
Journal on Satisfiability, Boolean Modeling, and Computation 11 (2019) 73-97

Open-WBO-Inc: Approximation Strategies for

Incomplete Weighted MaxSAT

Saurabh Joshi sbjoshi@iith.ac.in

Prateek Kumar cs15btech11031@iith.ac.in

Sukrut Rao cs15btech11036@iith.ac.in

Department of Computer Science and Engineering, ∗

Indian Institute of Technology Hyderabad,

Kandi, Sangareddy, Telangana - 502285, India

Ruben Martins rubenm@andrew.cmu.edu

Department of Computer Science,

Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213, USA

Abstract

Incomplete MaxSAT solving aims to quickly find a solution that attempts to minimize
the sum of the weights of unsatisfied soft clauses without providing any optimality guar-
antees. In this paper, we propose two approximation strategies for improving incomplete
weighted MaxSAT solving. In one of the strategies, we cluster the weights and approximate
them with a representative weight. In another strategy, we break up the problem of mini-
mizing the sum of weights of unsatisfiable clauses into multiple minimization subproblems.
We have implemented these strategies in a tool Open-WBO-Inc. Using the subproblem
minimization strategy, Open-WBO-Inc placed first and second in the weighted incomplete
tracks in the MaxSAT Evaluation 2018 whereas the strategy based on weight approxima-
tion was placed fourth. We compare these strategies with the best incomplete MaxSAT
solvers on benchmarks taken from MaxSAT Evaluation 2017 and MaxSAT Evaluation 2018
and show that the strategies proposed are competitive with the best of the solvers.

Keywords: MaxSAT, Incomplete, Weighted, Approximation

Submitted November 2019; revised April 2019; published September 2019

1. Introduction

Given a set of Boolean constraints in conjunctive normal form (CNF), the problem of
Maximum Satisfiability (MaxSAT) asks to provide a valuation of variables so that the
maximum number of constraints are satisfied. These constraints can be assigned weights to
prioritize some set of constraints over others, which would give rise to a weighted MaxSAT
problem where the goal is to find a valuation which maximizes the sum of the weights of the
satisfied constraints. Weighted MaxSAT is more expressive than unweighted MaxSAT since
it allows the usage of weights to prioritize constraints but it is also more challenging for
MaxSAT algorithms since these weights can be very large. Any improvements in MaxSAT

∗ Authors are listed in alphabetical order.

c©2019 IOS Press, SAT Association and the authors.

S. Joshi et al.

solving have a huge impact because many real world problems can be encoded as MaxSAT
problems (e.g., [5, 22, 18]).

Often, the application may be able to tolerate a suboptimal solution but requires this
solution to be computed in a very short amount of time. For such cases, it tremendously
helps if there are techniques and tools that can very quickly find a solution which is close
enough to an optimal solution. Incomplete MaxSAT solvers [39, 4, 11, 29, 28, 12] strive to
find a good solution in a limited time frame. The solution, thus provided, need not be an
optimal one. Therefore, for improvement, we need to develop tools and techniques that can
find better solutions (closer to an optimal solution) in the same time frame.

Recently, we have proposed novel strategies to approximate weighted MaxSAT [23]. As
an extended version of that paper, we contribute the following:

• An approximation strategy based on weight relaxation (Section 3.1), which modifies
the weights of the clauses in a manner so that it is easier for the solver to find a
solution quickly.

• An approximation strategy which breaks up the problem of minimizing the sum of
weights of unsatisfied clauses into multiple minimization subproblems and attempts
to minimize these subproblems in a greedy order (Section 3.2). This strategy can also
be combined with the weight relaxation strategy.

• As an addition to the earlier version, an analysis of deviations from the optimal caused
by these strategies under various scenarios (Section 3.1.1 and Section 3.2.1).

• Empirical results on how the accuracy of the solver gets affected as we vary the weight
relaxation parameter (Section 5.1).

• An empirical study of the impact of combining an approximation strategy with com-
plete as well as stochastic approaches (Section 5.2). This is novel to this extended
version.

• An implementation of these strategies in Open-WBO-Inc [24] which is built on top
of the Open-WBO [33] MaxSAT solver framework. We also demonstrate the advan-
tage of these approximation strategies by showing its prowess against state-of-the-art
incomplete MaxSAT solvers (Section 5.3).

• An empirical study of the impact of benchmark characteristics on the accuracy of
incomplete approaches (Section 5.4). This is novel to this extended version.

• A discussion on deviation from an optimal solution of these techniques in principle
and in practice (Section 5.5). This discussion is an addition to this extended version.

2. Preliminaries

Let x be a Boolean variable which can take values true or false. A literal l is a variable x

or its negation ¬x. A clause α is a disjunction of literals and a formula ϕ is a conjunction
of clauses. Notationally, we will treat a clause α and a formula ϕ as sets containing literals
and clauses respectively.

74

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

An assignment ν maps variables to either true or false. An assignment is said to satisfy
a positive literal x (resp. a negative literal ¬x) if ν(x) = true (resp. ν(x) = false). For
simplicity, we use 1 (resp. 0) and true (resp. false) interchangeably. A clause is said to
be satisfied if at least one of its literals is satisfied. A formula is said to be satisfied by an
assignment if all of its clauses are satisfied by the assignment. A formula is called satisfiable

if there exists a satisfying assignment for that formula, otherwise, it is called unsatisfiable.
Boolean satisfiability problem (SAT) asks to find a satisfying assignment (i.e., model) to a
formula. Maximum satisfiability (MaxSAT) problem is an optimization version where the
goal is to find an assignment which satisfies the maximum number of clauses of a formula.
In a partial MaxSAT problem, a partition of ϕ is given as two mutually exclusive sets ϕh

(hard clauses) and ϕs (soft clauses), where the goal is to satisfy all the clauses in ϕh, while
maximizing the number of clauses satisfied in ϕs. Hereafter, we will assume that ϕh is
always satisfiable. Let weight : Clauses → N

+ be a map from a set of clauses to positive
integers. In a partial weighted MaxSAT problem, the goal is to find an assignment that
maximizes the sum of weights of the satisfied soft clauses. From now on, we will refer to a
weighted partial MaxSAT problem as MaxSAT.

A clause α can be relaxed by adding a relaxation variable r so that the relaxed clause
becomes α∪{r}. The relaxed clause can be satisfied by either satisfying the original clause
or its relaxation variable. For a formula ϕ, when all of its soft clauses are relaxed, we
will denote it as ϕr. We define the cost of a relaxation variable r to be the weight of the
clause that it relaxed, cost(r) = weight(α). The cost of an assignment ν is defined as
cost(ν) =

∑

ri:ν(ri)=1 cost(ri). The goal of MaxSAT is to find a satisfying assignment with
the minimum cost.

3. Approximation Strategies

In this section, we describe two approximation strategies that can allow MaxSAT algorithms
to converge faster to lower cost solutions. Note that the best model found by approximation
strategies is not guaranteed to be an optimal solution for the original MaxSAT formula.

3.1 Weight-based approximation

Let Pm(ϕs) = {c1, . . . , cm} be a partition of ϕs into m mutually exclusive sets c1, . . . , cm
such that

⋃

1≤i≤m ci = ϕs and ∀i 6=j : ci ∩ cj = ∅. We will call sets c1, . . . , cm as clusters of
the partition.

