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Abstract. The development of functional–structural plant models requires an increasing amount of computer modelling.
All these models are developed by different teams in various contexts and with different goals. Efficient and flexible
computational frameworks are required to augment the interactionbetween thesemodels, their reusability, and the possibility
to compare them on identical datasets. In this paper, we present an open-source platform, OpenAlea, that provides a
user-friendly environment for modellers, and advanced deployment methods. OpenAlea allows researchers to build models
using a visual programming interface and provides a set of tools and models dedicated to plant modelling. Models and
algorithms are embedded in OpenAlea ‘components’ with well defined input and output interfaces that can be easily
interconnected to formmore complexmodels and definemoremacroscopic components. The systemarchitecture is based on
the use of a general purpose, high-level, object-oriented script language, Python, widely used in other scientific areas.
We present a brief rationale that underlies the architectural design of this system and we illustrate the use of the platform to
assemble several heterogeneous model components and to rapidly prototype a complex modelling scenario.

Additional keywords: dataflow, interactive modelling, light interception, plant modeling, software architecture.

Introduction

Functional–structural plant models (FSPM) aim to simulate and
help to understand the biological processes involved in the
development and functioning of plants (Prusinkiewicz 2004;
Godin and Sinoquet 2005; Vos et al. 2007). This requires
efficiently using and combining models or computational
methods from different scientific fields in order to analyse,
simulate and understand complex plant processes at different
scales (Prusinkiewicz and Hanan 2007). Owing to the different
constraints and background of the teams, these models are
developed using different programming languages, with
different degrees of modularity and inter-operability. In
addition, little attention is devoted to the reusability of the
code and to its diffusion (packaging, installation procedures,
website, portability to other operating systems, and
documentation). This makes it difficult to exchange, re-use or
combine models and simulation tools between teams (or even
within a team).Thismaybecomeparticularly critical as theFSPM
communitywants to address the study ofmore andmore complex
systems, which requires integrating different models available
from different groups at different scales.

Attempts have been made in the past to develop software
platforms in the context of FSPM. The most popular is the

L-Studio software, developed since the end of the 1980s
by the group led by P. Prusinkiewicz (Prusinkiewicz and
Lindenmayer 1990; Mech and Prusinkiewicz 1996). This
platform runs on the Windows operating system and provides
users with an integrated environment and a specific language
called ‘cpfg’ dedicated to the modelling of plant development.
This language was recently upgraded to L +C (based on the C++
programming language). This greatly extended the power of
expression and the openness of the system.

A different user interface, ‘VLab’, has been designed by the
same group to use ‘cpfg’ on Linux systems (Federl and
Prusinkiewicz 1999). In itself, the VLab design is independent
of the application domain. This interactive environment consists
of experimental ‘units’ called objects, that encompass data files,
andLinuxprograms, that operate on these data. To exchangedata,
objectsmust write the data to the disk. An inheritancemechanism
allows objects to be refined using an object-oriented file system,
and objects may be distributed in different locations across the
web. Such features make it a powerful system for assembling
pieces of code at a coarse grain level and for managing different
versions of any given model. However, VLab uses of a shell
language to combine stand-alone programs that have a low level
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of interoperability, anddoesnot alloweasy control of dataflowsat
a fine grain level due to the limited access that the modeller has to
the internal data structures of the interconnected programs.

‘GroIMP’ (Kniemeyer et al. 2006) is another software
platform based on L-systems, that was developed recently by
W. Kurth and team in the context of plant modelling and
simulation in biology. This open software platform is written
in Java, which renders it independent of operating systems.
Similarly to LStudio/VLab, GroIMP also relies on a special
purpose language, ‘XL’, dedicated to the simulation of plants
and, more generally, to the dynamic development of graph
structures. The choice of Java as a programming language
allows a tradeoff between an easy to use programming
language (e.g. no pointers, automatic memory management)
and a compiled efficient language such as C++.

Similarly to GroIMP but in a domain restricted to forest
management, ‘Capsis’ is a computer platform based on Java
(Goreaud et al. 2006), for studying forest practices that is worth
mentioning in these approaches applied to plant modelling.

