempe discussed in Sec. V B 1. Long before disentan-
glement, the entanglement is the closer to zero the larger N
is.

The observed decay is not a particularity of the negativity.
This was shown in Ref. [167], where the authors established
analytical upper bounds on entanglement decay, for all convex
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Figure 13. Negativity of the balanced half-versus-half bipartitions

(the most resilient ones) of generalized GHZ states under channel D,

as a function of depolarization strength p, for N = 4, 40 and 400.

In this graphic α = 1/3 and β =
√
8/3, but the same behavior is

featured for all other parameter choices, and also for channels PD

and GAD. The inset shows a zoom of the region in which the en-

tanglement of 4 qubits vanishes. Even though the entanglements of

both the 40-qubit and 400-qubit systems cross the one of 4 qubits and

vanish much later, they are many orders of magnitude smaller than

their initial value long before reaching the crossing point. Reprinted

figure with permission from L. Aolita et al., Phys. Rev. Lett. 100,

080501 (2008). Copyright (2008) by the American Physical Society.

entanglement measures, and again throughout the noisy evo-
lution. Specifically, for any generalized GHZ-diagonal state
ρ, they showed that

E(Eρ) ≤ (1− p)NE(ρ), (V.31)

for all 0 ≤ p ≤ 1, being E the D or PD channels acting in each
qubit with strength p. For pure generalized GHZ states, bound
(V.31) follows immediately from decomposition (V.11), con-
vexity, and the fact that E = 0 for all separable states. The
extension to generalized GHZ-diagonal states follows in turn
from linearity. In addition, bound (V.31) is tight, in the sense
that there is at least one convex entanglement measure, and
a state, that saturates it: For small p, or large N , negativ-
ity NegN/2 for GHZ states is given precisely by (1 − p)N

[143, 167]. This expression clearly shows that, for a fixed
value of p, the negativity decreases exponentially with N .

On the other hand, for channel GAD, at arbitrary temper-
ature (bath population n̄), the bounds of [167] are restricted
to pure generalized GHZ states and are not tight. Again,
they follow from decomposition (V.11). Their general form,
for ρ = |ψ±

k (α, β)〉〈ψ±
k (α, β)|, is given by E(EGADρ) ≤

EGAD
ent E(ρGAD

ent ); and a simplified version, without the intri-
cate dependence on α, β, and k of EGAD

ent and ρGAD
ent , is

E
(
EGADρ

)
≤

(

1− n̄

2n̄+ 1
p
)N

Emax, (V.32)

whereEmax is the maximal value of the entanglement measure
over all states [167].

It is important to emphasize that only the basic require-
ments of convexity and nullity of E over separable states is

necessary for bounds (V.31) and (V.32) to hold. For this rea-
son, the bounds apply not only to a very general family of en-
tanglement measures, including bipartite and genuinely mul-
tipartite, but also to quantifiers of resources for other phys-
ical tasks, as for instance non-locality-based [380, 438] or
quantum metrology protocols [380]. Thus, the exponential
fragility under local noise appears as an almost universal dy-
namic property of GHZ-type states. Other families of states
do not display such fragility. For example, W states are not ex-
ponentially sensitive to local noise, as discussed in Sec. V D 1;
and, for random pure states, the negativity of least-balanced
splits is numerically observed to violate bound (V.31) up to
N = 14, with a violation that increases with N [167]. We
shall see however, in the next Sec. V B 7, that there are some
particular but very relevant instances where GHZ correlations
turn out to be remarkably stable against local decoherence.

7. Resistance against local bit-flip noise

In the previous sub-subsection, we have seen that GHZ
states are exponentially fragile to independent channels as D,
PD or GAD at any temperature. This turns out not to be the
case for independent Pauli noise directed along the transver-
sal X direction, i. e., the single-qubit bit-flip channel EBF

defined in Sec. III C 2. In Ref. [439], Borras et al. numeri-
cally observed, up toN = 6, that GHZ states are considerably
more robust against EBF than against EPD. For the particular
case of N = 4, the authors even observed that GHZ states
are more robust to EBF than to any other channel local-unitary
equivalent to it, over a sample of 1000 random local-unitary
transformations. This was later formalized by Chaves et al., in
Ref. [380], where the following general bound was presented,

E
(
̺BF
N

)
≥ E

(
̺BF
N−1 ⊗ |0〉〈0|

)

...

≥ E
(
̺BF
2 ⊗ (|0〉〈0|)⊗N−2

)
. (V.33)

Here, E represents an arbitrary entanglement monotone and
̺BF
N

.
= EBF |GHZN 〉. Inequality (V.33) thus tells that the en-

tanglement of N -qubit GHZ states under independent BF is
at least as robust as that of N − 1-qubit GHZ states under the
same noise, for all N . It is in a sense a counterpart of inequal-
ities (V.31) and (V.32). Consider for instance the N -party dis-
tilability of EBF |GHZN 〉. Taking E as any quantifier of two-
qubit distillable entanglement, inequality (V.33) implies that
the N -party distillability of all GHZ states under independent
BF is at least as robust as that of the maximally entangled two-
qubit state |GHZ2〉 ≡ |Φ+〉 under the same noise, in contrast
to (V.31) and (V.32). Inequality (V.33) can also be extended
to any graph state [380].

In addition, Chaves et al. observed that the least-balanced-
bipartitions negativity of EBF |GHZN 〉 increases with N , ap-
proaching the N -independent value 1 − p, with p the bit-flip
strength, in the limit of large N . This behaviour remains even
for Pauli channels with small components along directions
other than X . Apart from entanglement, the authors also ana-
lyzed EBF |GHZN 〉 as resources for high-precision frequency

http://link.aps.org/doi/10.1103/PhysRevLett.100.080501
http://link.aps.org/doi/10.1103/PhysRevLett.100.080501
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estimation or non-locality based protocols. In both cases they
observed an exponential robustness enhancement for bit-flip
noise over phase-flip.

Finally, in Ref. [440], Chaves et al. extended these findings
to frequency estimation of systems described by a Hamilto-
nian proportional to σz and noise proportional to σx. They
showed that, optimizing the pulse duration, a supra-classical
precision scaling is possible with GHZ states. The robust-
ness of GHZ states against transversal noise is intuitively con-
nected to the efficacy of the repetition code [441] to correct
bit-flip errors (see also discussion in Sec. V C 4). This culmi-
nated in a recent series of papers [442–445], where the same
intuition is used to show that, using quantum error-correction,
Heisenberg-limited spectroscopy can be attained. That is, for
noisy phase evolutions with transversal noise, GHZ states can
be error-corrected so as to restore the maximum precision
scaling corresponding to a unitary evolution.

8. Resistance of blockwise GHZ entanglement for GHZ-encoded

blocks against local depolarization

In Refs. [378, 379], Fröwis and Dür considered concate-
nated GHZ states. The name “concatenated GHZ” is mo-
tivated by the notion of making block-wise GHZ states out
of blocks that are themselves GHZ states. Specifically, the
authors defined concatenated GHZ states as the usual GHZ
states (V.3) but where the computational-basis states |0〉 and
|1〉 are replaced by logical-qubit states |0〉L and |1〉L, given
by m-qubit GHZ states of different parity: |0〉L .

= |ψ+
0 〉 and

|1〉L .
= |ψ−

0 〉 (using the notation of (V.4)). Thus, eachm-qubit
block encodes a logical qubit, and the N -logical-qubit GHZ
state is composed of a total of mN physical qubits.

The authors considered the situation where all mN phys-
ical qubits undergo the independent channel D, and showed
that the coherence, distillability and entanglement at the logi-
cal level can be stabilized at the expenses of just a logarithmic
overhead at the physical level. More precisely, they showed
that even though all correlations among the logical blocks de-
cay exponentially N , as in the usual GHZ states, the decay
rate itself decreases exponentially with the block size m. So,
taking m = O

(
log(N)

)
physical qubits per logical qubit suf-

fices to “freeze” the decay at the logical level, i.e. to make the
blockwise coherence, distillability and entanglement, or even
the usefulness of the states for supra-classical metrology, in-
dependent of N for any fixed depolarization strength.

In Sec. V C 4, we derive equivalent logical-encoded noise
channels [446] with which this curious stabilization can be
understood as logical transversal dephasing on logical GHZ
states, reducing the problem to that discussed in Sec. V B 7.

C. Decay of graph-state entanglement

1. A direct multipartite distillation protocol under local

decoherence

The first studies on generic graph states under independent
decoherence were reported by Dür et al. in Ref. [425], and
later extended in Ref. [426] (see also Sec. X of Ref. [415]).
There, a direct genuine-multipartite entanglement distillation
protocol was introduced and theoretically probed in noisy sit-
uations. Direct distillation protocols are to be distinguished
from those based on bipartite purification, where one distills
pure maximally entangled states between all pairs of parti-
cles and then re-combine them with LOCCs into a genuinely
multipartite entangled pure state. The protocol of [425, 426]
is more efficient – in terms of conversion rates – than bipar-
tite distillation methods and outperforms their maximal target-
state fidelity when implemented with non-ideal LOCCs. It
is applicable to graph states associated to all two-colourable
graphs: all those whose vertices can be grouped together into
two subgroups (colours) such that every vertex has a different
colour from all its neighbours. The two-colour condition re-
stricts the number of edges in the graph, thus simplifying the
problem. These include for instance GHZ states, cluster states
in all dimensions, and various error-correction codewords.

The authors focused on the distillation thresholds, i.e. the
maximal noise strengths up to which the protocol still purifies,
for different models of noise. For channel D, they found that
the maximal p that linear-cluster (1D-graph) states can toler-
ate is essentially independent of N . Whereas it was found to
decrease exponentially with N for GHZ states (associated to
star-like and fully connected graphs, with connectivityN−1).
As discussed in Secs. V C 2 and V C 3, these two different be-
haviours, with respect to this specific graph-state distillation
protocol, turn out to represent an actually rather general fea-
ture of graph-state entanglement for several models of local
noise. Typically, graph-state entanglement decay rates do not
depend on N but rather on the connectivity, or degree, of the
associated graph.

2. Genuine N -partite distillability under local decoherence

In the previous subsubsection we discussed the direct dis-
tillability of multiparticle-entanglement under a specific distil-
lation protocol, and for the particular case of two-colourable
graphs under depolarization. It was also Dür and Briegel, in
Ref. [105], and Hein, Dür and Briegel, in Ref. [111], who first
reported studies on the disentanglement properties of general
graph states, and under more general noisy evolutions (see
also Sec. 10 of Ref. [415]). There, the authors studied the
lifetimes of multipartite distillability, not just with respect to
a specific distillation procedure.

Specifically, the authors derived lower and upper bounds on
the times at which any entanglement ceases to be distillable.
Three different upper bounds were derived for independent
thermal baths at zero and infinite temperature, and for inde-
pendent D, PD, and bit-flip channels. Two of these three up-
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Figure 14. Lower bound on the depolarisation strength pcrit, in

log scale, at which locally depolarized GHZ and 1D-, 2D-, and 3D-

cluster states cease to be distillable. For GHZ states, the exact van-

ishing time of N -party distillability discussed in Sec. V B 4 is also

displayed. For cluster states, the bound decreases with the dimen-

sion of the lattice, but are completely independent of the system size

N . For the GHZ case on the other hand, both curves decrease ex-

ponentially with N . This suggests that the robustness of graph-state

entanglement does not depend on the system size but only on the con-

nectivity of the associated graph. Reprinted figure with permission

from M. Hein, et al., Phys. Rev. A 71 032350 (2005). Copyright

(2005) by the American Physical Society.

per bounds constitute actually valid upper bounds also on the
disentanglement time, as they bound the times at which the
considered channels become entanglement-breaking. On the
other hand, a lower bound valid for independent Pauli maps
was derived based on an explicit purification protocol, which,
in contrast to the one mentioned in Sec. V C 1, distills ex-
clusively bipartite maximally-entangled singlet pairs between
any two pairs of qubits. We briefly describe this protocol in
the end of the sub-subsection. As discussed in Sec. II B 8, the
distillation of a maximally-entangled singlet pair between all
pairs of qubits is a necessary and sufficient condition for the
distillation of any genuinely multipartite type of pure-state en-
tanglement, including that of the initial graph state. In the con-
text of stability of entanglement as a resource, lower bounds
are of special importance, as they set lower limits to the max-
imal noise strengths that protocols can tolerate.