Given a formula ϕs, Alg. 1 partitions the clauses into clusters as follows. All soft clauses
are sorted by their weights (Line 2) in ascending order. Then, differences in weights between
two consecutive clauses are calculated (Line 4). m− 1 indices are picked where the weight
differences are amongst the top m − 1 weight differences (Line 5). These indices are used
as boundaries to create clusters (Lines 6–9). This way of divisive clustering is effectively
identical to single-link agglomerative clustering [21]. Finally, a new weight map weightm
is created, where all the clauses in the same cluster get the same weight (Lines 11–13).
RepresentativeWeight (Line 13) indicates any representative weight for the cluster. In
this paper, we use the arithmetic mean of the weights of the clauses in a cluster as the
representative weight. In principle, other representative weights can also be chosen which
may have a different effect on how much an algorithm can deviate from finding the minimum

75

S. Joshi et al.

Algorithm 1: Partitioning and weight approximation

Input : Formula ϕs, Map weight, partitioning parameter m
Output: Partition P (m), new weight map weightm

1 n← |ϕs|
2 sort clauses of ϕs in the ascending order of weights
3 for i← 1 to n− 1 do
4 diff i ← weight(αi+1)− weight(αi)
5 〈i1, . . . , im−1〉 ← indices sorted in ascending order where top (m− 1) differences

diff i occur
6 c1 ← {α1, . . . , αi1}
7 for j ← 2 to m− 1 do
8 cj ← {αij−1+1, . . . , αij}
9 cm ← {αim−1+1, . . . , αn}

10 P (m)← {c1, . . . , cm}
11 foreach ci ∈ P (m) do
12 foreach αj ∈ ci do
13 weightm(αj)← RepresentativeWeight(ci)

14 return 〈P (m), weightm〉

Algorithm 2: Linear search Sat-Unsat algorithm for MaxSAT

Input: Formula ϕr, weight maps weightm, and weight

Output: model to ϕ

1 (model, µ, ϕW)← (∅,+∞, ϕr)
2 status = SAT

3 while status = SAT do
4 (status, ν)← SAT(ϕW)
5 if status = SAT then
6 if cost(ν) < cost(model) then
7 model← ν

8 µ← costm(ν)
9 ϕW ← ϕW ∪ {CNF((

∑

r∈VR
(costm(r) · r)) ≤ µ− 1)}

10 return model

cost assignment. It is redundant to have m > #weights, where #weights is the number of
distinct weights, because for m ≥ #weights, weight = weightm. Alg. 1 can be combined
with any search algorithm and as m increases the deviation of the search algorithm from
an optimal solution decreases. If m = 0 it is assumed that no partitioning is done.

There are encodings which perform better when #weights is small [25, 16]. Such encod-
ings can benefit from approximation of weights because it results in a smaller size formula
when converted to CNF. This can be used with a cost minimization algorithm for MaxSAT
such as the linear search Sat-Unsat algorithm [10, 26] shown in Alg. 2. In this algorithm,
all the clauses in ϕs are initially relaxed, and the set of corresponding relaxation variables
is denoted as VR. A working formula ϕW is initialized with the relaxed formula ϕr. The

76

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

cost of an empty model is assumed to be +∞. Our primary goal is to find a satisfying
assignment ν to ϕ with the minimum cost(ν). Alg. 2 iteratively asks a SAT solver if there
is a satisfying assignment, with its cost at most µ− 1 (Line 9). The approximation comes
from Alg. 2 using costm instead of cost to encode a pseudo-Boolean (PB) constraint that
restricts the cost of relaxation variables being set to true (Line 9). Since costm is an ap-
proximation of cost, minimizing costm does not necessarily translate to minimization w.r.t.
cost. Therefore, we update the model only when a satisfying assignment indeed reduces the
previous value of cost(model) (Lines 6–7).

3.1.1 Analysis and observations on deviation

In this section we will make some observations on the potential deviation caused due to
clustering. It is worth noting that the word approximation used in this paper is in a loose
sense of the word and should not be construed in the approximation algorithm sense.

Let νopt denote a model where cost(νopt) is the least. Let νclu denote the model where
costm(νclu) is the least. If we had used the minimum weight in the cluster as the representa-
tive weight, then we know that for any model ν, costm(ν) ≤ cost(ν). Thus, it would always
provide a lower bound. Similarly, if we had used the maximum weight in the cluster as the
representative weight, then costm(ν) ≥ cost(ν), thus making it an upper bound. Since we
are using the arithmetic mean as the representative weight, for any model ν, costm(ν) may
be higher or lower than cost(ν).

Let the number of clauses in cluster ci be denoted as |ci|. Let max(ci) and min(ci)
denote the largest and the smallest weight in the cluster ci. Also let top(k, ci) and bot(k, ci)
denote the set of the largest and the smallest k weights in ci respectively.

Now, let us calculate an upper bound on the deviation ∆ = |cost(νclu)− cost(νopt)|. An
obvious upper bound on the deviation would be:

∆ ≤ n · (max(ϕs)−min(ϕs)) (1)

where, n is the total number of soft clauses |ϕs|.
Observe that Alg. 2 will be the most precise and complete when m = #weights. On

the other hand, it will be the least precise when m = 1. Therefore, let us compute an upper
bound on the deviation for the worst case when m = 1. Note that for m = 1, Alg. 2 is just
going to satisfy the maximum number of clauses, while completely ignoring their weights.
Let nsat(ν) denote the number of clauses satisfied by an assignment ν. For m = 1, it has
to be the case that nsat(νclu) ≥ nsat(νopt), because the algorithm is just maximizing the
number of clauses satisfied. Therefore, for every αj that νclu could not satisfy but νopt could
satisfy, there has to be at least one clause αk that νopt could not satisfy but νclu could satisfy.
Let us assume that weight(αj) > weight(αk). Then, νclu choosing to satisfy αk instead of
αj would contribute to an error of weight(αj)−weight(αk). Note that νclu can make such
wrong choices for only up to n

2 unique pairs, because otherwise nsat(νopt) > nsat(νclu), a
contradiction. Therefore, the upper bound can be revised to:

∆ ≤

∑

t∈top(n
2
,ϕs)

t

−

∑

b∈bot(n
2
,ϕs)

b

 (2)

77

S. Joshi et al.

Algorithm 3: Layered greedy algorithm for weighted MaxSAT

Input: ϕ = ϕh ∪ ϕs, weight maps weight and weightm, Partition P (m)
Output: model to ϕ

1 (model, ~µ, ϕW , C)← (∅, ~+∞, ϕr, Pm(ϕs)))
2 foreach ci ∈ C in the descending order of weightm(ci) do
3 ϕi ← ϕW

4 Vi ← VR ∩ V ars(ci)
5 status = SAT

6 while status = SAT do
7 (status, ν)← SAT(ϕi)
8 if cost(ν) < cost(model) then
9 model← ν

10 µi ← |{r ∈ Vi | ν(r) = 1}|
11 ϕi ← ϕi ∪ {CNF(

∑

r∈Vi
r ≤ µi − 1)}

12 ϕW ← ϕW ∪ {CNF(
∑

r∈Vi
r ≤ µi)}

13 return model

Consider a formula ϕ = {(x1, 100), . . . , (xn
2
, 100), (¬x1, 1), . . . , (¬xn

2
, 1)}, where (α,wei-

ght(α)) denotes a clause α with its corresponding weight weight(α). For m = 1, Alg. 2 can
satisfy exactly half of the clauses in ϕ. Since there is no way to prioritize between clauses
for m = 1, νclu can set all xi’s to false whereas νopt would set all xi’s to true. The bound
given in Eqn. (2) would be tight in this case.

3.2 Approximation via subproblem minimization

Alg. 3 proceeds in a greedy manner by processing each cluster in the descending order of its
representative weight (Line 2). Vi indicates a set of relaxation variables corresponding to
the clauses in cluster ci (Line 4). Here, V ars(ci) indicates the set of all the variables that
are used in the cluster ci. Minimization of the cost of a satisfying assignment is divided
into subproblems by minimizing the number of unsatisfied clauses in clusters, starting from
the highest representative weight to the lowest (Line 2). For each cluster, the number of
unsatisfied clauses is minimized by iteratively reducing the upper bound µi on the number
of relaxation variables in Vi that can be set to true (Lines 10–11). In the process, the
minimum cost assignment seen so far is recorded (Lines 8–9). Since within any cluster,
all the clauses have the same weightm, only cardinality constraints are used to restrict the
number of unsatisfied clauses within µi (Line 11). Once µi can not be reduced further, it
is frozen and added as an upper bound in the working formula ϕW (Line 12). Thus, ϕW

contains cardinality constraints with upper bound µj for the number of relaxation variables
that can be set to true for all the clusters cj seen so far (Line 12). Since the minimization
is done locally as a minimization subproblem at a cluster level, rather than looking at the
whole formula, this procedure is not guaranteed to converge to a globally optimal solution.
Note that Alg. 3 can use Alg. 1 as a preprocessing step.