In a relatively different spirit, the ‘AMAPmod’ platform
(Godin et al. 1997) focuses on plant architecture analysis
rather than on plant growth simulation. It was originally based
on a home-made language, ‘AML’, which was designed to
provide a high degree of interaction between users and their
models (Godin et al. 1999). The AML language was then
abandoned and replaced by a more powerful language coming
from the open software community, Python, which was found to
achieve a very good compromise between interactivity,
efficiency, stability, expressive power, and legibility both for
expert programmers and beginners. This major upgrade of the
AMAPmod system (now re-engineered as ‘VPlants’) initiated the
development of OpenAlea.

Software platforms outside the world of plant modelling also
inspired the development of OpenAlea. In particular, the use of
visual programmingwas introduced in different projects: AVS in
scientific visualisation (Upson et al. 1989), Vision (Sanner et al.
2002) in bioinformatics or Orange (Demsar et al. 2004) in data
mining. This notionwas shown to allowusers natural access to the
modelling system and easy sketching and reuse of model
components.

We present, in this paper, the open-software platform,
OpenAlea, for plant modelling based on a combination of the
two families of approaches (i.e. plant architecture analysis and
visual programming). OpenAlea is a flexible component-based
framework designed to facilitate the integration and
interoperability of heterogeneous models and data structures
from different scientific disciplines at a fine grain level. Its
architecture will also ease and accelerate the diffusion of new
computational methods as they become available from different
research groups. Such a software environment is targeted not only
at developers and computer scientists but also at biologists, who
may be able to assemble models while minimising the
programming effort. The first section (‘OpenAlea at a glance’)
presents a general outline of the OpenAlea platform. The second
section details the design goals and requirements that drove the
platform development. The third section describes the design
choices and emphasises several critical technical issues. Finally,
the last section provides an illustration of the use of the platform
on a typical modelling application in the context of

ecophysiology. This example shows how the platform can
ease the integration and interoperation of heterogeneous
software components in plant modelling applications.

OpenAlea at a glance

OpenAlea provides a graphical user interface (GUI), VisuAlea,
whichmakes it possible to access easily the different components
and functionalities of the system. It is composed of three main
zones. The central zone (Fig. 1B) contains the graphical
description of the model being built. The user can add or
delete component nodes (in blue) and connect them via their
input/output ports (yellow dots). Each component node contains
parameters that can be edited through a specific GUI by clicking
on the node. Component nodes available in the libraries installed
on the user’s computer can be browsed and selected using the
package manager (Fig. 1A). Once the model is complete, the user
can get the result of the model execution at any node by selecting
this node and running it. The evaluation of a node changes its state
which is represented by a colour. During the execution of the
dataflow, the flow of node evaluation is, thus, represented by a
flow of colour change. Depending on the type of the output data,
the result is displayed by an appropriate graphical interface as a
text, a graphic, or a 3-D scene (Fig. 1D). The result may also be
exported to the Python interpreter for further use through the
language (Fig. 1C). Figure 1 shows a small example in which a
graphical model was designed to import the geometric models of
a tulip and to multiply it using a component node representing a
spatially uniform distribution.

Design goals and platform requirements

The OpenAlea platform was designed to meet the following
requirements.

Ease of use

As stated above, OpenAlea proposes a visual programming
environment and a collection of computational components,
which make it simple to combine existing models in a new
application. It also gives a simple multi-platform framework
for the development and integration of components.

Reusability and extendibility

OpenAlea architecture aims at facilitating the solving of technical
issues linked to sharing, reuse, and integration of software
components, i.e. programs, algorithms and data structure from
heterogeneous languages (mainly C, C++, Python, and Fortran).
Thismakes the platformuseful formulti-disciplinary projects and
multi-scale modelling of plants.

Collaborative development

The development and ownership of OpenAlea are shared by
various teams, and open to all the community. The overall
software quality is improved by enforcing common rules and
best practices. Synergy between multidisciplinary teams is also
enhanced. The software life cycle is extended because the system
is co-developed by different teams to suit their own needs.
Economies of scale are achieved by sharing the costs of
development, documentation and maintenance.