In Fig. 14, the above-mentioned lower bound on the life-
time pcrit is plotted as a function of N in logarithmic scale,
for initially-pure 1D-, 2D-, 3D-cluster and GHZ states under
the influence of independent D channel. For the GHZ states,
in addition, the exact vanishing time of N -party distillability,
given by the time at which the least robust bipartitions become
PPT, as discussed in Sec. V B 4, is also shown. For the clus-
ter states, the bound decreases with the dimension of the lat-
tice, and therefore the connectivity of the graph, but are com-
pletely independent on N . For GHZ states on the other hand,
both the bound and the exact disentanglement time strictly de-
crease with N and tend to zero as N −→ ∞. This suggests
a macroscopic robustness of multiparty distillability for graph
states with constant degree. In Sec. V C 3, we see indeed that
this is a universal reaction of generic graph-state entanglement
against the most common types of noise. Graph-state entan-

glement stability does not depend on the actual size of the
system but only on the connectivity of the associated graph.

Before switching to the next subject, we stop for a moment
to briefly explain the purification protocol considered here, as
it is also related to other bounds that we discuss in Sec. V C 3.
As seen in Sec. V A 4, any independent Pauli channel E act-
ing on a graph state is equivalent to that of another separable
map Ẽ with Kraus operators composed only of tensor prod-
ucts of Z and identity operators. The application of E thus
clearly commutes with that of local measurements along the
Z basis. Now, when all but two qubits in the graph are in-
dividually measured in Z basis, the remaining state of the
two unmeasured qubits is a pure maximally entangled state
[105, 111, 415]. The protocol is a sequential bipartite pro-
cedure, whose essence goes as follows. (i) Measure all but
qubits {k, j} of the noisy graph state along the Z basis. This
is equivalent to applying the measurements on the pure graph
state and then applying Ẽ . (ii) Trace out all but qubits {k, j}.
The resulting two-qubit state is a noisy entangled state be-
tween k and j. (iii) Distill a pure maximally entangled state
between qubits {k, j} by means of any standard two-qubit
purification procedure. (iv) repeat steps (i) through (iii) for
all pairs {k, j}. (v) Obtain an N -qubit pure graph state by
locally fusing the distilled maximally entangled pairs. The
lifetime of distillability with respect to this particular protocol
is given simply by the lifetime of two-qubit NPT-ness after
step (ii) minimized over all pairs {k, j}. In the case of per-
mutationally invariant states, however, as those used for Fig.
14, the minimization is not required. This lifetime defines the
(non-tight) lower bound plotted in the figure.

3. Full dynamics of entanglement under local noise

In the previous sub-subsections, the survival times of entan-
glement or distillability of decohered graph states were dis-
cussed. As discussed in Sec. V B 6 for the particular case of
GHZ states, survival times on their own are in general unable
to provide a faithful assessment about the state’s robustness.
The complete evolution must be studied to draw faithful con-
clusions on entanglement stability. A general framework for
the study of the complete dynamics of graph-state entangle-
ment under decoherence was introduced by Cavalcanti et al.,
in Ref. [146], and further developed by Aolita et al., in Ref.
[427]. There, the authors established a systematic method to
obtain lower and upper bounds for the entanglement of graph,
or (mixed) graph-diagonal, states affected by several models
of noise, including both independent and collective arbitrary
Pauli maps [146, 427], or independent thermal baths at ar-
bitrary temperature [427], throughout the evolution. These
bounds display the following properties:

• (i) They apply to all convex LOCC monotones, includ-
ing of course all convex bipartite or multipartite entan-
glement quantifiers.

• (ii) They bound the entanglement content of the whole
system in terms of that of a significantly smaller subsys-
tem consisting only of those qubits on the boundary of

http://link.aps.org/doi/10.1103/PhysRevA.71.032350
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Figure 15. Example of a mathematical graph associated to a phys-

ical graph state. An exemplary partition is displayed, by which the

system is split into three subparts: A (light blue), B (white), and C
(yellow). The vertices and edges in grey correspond to the boundary

qubits and the boundary-crossing edges, respectively. Reprinted fig-

ure with permission from D. Cavalcanti et al., Phys. Rev. Let. 103,

030502 (2009). Copyright (2009) by the American Physical Society.

the multipartition considered, requiring no optimization
on the full system’s parameter space.

• (iii) For all Pauli maps, lower and upper bounds coin-
cide, providing thus the exact entanglement evolution.

We briefly describe the bounds. Consider an arbitrary mul-
tipartition of the vertices in a generic N -vertex graph G(V,E).
For example, the graph showed in Fig. 15 has been split into
three parts A, B, and C. Every edge that crosses a subpartition
is a boundary-crossing edge, and any two vertices connected
by such edge are boundary vertices. The union of the set X
of all boundary-crossing edges and the set Y of all bound-
ary vertices constitutes in turn the boundary graph G(Y,X )

.
=

{Y,X}. An N -qubit graph sate ρ = |G(V,E)0〉〈G(V,E)0| un-
dergoes a noisy physical process, described by map E , during
a time t. We restrict first to Pauli maps. In this case, as dis-
cussed in Sec. V A 4, the evolved state ρ(t) ≡ Eρ is a graph-
diagonal state. We wish to calculate the correlations E(ρ(t))
among parts A, B, and C. We refer to E as entanglement, but
the only requirements that E is asked to satisfy are convex-
ity and LOCC-monotonicity, discussed in Sec. II C 2. So any

convex LOOC-monotone correlations are also covered by the
present formalism. For such calculation, it is convenient to
explicitly factor out all the CZ gates in ρ(t) that do not cor-
respond to a boundary-crossing edge, so that ρ(t), given by
(V.18), writes as

ρ(t) =
⊗

{i,j}∈E/X
CZij

∑

γ,δ

p̃γ,δ|G(Y,X )γ
〉〈G(Y,X )γ

|

⊗ |g(V/Y)δ
〉〈g(V/Y)δ

|
⊗

{k,l}∈E/X
CZkl. (V.34)

Here we have grouped together all individual indices µi inside
index-string µ of (V.18) corresponding to boundary and non-
boundary qubits into two new index-strings: γ and δ. Multi-
index γ accounts for all possible graph states |G(Y,X )γ

〉 as-

sociated to the boundary graph, whereas δ corresponds to all
product states

⊗

j∈Y Z
δj |g(Y)0

〉, with |g(Y)0
〉 .
=

⊗

i∈Y |+i〉.
Probability p̃γ,δ is the same as p̃µ in Eq. (V.18) with µ

.
=

(γ, δ). For all Pauli maps, its explicit form in terms of the
original probabilities in E is rather simple, and can be found
in Sec. II.B.1 of [427]. The key point here is to notice that the

CZ gates explicitly factored out in (V.34) are local unitary op-
erations with respect to the multi-partition of interest, and can
therefore be disregarded for the calculation of E(ρ(t)):

E(ρ(t)) ≡ E
(∑

γ,δ

p̃γ,δ|G(Y,X )γ
〉〈G(Y,X )γ

|

⊗ |g(V/Y)δ
〉〈g(V/Y)δ

|
)
. (V.35)

Now, since states {|g(V/Y)δ
〉} form an orthonormal basis

of the Hilbert space of the non-boundary subsystem V/Y , a
measurement in this basis provides full information about the
state of the non-measured boundary subsystem Y . Indeed,
for a measurement outcome δ, Y is projected into the state
∑

γ p̃γ,δ|G(Y,X )γ
〉〈G(Y,X )γ

|. The mixedness in Y with re-

spect to δ is removed. One then typically says that subsys-
tem Y is flagged by the measurement outcome of V/Y . The
resulting entanglement is then given by the average entangle-
ment over δ. In turn, since this measurement is an LOCC, the
entanglement can only decrease:

E(ρ(t)) ≥
∑

δ

p̃δE
(∑

γ

p̃(γ|δ)|G(Y,X )γ
〉〈G(Y,X )γ

|
)

.

(V.36)
The right-hand side gives the average entanglement over δ,
where p̃δ ≡ ∑

γ p̃γ,δ is the probability of measuring δ and
p̃(γ|δ) is the conditional probability of finding γ given that δ
takes place.

On the other hand, the convexity of E implies that (V.35)
cannot in turn be greater than the right-hand side of (V.36).
That is, the latter gives at the same time both an upper and a
lower bounds on E(ρ(t)), and therefore

E(ρ(t)) ≡
∑

δ

p̃δE
(∑

γ

p̃(γ|δ)|G(Y,X )γ
〉〈G(Y,X )γ

|
)

.

(V.37)
This expression reduces the calculation to the average entan-
glement over a sample of 2NV/Y states – one for each mea-
surement outcome δ of the non-boundary subsystem – of NY
(boundary) qubits, with N = NY + NV/Y . One trades thus
an optimization over the entire system space, which contains
O
(
2N

)
complex parameters, for at most 2NV/Y optimisations

over O
(
2NY

)
complex parameters each. This directly implies

an exponential reduction in the required computer-memory,
which, in turn, since each optimisation can be naturally paral-
lelized, can lead to significant reductions in computing time.

As an example, in Fig. 16, the exact value of the entangle-
ment of formation EF (ρ(t)) throughout the evolution is dis-
played for the bipartition of the first qubit versus the rest for
linear cluster states under independent D channel as a function
of p. In this case, since the boundary subsystem is composed
only of two qubits, for which the closed formula (II.47) for
EF can be applied, (V.37) leads on to EF (ρ(t)) without a sin-
gle optimisation. In addition, in the inset, the negativity of the
bipartition of one qubit versus the rest shown, for twelve- and
fourteen-qubit rectangular graph states under independent D,
is plotted as a function of p. A brute-force negativity calcula-
tion would involve diagonalizing a 214×214 = 16384×16384
matrix for each value of p. Whereas, with the help of (V.37),

http://link.aps.org/doi/10.1103/PhysRevLett.103.030502
http://link.aps.org/doi/10.1103/PhysRevLett.103.030502
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Figure 16. Exact entanglement of formation (EF ) in the partition

of the first particle versus the rest for linear clusters of 2 (black), 4

(grey) and 7 (red) particles undergoing independent depolarization

as a function of the noise strength p. The lower bound in dashed is

obtained by tracing the non-boundary system out and depends there-

fore only on the two boundary qubits. This shows that, for small p,

the entanglement in the considered partition is very robust against

cluster-length growth. No optimization was required for this plot.

From D. Cavalcanti et al., Phys. Rev. Let. 103, 030502 (2009). In-

set: Exact negativity of the bipartition shown versus p, for 14- (green

triangles) and 12-qubit (pink solid) rectangular cluster states under

independent depolarization. Reprinted figure with permission from

L. Aolita et al., Phys. Rev. A, 82, 032317 (2010). Copyright (2010)

by the American Physical Society.

each evaluation requires diagonalization of many (211) but
very small (dimension 23 × 23) matrices. The realization of
the entire negativity calculation, for all p shown, would have
been infeasible with the brute-force approach.

Also in Fig. 16, to assess the robustness of ρ(t) with the
system size, a lower bound to EF (ρ(t)) satisfied for all N is
displayed in dashed. This is obtained as in (V.36) but directly
tracing the non-boundary qubits out of (V.34), i.e. without
accessing any flag information. Then, the mixedness with re-
spect to index δ remains. The effective noise on the resulting
boundary-system state is then described by p̃γ ≡ ∑

δ p̃γ,δ .
For independent or collective D, or independent PD, channels,
among other Pauli maps [146], p̃γ depends only on the bound-
ary subgraph and, at most, its first neighbours, not on the total
system. This bound is thus independent on N , but introduces
in return a decrease in tightness. Still, it allows for a direct
assessment of the entanglement robustness merely by inspec-
tion of the graph’s connectivity, analogous to the bounds of
Fig. 14.