78

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

3.2.1 Analysis and observations on deviation

The clustering-based algorithm presented in Alg. 3 is closely related to Boolean Multilevel
Optimization (BMO) [30]. BMO is a technique for identifying lexicographic optimization
conditions, i.e. the existence of an ordered sequence of objective functions. For this section,
let us assume that m = #weights, therefore, cost would be the same as costm. As a result,
if there are multiple clauses having the same weight in the original formula, they will form
a cluster due to Alg. 1.

Let wi be the representative weight of soft clauses in cluster ci. Consider a sequence
of clusters c1, c2, . . . , cm arranged in a descending order of wi. A MaxSAT formula is an
instance of BMO if for every cluster ci, wi is larger than the sum of the weights of all soft
clauses in clusters ci+1, ci+2, . . . , cm, i.e.,

w1 > |c2|w2 + |c3|w3 + . . .+ |cm|wm

...

wm−2 > |cm−1|wm−1 + |cm|wm

wm−1 > |cm|wm

If the above conditions hold then the result of Alg. 3 is equivalent to solving a BMO
formula. Let there be a clause in ci such that satisfying this would force Alg. 3 to falsify a
subset of clauses in ci+1, . . . , cm. Because of the conditions above, the optimal model will
be such that the clause in ci is preferred over this subset. Hence the model given by Alg. 3
would be optimal in this case.

However, when the clusters and their representative weights do not preserve the BMO
condition, it is not guaranteed that the solution found by Alg. 3 is an optimal solution for ϕ.
Our approach differs from previous complete approaches in using approximation strategies
that do not preserve optimality but are more likely to converge faster to a better solution.

Let νbmo be the model given by Alg. 3 upon its termination and νopt be an optimal
model for ϕ. Let cost(ν, c) denote the sum of weights of the unsatisfied clauses in the set
of clauses c by the assignment ν. Let ck be the first cluster in c1, c2, . . . , cm such that the
condition wk >

∑m
i=k+1|ci|wi fails, and cost(νbmo, ck) 6= cost(νclu). Let ∆k be the associated

error for such a ck. Since the BMO condition holds for all the clusters c1, c2, . . . , ck−1, the
cost associated with those clusters will be the same by νbmo and νopt. Therefore, for the
cluster ck, cost(νbmo, ck) < cost(νopt, ck). This is because Alg. 3 follows a greedy approach,
and will try to satisfy the maximum number of clauses possible in ck. However, since the
BMO condition does not hold for ck, it might be possible to find a solution with a lower
cost which has lesser clauses satisfied in ck but more clauses satisfied in subsequent clusters.

For example, let ϕ = {[(x1, 100), (x2, 100)]1 , [(x3, 10)]2 , [(¬x1 ∨ ¬x3, 9), (¬x2 ∨ ¬x3, 9)]3}
be defined over a set of Boolean variables V = {x1, x2, x3}. Here, a tuple (α,weight(α))
denotes the clause α and its weight. Also [c]i denotes the set of clauses that forms the i-th
cluster ci. Here, clearly, the BMO condition is satisfied for the first cluster. So, Alg. 3 will
set x1 and x2 to true as it iterates over these clauses. Next, we observe that the cluster
c2 does not satisfy the BMO condition. This is because the sum of weights of subsequent
clauses is 9+9 = 18 > 10, with 10 being the weight of the third clause. Since Alg. 3 follows
a greedy approach, it will try to satisfy the third clause, and set x3 to true. This will result

79

S. Joshi et al.

in the fourth and fifth clauses being unsatisfiable. However, the optimal solution involves
setting x3 to false, which will fail to satisfy the third clause but will satisfy the fourth and
fifth, which gives a better value for cost. So, in this example, we have cost(νbmo, c3) = 0,
but cost(νopt, c3) = 10.

Alg. 3 can only deviate from the optimal in terms of satisfied clauses in ck when there
is a set S ⊆

⋃m
i=k+1 ci , such that the sum of weights in S is more than wk and νopt satisfies

the clauses in S instead of some clause in ck (which is satisfied by νbmo). In the worst case
scenario, as illustrated above, the set S =

⋃m
i=k+1 ci. In this case, the difference in the cost

associated with νbmo and νopt is upper-bounded as follows:

∆k ≤

(
m∑

i=k+1

|ci|wi

)

− wk (3)

This bound is tight for the example provided above. There, we have cost(νbmo) = 9+9 =

18, and cost(νopt) = 10. Using Eqn. 3, we get ∆2 ≤
(
∑3

i=3|c3|w3

)

−w2 = (2× 9)− 10 = 8.

Even though the BMO condition fails for some cj , it is possible that cost(νbmo, cj) =
cost(νopt, cj). Therefore, Eqn. (3) is applicable only if at cluster ck BMO condition is
violated and k is the least index for which cost(νbmo, ck) 6= cost(νopt, ck). For example, let
V = {x1, x2, x3, x4}. Consider a formula ϕ = {[(x1, 100), (x2, 100)]1 , [(x3, 20)]2 , [(x4, 10)]3 ,
[(¬x1 ∨ ¬x4, 9), (¬x2 ∨ ¬x4, 9)]4}. Here, even though the BMO condition is first violated
in c2, we have cost(νbmo, c2) = cost(νopt, c2) = 0, since x3 can always be satisfied. The
first cluster ck such that cost(νbmo, ck) 6= cost(νopt, ck) is c3. Using similar arguments from
above, we can see that the bound in Eqn. (3) is tight for this example.

In general, the first cluster ck for which BMO condition is violated and cost(νbmo, ck) 6=
cost(νopt, ck) it has to be the case that cost(νbmo, ck) < cost(νopt, ck).

Eqn. (3) still relies on the knowledge νopt. So let us try to derive a bound that does not
rely on the knowledge of νopt. Let ck1 , . . . , ckp be the set of clusters where BMO condition is
violated where k1 < · · · < kp. Remember that wk1 > · · · > wkp . As we do not know which is
going to be the first cki for which cost(νbmo, cki) 6= cost(νopt, cki), we can over-approximate
Eqn. (3) to obtain the deviation upper bound as follows:

∆ ≤

 max
j∈{k1,...,kp}

m∑

i=j+1

|ci|wi

−min(wk1 , . . . , wkp)

 ≤

m∑

i=k1+1

|ci|wi − wkp

 (4)

Note that Eqn. (4) does not depend on the knowledge of νopt and can be computed just
based on the given input formula.

Adversarial Example
Here, we show an example where assuming the BMO condition leads to a poor approxima-
tion. Consider a SAT formula ϕ in CNF form, with N variables. Let the set of variables be
V , where |V |= N . A clause α ∈ ϕ evaluates to false if each literal in α is false. Suppose
there exists a partial assignment for ϕ, where 0 < k ≤ N variables have been assigned to
either true or false. Let the set of these variables be K ⊆ V . Let C be the set of clauses
falsified by this assignment. Then, C can contain at most 2k− 1 clauses. This is because in

80

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

any such clause α ∈ C, for each v ∈ K, there are two possibilities: (i) the literal containing
v has a polarity opposite to that of the assignment, or (ii) v does not appear in α. From
the resulting 2k possibilities for α, we ignore the case where the clause is empty. Note that
no variable v ∈ V \K can appear in such a α, since it can be made to evaluate to true by
appropriately setting the truth value of v. Another observation is that if the assignment of
each variable in K is flipped, then every clause in C would be satisfied.

This shows that with a poor assignment, it is possible to falsify a set of clauses that is
exponential to the number of variables in the formula. Since the Alg. 3 greedily attempts to
satisfy groups of clauses, and fixes the upper bound on the number of unsatisfied clauses in
all the preceding clusters, this unravels the possibility of constructing an adversarial formula
that will cause Alg. 3 to provide such an assignment.

We now construct such a formula ϕ. We first provide a concrete example with three
variables, after which we describe a procedure for this construction for N variables.