752 Functional Plant Biology C. Pradal et al.



Description of the platform

The OpenAlea architecture consists of: (a) a Python-language
based system and a set of tools to integrate heterogeneousmodels
implemented in various languages and on different platforms; (b)
a component framework that allows dynamic management and
composition of software components; (c) a visual-programming
application for the interactive creation and control of complex
models and for rapid prototyping; and (d) an environment for
collaborative development and software diffusion.

Python-language based system and model integration

OpenAlea has beendesigned using a ‘language-centric’ approach
(Sanner 1999) using the high-level, object-oriented Python script
language as a framework. Script languages, like the Unix shell,
have been successfully used for decades in the Unix world
(Raymond 2003) to build flexible workflows from small stand-
alone programs. Independent pieces of software can be combined
via the language. New functionalities are easier to develop for
users in an interpreted script language rather than in a compiled
one. However, shell script languages require conversion of
complex data structures into strings to support communication
between programs. This may be inefficient for large data
structures and requires extra work for developers to manage
serialisation and marshalling methods. This limitation has been
solved in other scientific packages [e.g. R (R Development Core
Team 2007), Matlab (Higham and Higham 2005), and
AMAPmod in plant modelling (Godin et al. 1997)] which
have developed their own domain specific languages where
common data structures are shared in memory. Among all
scripts languages, the general purpose Python language was
found to present unique key features. It is: (a) open source;
(b) platform independent; (c) object-oriented; (d) user friendly;

it has a simple-to-read syntax and is easy to learn, which allows
even non-computer scientists to prototype rapidly new scripts or
to transform existing ones (Ousterhout 1998; Ascher and Lutz
1999); (e) interactive: it allows direct testing of code without
compilation process. The Python community is large and active,
and a large number of scientific libraries are available (Oliphant
2007). Python framework enhances usability and inter-
operability by providing a unique modelling language for
heterogeneous software. It allows users to extend, compare,
reuse and interconnect existing functionalities. It is used as a
glue language between integrated components. Although the
performance penalty is high for interpreted language compared
with compiled language, performance bottlenecks in Python
programs can be rewritten in compiled language for optimising
speed. Existing C, C++ or Fortran programs and libraries can be
imported as extension modules. For this, wrappers that specify
how the components can be used in the Python language have to
be implemented. Standard wrapping tools, such as Boost.Python
(http://www.boost.org), Swig (http://www.swig.org, accessed 19
August 2008), and F2PY (http://www.scipy.org/F2PY, accessed
19 August 2008), are used to support this integration process.
Transforming an existing library into a reusable component can
also result in improvement in its design and programming
interface. For this reason, we recommend the separation of
different software functionality (e.g. data-structure,
computational task, graphical representation) into different
independent modules. This is intended to improve software
quality and maintenance. However, the cost to obtain an
overall quality improvement of software may be expensive in
development time. A disadvantage of script language is that
syntax errors are detected at run-time rather than at compile-
time. To detect these errors early in the development process and
to test the validity of the functionalities, unit-test suites can be

(A)
(D)

(B)

(C)

(F )

(E)

Fig. 1. Snapshot of the OpenAlea visual modelling environment. (A) The package manager list packages and nodes found on the system. (B) The graphical
programming interface enables users to build visual dataflow by interconnecting nodes. A 3-D scene is built by associating a single geometry with a random
distribution of points. (C) Low level interactions are done in the Python interpreter. (D) A 3-Dviewer is directly called by the Plot3D component. (E,F)Widgets
specific to each component are automatically generated.
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developed and source code checker canbeused, like pylint (http://
www.logilab.org, accessed 19 August 2008) and PyChecker
(http://pychecker.sourceforge.net/, accessed 19 August 2008).

Component framework

OpenAlea implements the principles of a ‘component
framework’ (Councill and Heineman 2001), which allows
users to combine dynamically existing and independent pieces
of software into customised workflows (Ludascher et al. 2006).
This type of framework allows the decomposition of applications
into separate and independent functional subsystems.
Communication between components is achieved through
interfaces (Szyperski 1998) and is explicitly represented
graphically as connections between components.