We notice that, since Pauli maps on graph-diagonal states
also render graph-diagonal states, all the arguments exposed
so far are also valid for this class of initial mixed states. Fur-
thermore, since any arbitrary state can be dephased towards a
graph-diagonal state by means of an LOCC [426], (V.37) can
help lower-bound the entanglement content of arbitrary mixed
states.

Finally, it is important to mention that, apart from Pauli
maps, the whole formalism extends to other maps E that do
not admit the replacement E ↔ Ẽ , as described in Sec. V A 4,

but for which the commutation of E with the non-boundary
CZ gates still yields a separable map. In those cases, de-
spite of in general no longer coinciding, the lower and upper
bounds obtained are still highly non-trivial. Remarkably, a
crucial family of channels for which this is the case is inde-
pendent GAD at all temperatures. The bounds for this family
are studied in detail in Ref. [427].

4. Blockwise entanglement and effective logical channels for

stabilizer-state encoded logical states under local depolarization

In Ref. [111], Hein et al. studied the decay of logical entan-
glement in blockwise multipartite entangled states of logical
qubits made out of particular stabilizer states, which are local
unitarily equivalent to graph states. They considered the situa-
tion where all physical qubits in each block undergo indepen-
dent depolarization of strength p. For logical qubits encoded
into 5-qubit optimal error-correction codewords [228, 447],
they showed that, after error-correcting, the physical noise is
also described by a D channel but at the logical level, i. e., by
a logical channel D acting independently on each block with
a logical depolarization strength pL. They showed that, for
small p, the effective strength pL is smaller than the physical
one p. In addition, the authors also considered concatenated
encodings with k levels of concatenation. These consist of
logical qubits encoded into codewords made out of also of
logical qubits, at an inferior concatenation level, themselves
also encoded into codewords, and so an and so forth of to
the lowest concatenation level k. In this case, always for the
5-qubit encoding, they obtained that the logical depolariza-
tion strength pL(k) decreases, for small physical strength p,
doubly-exponentially with k.

These studies have recently been extended, and further
formalized, by Kesting, Fröwis, and Dür, in Ref. [446].
There, for logical qubits encoded into arbitrary stabilizer-
state blocks, and for physical qubits experiencing indepen-
dent Pauli-channel noise, the authors provide a procedure to
derive explicit expressions for the logical effective channel,
after error-correcting, acting on the block. They particularize
this procedure to two cases. In the first one, they consider ar-
bitrary Pauli noise at the physical level and logical qubits en-
coded into the m-qubit repetition codewords capable of cor-
recting bit-flip errors. There, the equivalent channel is also
a Pauli map at the logical level, but, interestingly, with the
X (bit-flip) and Y (bit-phase-flip) components exponentially
damped with m, whereas with the Z (phase-flip) component
linearly increased with m. In the second one, they consider
again independent depolarization and a 5-qubit optimal error-
correction encoding, and reproduce similar results as in [111].

Since the equivalent channels act on the logical qubits
exactly as the corresponding physical channel on physi-
cal qubits, one can use them to obtain separability or M -
distillability bounds among different blocks of multipartite
blockwise entangled states with all the the known techniques
for the case without encodings. When the logical noise
strength is lower than the physical one, one obtains of course
higher blockwise entanglement and M -distillability lifetimes.

http://link.aps.org/doi/10.1103/PhysRevA.82.032317
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Importantly, it is interesting to note that, even though the
equivalent channels are obtained after error correcting, it is
the passive logical encoding, rather than the active error cor-
rection, what actually slows down decoherence at the logical
level. This is due to the fact that the error-correction step (syn-
drome measurement and correction) is done locally within
each logical block. It is an LOCC with respect to the given
M -partition and therefore cannot be responsible for the block-
wise entanglement or M -distillability increases. With this in
mind, we see that the effective exponential damping of logi-
cal bit-flip errors obtained in [446] for the repetition code is
the origin of the robustness of GHZ states against transver-
sal dephasing [380] discussed in Sec. V B 7. In turn, the ro-
bustness of blockwise GHZ entanglement for GHZ encoded
logical qubits [378, 379], discussed in Sec. V B 8, can also
be understood in a similar way. The GHZ encoding can be
thought of as the m-qubit repetition encoding against bit flip,
|0〉L .

= |0〉⊗m and |1〉L .
= |1〉⊗m, followed by a logical

Hadamard rotation |0〉L → |+〉L .
= 1√

2
(|0〉L + |1〉L) and

|1〉L → |−〉L .
= 1√

2
(|0〉L − |1〉L). The repetition-code en-

coding implies that physical depolarization acts effectively at
the logical level as Pauli channel exponentially dominated by
logical Z noise. The logical Hadamard rotation maps the lat-
ter into the logical X . That is, the total effect of the GHZ
encoding is to map the physical D channel to a logical bit-flip
channel, against which, as we know from [380], logical GHZ
states are robust.

D. Decay of W- and Dicke-type entanglement

1. Negativity, concurrence, and global entanglement of locally

decohered W-states

As mentioned in Sec. V B 1, in Ref. [101] Simon and
Kempe reported the first preliminary studies on the vanish-
ing times of NPT-ness of W and Dicke states under the in-
dependent D channel for N = 3 and 4. Later on, in Ref.
[107], Carvalho et al. compared numerically the dynamical
evolution of W and GHZ states for 2 ≤ N ≤ 7, interact-
ing with independent dephasing and thermal (at zero and infi-
nite temperature) baths. The authors considered the multipar-
tite concurrence as the quantifier of entanglement. For both
W and GHZ states, they observed finite-time disentanglement
exclusively in the case of independent baths at infinite tem-
perature. For the W states, they observed an approximately
linear increase of the damping rate with N for the infinite-
temperature reservoir, and a constant decay rate for the de-
phasing and zero-temperature thermal reservoirs. This is in
contrast to GHZ states, whose damping rates increase with N
for all three decoherence models, as we know already. This
has been confirmed by Montakhab and Asadian in Ref. [448],
who essentially reproduced the findings of Carvalho et al. for
the global entanglement measure of Meyer and Wallach [261]
and up to N = 8.

There is certain intuition behind the behaviour described
above. For both pure dissipation (zero-temperature bath) and
pure dephasing, the decay rate must be dictated by the total

number of excitations in the state. This is essentially due to
the fact that the rates of energy dissipation and coherence loss
cannot grow faster than proportionally to the number of exci-
tations. This, for W states (V.21), is by definition always equal
to 1, regardless of the total number of particles in the system.
Therefore, the effect of these two types of noise on W states
is expected to be constant in the system size. This in turn
readily implies that W-type entanglement possesses a sort of
built-in size-robustness against several types of decoherence.
Pure diffusion (infinite-temperature baths) instead – as well
as its related depolarization – does not make any distinction
between excited or ground states, and therefore its cumulative
effect always makes the total decay rate increase without too
much regard of the state. In fact, W states under pure diffu-
sion seem to display a dependence of the damping rate with
N similar to that of GHZ states [107].

Finally, in Ref. [449], Chaves and Davidovich studied
the robustness against independent channels PD and AD of
W-state-like superpositions as resources for teleportation of
states and the splitting of quantum information between many
parties. The authors considered W-states, generalizations of
(V.21) where each term in the superposition has a different
amplitude, and superpositions of the latter with the vacuum.
For several cases, the authors obtained analytic expressions,
for all N , for the negativities, multipartite concurrence and
the Meyer-Wallach global entanglement, and compared them
with the fidelities for the protocols corresponding to the dif-
ferent communication tasks. The effect of decoherence on the
fidelity corresponding to the splitting of information between
many parties was shown to be better described by the Meyer-
Wallach global entanglement measure, rather than the nega-
tivity associated with the bipartite entanglement.

2. Entanglement of Dicke states under global and local

decoherence

In Ref. [436], Gühne, Bodoki, and Blaauboer studied the
robustness of entanglement of different multipartite-entangled
states under the influence of global dephasing. They use
the geometric measure of entanglement, EG, defined by Eq.
(II.51), to quantify entanglement, and its logarithmic deriva-

tive, d
dt (ln(EG(t)) ≡

d
dtEG(t)

EG(t) , to quantify the entanglement

robustness. The logarithmic derivative captures how fast en-
tanglement decays as compared with how much of it there is
left. For four qubits, the authors calculated the exact value of
∂t(ln(EG(t)) for globally-dephased GHZ, W, linear-cluster,
and symmetric Dicke states. They observed the entanglement
in Dicke states |Dicke24〉, as defined in Eq. (V.22), to be more
robust.

A full characterization of the dynamics of symmetric Dicke
states in the presence of local noise was in turn performed
in Ref. [450] by Campbell, Tame and Paternostro. More
precisely, they probed the states under independent AD, PD,
and D channels. They performed an exhaustive comparison
among different tools for the detection of genuine multipar-
tite entanglement after decoherence acts on symmetric Dicke
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states |Dicke
N/2
N 〉. Specifically, they studied the behaviour of

N -point correlations, of some state-discrimination techniques
[451], of collective-spin entanglement witness that require
just two local-measurement detection bases [452], of a gen-
eralized version of the latter [64], of fidelity-based entangle-
ment witnesses, and of fidelity-based entanglement witnesses
plus filtering operations [195].

E. Decay of other classes of entanglement

1. Spin-squeezing under local depolarization

In Ref. [101], Simon and Kempe also studied how spin-
squeezing [432], which implies entanglement [433], decays
under independent channel D. For some families of initially
pure states of arbitrary number of qubits, they calculated the
evolution of the spin-squeezing parameters. They found some
limiting cases (with asymptotically small initial squeezing)
for which spin-squeezing survives up to critical local depo-
larization strengths as high as pc = 0.29.

2. Entanglement and distillability of weighted-graph states under

local Pauli noise

In Ref. [111], Hein, Dür, and Briegel generalized the lower
and upper bounds derived in Sec. V C 2 for graph states to
the case of weighted graph-states subject to independent Pauli
noise. Weighted graph-states are defined analogously to graph
states (V.12) but with non maximally-entangling controlled-
phase gates instead of maximally-entangling controlled-Z
gates [415]. The authors derived for noisy weighted graph-
states a lower bound on the distillability lifetime and upper
bounds on the entanglement lifetime of the same type as those
obtained for graph-states, described in Sec. V C 2.

3. Few-qubit highly entangled states robust against local bit- or

phase-flip noise

In Ref. [439], Borras et al. reported particular forms of 4-,
5- and 6-qubit pure states that are both highly entangled in all
the bipartitions and robust against the independent PD or BF
channels. The authors numerically compared these states with
random pure states, and with W and GHZ states, and found
their entanglement decay to be the slowest of all. In particular,
for independent dephasing noise, the decay of entanglement in
these states is just linear in the dephasing strength.

4. Robustness of multipartite negativity of few-qubit states under

local noise

In Ref. [381], Ali and Gühne studied the short-to-
intermediate time dynamics of the robustness of genuinely
multipartite entanglement of several 3- and 4-qubit states un-
der different models of local noise. As a measure of genuinely

multipartite entanglement, the authors considered the multi-
partite negativity NegMulti [227], defined by Eq. (II.53) in
Sec. II C 5. They quantified its robustness with its logarithmic

derivative d
dt (ln(NegMulti(t)) ≡

d
dtNegMulti(t)

NegMulti(t)
. As mentioned

before, the logarithmic derivative gives the variation of entan-
glement with time t relative to the amount of entanglement at
time t, and therefore is a good figure of merit of the robustness
of entanglement independently of how much of it is left.

As the states under scrutiny, they considered 3- and 4-qubit
W and GHZ states, the 4-qubit symmetric Dicke state, the 4-
qubit singlet, 4-qubit linear-cluster states, 4-qubit weighted
graph states and 4-qubit Haar random states, among oth-
ers. As the GHZ states for all N , the 4-qubit symmetric
Dicke, singlet and linear-cluster states have all maximal mul-
tipartite negativity NegMulti = 1/2. In turn, as models of
noise, they considered the independent amplitude damping,
phase damping, and depolarizing channels, for noise strengths
p = 1− e−γt, with 0 ≤ γt . 0.7.