An example with three variables
Let V = {x1, x2, x3}. Let a (α,weight(α)) denote a clause α and its weight. Then, define
ϕ′ = {(x1, 4), (¬x1, 3), (x2, 3), (¬x2, 2), (¬x1∨¬x2, 2), (x3, 2), (¬x3, 1), (¬x1∨¬x3, 1), (¬x2∨
¬x3, 1), (¬x1 ∨ ¬x2 ∨ ¬x3, 1)}. Then, the Alg. 3 works as follows:

1. The cluster with the largest weight is {(x1, 4)}. The maximum number of clauses that
can be satisfied in this cluster is 1, which can be done by setting x1 = true. This
assignment is effectively frozen before moving to the next cluster, since the upper
bound on the number of relaxation variables that can be set to true is fixed to 0.

2. The next cluster, based on descending order of weights, is {(¬x1, 3), (x2, 3)}. Since
x1 = true is frozen, (¬x1, 3) must remain unsatisfied. By setting x2 = true the upper
bound on the unsatisfied clauses in this cluster can be fixed to 1. This effectively
freezes x2 = true.

3. Similarly, one can verify that x3 = true will be the best assignment found in the third
cluster, while no clause can be satisfied in the fourth cluster.

As a result, the cost of this assignment, νbmo, is cost(νbmo) = (3) + 2(2) + 4(1) = 11.
However, an optimal solution, νopt would be to set all except one variable in V to be false,
with any one of them being true, leading to a cost of cost(νopt) = 8.

Constructing ϕ for N variables
Let V = {x1, x2, . . . , xN}. We add clauses iteratively to ϕ as follows:

1. In the first step (i = 1), (x1, N + 1) is added to ϕ.

2. We then iterate for the next N − 1 steps (from i = 2 to i = N). In the ith step,
2i−2 + 1 clauses are added.

(a) First, (xi, N − i+ 2) is added.

(b) Here, we consider two possible cases, either of which adds 2i−2 clauses:

i. If i > 2, then every possible clause α of the form ({¬xi−1}∪E,N−i+2) such
that E ∈ P({¬x1, . . . ,¬xi−2}), with P being the power set of its argument,
is added.

81

S. Joshi et al.

ii. If i = 2, a single clause, (¬x1, N) is added.

3. In the final, (N + 1)th step, we again consider two possible cases, either of which adds
2N−1 clauses:

(a) If N > 1, every possible clause α of the form ({¬xN} ∪ E, 1) such that E ∈
P({¬x1, . . . ,¬xN−1}) is added.

(b) If N = 1, a single clause, (¬xN , 1) is added.

It can be observed that the above procedure generates ϕ′ in the example above.
Using this procedure, an adversarial formula ϕ can be constructed such that setting all

its variables except one to false will provide the optimal cost. In such an assignment all but
one clause among clauses of the form (xi, N − i + 2), 1 ≤ i ≤ N would remain unsatisfied.
Without loss of generality, let νopt have xj = true. Then (xj , N − j + 2) is satisfied and
(¬xj , N − j +1) would remain unsatisfied. Thus, irrespective of j, it reduces the cost by 1.
All other clauses are satisfied. Such an assignment νopt, for ϕ with N variables, gives

cost(νopt) =

(
N∑

i=1

(N − i+ 2)

)

− 1 =
(N + 1)(N + 2)

2
− 2

However, because Alg. 3 sets each variable to true, an exponential number of clauses
are unsatisfied. It can be verified that the predicted optimal cost of the assignment νbmo

found by the algorithm in this case would be

cost(νbmo) =
N+1∑

i=2

2i−2(N − i+ 2) = 2N+1 −N − 2

The error, ∆, is thus,

∆ = 2N+1 −N −
(N + 1)(N + 2)

2
= 2N+1 −

N2 + 5N + 2

2
(5)

The above construction shows that there exist formulas for which the deviation of the
optimal found by Alg. 3 from the true optimal is exponential in the number of variables.

It can also be seen that the error bound in Eqn. (5) satisfies Eqn. (4). For N = 1, BMO
condition will hold. By definition, BMO condition can not be violated for the last cluster
because there are no more clusters after that. For N > 1, the BMO assumption is violated
in every cluster but the last one in the above construction. Then, according to Eqn. (4),
we have,

∆ ≤
N+1∑

i=2

|ci|wi − wN

=

N∑

i=2

(2i−2 + 1)
︸ ︷︷ ︸

#clauses from Step-2

(N − i+ 2)
︸ ︷︷ ︸

weight in Step-2

+ 2N−1

︸ ︷︷ ︸

#clauses from Step-3

− 2
︸︷︷︸

weight of last cluster where the BMO condition fails

= 2N+1 +
N2 −N − 10

2

82

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

Clearly, for N > 1, we have 2N+1 + N2−N−10
2 > 2N+1 − N2+5N+2

2 , and hence, the error
in Eqn. (5) satisfies Eqn. (4).

The discussion so far in this section was based on the assumption that m = #weights.
In this case, the deviation can only happen because of BMO condition violation. If
m 6= #weights, the error because of clustering would also contribute to the deviation.
Theoretical bound in the deviation is likely to be even worse than what is given in Eqn. (4).

4. Related Work

Approaches for incomplete MaxSAT solving can primarily be divided into three categories:
(i) stochastic MaxSAT solvers [11, 29, 28, 12, 17, 27], (ii) complete MaxSAT solvers that
can find intermediate solutions [26, 10, 33, 4, 13, 37], and (iii) approximation approaches
that may not guarantee optimality [15, 14, 35, 31].

4.1 Stochastic MaxSAT

Stochastic solvers start by finding a random assignment ν for ϕ. Since this assignment is
unlikely to satisfy all the clauses in ϕ, they choose a clause αi that is unsatisfied by ν and
flip the assignment of a variable in αi such that αi becomes satisfied. When compared to
local search SAT solvers, stochastic MaxSAT solvers have additional challenges since they
must find an assignment ν that satisfies ϕh while attempting to minimize the cost of the
unsatisfied soft clauses. Stochastic MaxSAT solvers are particularly effective for random
benchmarks but their performance tends to deteriorate for industrial benchmarks. Since the
MaxSAT Evaluation 2017 (MSE2017) [2] did not contain any random instances, there were
no stochastic MaxSAT solvers in it. In the meantime, there has been a constant attempt to
close the gap between the performance of stochastic solvers and complete solvers for indus-
trial benchmarks. In the MSE2018, there was one submission of a stochastic solver called
SATLike [27]. This solver uses a dynamic local search framework that modifies the weights
of clauses during the search and exploits the distinction of hard and soft clauses by using
a particular weighting scheme. For the MSE2018, the authors from SATLike also submit-
ted a hybrid version that switches from a stochastic algorithm to the Sat-Unsat complete
MaxSAT algorithm described in Alg. 2. This version outperformed the pure stochastic ver-
sion and was the winner of the MSE2018 for incomplete MaxSAT on unweighted problems
for both 60 and 300 seconds time limits. However, for weighted problems its performance
was subpar. The evaluation conducted in this paper focuses on weighted problems and
we restrict ourselves to the stochastic version of SATLike. Even though this version is not
competitive with the other approaches it uses a different algorithm that may be competitive
for a restrictive set of benchmarks.

4.2 Complete MaxSAT

Complete solvers can often find intermediate solutions to ϕ before finding an optimal as-
signment ν. MaxSAT solvers based on linear search algorithms [10, 26, 33] can find a
sequence of intermediate solutions that converge to an optimal solution. These solvers use
PB constraints to enforce convergence. While SAT4J [10] uses specialized data structures
for PB constraints to avoid their conversion to CNF, other solvers such as QMaxSAT [26]

83

S. Joshi et al.

convert the PB constraint into clauses using PB encodings [40, 25, 16]. Some MaxSAT
solvers which are based on the implicit hitting set approach [13, 37] maintain a lower and
an upper bound on the values of the solution. These solvers can also be used for incom-
plete MaxSAT since they are also able to find intermediate solutions. Another approach
for complete MaxSAT solving is to use unsatisfiability-based algorithms [34, 4, 1]. These
algorithms use unsatisfiable subformulas to increase a lower bound on the cost of a solu-
tion until they find an optimal solution. For weighted MaxSAT, these algorithms employ a
stratified approach [3] where they start by considering only a subset of the soft clauses with
the largest weights and iteratively add more soft clauses when the subformula becomes sat-
isfiable. An intermediate solution is found at each iteration. WPM3 [4] is an example of an
unsatisfiability-based solver that can be used for incomplete MaxSAT. Besides the stratified
approach, this solver is also able to find intermediate solutions due to an optimization step
that tries to further increase the lower bound value at each iteration. WPM3 extends phase
saving [4] for MaxSAT to guide the search towards the last assignment found by the solver
and was the best incomplete MaxSAT solver in the MSE2016 [6]. maxroster [39] was the
winner of the incomplete track for Weighted MaxSAT in the MSE2017. It is a hybrid solver
that combines an initial short phase of a stochastic algorithm [17] with complete MaxSAT
algorithms [34, 26].