The software relies on several key concepts: (a) a ‘node’
(Fig. 2) represents a software unit or ‘logical component’. It is a
function object which provides a certain type of service. It reads
data on its input ‘ports’ and provides new data on its output ports.
(b) A ‘dataflow’ (Johnston et al. 2004) is a graph composed of
nodes connected by edges representing the flow of data from one
node to the next. It defines a high level functional process well
suited for coarse grain computation and close to natural algorithm
design. (c) A ‘composite-node’ or ‘macro node’ is a node that
encapsulates others nodes assembled in a dataflow and makes it
possible to define a hierarchy of components. Node composition
allowsuser to factorise commonprocesses in aunique node and to
create extended and reusable subsystems. (d) A ‘package’ is a
deployment unit that contains a set of nodes, data as well asmeta-
information like authors, licence, institutes, version, category,
description and documentation. (e) The ‘package manager’
allows for the dynamic search, loading and discovering of the
functionalities by introspection of the available packages
installed on the computer without requiring specific
configuration. The platform modules and libraries are

developed in a distributed way, and the availability of
functionality depends on the user-defined system configuration.

Users can develop new functionalities that are added via the
package manager at run-time without modification of the
framework. The framework can be extended by combining
nodes into composite-nodes or by implementing new
functionality directly in Python at run-time using a code
editor. Dataflows containing nodes and composite-nodes can
be saved as standalone applications for end-users or as Python
scripts.

In thedataflow, thenodescommunicate byexchangingPython
objects. An input and output port can be connected if their data
types are compatible. Otherwise, an adaptor has to be inserted
between the two nodes. A simple way to ensure input/output
compatibility between heterogeneous components is to use the
standard data type available in Python such as list or dictionary.
For more complex types, such as graphs, some abstract
interfaces are provided in OpenAlea to standardise and ease
communication.

The evaluation of a dataflow is a recursive algorithm from a
specific node selected by a user. All the nodes connected to its
input ports are evaluated before evaluating the node itself. Cyclic
dependencies in the graph are managed by setting the previously
computedoutput valueson theoutput ports orusingdefault values
for the first evaluation.

Visual programming

To enable scientists to build complex models without having to
learn a textual programming language, we designed the visual
programming environment, ‘VisuAlea’. Using VisuAlea, the
user can combine graphically different processing nodes
provided by OpenAlea libraries and run the final scenario. The
graphical models show clearly the dependencies between the
processes as a graphical network and ease the understanding of

Fig. 2. Agraphical node is a visual representation of a function. Input ports at the top represent the input arguments and output ports at the bottom, the resulting
values. In this example, the ‘regular’nodegenerates a list of position (x, y) corresponding to a regularplantdistribution.Documentation is automatically extracted
and display in a tooltip. The node widget allows the user to set the value of the parameters. On the right, we show the related Python code.

754 Functional Plant Biology C. Pradal et al.



the structure of the model. Users can interactively edit, save and
compose nodes. In this visual approach, a graphical interface is
associated with each node and enables the configuration and
visualisation of their parameters and data. Customising
parameters of the dataflow provides the user with an
interactive way to explore and control the model. Complex
components will have specifically designed dialogue boxes.
For others, a dialogue box can be automatically generated
according to the type of the input port. In this case, a widget
catalogue provides common editors for simple types (e.g. integer,
float, string, color,filename), 2-D and 3-D data plotters, sequence
and graph editors. Thus, models that do not provide GUI can be
easily integrated in the visual environment. Moreover, the
catalogue can easily be extended with new widgets for new
data types.

Advanced usersmay add new components by simply adding a
Python function directly fromVisuAlea. GUI and documentation
are extracted and generated automatically. Finally, a Python shell
has been integrated in the visual environment to give a flexible
way for programmers to interact procedurally with the
components and to extend their behaviour while taking
advantage of the graphic representation of the data. VisuAlea
favours the reuse of code and provides an environment for rapid
prototyping.

In a standardmodellingprocess, themodeller starts bycreating
a package inwhich (s)he can add components and a newdataflow.
The dataflow can be saved in the package, or a subpart of the
dataflowcan be grouped into a composite node and saved to be re-
used as a single node in amore complex datafloworwith different
datasets.