For amplitude damping, the authors observed that nearly
all states studied display a roughly exponential decay of
NegMulti(t) with γt (constant logarithmic derivative), with W
states possessing the slowest decay rate. The exception to ex-
ponential decay was given by GHZ states, whose multipartite
negativity features initially an exponential decay but starts de-
creasing super-exponentially (with the logarithmic derivative
itself decreasing) at intermediate times. In contrast, for de-
phasing, the GHZ states turned out to be the most robust ones,
whereas the W states become the least robust ones; with GHZ
states displaying an exponential decay and all other states a
super-exponential one. Also for depolarization did the GHZ
states appear as the most robust of all; and in this case all
states showed a super-exponential decay at short times.

The authors noticed that, except for the case of dephasing,
their findings for the W and GHZ states are consistent with
the observations of Ref. [107] for the multipartite concur-
rence, discussed in Secs. V B 5 and V D 1. For the dephasing
channel, the results of [107] and [381] are opposite. The au-
thors attribute this discrepancy to the possibility that the lower
bound used in Ref. [107] is tighter for W than for GHZ states.
Thus, this bound could be mistaking the former for the latter
as the most robust states.

Finally, a remark about the connection between the be-
haviours of GHZ states reported here and in Ref. [143], dis-
cussed in Sec. V B 6, is in place. From Ref. [143], it fol-
lows that, for sufficiently small γt, all bipartite negativities
Neg decay approximately exponentially in γt. We notice that
this is not in contradiction with the super-exponential decay of
NegMulti at short times observed by Ali and Gühne for the case
of depolarisation. This is simply due to the fact that whereas
Neg quantifies bipartite correlations, NegMulti exclusively as-
sesses genuinely multipartite ones. As a matter of fact, the
results of Ali and Gühne constitute the first studies, and to our
knowledge the only ones up to date, of genuinely multipartite
entanglement decay under local noise.
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F. Bound entanglement via local noise on multiparticle pure

states

Originally, bound entangled states were meticulously con-
structed as to provide examples of entangled states from
which no entanglement could be distilled – as for instance
the first bipartite entangled PPT states [233], or the multi-
partite examples [242, 243] discussed in Sec. II B 9. Later
on, bound entanglement was found in a variety of multipartite
mixed states, including thermal fermionic systems of up to 12
spins [453, 454] and thermal chains of coupled harmonic os-
cillators in the thermodynamic limit [139, 455]. This posteri-
orly led to the understanding that bound entanglement, rather
than a curiosity, is a common feature of multipartite systems
that can arise in natural dynamical processes, more precisely
due to the action of local noisy or thermal environments. This
is the topic of this section, which has been extensively studied
in Refs. [143, 155, 167, 429, 439, 456–458]. Here, we focus
mainly on GHZ and rectangular-cluster states, as described by
the proof-of-principle approaches of [143] and [155], respec-
tively. Also, we briefly mention the case of random multipar-
tite pure states [167, 439].

1. Bound entanglement in GHZ states under local decoherence

Aolita et al. reported in [143] that independent D or GAD
channels drive generalized GHZ states (V.8) towards multipar-
tite bound-entangled states. This is essentially due to the fact
that different bipartitions of a GHZ states under local noise of-
ten disentangle at different instants. When the evolution leads
each and all of the bipartitions of one qubit versus the rest to
biseparability, the state is necessarily non-distillable, for no
entanglement can be extracted via LOCCs. If in addition the
state is still entangled in other bipartitions, then the state is
necessarily bound entangled.

A four-qubit example is shown in Fig. 17. There, the 1 : 3
negativities vanish before those corresponding to the 2 : 2 bi-
partitions. Between these two events the state is bound entan-
gled. Furthermore, the authors observed a similar behaviour
for other values of α and β in Eq. (V.8), and independent
GAD channel at any temperature T > 0. This is not the case
though for channels PD or AD (T = 0), for which all bipar-
titions always disentangle simultaneously, as studied in Sec.
V B 6.

The noise-strength range of bound entanglement in turn in-
creases with N , because, the time of separability of the most-
balanced bipartitions grows with N , whereas that of the least-
balanced ones decreases with N [143]. However, since the
entanglement in all bipartitions approaches zero exponentially
faster with increasing N , the total amount of bound entangle-
ment decreases accordingly with growing system-size. Still,
the effect is significant enough to be observed in practice, as
we see in Sec. VI G, where a similar approach to the one
described here was used for the experimental generation of
bound entangled states.
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Figure 17. Negativity of four-qubit GHZ states under independent

depolarization with probability p, for the least-balanced 1 : 3-qubit

bipartitions and the most-balanced 2 : 2-qubit ones. Between the

instants where both curves vanish the state is bound entangled. A

similar behavior is observed with independent thermal baths at any

non-null temperature, but the effect is not so marked (the smaller the

temperature, the weaker the effect). Reprinted figure with permis-

sion from L. Aolita et al., Phys. Rev. Lett. 100, 080501 (2008).

Copyright (2008) by the American Physical Society.

2. Bound entanglement in random states under local

depolarization

The effect described in the previous sub-section for GHZ
states appears to be quite general. In Ref. [439], Borras et

al. numerically observed that, over a sample of 1000 Haar
(that is, uniformly distributed) random pure states of N = 6
qubits, in all cases local depolarization drives the state to-
wards a multipartite bound entangled state at some point in
the evolution. This also indirectly follows from Ref. [167],
where Aolita et al. numerically observed that, over a sample
of 10000 Haar random pure states of N = 6 qubits under lo-
cal depolarization, the time at which the average entanglement
in the most-balanced bipartitions vanishes, is smaller than the
one at which that in the least-balanced bipartitions does.

3. Thermal bound entanglement in graph states under local

dephasing.

In Refs. [429, 456] Kay et al. calculated the critical tem-
perature of distillability for graph states, which, due to equiv-
alence (V.19), yields the critical dephasing strength for distil-
lability of independently dephased graph states. Later, in Ref.
[155], Cavalcanti et al. showed not only that bound entan-
glement is always present in independently-dephased graph
states of arbitrary size, but also that it is robust against small
perturbations in the Hamiltonian couplings. Finally, in Ref.
[458], Kay showed that for two-colourable graph states (as
for instance all rectangular cluster states) the temperature (lo-
cal dephasing strength) range of bound entanglement grows
with N . Here we briefly sketch the argument as presented in

http://link.aps.org/doi/10.1103/PhysRevLett.100.080501
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Figure 18. Inset: Two possible splittings of a linear cluster (1D

graph) into a grey and a white regions. A. Two contiguous blocks

of nodes are connected by the boundary subsystem in red, consist-

ing of two nodes. B. Two non-contiguous blocks of nodes (a single

node versus all the others) are connected by the boundary subsystem

in blue, consisting of three nodes. For thermal graph states, all the

entanglement with respect to any multi-partition is always localized

in the corresponding boundary subsystem. Main plot: Negativities

of a thermal linear-cluster state as a function of the temperature T
(in units of the Hamiltonian gap ∆), for the bipartitions shown in the

inset: any two contiguous blocks (red solid) and any qubit versus the

rest (blue solid). In addition, in black dashed, the negativity for the

even-odd (or “zig-zag”) bipartition of a specimen of N = 12 qubits

is also displayed. The grey-shaded region indicates the temperature

range of bound entanglement. The red and blue curves do not de-

pend on N . The black dashed one does: its vanishing temperature

grows with N [458]. Therefore bound entanglement is also present

in macroscopic thermal clusters. Adapted from D. Cavalcanti et al.,

New J. Phys. 12, 025011 (2010).

[155], deeply based on the formalism of Sec. V C 3.

We begin by the simplest case of 1D graphs, represented in
the inset Fig. 18, and constant couplings ∆i ≡ ∆ in (V.13),
with ∆ the Hamiltonian energy gap. Consider first a biparti-
tion of the chain into two contiguous blocks, say from qubit
i to the left (grey block in inset A) and from qubit i + 1 to
the right (white block in inset A). The system is in thermal
equilibrium with a bath at temperature T , in the thermal state
̺T ≡ EPD

(
|G0 ... 0〉〈G0 ... 0|

)
, as explained in Sec. V A 5.

Since EPD is a Pauli map, formula (V.37) for the entangle-
ment in the bipartition applies. More over, for channel EPD

the evaluation is particularly simple, as the channel commutes
with all controlled-Z gates. One has then that EPD ≡ ẼPD

and immediately obtains that p̃γ,δ ≡ p̃γ p̃δ . That is, the sum-
mations over γ and δ in (V.37) become independent, and only
the mixing due to the independent dephasing on the boundary
subgraph, depicted in blue in inset A of the figure, survives.

As a result, the total entanglement between any two con-
tiguous blocks is equal to that of a two-qubit thermal graph

state at the same temperature. Thus, the critical temperature
T c

2 for which the entire thermal cluster becomes separable
with respect to all contiguous-block bipartitions is immedi-
ately obtained [155, 429],

T c
2(∆) =

−∆

ln(
√
2− 1)

≈ 1.1∆. (V.38)

Above this temperature, the N -qubit thermal state ̺T is non-
distillable, as for any two qubits a contiguous-block biparti-
tion can be found in which each particle lies on a different
side of the partition and is therefore separable from the other,
so that not even entanglement between any two qubits can be
extracted by LOCCs.

On the other hand, with a similar reasoning as in the pre-
vious subsection, one finds a range of temperatures T ≥
T c

2(∆) such that ̺T is non-separable. Then ̺T is necessarily
bound entangled. This range of temperatures comes from con-
sidering non-contiguous bipartitions of the chain as that of an
i-th qubit versus all the rest (grey versus white regions in inset
B of Fig. 18). In this case, the boundary system corresponds
to a three-qubit thermal system, represented in blue in inset B,
whose negativity vanishes at a higher temperature. Further-
more, the two-colourable “zig-zag” bipartition is always the
last one to become PPT, and its corresponding critical tem-
perature grows with N [458]. Similar results are obtained for
higher dimensional clusters and for unequal Hamiltonian cou-
plings [155, 458].

To end up with, two very important comments are in place.
First, since p̃γ,δ = p̃γ p̃δ , and since the boundary subgraph
does not change when the cluster’s size varies, none of the
latter results depends at all on N . This implies that bound
entanglement is present in thermal graphs of arbitrary size,
in particular also in macroscopic specimens. This comple-
ments the discoveries for bosonic systems by Ferraro et al.
[139, 455]. Second, the latter, together with the robustness of
bound entanglement against changes in the Hamiltonian cou-
plings, suggests that thermal bound entanglement, more than
a singularity of a peculiar interaction pattern, might be a rather
typical feature, very likely to be present in many other systems
of strongly-interacting particles.

VI. EXPERIMENTS ON OPEN-SYSTEM DYNAMICS OF

ENTANGLEMENT

Practically all experiments that aim to create entangled
states for any given purpose indirectly assess the entangle-
ment dynamics. The simple preparation of an entangled state
and its later measurement is already probing the dynamics of
entanglement due to the unavoidable influence of the natural
environment. For instance, an early experiment where this
procedure was implemented was reported by C. F. Roos et al.,
in Ref. [323]. There, the four Bell-states were deterministi-
cally prepared in the energy levels of two trapped ions, and
were left to evolve exclusively under the detrimental action
of their natural decoherence processes, dominated by sponta-
neous emission. At different points in time, a full tomogra-
phy was performed and an entanglement measure evaluated,

http://dx.doi.org/10.1088/1367-2630/12/2/025011
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Figure 19. Entanglement evolution of |ψ+〉 encoded into two trapped

ions [323]. Each black dot amounts to a full tomography of the

two ions’ state, implying several realizations for each experimental

point. After the density matrix is determined, the entanglement of

formation is evaluated. The density matrix displayed in the left inset

(t = 2ms), in the computational basis {|00〉S , |01〉S , |10〉S , |11〉S},

is to be compared to the one shown in the right inset, (t = 8ms).
Clearly the off-diagonal elements, the coherences, decay due to

the interaction with the environment, implying the decay of entan-

glement – not necessarily both features decay at the same speed.

Reprinted figure with permission from C. F. Ross et al., Phys. Rev.

Lett. 92, 220402 (2004). Copyright (2004) by the American Physical

Society.

in this case the entanglement of formation (see Fig. 19). An
overall decay of entanglement was clearly observed.