4.3 Approximation approaches

Approximation techniques do not necessarily guarantee optimality on the final solution.
An example of such an approach is the enumeration of Minimal Correction Subsets (MC-
Ses) [31]. An MCS of an unsatisfiable set of constraints is a minimal subset that, if removed,
makes the constraint set satisfiable. MCSes can be used to approximate MaxSAT solu-
tions [31] and a version of Open-WBO (called Open-WBO-Inc-MCS) was submitted to the
MSE2018 incomplete track for unweighted benchmarks using this approach. There has been
a recent trend of using approximation approaches for incomplete MaxSAT. Recently, an ap-
proach based on bit-vector optimization was proposed for unweighted incomplete MaxSAT
with promising results [35]. A similar strategy to this approach is implemented on top of
Open-WBO (called Open-WBO-Inc-OBV) and submitted to the unweighted incomplete track
of the MSE2018. Note that none of these algorithms performed exceptionally well and were
only submitted to the unweighted track which is beyond the scope of this paper.

LinSBPS [15] is a new incomplete MaxSAT solver that also uses an approximation ap-
proach that closely resembles the techniques presented in this paper. For weighted instances,
they propose to see the formula in low resolution, i.e. with all their weights divided by a
large value. Note that they use integer division which sets some soft clauses to weight zero,
effectively removing them. Whenever the solver terminates with an “optimal” solution to
the simplified formula, the resolution is increased by decreasing the value with which they
divide all weights. This varying resolution approach resembles our weight approximation
approach. Instead of dividing all weights by a given constant, we group the weights into
m-partitions which can be efficiently encoded into CNF with the Generalized Totalizer En-
coding (GTE) [25], the complexity of which depends on the number of unique weights. On
the other hand, LinSBPS keeps more information from the original formula by maintaining
the ratio between weights and is able to dynamically increase the resolution to improve their

84

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

accuracy over time. Another optimization employed by LinSBPS is the use of solution-based
saving [4, 14] for both unweighted and weighted problems to guide the search towards the
best solution found so far. LinSBPS was the winner of the weighted incomplete track in
the MSE2018 with a time limit of 300 seconds. For the weighted incomplete track in the
MSE2018 with a time limit of 60 seconds, the winner was the clustering-based algorithm
presented in Alg. 3. In the next section, we present a thorough comparison between our
techniques and the state-of-the-art in incomplete MaxSAT solving.

5. Experimental Results

To evaluate incomplete MaxSAT solvers we used the scoring scheme from the previous
MaxSAT Evaluations of 2017 [2] (MSE2017) and 2018 [8] (MSE2018). Given a formula ϕ,
the score for a solver S is computed by the ratio of the cost (sum of weights of unsatisfied
clauses) of the best solution known for ϕ, denoted as best(ϕ), 1. to the best cost found by
S, denoted as costS(ϕ). 2. The score for S for a set of n benchmarks is given by the average
score ([0, 1]) as follows:

score(S) =

∑n
i=1

best(ϕi)
costS(ϕi)

n
(6)

score(S) shows how close on average is a solver S to the best known solution.

All the experiments were conducted on StarExec [38] using Intel R© Xeon R© E5-2609 pro-
cessors (2.40GHz) with a memory limit of 32GB and time limits of 10, 60 and 300 seconds.
We have used a non-standard timeout of 10 seconds to demonstrate that the approxima-
tion strategies can find good solutions very quickly. As our benchmark set, we used the
156 benchmarks for incomplete MaxSAT from the MSE2017 [2] and 172 benchmarks for
incomplete MaxSAT from the MSE2018 [8] for a total of 240 benchmarks (benchmarks that
appear in both the sets are counted only once).

Note that most of these benchmarks are challenging for complete solvers and have un-
known optimal solutions. To improve the best known solution best(ϕ) for every benchmark,
we also ran RC2 [20, 19], the best complete solver in the MSE2018 for the complete cat-
egory, with 1800 seconds timeout. We have implemented all the algorithms presented in
this paper in Open-WBO-Inc [24]. Open-WBO-Inc is built on top of Open-WBO [33] which
uses Glucose [7] as the underlying SAT solver. We used Generalized Totalizer Encoding
(GTE) [25] and incremental Totalizer encoding [32] to translate PB constraints and cardi-
nality constraints into CNF, respectively.

To evaluate Open-WBO-Inc, we performed an extensive experimental evaluation which
aims to answer the following questions:

Q1. What is the impact of the number of clusters on the accuracy of Open-WBO-Inc? How
does the accuracy of Open-WBO-Inc improve over time?

Q2. Can the accuracy of Open-WBO-Inc be further improved when combined with other
MaxSAT solvers?

1. best(ϕ) is the cost of the best solution found by any solver in this evaluation.
2. We consider a score of 0 if S did not find any solution to ϕ.

85

S. Joshi et al.

Q3. How does Open-WBO-Inc compare against the state-of-the-art in incomplete MaxSAT
solving?

Q4. What is the impact of the number of different weights of soft clauses on the accuracy
of Open-WBO-Inc and other state-of-the-art incomplete MaxSAT solvers?

Q5. What is the practical and theoretical deviation in score of Open-WBO-Inc on bench-
marks with known optimal value?

5.1 Impact of the number of clusters and analysis of accuracy over time

We measure the impact of the partitioning parameter m on the accuracy of the results.
Fig. 1 shows how the accuracy of the results is affected as the partitioning parameter m

varies. Fig. 1a shows the score of Alg. 2 with GTE encoding (henceforth called inc-cluster)
when using the MSE2017 benchmarks and Fig. 1c when using the MSE2018 benchmarks.
We can observe a similar trend on the union of the MSE2017 and MSE2018 benchmarks
and Fig. 1e shows the overall results on the union of both the benchmark sets. These figures
show that inc-cluster performs the worst when no partitioning is done. This is attributed to
the fact that the size of the formula in GTE is dictated by #weights [25], where #weights

are the number of different weights in the weight map. Since Alg. 1 changes weights of all
the clauses in a cluster ci to RepresentativeWeight(ci), it effectively reduces #weights.
All three figures, Fig. 1a, Fig. 1c, and Fig. 1e shows that as m increases the, the possible
deviation from an optimal cost also decreases, thereby resulting in increased scores. The
degradation for larger m is attributed to a larger size of the formula. As the timeout is
increased, the score increases because Alg. 2 has more time and can do more iterations to
reduce costm(model).

Since inc-cluster performs the best with m = 3, as observed in Fig. 1e, we will use this
configuration in the remainder of the experimental evaluation.

Fig. 1b and Fig. 1d show that similar scoring trends are witnessed for Alg. 3 (hence-
forth called inc-bmo) when using the MSE2017 benchmarks and the MSE2018 benchmarks,
respectively. As inc-bmo uses only cardinality constraints, the formula size is not very sen-
sitive to m. As m increases, the scores also improve due to increased precision, with the
best scores achieved when m = #weights. For the remainder of the experimental evalu-
ation, we will consider inc-bmo with m = #weights since this is when it performed the
best. inc-bmo is guaranteed to find an optimal solution only if the BMO condition holds
and m = #weights. However, only 3 out of 156 benchmarks in the MSE2017 satisfy the
BMO condition and the inc-bmo algorithm does not terminate for any of them. None of the
172 benchmarks in the MSE2018 satisfy the BMO condition.