To illustrate this principle, let us consider a set of nodes
corresponding to a light interception model, inspired from the
real case-study presented below:

* a node to read and construct a database of digitised points of a
plant;

* a mesh reconstruction node, to calculate a triangle mesh
representation of a plant from the digitised points;

* a light model node, to compute total light interception on a 3-D
structures using data describing the light sources.

The dataflow inFig. 3A shows afirst connection of these nodes
starting with a filename node for the digitised points and a

parameter node for sky description. Eventually, this dataflow
can be viewed as a more macroscopic model that implements a
reusable functionality. In Fig. 3B, the different components are
grouped to form themacro node ‘composite light model’ that can
be tested with different parameters and reused in other dataflows.
It is reused in the dataflow in Fig. 3C and tested on a set of sky
parameters pi, to explore, for instance, the response of the model
to different lighting conditions. Resulting values are finally
displayed on a 2-D plot.

Development environment and diffusion

For developers andmodelling scientists, OpenAlea provides a set
of software tools to build, package, install, and distribute their
modules in a uniform way on multiple operating systems.
It decreases development and maintenance costs whilst
increasing software quality and providing a larger diffusion. In
particular, some compilation and distribution tools make it
possible with high level commands for users to avoid most of
the problems due to platform specificity. Although pure Python
components are natively platform independent, others have to be
rebuilt and installed on each specific platform, which may be a
rather complex task. To ease the compilation and deployment
processes onmultiple platforms,we have developed various tools
such as SConsX and Deploy. SConsX is an extension package of
SCons (Knight 2005). It simplifies the building of platform
dependent packages by supporting different types of compilers
(i.e. GCC, MinGW, Visual C++) and platform environments.
Similarly, Deploy extends the standard Setuptools library for
packaging and installation of modules by adding a support for
reusable components with shared libraries. A graphical front-end
of this tool has been developed to facilitate the install, update or
removal of OpenAlea packages onWindows, Linux andMacOS
X platforms. The user selects the packages (s)he needs from a list
of available packages. The selected packages and their
dependencies are automatically downloaded and installed on
the system. The list of available packages is retrieved from
standard or user-defined web repositories (e.g. OpenAlea
GForge public web repository or personal private repository
using authentication). Third-party Python packages of the
Python Package Index (PyPI, http://pypi.python.org, accessed
19 August 2008) are also accessible through this interface.

Read 3D points

Display 3D scene Display epsilon_i epsilon_i for each set of parameter

Parameters

Variable

Light interception

Build triangles

filename

read_3D

mesh

plot3D print plot3D plot2Dprint

Composite Light model

Composite Light model

light model

sky generator

params

paramsfilename

filename x

map

P1 P2 P3 P4

(A) (B) (C)

Fig. 3. (A) In the first example, we construct a plant model from a set of 3-D points read in a file. (B) Then, the light interception is computed using a sky
description. The 3-D plant is displayed in a 3-D viewer, and the results of the light model are displayed in the shell. In the second example, the dataflow is
simplified by grouping some nodes in a composite node. (C) The third example shows the same model applied for different set of parameters.
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Some collaborative tools allow information, source codes,
binaries and data to be shared and distributed over the internet.
First, a collaborative website (http://openalea.gforge.inria.fr,
accessed 19 August 2008) where the content is provided by
users and developers makes it possible to share documentation
and news. It offers access to the documentation (user tutorials,
developer guides andgeneral guidelines).A short presentation for
each components distributed in OpenAlea is available and
provided by the maintainer of the component. The website
serves as a first medium of exchange between users, modellers
and developers. Second, the project management and the
distributed development of OpenAlea is made using a GForge
server (http://gforge.inria.fr, accessed 19 August 2008) that
contains amongst other things useful bug tracking and
versioning tools for the source code.

The OpenAlea platform is distributed under an open source
licence to foster collaborative development and diffusion. This
licence allows external component developers to choose their
own licence, including closed source ones. However, only open
source components are distributed through the OpenAlea
component repository. Selecting an open source licence for a
component allows users to benefit for the support of the
OpenAlea community such as: (i) compilation of binaries on
different operating systems, (ii) easy access through the
OpenAlea website and component repository, and (iii)
possible improvement of the component by other teams which
can provide bug fixes, documentation, and new features. The
OpenAlea licence is also compatiblewith non-open-source ones
and allows integration with proprietary modules. Users can also
retrieve and share proprietarymodules from private repositories
in a secure and authenticated way using the deployment tools.