Nevertheless, to study in detail the many aspects of entan-
glement dynamics, as introduced in the earlier sections, a re-
markable control of the interaction between system and en-
vironment is necessary. Experiments with such level of con-
trol are not so frequent. Bellow we analyze some aspects of
the few experiments explicitly designed to probe open-system
entanglement dynamics. In most cases, the entanglement dy-
namics is actually not studied as a function of time, but rather
of the relevant noise strength of the experiment, which can be
varied in a controlled way. In previous sections we identified
this parameter with a noise probability p. Here, this may rep-
resent the thickness of a quartz slab that attenuates an optical
beam, or the amount of dephasing introduced between two
atomic states, or yet the coupling between polarization and
spatial degrees of freedom of a photon. Changing the value of
this parameter is equivalent to changing the time duration of
the noisy process, and therefore the corresponding investiga-
tion translates directly into a time-dependent analysis.

A. Observing finite-time disentanglement

The first report of an experimental study of the full entan-
glement dynamics under a controlled environment is due to
Almeida et al. [158]. There, the finite-time disentanglement
of two qubits, as described in Sec. IV A, was verified. The
corresponding setup is shown in Fig. 20.

A twin-photon pair entangled in the polarization degrees of
freedom is produced by a down-conversion setup. The pro-
duced two-photon state is close to |ψ〉 = α|HH〉 + β|V V 〉,
where H and V stand respectively for the horizontal and ver-

A)

B)

Figure 20. Experimental setup for probing the open-system dynam-

ics of entanglement. Two adjacent nonlinear crystals pumped by

a continuous laser source generate pairs of polarization-entangled

photons. Each photon is sent through an interferometer, where a

polarized beam splitter sends orthogonal polarizations into differ-

ent propagation modes, which act as environment for the photon

polarizations. Quantum tomography on the outgoing field allows

the reconstruction of the polarization state and the calculation of its

concurrence. From M. F. Almeida et al., Science 316, 579 (2007).

Reprinted with permission from AAAS.

tical linear polarization states, and α and β are complex co-
efficients (with |α|2 + |β|2 = 1) that depend on the orien-
tation of the polarization of the pumping laser. Each photon
is sent through separate interferometers, which play the role
of independent environments. The interferometers couple the
H and V polarizations to different propagation modes. This
is done with a polarized beam splitter (PBS) and an arrange-
ment of mirrors, as shown in Fig. 20 B). More precisely, a
horizontally polarized photon is transmitted through the PBS,
and propagates in the interferometer mode “0,” represented by
a red dashed line. A vertically polarized photon is reflected by
the PBS into the interferometer mode “1,” represented by a red
dashed line. If its polarization remains the same, then it is re-
flected again by the PBS, emerging from the interferometer in
mode “0,” thus following the same output path as the incom-
ing horizontally-polarized photon. On the other hand, if its
polarization is rotated by the half-wave plate (HWP) inserted
inside the interferometer into propagation mode “1,” so that

http://link.aps.org/doi/10.1103/PhysRevLett.92.220402
http://link.aps.org/doi/10.1103/PhysRevLett.92.220402
http://dx.doi.org/10.1126/science.1139892
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|V 〉 → cos(2θ)|V 〉+ sin(2θ)|H〉, where θ is the angle of the
plate, the horizontal component will emerge from the interfer-
ometer in mode “1,” while the vertical component will emerge
along mode “0,” as before. Modes “0” and “1” represent two
different states of the environment.

Through this procedure, the following transformation is im-
plemented:

|H〉|0〉 → |H〉|0〉
|V 〉|0〉 →

√

1− p|V 〉|0〉+√
p|H〉|1〉 , (VI.1)

where p = cos 2θ. Identifying |H〉 and |V 〉 with the ground
and excited states of a two-level atom, respectively, we see
that this map can be used to simulate different types of dy-
namical behaviours. For instance, for p = 1 − e−γt it is
equivalent to transformation (III.29) of Sec. III B 3, which
models the spontaneous decay of an atom, inducing the in-
dependent amplitude-damping channel (III.30). On the other
hand, for p = sin2(Ωt/2) it is equivalent to (III.26), which
models the resonant Jaynes-Cummings dynamics. In the first
case, vanishing of entanglement for a value of p < 1 corre-
sponds to finite-time disentanglement. Whereas, for the res-
onant Jaynes-Cummings model, the oscillation of p leads to
the disappearance and subsequent revival of entanglement at
times corresponding to half Rabi cycles, as expected. Equa-
tion (VI.1) makes clear that, for the processes considered
above, the environment can be described as a single qubit.

The two emerging paths are reunited incoherently with the
help of a beam splitter, as shown in Fig. 20B) before the pho-
ton hits a detector. This amounts to tracing out the environ-
ment. Half-wave and quarter-wave plates placed on the exit-
ing paths allow a quantum tomographic reconstruction of the
emerging polarization state.

Applying this procedure to a photon pair detected in coin-
cidence, as sketched in Fig. 20A), one is able to reconstruct
the two-qubit state and calculate for instance the correspond-
ing concurrence. The experimental results for the concurrence
are shown in Fig. 21, and clearly demonstrate the (in general)
non-exponential decay of this quantity. In particular, the dis-
appearance of entanglement for p < 1 (corresponding, for a
decaying atom, to a finite time) is verified when the proba-
bility of the excited-state component is larger than that of the
ground state (|β| > |α|).

If, instead of reuniting the two emerging paths, as shown in
Fig. 20 B), one measures the population of each path and also
their coherence by letting them go through another interfer-
ometer, one is able to reconstruct the full state of system plus
environment. This was done by Jiménez-Farı́as et al. in [165],
by using an interferometric setup that allowed the implemen-
tation of several decoherence channels and full access to all
environmental degrees of freedom. In particular, this setup al-
lows the quantum tomography of the joint polarization-path
degrees of freedom, thus exhibiting the flow of entanglement
from the initial two-partite system towards the environment,
as discussed in Section IV A. It was shown in [165] that, when
a qubit from an entangled pair interacts with the environment,
which as in Eq. (VI.1) may be described by a qubit, the ini-
tial bipartite entanglement gets redistributed into bipartite and

Figure 21. Concurrence as a function of the transition probability p.

Two different initial states are considered, close to α|00〉 + β|11〉,
with the same initial concurrence, but differing on the relation be-

tween |α| and |β|: either |α| =
√
3|β| (triangles) or |β| =

√
3|α|

(squares). The points correspond to experimental data for the quan-

tity Λ defined by (II.46)(b), obtained by tomographic reconstruction

of the twin-photon state for each value of p. According to (II.46)(a),

concurrence coincides with Λ when Λ ≥ 0 and is equal to zero when

Λ < 0. The dashed lines correspond to the value of Λ obtained by

applying the amplitude map to the actual initial state produced in the

experiment. Adapted from M. F. Almeida et al., Science 316, 579

(2007). Reprinted with permission from AAAS.

genuine tripartite entanglements. This complements the theo-
retical results of [132] concerning the entanglement of two in-
dependent environments coupled to two qubits of an initially
entangled pair. Although ideally the state corresponding to
system plus environment should be pure, this is of course not
true in the experiment, due to uncontrollable noise and uncer-
tainties in the preparation of the initial state. In [165], emer-
gence of genuine multipartite entanglement of the W and GHZ
types, between system (polarization degrees of freedom) and
environment (spatial modes), was identified through the use
of both fidelity-based witnesses, corresponding to (II.21), and
Criteria 12 and 13, discussed in Sec. II B 4, and proposed in
Ref. [224]. Figure 22 displays the experimental results ob-
tained for the amplitude damping (AD) and phase-damping
(PD) channels. In this picture, KGHZ and KW correspond
respectively to the differences between the left-hand side and
the right-hand side of Eqs. (II.22) and (II.23), so that positive
values of KGHZ and KW signal the existence of genuine tri-
partite entanglement of the GHZ or W type, respectively. In
the figure, we can see that Criteria 12 and 13 identify genuine
tripartite entanglement over a wider range of values of p than
the fidelity-based witnesses.

Finite-time disappearance of entanglement was also ob-
served by Laurat et al. [159]. In this realization, an effective
two-qubit entangled state, where a single collective atomic
excitation is coherently shared between two separate atomic
clouds, was prepared probabilistically in a heralded fashion,
with a setup based on the Duan-Lukin-Cirac-Zoller (DLCZ)

http://dx.doi.org/10.1126/science.1139892
http://dx.doi.org/10.1126/science.1139892
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Figure 22. Indicators of genuine multipartite entanglement between

a two-qubit system and a one-qubit environment as a function of the

noise strength p, referring to Table I: (a) Fidelity FGHZ with respect

to the GHZ state and PD channel; FGHZ ≥ 1/2 indicates genuine

tripartite entanglement. (b) Violation KGHZ of Criterion 12 and PD

channel; KGHZ > 0 implies genuine tripartite entanglement. (c)

Fidelity FW with respect to the W state and AD channel; FW ≥ 2/3
indicates genuine tripartite entanglement. (d) Violation KW of Cri-

terion 12 and AD channel;KW > 0 guarantees genuine tripartite en-

tanglement. The lines are fittings to the experimental data. Reprinted

figure with permission from O. J. Farı́as et al., Phys. Rev. Lett. 109,

150403 (2012). Copyright (2012) by the American Physical Society.

scheme [459]. While stored in the atomic clouds, entangle-
ment is exposed to the action of the environment, and as such,
it decays. After an interval τ , the remaining entanglement is
measured by mapping the respective atomic states back into
a photonic state, with the help of read pulses. The tomogra-
phy of the photonic state, and further entanglement evaluation
displayed the vanishing of entanglement for a finite value of
τ [159]. In spite of the usually low values of entanglement
obtained in this type of setup, it represents an important step
towards quantum networks [460], since it allows for storage
and retrieval of quantum information in a heralded fashion.

B. Verifying equations of motion of entanglement

The strategy displayed in Fig. 20 is also useful to test the
dynamical law of entanglement given by Eq. (IV.15). The
first experimental test was implemented by applying the chan-
nel shown in Fig. 20 B) to one of the photons of the entan-
gled pair [461]. The first factor on the right-hand side of
(IV.15) is determined by tomography of the input state, and
subsequent evaluation of its concurrence; whereas the sec-
ond one by process tomography of the single-qubit channel
E , and subsequent evaluation of the concurrence of the state

Figure 23. Experimental test of the dynamical law for the evolu-

tion of entanglement, for one-sided channels. Comparison between

measured concurrence and the product of factors on the right side

of Eq.(IV.16). The circles and squares correspond respectively to

quasi-pure and mixed initial states. The dashed line has unit slope

and the solid line is a linear fit to the circles (slope ∼ 0.87). From

O. Jiménez-Farı́as et al., Science 324, 1414 (2009). Reprinted with

permission from AAAS.

11⊗E|Φ+〉〈Φ+|. Process tomography of E can be done with a
laser field sent though the channel with four different incom-
ing polarizations, and measuring the corresponding polariza-
tions of the outgoing field. This suffices to determine all the
Kraus operators of the channel [441].

An alternative to direct process tomography of E would be
to perform state tomography of 11 ⊗ E|Φ+〉〈Φ+|. This state,
by the Choi-Jamiołkowsky isomorphism (III.8), discussed in
Sec. III A 2, unambiguously determines channel E . However,
a maximally entangled state cannot be precisely produced in
the lab. Furthermore, the direct process tomography, since it
uses intense laser beams, yields a signal-to-noise ratio much
larger than the one corresponding to measuring the effect of
the channel on a maximally-entangled state.

Figure 23 displays the experimental results for states that
are initially close to pure states, and also for initially mixed
states, undergoing the amplitude-damping channel. A very
good agreement between the experimental data and the entan-
glement equation of motion (IV.15) is obtained for pure states
– the independently measured l.h.s. and r.h.s. of Eq. (IV.15)
agree, within experimental errors, for all the points represent-
ing initially pure states (circles), as depicted by the dashed
line with unit slope in Fig. 23. For mixed states (squares),
the inequality (IV.16) applies, and the experimental points are
found below the unit slope curve as expected. A fit to the ex-
perimental data gives a slope of ∼ 0.87, taken into account
only the initially quasi-pure states (circles).