5.2 Combining Open-WBO-Inc with other MaxSAT algorithms

It is possible for either inc-cluster or inc-bmo to terminate before the timeout is reached.
Since these algorithms are not guaranteed to find an optimal solution to the original
MaxSAT problem, they can terminate with a suboptimal solution before the time limit
is reached. Tab. 1 shows how often inc-cluster and inc-bmo terminate before reaching the
time limit. We can observe that inc-cluster rarely terminates before the time limit and
therefore is unlikely to be further improved by extending it with a different MaxSAT algo-

86

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

0 1 2 3 4 5

0.6

0.65

0.7

0.75

#Clusters (m)

S
co
re

Effect of clustering on inc-cluster

timeout=10s
timeout=60s
timeout=300s

(a) inc-cluster Cluster v/s Score MSE2017

1 2 3 4 5 50 100#weights
0.65

0.7

0.75

0.8

#Clusters (m)

S
co
re

Effect of clustering on inc-bmo

timeout=10s
timeout=60s
timeout=300s

(b) inc-bmo Cluster v/s Score MSE2017

0 1 2 3 4 5

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

#Clusters (m)

S
co
re

Effect of clustering on inc-cluster

timeout=10s
timeout=60s
timeout=300s

(c) inc-cluster Cluster v/s Score MSE2018

1 2 3 4 5 50 100#weights

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

#Clusters (m)

S
co
re

Effect of clustering on inc-bmo

timeout=10s
timeout=60s
timeout=300s

(d) inc-bmo Cluster v/s Score MSE2018

0 1 2 3 4 5

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

#Clusters (m)

S
co
re

Effect of clustering on inc-cluster

timeout=10s
timeout=60s
timeout=300s

(e) inc-cluster Cluster v/s Score MSE2017 ∪
MSE2018

1 2 3 4 5 50 100#weights

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

#Clusters (m)

S
co
re

Effect of clustering on inc-bmo

timeout=10s
timeout=60s
timeout=300s

(f) inc-bmo Cluster v/s Score MSE2017 ∪
MSE2018

Figure 1: Impact of clustering and analysis of accuracy over time

87

S. Joshi et al.

Table 1: Number of benchmarks where inc-cluster and inc-bmo terminated early

Benchmark #
Solver

inc-cluster inc-bmo

10s 60s 300s 10s 60s 300s

MSE2017 156 4 4 5 54 74 94
MSE2018 172 20 22 23 82 102 115
All 240 21 23 25 108 136 157

10 60 300

0.9

0.92

0.94

0.96

Timeout

S
co
re

inc-bmo-satlike inc-bmo-complete inc-bmo

Figure 2: Impact of inc-bmo-complete and inc-bmo-satlike on benchmarks where inc-bmo

terminates, considered separately for each time limit

rithm. However, this is not the case for inc-bmo where it reaches early termination on 157
out of 240 benchmarks when using a time limit of 300 seconds. For those benchmarks, we
could change the configuration of inc-bmo or dynamically change to a different algorithm
that could attempt to further improve the best solution found so far.

Complete MaxSAT algorithms. One possible extension to the inc-bmo algorithm, is
to change to a complete MaxSAT algorithm that can find intermediate solutions such as
the one presented in Algorithm 2. This was the approach taken by Open-WBO-Inc in the
MSE2018. Once inc-bmo terminates, it dynamically changes to the linear Sat-Unsat algo-
rithm presented in Alg. 2. This combination of inc-bmo switching to a complete algorithm
will be referred to as inc-bmo-complete. This transformation is done incrementally (i.e.,
without destroying the SAT solver) and preserving the best known upper bound. Open-

WBO-Inc uses the GTE encoding [25] by default unless the number of auxiliary clauses
created by the GTE encoding exceeds 3,000,000. In this case, Open-WBO-Inc uses the non-
arc consistent Adder encoding [40] that has a linear complexity with respect to the number
of auxiliary variables and clauses and reduces the chance of Open-WBO-Inc reaching the
memory limit.

Stochastic MaxSAT algorithms. Another alternative is to change to a stochastic
MaxSAT algorithm that may be able to improve the best known upper bound since it
does not rely on SAT solvers and uses a very different approach. To this end, we modified
the stochastic MaxSAT solver SATLike to use the best known solution from inc-bmo as its
starting point. Henceforth, we will refer to this combination of switching from inc-bmo to
SATLike as inc-bmo-satlike.

88

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

Fig. 2 shows the impact of changing algorithms once inc-bmo terminates early on the
combined set of benchmarks from the MSE2017 and MSE2018. Note that for the bench-
marks where inc-bmo did not terminate early the performance remains the same since the
algorithm never changed. It is worth noting that for the 10 seconds plot in Fig. 2, only
those subset of benchmarks are considered for which inc-bmo terminated earlier than 10
seconds, and similarly for the other two time limits. Therefore, the subset of benchmarks
considered for each time limit is different, which changes the denominator in Eqn. (6). This
is the reason for higher scores. Also, the score for 10 seconds for a solver configuration may
be higher than the score for 60 seconds purely because of the increase in the denominator
in Eqn. (6).

Fig. 2 shows that after inc-bmo terminates, it is more advantageous to switch to a
stochastic solving strategy as compared to switching to a complete algorithm. inc-bmo-

complete improves the average score of inc-bmo from 0.9363 to 0.9464 whereas inc-bmo-

satlike improves the average score of inc-bmo from 0.9363 to 0.9572 for 300 seconds time
limit. We observe similar trends across other time limits as well.

Note that even though we showcase that the accuracy of inc-bmo could be further im-
proved by changing algorithms, the approach is modular and is not restricted to the ones
presented in this section. Any solver that can take advantage of an upper bound would
benefit from this approach and inc-bmo could even be used as a preprocessing technique to
find initial upper bounds for weighted MaxSAT instances.

5.3 Comparison against state-of-the-art incomplete MaxSAT solvers

We compared the best version of Open-WBO-Inc for weight-based approximation, inc-

cluster with m = 3, and subproblem minimization, inc-bmo with m = #weights in three
modes: (i) without switching (inc-bmo) (ii) switching to a complete algorithm (inc-bmo-

complete), and (iii) switching to SATLike (inc-bmo-satlike), with the best performing in-
complete MaxSAT solvers from the MSE2017 and MSE2018. Specifically, maxroster [39],
WPM3 [4], QMaxSAT [26], LinSBPS [15] and SATLike [27] were used for comparison. maxroster

and WPM3 were the winners of the incomplete weighted category of the MSE2017 and
MSE2016, respectively. QMaxSAT was placed second on the complete category of the
MSE2017 and uses the algorithm described in Alg. 2 3.. LinSBPS was the winner of the
incomplete weighted category for 300 seconds and SATLike was the winner of the incomplete
unweighted category.

As shown in Fig. 3, for a 10 seconds timeout, all three modes of inc-bmo outperform all
other approaches with LinSBPS coming as a close second and inc-cluster placing third. This
demonstrates that approximation strategies are quite effective when we want to quickly find
a solution which is close to an optimal solution.

As time increases, LinSBPS takes the lead with all three modes of inc-bmo being a close
second. LinSBPS performs a similar approximation strategy to inc-cluster where weights are
relaxed. However, instead of clustering the weights, LinSBPS divides them by a large value
and decreases this value once the simplified problem is solved optimally. This contrasts

3. Even though MaxHS [13] placed first in the complete weighted category of the MSE2017, its incomplete
version is not as competitive [2]. In the MSE2018, Pacose [36] was another solver based on Alg. 2 but
its performance is similar to QMaxSAT (only solved more 9 benchmarks than QMaxSAT).