Currently integrated components

Several components have already been integrated to date in
OpenAlea from different fields of plant modelling, such as
plant architecture analysis, plant geometric modelling,
ecophysiological processes, and meristem modelling and
simulation (see Fig. 4).

(1) Plant architecture analysis: theVPlants package, successor of
AMAPmod, provides data structure and algorithms to store,
represent and explore multi-scale plant architectures.
Statistical models like Hidden–Markov tree models
(Durand et al. 2007) or change points detection models
(Guédon et al. 2007) are provided to analyse branching
pattern and tree architecture.

(2) Plant geometry modelling: the PlantGL graphic library
(Pradal et al. 2007) contains a hierarchy of geometric
objects dedicated to plant representations that can be
assembled into a scene graph, a set of algorithms to
manipulate them and some visualisation tools. Some
parametric generative processes to build plant architecture
(e.g. Weber and Penn 1995) are also integrated.

(3) Ecophysiological processes: Caribu (Chelle and Andrieu
1998) and RATP (Sinoquet et al. 2001) provide methods
for light simulation in 3-D environments and for computing
radiation interception, transpiration, and carbon gain of a tree
canopy. The Drop model (Dufour-Kowalski et al. 2007)
simulates rainfall interception and distribution by plants.

(4) Meristem modelling: mechanical models of tissue compute
cell deformation and growth (Chopard et al. 2007).

(5) A catalogue component provides common tools for general
purposes such as simple mathematical functions, standard
data structures (e.g. string, list, dictionary), and file
manipulation services.

A case-study of use of OpenAlea in ecophysiology:
estimation by simulation of light interception efficiency

Overview

The objective of this case-study was to determine how the
integral of the fraction of light intercepted by a maize (Zea
mays L.) crop over the plant cycle is sensitive to natural
variation in leaf shapes. To do so, the light interception
efficiency (LIE) is estimated by a simulation procedure using
different leaf shapes which were measured in the field for a
given number of maize genotypes. This procedure required the
use of three types of model: (i) a model of 3-D leaf shapes,
(ii) a simulator of the development of the canopy, here ADEL-
maize (Fournier and Andrieu 1998), and (iii) a radiative model,
here Canestra (Chelle and Andrieu 1998).

Such a chain of models has already been developed and used
several times (e.g. Fournier and Andrieu 1999; Pommel et al.
2001; Evers et al. 2007). However, the user had to re-use and
adapt the existingmodels developed using different kinds of tools
(R scripts for pre- and post-processing, Unix scripts and open-L-
system scripts for simulation), which is not an easy task without
the help of their authors. In this example,we showhowOpenAlea
helped setting up a more ergonomic, self-documented, re-usable
and versatile application.

We detail hereafter how the three simulation tasks were
embedded into independent functional components, and finally
assembled using VisuAlea to get the final application (Fig. 5).

From field data to 3-D leaf shapes

Twoproperties of leaf shapesweremeasured: the variation of leaf
width as a functionof the distance from thebaseof the leaf, and the
3-D trajectory of the leaf midribs. In previous uses of ADEL-
maize, an analytical model of leaf shape, i.e. composed of conic
arcs (Prévot et al. 1991), was fitted to the data to smooth them out
and removedigitising errors.The estimatedparameters of this leaf
model were used as inputs to the L-system based 3-D plant
generator. In this case-study, we have developed a new
parametric model because the shape of midrib leaf curves of
certain genotypes presents several inflexion points which cannot
be easily approximated using conics. This was not done before
due to the difficulty to design new algorithm which used external
scientific libraries. The midrib curve and the variation of the leaf
width are approximated, in the parametric model, with NURBS
curves using the least square fitting algorithm (Piegl and Tiller
1997), available in the Python scientific library, SciPy (Oliphant
2007). To optimise the final radiative computation, whose
complexity depends on the square of the number of triangles
of the leaves, the NURBS curves have been simplified as
polylines with a given number of points using a decimation
algorithm (Agarwal and Varadarajan 2000) developed in
Python. Under VisuAlea (Fig. 5A), the user can graphically set
the leaf data and control the level of discretisationof thefinalmesh
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by setting the values of the ‘fit leaves’ nodes which convert the
leaf measurement into simplified polylines. Using knowledge
about maize leaf development (Fournier and Andrieu 1998), the
leaf shape canbe reconstructed at any stageof its development.To
obtain the leaf shape from the curves and user-defined
developmental parameters (e.g. length, radius), a PlantGL
mesh is computed by sweeping a section line of length
following the width variation along the approximated midrib
curve. Such reconstruction was handled by the ‘symbols’ node
(Fig. 5A; Point 4) and used during the geometric reconstruction
of the plant.