An extension of equation of motion (IV.15) to the case of
initially mixed states was proposed in Ref. [461]. It is based
on a relation between generic states and pure states undergo-

http://link.aps.org/doi/10.1103/PhysRevLett.109.150403
http://link.aps.org/doi/10.1103/PhysRevLett.109.150403
http://dx.doi.org/10.1126/science.1171544
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Figure 24. Experimental test of the generalized dynamical law for

the evolution of entanglement, for one-sided channels. Comparison

between measured concurrence and the product of factors on the right

side of Eq.(VI.2). The circles and squares correspond respectively to

quasi-pure and mixed initial states. The slope of the line fitting all

the data set is now ∼ 0.97. From O. Jiménez-Farı́as et al., Science

324, 1414 (2009). Reprinted with permission from AAAS.

ing trace-preserving channels, in a similar fashion as the Choi-
Jamiołkowsky state-channel duality. This is expressed by the
fact that for every normalised state ̺ ∈ D(HS ⊗ HS) there
is always a completely positive trace-preserving channel E̺,
acting on D(HS), and a pure state |Ψ̺,E̺〉 ∈ D(HS ⊗ HS),
such that ̺ = 11 ⊗ E̺|Ψ̺,E̺〉〈Ψ̺,E̺ |. Notice that |Ψ̺,E̺〉 is
in general not maximally entangled, otherwise the statement
would hold only for matrices ̺with maximally mixed reduced
states, as discussed in Sec. III A 2 after (III.8). In addition,
E̺ and |Ψ̺,E̺〉 are not unique. There is an entire family of
channels E ′

̺ and |Ψ̺,E′
̺
〉, all connected by local unitary trans-

formations, that yields the same ̺. Nevertheless, since entan-
glement is invariant under local unitaries, this is not an issue
for the following purposes.

Since C [(11 ⊗ E)̺] = C
[
(11 ⊗ E)(11 ⊗ E̺)|Ψ̺,E̺

〉〈Ψ̺,E̺
|
]
,

and |Ψ̺,E̺
〉〈Ψ̺,E̺

| is a pure state, it follows from Eq. (IV.15)
that

C [(11 ⊗ E)̺] = C(|Ψ̺,E̺〉〈Ψ̺,E̺ |) C
[
(11 ⊗ E ◦ E̺)|Φ+〉〈Φ+|

]
.

(VI.2)
This is the generalization of equation of motion (IV.15) to
initially mixed states. One should note however that, in or-
der to use this expression to get the final concurrence, it is
not sufficient to know the channel (through process tomog-
raphy) and the initial concurrence, as before: one needs to
tomographically reconstruct the initial state, in order to get
|Ψ̺,E̺

〉〈Ψ̺,E̺
| and E̺. This is still advantageous however

from the experimental point-of-view, since one still avoids the
tomographic reconstruction of the final state, when the signal-
to-noise ratio is decreased by the action of the channel.

Figure 24 displays the comparison between the measured

final concurrence and the product of factors on the right side
of (VI.2), for initial pure and mixed states. The experimental
points now fall nicely on a straight line with slope almost one
(∼ 0.97), within a very good approximation, even when the
initially mixed states (squares) are taken into account.

C. Non-Markovian entanglement dynamics: decay and revival

With a different experimental setup, shown in Fig. 25, Jin-
Shi Xu et al. [462] also verified the dynamical law for entan-
glement evolution (IV.15). The nice thing about this setup is
that the introduction of a Fabry-Perot cavity into one of the
modes allows for the realization of non-Markovian dynamics.

The principle works as follows: suppose that a single
polarization-qubit, initially in the state (|H〉 + |V 〉)/

√
2,

passes through a crystal of quartz. Due to the birefrin-
gence of the quartz, different frequencies of the laser field
(which is not exactly monochromatic) acquire different phases
and the state evolves to (|H〉〈H| + |V 〉〈V | + κ|H〉〈V | +
κ∗|V 〉〈V |)/2. Usually, the distribution of frequencies of the
pump laser field is well approximated by a Gaussian dis-
tribution, and thus κ =

∫
f(ω) exp(iαω)dω with f(ω) =

(2/
√
π|Ψ̺,E̺〉〈Ψ̺,E̺ |) exp[−4(ω−ω)] (|Ψ̺,E̺〉〈Ψ̺,E̺ | is the

distribution variance, and ω is the laser central line), and
α ∝ L the thickness of the quartz slab. In this case, κ presents
an exponential decay as function of L. Now, if before the
quartz plate the photon passes through a Fabry-Perot cavity,
only a finite number of the frequencies are transmitted – a
non-Markovian dynamics is established. As expected from a
finite dimensional system, the coherences may refocus and κ
may increase for some values of L.

With this construction, Jin-Shi Xu et al. were not only able
to verify the entanglement equation of motion [144], but also
were able to observe the revival of entanglement from a sep-
arable state [462]. Some of these results are illustrated in
Fig. 25.

D. Probing entanglement robustness with decoherence-free

subspaces

The quest for robust entanglement has stimulated experi-
ments in different frameworks, in particular for instance in
trapped ions [169, 463, 464] and linear optics [168, 465].
In [169], Häffner et al. probed the robustness of decoherence-
free subspaces when entanglement is created between two
nearby trapped Ca+ ions. In order to eliminate the effects of
local spontaneous emission, the qubits are encoded into Zee-
man sub-levels of the S1/2 ground state. The main source of
decoherence that remains are the fluctuations of the trapping
fields, which are common to both ions. In this regime, en-
tanglement formed by superpositions of states with the same
energy, such as (|01〉 ± |10〉)/

√
2, is in principle decoupled

from the environment and therefore robust. These superposi-
tions define a decoherence-free subspace with respect to this
type collective noise.

http://dx.doi.org/10.1126/science.1171544
http://dx.doi.org/10.1126/science.1171544
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Figure 25. Entanglement dynamics: decay and revival. Top panel

(experimental setup): Polarization-entangled states are created by

type I parametric down conversion in two BBO crystals, and path

information is erased by thin quartz plates (CP). The photon taking

the upper mode may undergo decoherence in different basis by the

introduction of a QWP and a quartz crystal. On the lower mode,

the photon experiences a non-markovian environment induced by a

Fabry-Perot cavity followed by a quartz crystal. At the end, a full

tomography is carried out. Bottom panel (results): The dots on the

top show the experimentally observed evolution of the concurrence

for an initially maximally entangled state for different sizes of the

quartz crystal – a non-monotonic behavior of entanglement is ob-

served. The solid line is the theoretical prediction for the concur-

rence. On the bottom, the experimental lower square dots, corre-

sponding to the quantity Λ defined in (II.46), show the evolution of

entanglement for an initially non-maximally entangled state. The

solid line represents the theoretical fit of concurrence, which is set

to 0 whenever Λ becomes negative. The upper curve in the bottom

panel displays the degree of polarization of the photonic state, which

is the magnitude of the corresponding Bloch vector. The entangle-

ment in this state vanishes at a finite time first and revives then at a

latter time (time is parametrized by the length L of the quartz crys-

tal). Reprinted figure (adapted) with permission from Jin-Shi Xu et

al. Phys. Rev. Lett. 104, 100502 (2010). Copyright (2010) by the

American Physical Society.

To measure the robustness within the decoherence-free sub-
space, the authors generated the state |Ψ+(φ)〉 = (|01〉 +
eiφ|10〉)/

√
2, and let it interact with the environment for

some time. In principle, concurrence could be calculated
by tomographical reconstruction of the two-qubit density ma-
trix. However, this process requires many experimental cy-

Figure 26. Experimental arrangement to investigate polariza-

tion decoherence-free subspaces. Top panel: experimental setup.

Polarization-entangled photons are produced at the nonlinear crys-

tals (BBO). Half-waveplates (HWP1 and HWP2) are used to prepare

the four Bell states. The decohering elements are separate slabs of

quartz whose thicknesses are correlated to mimic collective decoher-

ence. The final quarter-waveplate (QWP) and half-waveplate (HWP)

in each arm, along with polarizing beam splitters (PBS), enable to-

mographic reconstruction of the polarization density matrix. Bottom

panel: results. From A to D, tomographic reconstructions are shown

before (left) and after (right) the action of decoherence, for the cases

of |Φ+〉, |Φ−〉, |Ψ+〉, and |Ψ−〉 respectively. State |Ψ−〉 is the most

robust among the four. From P. G. Kwiat et al. Science 290, 498

(2000). Reprinted with permission from AAAS.

cles (of the order of 1000). A fidelity-based entanglement
witness was then employed, corresponding to (II.21) for the
two-qubit case. The ions are still entangled if the fidelity
F = 〈Ψ+(φ)|̺|Ψ+(φ)〉 between the initial state |Ψ+(φ)〉 and
the evolved state ̺ is higher than 1/2. Due to a magnetic field
gradient, which lifts the degeneracy between the energy levels
of states |01〉 and |10〉, the phase φ undergoes a determinis-
tic evolution, which can be determined and corrected, in such
a way that the fidelity becomes F = (̺01,10 + ̺10,01)/2 +
|̺01,10|, which satisfies the bound F ≥ Fmin

.
= 2|̺01,10|.

Through the measurement of the single off-diagonal element
̺01,10, entanglement was witnessed for up to 20s, which is
to be compared with the 1s coherence decay time when the
qubits are encoded outside the S1/2 ground states and local
spontaneous emission is present. The deviation from a perfect
decoherence-free subspace was mainly attributed to fluctua-
tions of the magnetic-field gradient across the trap.

In Ref. [168], Kwiat et al. investigated the robustness of
photonic polarization entanglement with a setup based also
on decoherence-free subspaces. Entangled photon pairs were
produced by spontaneous parametric down-conversion, and
submitted to controllable decoherence as the photons pass
through thick, adjustable birefringent elements. These ele-

http://link.aps.org/doi/10.1103/PhysRevLett.104.100502
http://dx.doi.org/10.1126/science.290.5491.498
http://dx.doi.org/10.1126/science.290.5491.498
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t

Figure 27. Setup for investigation of continuous-variables tripartite

entanglement. The optical parametric oscillator (blue, between two

mirrors at the center of the picture) is pumped by a coherent light

source, producing three light fields of different wavelengths (the re-

flected one, coloured green, plus two transmitted beams, coloured

red and orange). The three beams are sent into near-resonant empty

cavities, and then detected on high-quantum efficiency photodetec-

tors. This allows, upon scanning the frequency of the cavity, for the

measurement of quadrature fluctuations. From A. S. Coelho et al.,

Science 326, 823 (2009). Reprinted with permission from AAAS.

ments add phases to the photon states that can be correlated,
mimicking collective random phases. Through tomographic
analysis of the final two-photon state, it is observed that the
singlet state (|HV 〉 − |V H〉)/

√
2 is considerably more stable

than the other Bell states. The experimental setup and results
are shown in Fig. 26.

E. Continuous variables: tripartite entanglement dynamics

and robustness

In Ref. [161], Coelho et al. reported the disentanglement of
a tripartite continuous-variable entangled state. The authors
used an optical parametric oscillator (OPO) to generate en-
tanglement between three bright beams of light with different
wavelengths (see Fig. 27). The beams are entangled in the
amplitude and phase quadrature components. The experiment
analysed the robustness of the entanglement against losses,
and demonstrated that disentanglement may occur for finite
channel losses, corresponding to finite-time disentanglement.

Above the oscillation threshold, the OPO, pumped by a co-
herent light source, generates narrow-band and tunable bright
twin beams, with strong intensity correlations among them.
Furthermore, in order to produce twin photons, a pump pho-
ton must be annihilated, which implies anti-correlations be-
tween the reflected pump intensity and the sum of the inten-
sities of the twin beams. Besides, the sum of the frequencies
of the twin beams must match the pump frequency. This fre-
quency constraint implies a constraint for the phase variations
(or fluctuations) of the three fields. The phase fluctuations of

t

Figure 28. Biseparability at finite losses. Symplectic eigenvalues of

the measured covariance matrices as functions of the transmissivity

of the twin modes, for three different values of the relative pumping

power σ. The green circles represent the eigenvalues correspond-

ing to the pump mode, the red squares those of the signal, and the

blue triangles the ones of the idler. When any of these is greater or

equal to 1, the associated mode is separable from the other two. In

A (σ = 1.14) and B (σ = 1.17), the pump beam becomes separa-

ble from the twins for finite losses (transmittance near 0.6 and 0.4,

respectively). The situation is pictorially sketched on the right-hand

side of the figure, where golden ribbons symbolise the presence of

entanglement. In C (σ = 1.40), all three fields remain inseparable

until zero transmissivity, as sketched again on the right-hand side.