89

S. Joshi et al.

10 60 300

0.6

0.7

0.8

0.9

Timeout

S
co
re

SATLike LinSBPS QMaxSAT

maxroster WPM3 inc-bmo-satlike

inc-bmo-complete inc-bmo inc-cluster

(a) MSE2017 benchmarks

10 60 300

0.2

0.4

0.6

0.8

Timeout

S
co
re

SATLike LinSBPS QMaxSAT

maxroster WPM3 inc-bmo-satlike

inc-bmo-complete inc-bmo inc-cluster

(b) MSE2018 benchmarks

10 60 300

0.6

0.8

Timeout

S
co
re

SATLike LinSBPS QMaxSAT

maxroster WPM3 inc-bmo-satlike

inc-bmo-complete inc-bmo inc-cluster

(c) MSE2017 and MSE2018 benchmarks

Figure 3: Comparison against state-of-the-art

90

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

Table 2: Number of benchmarks having a given range of unique weights

Range MSE2017 MSE2018 Combined

1-5 61 63 93
6-10 15 30 37
11-50 6 8 8
51-200 6 24 27
201-500 26 17 28
501-1000 9 9 12
1001-10000 29 20 31
10001-∞ 4 1 4

Total 156 172 240

Table 3: Distribution of weights across all benchmarks

Mean Std. Dev. Median

Min 1 0 1
1st Quartile 5.659 2.969 3
Median 237.872 217.095 225
3rd Quartile 30,062.163 8094.713 27410.250
Max 6,779,863,060 54,627,561,614 2,082,335,888

with inc-bmo-complete or inc-bmo-satlike where once we find an optimal solution, we switch
to a complete algorithm or we switch to SATLike based local search algorithm respectively.

Even though inc-cluster with m = 3 performs worse than QMaxSAT for the 60 seconds
and 300 seconds timeout, it outperforms QMaxSAT for the 10 seconds timeout. Overall,
inc-cluster is the fourth best solver behind LinSBPS, inc-bmo, and maxroster.

It is worth noting that inc-bmo-satlike and inc-bmo-complete secured third and fourth
place respectively in the MaxSAT Evaluation 2019 (MSE2019) [9] ahead of LinSBPS in the
incomplete weighted category for 60 seconds timeout. Additionally, in the same category
with 300 seconds timeout, inc-bmo-satlike and inc-bmo-complete secured third and fifth place
respectively with LinSBPS securing fourth place. These results further validate our claims
regarding the performance of inc-bmo-satlike and inc-bmo-complete.

5.4 Impact of benchmark characteristics on solver accuracy

Tab. 2 shows the distribution of soft clauses with unique weights among the benchmarks
from the MSE2017 and MSE2018. We can observe a split between benchmarks with a few
distinct weights (around 54% with 10 or less distinct weights) and benchmarks with many
distinct weights (46% with more than 10 distinct weights, from which around 43% have
more than 500 distinct weights). Tab. 3 shows the statistics about the distribution of the
weights in the benchmarks. For all the 240 benchmarks, we computed arithmetic mean,
median and standard deviation of the weights. An entry (row, col) in the table represents
the statistical properties of the weights of the benchmarks. For example, 217.095 in row
Median and column Std. Dev. represents the median of the standard deviations of all 240

91

S. Joshi et al.

10 60 300

0.4

0.6

0.8

Timeout

S
co
re

SATLike LinSBPS QMaxSAT

maxroster WPM3 inc-bmo-satlike

inc-bmo-complete inc-bmo inc-cluster

(a) Benchmarks from MSE2017 and MSE2018 with ≤ 10 unique weights

10 60 300

0.7

0.8

0.9

Timeout

S
co
re

SATLike LinSBPS QMaxSAT

maxroster WPM3 inc-bmo-satlike

inc-bmo-complete inc-bmo inc-cluster

(b) Benchmarks from MSE2017 and MSE2018 with > 10 unique weights

10 60 300

0.7

0.8

0.9

Timeout

S
co
re

SATLike LinSBPS QMaxSAT

maxroster WPM3 inc-bmo-satlike

inc-bmo-complete inc-bmo inc-cluster

(c) Benchmarks from MSE2017 and MSE2018 with > 500 unique weights

Figure 4: Impact of distinct weights on the accuracy of MaxSAT solvers

92

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

benchmarks. Tab. 3 shows that though for the most benchmarks the magnitudes of the
weights, as well as the spread of weights, is low, there are about 25% benchmarks where
the magnitudes are very high (3rd Quartile,Median) as well as the spread of the weights is
also very high (3rd Quartile, Std. Dev.)

To analyze the impact of unique weights on the accuracy of incomplete MaxSAT solvers,
we considered three distinct partitions: (i) benchmarks with 10 or less unique weights (130
benchmarks), (ii) benchmarks with more than 10 unique weights and (110 benchmarks),
and (iii) benchmarks with more than 500 unique weights (47 benchmarks).

Fig. 4a shows the variation of accuracy on benchmarks with 10 or less unique weights.
LinSBPS clearly outperforms all other approaches when solving benchmarks with a few
unique weights. However, when analyzing benchmarks with more than 10 unique weights
the picture changes drastically and inc-bmo becomes much better than LinSBPS as can
be seen in Fig. 4b. We conjecture that the continuous decrease on the weight relaxation
performed by LinSBPS performs better when the number of unique weights is smaller.
Note that LinSBPS still outperforms inc-cluster approach which clusters the weights into m

partitions.

Fig. 4c shows the accuracy on the subset of benchmarks that have more than 500
unique weights. SATLike performs much better when the number of unique weights is
large. Since the stochastic algorithm of SATLike does not depend on the number of different
unique weights (or on its magnitude), the solver shows a remarkable performance for this
kind of benchmarks. However, for 300 seconds we can see that inc-bmo still outperforms
SATLike even though the accuracy is comparable. When combining inc-bmo with SATLike,
we can observe that inc-bmo-satlike further improves the accuracy of inc-bmo and clearly
outperforms all other solvers for 300 seconds when the number of unique weights is large.

5.5 Practical and theoretical deviations

Tab. 4 shows the accuracy of Open-WBO-Inc on benchmarks where the optimal value is
known (which corresponds to 80 out of 240 benchmarks) using the scoring metric computed
by equation Eqn. (6). The column Practice indicates the score observed by running ap-
proximation strategies with the best performing parameters. That is, m = 3 for inc-cluster
and m = #weights for inc-bmo. Column Theory denotes the scores obtained with respect
to the theoretical deviation as provided in Eqn. (2) (m = 1) for inc-cluster and Eqn. (4)
(m = #weights) for inc-bmo.

We can observe that the worst case scenario modeled by the theoretical bounds does
not happen in practice. Therefore, the accuracy of inc-cluster and inc-bmo are much higher
in practice than their theoretical counterparts.

Notice that the theoretical accuracy for inc-bmo is far worse than the one for inc-cluster.
This is due to the theoretical error for inc-bmo is proportional to the entire sum of the
weights beneath the first violation, and in practice, such violation may occur very early,
therefore, producing a large theoretical error. In inc-cluster, the theoretical accuracy is
better than inc-bmo since at most 50% of clauses can contribute to the error, whereas in
inc-bmo the percentage of clauses contributing to error can go arbitrarily high.

93

S. Joshi et al.

Table 4: Comparison between theoretical and practical accuracy of inc-bmo and inc-cluster

Practice Theory

inc-cluster inc-bmo inc-cluster inc-bmo

0.798 0.867 0.256 0.180

6. Summary

In this paper, we have shown that relatively simple ideas such as clustering and a greedy ap-
proach in subproblem minimization result in a significant improvement towards incomplete
weighted MaxSAT solving. We analyzed how much deviation can be caused in principle by
these approximation strategies under various assumptions. This paper also demonstrates
that the approaches proposed here achieve their purpose of finding a good solution in a short
time frame and can be quite competitive to the best of the available incomplete solvers. We
also show that hybrid approaches such as inc-bmo-satlike can further enhance the accuracy
of an incomplete solver.

We believe that such strategies, which are fundamentally incomplete (i.e., may not
guarantee optimum even upon termination), need to be investigated further, since for many
practical applications, one needs to find a good (but possibly suboptimal) solution very
quickly. We have also observed that combinations of various approaches into a hybrid one
also offers a lot of potential for improvement in MaxSAT solving and further exploration is
very much warranted.

Acknowledgements

This work is partially funded by ECR 2017 grant (ECR/2017/001126) from SERB, DST,
India, NSF award #1762363 and CMU/AIR/0022/2017 grant. We thank StarExec [38] for
the computing resources.

References

[1] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A MaxSAT Algorithm Using
Cardinality Constraints of Bounded Size. In Proc. International Joint Conference on

Artificial Intelligence, pages 2677–2683. AAAI Press, 2015.