From A. S. Coelho et al., Science 326, 823 (2009). Reprinted with

permission from AAAS.

the twin beams should be anti-correlated, and their sum should
be correlated to the phase fluctuations of the pump. These cor-
relations translate into entangled amplitude and phase quadra-
ture components. The amplitude difference and the phase sum
play respectively the roles of momentum difference and posi-
tion sum in EPR’s experiment.

After the generation of the twin entangled beams, they
are separated by their polarization, and their quadrature fluc-
tuations are measured, together with those of the reflected
pump beam, through the use quasi-resonant empty cavities
followed by high quantum-efficiency photodetectors. This al-

http://dx.doi.org/10.1126/science.1178683
http://dx.doi.org/10.1126/science.1178683
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lows for the complete reconstruction of the covariance matrix
for the three beams, as well as the measurement of higher-
order quadrature correlations. The authors measured up to
tenth moment correlations, and established, up to excellent ap-
proximation, that the three-field state is Gaussian. Therefore,
Criteria 10 and 11 of Sec. II B 2 provide necessary and suffi-
cient conditions for biseparability in the different bipartitions.
For instance, as explained in detail in Sec. II B 2, a multi-mode
Gaussian state is biseparable with respect to a bipartition of
any one mode versus the rest iff the symplectic eigenvalues of
its covariance matrix corresponding to that mode are greater
than or equal to 1.

In the experiment, the smallest symplectic eigenvalues as-
sociated to each mode were obtained for several values of σ =
P/Pth, where P is the pump power and Pth the oscillation-
threshold pump power. With this setup, one can observe the
dependence of entanglement on controlled linear losses im-
posed on the twin beams, by placing variable attenuators just
before the corresponding photodetectors (pump beam losses
had little effect on the symplectic eigenvalues). Figure 28 dis-
plays the experimental results for three different values of the
pump power, as a function of the transmissivity of the attenu-
ators. For high transmissivities (low losses) all the symplectic
eigenvalues are smaller than one, implying full inseparability
of the three fields – the resulting state is thus an entangled
state of three bright beams of light. For smaller pump powers,
the pump beam becomes separable from the twin beams, for
finite values of the transmittivity, even though the squeezing
of individual beams vanishes only asymptotically as a func-
tion of losses. This is reminiscent of finite-time disentangle-
ment, but in the continuous-variable case and with respect to
a particular bipartition. As the pump power increases, the en-
tanglement signature is monotonically reduced, but the three
fields remain inseparable until the transmissivity is zero (total
loss), thus entanglement, even though smaller, is more robust
in this case.

A further development of this study, involving the disentan-
glement between the twin beams at finite losses, was reported
in Ref. [162].

F. Multiqubit entanglement dynamics: four qubits

The first experiment to explicitly address multi-qubit en-
tanglement decay was reported by Papp et al. in Ref. [153].
There, a single heralded photon from a cloud of Cs atoms is
coherently split among the four modes of an optical interfer-
ometer (see Fig. 29) to create the W-like state

|W 〉 = 1
2 [(|1000〉+ eiφ1 |0100〉)+

eiφ(|0010〉+ eiφ2 |0001〉)
]
.

(VI.3)

The relative phase φ can be adjusted by an electro-optic mod-
ulator (EOM), while φ1 and φ2 are kept fixed throughout the
experiment. Driving the EOM with a fluctuating voltage in-
duces a controlled dephasing process between the subspaces
spanned by |1000〉 and |0100〉 and by |0010〉 and |0001〉. The
amplitude of this phase noise is δφ: δφ = 0 means no de-
phasing, and a very well defined phase difference, whereas

Figure 29. Genuine multi-qubit entanglement decay. Top panel

(experimental setup): The beam displacers BD0 and BD1 create a

quadripartite mode entangled state by splitting a single photon into

four optical modes. This state is then measured in orthonormal basis

(VI.5) and the uncertainty ∆ is evaluated. Bottom panel (results):

∆ as function of the dephasing strength δφ signals the trajectory

of correlations across the different shells of genuine k-partite en-

tanglement. The horizontal solid lines indicate the boundaries ∆
(k)
b

for genuine k-entanglement, and the dashed lines indicate the un-

certainty on these boundaries due to the possibility of two or more

photons in the system. From S. B. Papp et al., Science 324, 764

(2009). Reprinted with permission from AAAS.

δφ = 360◦ describes the case where the phase is totally ran-
dom.

Due to the dephasing, the initially genuine quadripartite en-
tanglement decays first into tripartite and then into bipartite
entanglement. See the bottom panel of Fig. 29. To resolve
among the different types of entanglement, the authors borrow
a powerful idea from quantum metrology: there are genuine
N -partite entangled states that allow one to measure observ-
ables more precisely than any state without genuine N -partite
entanglement. With this in mind, a figure of merit based on the
variance of four-qubit unidimensional orthogonal projectors
{M1,M2,M3,M4}, such that they spam the single-excitation
subspace, is introduced

∆ =

4∑

i=1

〈M2
i 〉 − 〈Mi〉2 = 1−

4∑

i=1

〈Mi〉2. (VI.4)

For states without genuine k-partite entanglent, with k ≤ 4,

this quantity is lower bounded by ∆
(k)
b . In this way, if a value

of ∆ smaller than ∆
(k)
b is obtained, one is sure to have a state

http://dx.doi.org/10.1126/science.1172260
http://dx.doi.org/10.1126/science.1172260
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Figure 30. Zeeman-level structure of 40Ca+ and pulse-sequence for

the implementation of tunable dephasing. Local dephasing is real-

ized by carrying out the following sequence independently on each

ion: (i) hiding of |0〉, (ii) transfer of the population in |1〉 into the su-

perposition
√
1− γ|1〉+√

γ|D5/2(m = −5/2)〉, (iii) optical pump-

ing of the population in D5/2(m = −5/2) into P3/2(m = −3/2)
and subsequent decay back to |1〉 by spontaneous emission, and fi-

nally (iv) restoring the initially hidden population back to |0〉. From

J. T. Barreiro et al., Nature Physics 6, 943 (2010).

that has genuine (k + 1)-partite entanglement. The specific
projectors used in this experiment wereMi = |Wi〉〈Wi|, with

|W1〉 = 1
2

(
|1000〉+ eiβ1 |0100〉+ eiβ2 |0010〉+ eiβ3 |0100〉

)
,

|W2〉 = 1
2

(
|1000〉 − eiβ1 |0100〉 − eiβ2 |0010〉+ eiβ3 |0100〉

)
,

|W3〉 = 1
2

(
|1000〉 − eiβ1 |0100〉+ eiβ2 |0010〉 − eiβ3 |0100〉

)
,

|W4〉 = 1
2

(
|1000〉+ eiβ1 |0100〉 − eiβ2 |0010〉 − eiβ3 |0100〉

)
,

(VI.5)
where the phases βi were adjusted so as to minimize ∆.

This procedure resembles the one based on entanglement
witnesses, as it renders a sufficient criteria for genuine k-
partite entanglement. However, since ∆ cannot be written
as the expectation value of an observable, it rather defines a
non-linear entanglement witness. In any case, the dynamics
through the different layers of genuine k-partite entanglement
can be inferred as function of the noise strength δφ.

G. Dynamical generation of bound states

In a following experiment reported in Ref. [163], Barreiro
et al. go a step further than in the previous subsection and
demonstrate a rich dynamical behaviour of four initially en-
tangled qubits embedded in independent decohering environ-
ments, including the appearance of bound entanglement due
to the action of the local environments. Bound entanglement

arises here because of a similar mechanism to the one de-
scribed by Fig. 17 of Sec. V F 1, for the case of GHZ states.
Different bipartitions of an initially entangled N -qubit state
may become, under the action of individual environments,
separable at different times, implying that undistillability and
entanglement coexist, before the state completes its disentan-
glement. It is however important to distinguish that the initial
entangled state prepared in [163] is close to the Smolin state
(II.31), which is already itself bound entangled, as discussed
in Sec. II B 9. The setup in [163] comprises four 40Ca+ ions
confined in a linear Paul trap. In each ion a qubit is encoded
in the Zemman levels as |0〉 .

= |D5/2(m = −1/2)〉 and
|1〉 .= |S1/2(m = −1/2)〉, as shown in Fig. 30.

A controlled dephasing channel is applied locally to each
qubit, through a sequence of operations illustrated in Fig. 30:
Initially, (i) the population of the population of state |0〉 is
hidden by a full coherent transfer into the S1/2(m = 1/2)
level. Then, (ii) the population in |1〉 is partially transferred
to a superposition between the state |1〉 and an auxiliary level
D5/2(m = −5/2). This is followed by (iii) optical pumping
of D5/2(m = −5/2) to the excited state P3/2(m = −3/2),
with the subsequent spontaneous decay back to |1〉. Finally,
(iv) the population hidden initially is restored back to |0〉. The
photon scattered in step (iii) carries partial information about
the qubit state into the environment. This implements an ef-
fective dephasing channel, with dephasing strength given by
the probability of photon emission, which is in turn given by
probability 0 ≤ γ ≤ 1 of transferring all the initial population
from |1〉 to D5/2(m = −5/2) in (ii).

As mentioned, the initial 4-qubit state is close to the Smolin
state, and, as the latter, violates a CHSH-type Bell inequality
and enables entanglement superactivation [252]. Entangle-
ment superactivation is the most extreme example of super-
additivity of distillable entanglement, whereby two copies of
a multipartite bound entangled state (i.e., with zero distillable
entanglement each) tensored together possess positive distil-
lable entanglement. Nevertheless, in contrast to the Smolin
state, which is separable in all 2:2 bipartitions and entangled
in all 1:3 bipartitions, the initial state prepared is entangled in
the 1:3 bipartitions and also slightly entangled in the 2:2 ones.

As shown in Fig. 31, the different regimes of entanglement
of the initial state under local dephasing are monitored. For
0 ≤ γ < 0.06 the state violates a CHSH-like inequality (not
shown) and can be super activated. Between 0.06 ≤ γ <
0.12, CHSH violation ceases but superactivation is still possi-
ble. In the region 0.21 ≤ γ < 0.35 the state is bound entan-
gled. Finally, at γ = 0.35 the state reaches full separability.

H. Dynamics of 14-qubit GHZ entanglement

In Ref. [57], Monz et al. reported the creation of GHZ
states of up to 14 ion-qubits. The system is the same as in
the previous subsection, a string of 40Ca+ ions confined in
a linear Paul trap. The qubit encoding is again given by the
ground state |1〉 ≡ S1/2(m = −1/2) and the metastable
level |0〉 ≡ D5/2(m = −1/2), shown in Fig. 30. First, the
internal degree of freedom is optically pumped to the initial

http://dx.doi.org/10.1038/nphys1781
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Figure 31. Decay of entanglement through its different regimes. The

smallest eigenvalues of the partially transposed experimental density

matrix with respect to all the bipartitions are plotted as functions of

the dephasing strength γ. The upper panel corresponds to all the bi-

partitions of 2 versus 2 qubits; whereas the lower one to those of

1 versus 3 bipartition. The dashed vertical lines delimit different

regimes of multipartite entanglement. At γ = 0 the state is capa-

ble of a CHSH-inequality violation (not plotted). As γ increases, the

state goes first beyond the threshold for superactivation, and then,

when the 2:2 eigenvalues become zero, beyond that of distillability.