[2] Carlos Ansótegui, Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT
Evaluation 2017. http://maxsat-evaluations.github.io/2017, 2017. [Online; ac-
cessed 20-November-2017].

[3] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-
Based Weighted MaxSAT Solvers. In Proc. Principles and Practice of Constraint Pro-

gramming, pages 86–101. Springer, 2012.

[4] Carlos Ansótegui and Joel Gabàs. WPM3: An (in)complete algorithm for weighted
partial MaxSAT. Artificial Intelligence, 250:37–57, 2017.

94

http://maxsat-evaluations.github.io/2017

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

[5] Josep Argelich, Daniel Le Berre, Inês Lynce, Joao Marques-Silva, and Pascal Rapi-
cault. Solving Linux Upgradeability Problems Using Boolean Optimization. In Proc.

Workshop on Logics for Component Configuration, pages 11–22. EPTCS, 2010.

[6] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. MaxSAT Evaluation 2016.
http://maxsat.ia.udl.cat/, 2016. [Online; accessed 18-April-2016].

[7] Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern
SAT Solvers. In Proc. International Joint Conference on Artificial Intelligence, pages
399–404. AAAI Press, 2009.

[8] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT Evaluation
2018. https://maxsat-evaluations.github.io/2018/, 2017. [Online; accessed 20-
November-2018].

[9] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT Evaluation 2019.
http://maxsat-evaluations.github.io/2019, 2019. [Online; accessed 18-July-
2019].

[10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. JSAT, 7(2-3):59–6,
2010.

[11] Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring Local Search for
Partial MaxSAT. In Proc. AAAI Conference on Artificial Intelligence, pages 2623–
2629. AAAI Press, 2014.

[12] Shaowei Cai, Chuan Luo, and Haochen Zhang. From Decimation to Local Search
and Back: A New Approach to MaxSAT. In Proc. International Joint Conference on

Artificial Intelligence, pages 571–577. AAAI Press, 2017.

[13] Jessica Davies and Fahiem Bacchus. Solving MAXSAT by Solving a Sequence of Sim-
pler SAT Instances. In Proc. Principles and Practice of Constraint Programming, pages
225–239. Springer, 2011.

[14] Emir Demirovic, Geoffrey Chu, and Peter J. Stuckey. Solution-Based Phase Saving
for CP: A Value-Selection Heuristic to Simulate Local Search Behavior in Complete
Solvers. In Proc. Principles and Practice of Constraint Programming, pages 99–108.
Springer, 2018.

[15] Emir Demirovic and Peter J. Stuckey. LinSBPS. In Proc. MaxSAT Evaluation 2018

Solver and Benchmark Descriptions, B-2018-2, page 8. University of Helsinki, De-
partment of Computer Science, 2018.

[16] Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean Constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

[17] Yi Fan, Zongjie Ma, Kaile Su, Abdul Sattar, and Chengqian Li. Ramp: A Local Search
Solver based on Make-positive Variables. In Proc. MaxSAT Evaluation, 2016.

95

http://maxsat.ia.udl.cat/
https://maxsat-evaluations.github.io/2018/
http://maxsat-evaluations.github.io/2019

S. Joshi et al.

[18] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. Automated
Synthesis of Semantic Malware Signatures using Maximum Satisfiability. In Proc.

Network and Distributed System Security Symposium, 2017.

[19] Alexey Ignatiev, António Morgado, and Joao Marques-Silva. PySAT: A Python Toolkit
for Prototyping with SAT Oracles. In Proc. International Conference on Theory and

Applications of Satisfiability Testing, pages 428–437. Springer, 2018.

[20] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. RC2. In Proc. MaxSAT

Evaluation 2018 Solver and Benchmark Descriptions, B-2018-2, page 22. University
of Helsinki, Department of Computer Science, 2018.

[21] Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254,
Sep 1967.

[22] Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using maxi-
mum satisfiability. In Proc. Conference on Programming Language Design and Imple-

mentation, pages 437–446. ACM, 2011.

[23] Saurabh Joshi, Prateek Kumar, Ruben Martins, and Sukrut Rao. Approximation
Strategies for Incomplete MaxSAT. In Proc. Principles and Practice of Constraint

Programming, pages 219–228. Springer, 2018.

[24] Saurabh Joshi, Prateek Kumar, Ruben Martins, and Sukrut Rao. Open-Wbo-Inc.
http://github.com/sbjoshi/Open-WBO-Inc/, 2018. [Online; accessed 23-November-
2018].

[25] Saurabh Joshi, Ruben Martins, and Vasco Manquinho. Generalized Totalizer Encod-
ing for Pseudo-Boolean Constraints. In Proc. Principles and Practice of Constraint

Programming, pages 200–209. Springer, 2015.

[26] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A
Partial Max-SAT Solver. JSAT, 8(1/2):95–100, 2012.

[27] Zhendong Lei and Shaowei Cai. Solving (Weighted) Partial MaxSAT by Dynamic Local
Search for SAT. In Proc. International Joint Conference on Artificial Intelligence, pages
1346–1352. AAAI Press, 2018.

[28] Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: An efficient local
search algorithm for weighted partial maximum satisfiability. Artificial Intelligence,
243:26–44, 2017.

[29] Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, and Kaile Su. CCLS: An Efficient
Local Search Algorithm for Weighted Maximum Satisfiability. IEEE Transactions on

Computers, 64(7):1830–1843, 2015.

[30] Joao Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. Boolean lexicographic
optimization: algorithms & applications. Annals of Mathematics and Artificial Intel-

ligence, 62(3-4):317–343, 2011.

96

http://github.com/sbjoshi/Open-WBO-Inc/

Open-WBO-Inc: Approximation Strategies for Incomplete Weighted MaxSAT

[31] Joao Marques-Silva, Federico Heras, Mikolás Janota, Alessandro Previti, and Anton
Belov. On Computing Minimal Correction Subsets. In Proc. International Joint Con-

ference on Artificial Intelligence, pages 615–622. AAAI Press, 2013.

[32] Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Inês Lynce. Incremental Car-
dinality Constraints for MaxSAT. In Proc. Principles and Practice of Constraint Pro-

gramming, pages 531–548. Springer, 2014.

[33] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: A Modular MaxSAT
Solver,. In Proc. International Conference on Theory and Applications of Satisfiability

Testing, pages 438–445. Springer, 2014.

[34] António Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-Guided MaxSAT
with Soft Cardinality Constraints. In Proc. Principles and Practice of Constraint

Programming, pages 564–573. Springer, 2014.

[35] Alexander Nadel. Solving MaxSAT with Bit-Vector Optimization. In Proc. Interna-

tional Conference on Theory and Applications of Satisfiability Testing, pages 54–72.
Springer, 2018.

[36] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic Polynomial Watchdog En-
coding for Solving Weighted MaxSAT. In Proc. International Conference on Theory

and Applications of Satisfiability Testing, pages 37–53. Springer, 2018.

[37] Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP Hybrid MaxSAT
Solver. In Proc. International Conference on Theory and Applications of Satisfiability

Testing, pages 539–546. Springer, 2016.

[38] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A Cross-Community
Infrastructure for Logic Solving. In Proc. International Joint Conference on Automated

Reasoning, pages 367–373. Springer, 2014.

[39] Takayuki Sugawara. MaxRoster: Solver Description. In Proc. MaxSAT Evaluation

2017: Solver and Benhmark Descriptions, B-2017-2, page 12. University of Helsinki,
Department of Computer Science, 2017.

[40] Joost P. Warners. A Linear-Time Transformation of Linear Inequalities into Conjunc-
tive Normal Form. Information Processing Letters, 68(2):63–69, 1998.

97

	Introduction
	Preliminaries
	Approximation Strategies
	Weight-based approximation
	 Analysis and observations on deviation

	Approximation via subproblem minimization
	 Analysis and observations on deviation

	Related Work
	Stochastic MaxSAT
	Complete MaxSAT
	Approximation approaches

	Experimental Results
	Impact of the number of clusters and analysis of accuracy over time
	Combining Open-WBO-Inc with other MaxSAT algorithms
	Comparison against state-of-the-art incomplete MaxSAT solvers
	Impact of benchmark characteristics on solver accuracy
	Practical and theoretical deviations

	Summary