The latter demonstrates the dynamical generation of bound entangle-

ment. Finally, when 1:1 eigenvalues become zero, the state reaches

full separability. Adapted from J. T. Barreiro et al., Nature Physics

6, 943 (2010).

state |1 . . . 1〉, and the motional degree is cooled to the ground
state by Dopler and side-band cooling. Then, the ions are
subject to a collective Mølmer-Sørensen entangling interac-
tion [466, 467], which takes |1 . . . 1〉 to the GHZ state.

The authors measure the populations, in the computational
basis, of the experimentally created state ρ, as well as the co-
herence ∆

.
= 〈00 . . . 0|ρ|11 . . . 1〉. As discussed in Sec. V A 1,

these matrix elements suffice to assess the genuine multipar-
tite entanglement and multiparty distillability properties of
noisy GHZ states. Indeed, with these, the presence of gen-
uinely multipartite entanglement is corroborated by three dif-

Figure 32. Coherence as a function of time of a single-qubit super-

position (blue) and GHZ states of 2 (green), 3 (red), 4(orange), and 6

(purple) qubits. These results are consistent with an exponential de-

cay rate proportional to the squared number of ions. Reprinted figure

with permission from T. Monz et al., Phys. Rev. Lett. 106, 130506

(2011). Copyright (2011) by the American Physical Society.

ferent approaches. N -qubit distillability is confirmed with
Criterion 16 of Sec. V A 1. Whereas genuine N -qubit en-
tanglement is confirmed both through Criterion 17, also in
Sec. V A 1, and through fidelity-based entanglement witness
(II.21), of Sec. II B 6. The populations are measured by di-
rect fluorescence detection, and the off-diagonal element ∆
by measurements of parity oscillations induced by collective
rotations on the state.

Up to N = 8 qubits, the authors monitor the decay of
∆ over the time between the state generation and read-out.
Fig. 32 displays the observed decay of ∆, which is consistent
with an exponential decay of with decay rate proportional to
N2. This is in contrast to the decay rate proportional toN typ-
ical of local noise processes, as described in Sec. V B 6. This
quadratic decay rate was shown to stem from the presence
of correlated phase noise, caused by collective fluctuations of
the magnetic field. Correlated noise appears, in some form
or another, in many experimental platforms. The fast coher-
ence decay it can induce imposes stringent constraints on the
scalability of GHZ states to large N .

VII. CONCLUSION

From a mesmerizing quantum phenomenon to a physical
resource for quantum-information processing, entanglement
has followed a peculiar trajectory since it was discussed in
the 1935 paper by Einstein, Podolsky, and Rosen, and in the
1935 and 1936 papers by Schrödinger. Quantum correlations
acquired a new status with the 1964 paper by John S. Bell,
and were recognized in the 1990’s as resources for quantum
computation and communication. These potential applica-
tions motivated a deeper analysis of the mathematics of en-
tanglement, and of the possible deleterious effects of the en-
vironment.

The amount of insight gained in the last two decades on

http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1038/nphys1781
http://link.aps.org/doi/10.1103/PhysRevLett.106.130506
http://link.aps.org/doi/10.1103/PhysRevLett.106.130506
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this subtle property of the quantum world is enormous. The
huge reference section of this paper is an evidence of the col-
lective effort of theoretical and experimental physicists, com-
puter scientists, and mathematicians devoted to tackle differ-
ent aspects of entanglement.

In this review, we have focused on the dynamics of entan-
glement of systems that interact with different kinds of en-
vironments. This specific problem is of utmost importance
within the vast domain of studies of quantum correlations,
since it is directly connected to the analysis of the robust-
ness of quantum computing, quantum simulations, quantum
metrology, and quantum communication protocols. In addi-
tion, it turns out to be related to several fundamental ques-
tions in quantum theory, as we hope is clear from the previous
sections.

Nevertheless, important questions connected to entangle-
ment dynamics still remain as open challenges or promising
research directions. Some of them are summarized in the list
below.

• Dynamics of entanglement between macroscopic sub-

systems. This problem is intrinsically related to re-
cent experimental efforts that intend to push quan-
tum coherence and entanglement to macroscopic scales
[93, 94, 468, 469]. These experiments could lead to
stringent tests of quantum mechanics and its classical
limit [90], and might be able to probe subtle decoher-
ence effects of the gravitational field [81, 468, 470]. As-
sessment of the dynamical signature of different sources
of decoherence might help to identify the contribution
of gravitation to decoherence.

• Further effective logical channels. Effective noise
channels at the logical level have been studied [446] for
logical qubits encoded into some stabilizer-state error-
correction codewords under local Pauli noise. An inter-
esting direction to explore is the investigation of effec-
tive channels for logical encodings relevant to current
quantum computing or communication experiments.
These may be for instance few-qubit decoherence-
free subspaces under realistic noise models for ion-
trap [471, 472] or superconducting-circuit [473, 474]
architectures, or photonic encodings involving trans-
verse spatial modes, useful for misalignment-immune
quantum communication [475–478], ultra-sensitive ro-
tational sensors [479, 480], or high-dimensional qudit
processing [479–482], under atmospheric turbulence or
other spatial perturbations [477, 483, 484].

• Equation of motion for average entanglements. It was
shown in Ref. [136] that, as the number of parts grows,
the entanglement trajectories of initially Haar-random
pure states under noise concentrate around that of the
average entanglement. An interesting open question is
to determine an equation of motion for the Haar-average
entanglement, as well as for the width of the distribution
or even higher moments thereof, given a particular noise
model. The uniform Haar distribution has the advan-
tage of readily allowing for mathematical tools such as

Levy’s Lemma. However, it would be very interesting
to aim at other distributions of pure states from which
one can, contrary from the Haar distribution, sample ef-
ficiently. This may potentially render more realistic in-
sights about typical entanglement dynamics in natural
systems.

• Dynamics of entanglement for identical particles. En-
tanglement dynamics for systems composed of indis-
tinguishable particles, such as Bosons, Fermions or
Anyons, for instance, remains a largely unexplored
field. In spite of recent efforts [485–489], the lack of
accepted entanglement criteria and measures for such
systems prevents a better understanding of this prob-
lem. A great obstacle is that a resource theory based
on LOCC’s is no longer suitable: Due to the necessary
symmetrization or anti-symmetrization of identical par-
ticles, the notion of local operations does not apply any-
more.

• Dissipative stabilization of entanglement. Recent de-
velopments point to new directions in this fascinat-
ing field. The stabilization of entanglement through
engineered dissipation has been demonstrated in re-
cent experiments [179, 180]. This technique, which
stems from [170] – see also [171] –, may have appli-
cations in dissipative state preparations, quantum com-
putations and dissipatively-driven quantum phase tran-
sitions [174–176, 490, 491].

• Entanglement dynamics for improved quantum metrol-

ogy. The entangled states that have been proposed
[185, 188] for attaining the ultimate quantum preci-
sion limit in the estimation of transition frequencies and
phases are very fragile against decoherence. The prob-
lem of increasing the precision in quantum metrology
is thus closely related to the search of procedures to in-
crease the robustness of entanglement. Recent progress
has led to new estimates of precision limits in the pres-
ence of noise [32], and new strategies to increase the
robustness against particular models of local noise of
entangled states used for quantum metrology have re-
cently appeared, both passively [380, 440] and exploit-
ing error-correction [442–445]. This venue of research
may lead to interesting results in the years to come.

• Scaling laws for the decay of genuinely multipartite en-

tanglement. The recently introduced multipartite nega-
tivity [227], sensitive only to genuinely multipartite en-
tanglement, which allows for a quite practical evalua-
tion through semidefinite programming, has provided a
new tool to study the robustness of genuine-multipartite
entanglement [381]. A remaining challenge in this di-
rection is the derivation of analytical scaling laws, in
the sense of [143], for the decay of genuinely multipar-
tite entanglement, either for the multipartite negativity
or for other genuinely multipartite measures yet to be
conceived.
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• Scaling laws for entanglement decay in many-body-

system quantum simulations. An ambitious but very in-
teresting question is whether one can come up with (at
least approximate) analytical scaling laws for entangle-
ment decay [143], either in ground and thermal states,
or in non-equilibrium (quenched) systems, for Hubbard
or spin models, in their different phases, under realistic
noise types present in physical implementations, such
as for instance atoms in optical lattices [38–40].

• Entanglement propagation in many-body systems. This
theme is relevant to many fundamental questions in
physics, such as quantum transport, localization, and
thermalization. A toy example, discussed in Sec’s.
IV A, IV B and VI A, is the flow of entanglement from
an initial two-qubit entangled system into the corre-
sponding environment. An important problem is the
determination of the maximum speed of propagation
of information, and how fast different parts of the sys-
tem become correlated [196, 492–496]. The connection
between entanglement propagation and thermalization,
and the effect of noisy environments on the propagation,
are still largely unexplored subjects [496]. For noise-
less evolutions and short-range interactions, constant-
velocity bounds were derived by Lieb and Robinson
[492]. A generalization of this bound to Markovian
quantum evolutions was derived in [497]. However,
in spite of recent progress [498], this is still an open
problem for long-range interactions, even in the ab-
sence of noise. Recent experiments [499, 500] have
allowed a detailed study of this question, and consti-
tute implementations of quantum simulations that are
helpful to investigate still unknown properties of entan-
glement propagation.

Further progress in the field is however intrinsically con-
strained by advance in the problem of quantifying entangle-
ment, in its different varieties, for multipartite systems, which,
in spite of the impressive recent progress here described, re-
mains far from closed. All in all, Schrödinger’s predicament

in his famous Naturwissenschaften paper [2] still holds true:
entanglement “keeps coming back to haunt us.”
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[320] C. F. Roos, M. Riebe, H. Häffner, W. Hänsel, J. B. Elm, G. P. T.

Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt. Con-

trol and measurement of three-qubit entangled states. Science,

304:1478, 2004.

[321] U. Leonhardt. Quantum-State Tomography and Discrete

Wigner Function. Phys. Rev. Lett., 74:4101, 1995.

[322] A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat.

Nonmaximally entangled states: Production, characterization,

and utilization. Phys. Rev. Lett., 83:3103, 1999.

[323] C. F. Roos, G. P. T. Lancaster, M. Riebe, H. Häffner,
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[410] M. Hillery, V. Bužek, and A. Berthiaume. Quantum secret

sharing. Phys. Rev. A, 59:1829, 1999.

[411] E. D’Hondt and P. Panangaden. The Computational Power of

the W and GHZ states. Quantum Information & Computation,

6:173–183, 2006.

[412] W. Dür, J. I. Cirac, and R. Tarrach. Separability and distillabil-

ity of multiparticle quantum systems. Physical Review Letters,

83:3562–3565, 1999.

[413] J. I. Cirac W. Dür. Multiparticle entanglement and its experi-

mental detection. J. Phys. A, 34:6837, 2001.

[414] M. Hein, J. Eisert, and H. J. Briegel. Multiparty entanglement

in graph states. Phys. Rev. A, 69:062311, 2004.

[415] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest,

and H. J. Briegel. Entanglement in Graph States and its

Applications. In Proceedings of the International School of

Physics “Enrico Fermi” on Quantum Computers, Algorithms

and Chaos, 2006.

[416] R. Raussendorf and H. J. Briegel. A one-way quantum com-

puter. Phys. Rev. Lett., 86:5188 – 5191, 2001.

[417] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and

M. Van den Nest. Measurement-based quantum computation.

Nat. Phys., 5:19, 2009.

[418] D. Schlingemann and R. F. Werner. Quantum error-correcting

codes associated with graphs. Phys. Rev. A, 65:012308 –

012316, 2001.

[419] W. Dür, J. Calsamiglia, and H. J. Briegel. Multipartite secure

state distribution. Phys. Rev. A, 71:042336 – 042344, 2005.

[420] K. Chen and H. K. Lo. Multi-partite quantum cryptographic

protocols with noisy GHZ states. Quant. Inf. and Comp.,

7(8):689 – 715, 2007.

[421] O. C. Dahlsten and M. B. Plenio. Entanglement probability

distribution of bi-partite randomised stabilizer states. Quant.

Inf. Comp., 6:527 – 538, 2006.

[422] N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin,
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[453] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel. Optimal

spin squeezing inequalities detect bound entanglement in spin

models. Phys. Rev. Lett., 99:250405, 2007.
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