From 3-D leaf shapes to canopy development

Inprevious applications,ADEL-maize,which is acpfg script,was
used to simulate directly canopy 3-D development. The
simulation was done in two steps. First, the model computed
the evolution of the topology and of the dimensions of the organs
of each plant, and stored it as a string. Second, a 3-D mock-up of
the canopy was computed using the cpfg interpretor and a

homomorphism. In this application, we did not apply the
homomorphism to be able to use the geometric leaf shapes
built outside cpfg. The plant reconstruction was performed
from the L-system string using LOGO style turtle
interpretation (Prusinkiewicz 1986) implemented in PlantGL
(Pradal et al. 2007). Finally, the resulting individual plant
mock-ups were sent to a planter node that distributed the
plants over a defined area.

From canopy reconstruction to LIE

LIE was computed with the radiative model Caribu, which is a
package of OpenAlea. The model is itself composed of several
programs that can be arranged tofit particular needs.We used one
of the arrangements that computes first order interception for an
overcast sky, issued in the package in the form of a VisuAlea
dataflow. We simply saved this Caribu dataflow as a composite
node, imported it to the Adel dataflow (Fig. 5A), and made
connections between slots. This package also already included
visualisation tools based on PlantGL (such as the one producing

Displays a plant with colored information
MTG

MTG Root

3

Function

0

Dressing Data

Order

map
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print

Plot Plant Frame

max

Scale

to display the plant in
upright position

Select components
to display

Define colors
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Fig. 4. Example of components integrated in OpenAlea. (A) Estimation of the fractal dimension of a plant foliage using the box counting method
(Da Silva et al. 2006) (B) A visual programming example used to explore the topology and geometry of multiscale plant databases using VPlants components.
(C)A3-Dsurface tissueof ameristem. (D) Procedural generationof a tree architectureusing theWeber andPennalgorithm. (E)Acommunity ofplants generated
at the crown scale using the PlantGL component.
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output in Fig. 5C) and post-treatment routines for computing
LIE. The complete dataflow (Fig. 5A) could be saved as a
composite node and used in a new dataflow that iterates on
different input datasets (similar to Fig. 4).

In this application, OpenAlea was used to extend the
capabilities of the original application and to re-implement it
in a more modular way, while improving the clarity of the
chaining of the models. The ADEL application has inherited
new features from the use of already existing tools. These new
features include: (i) a parametric model to represent leaf shapes
using parametric surfaces computed directly from digitised
leaves; (ii) user control of the number of polygons used to
represent leaf shapes, and (iii) access to a large palette of
sowing strategies. Visualisation and plotting tools are provided
by PlantGL to generate different kinds of outputs (e.g. images,
animations). Although the dataflow presented in Fig. 5A is
specific to this particular application, it is easily editable and
configurable for other objectives. For example, we can easily
imagine replacing the maize model by another plant model, even
developed with another simulator. All this finally requires a very
limited programming effort, because of the re-use of libraries, and
the automatic generation of graphical interfaces under VisuAlea.

Conclusion

The major achievement of OpenAlea is to provide a visual and
interactive interface to the inner structure of anFSPMapplication.
This greatly improves the potential of sharing and reusing
specialised integrated models, since embedded submodels,

data-structures, or algorithms can be recomposed or combined
to fit different modelling objectives. This also increases the end
users’ knowledge of how an application works, by allowing
independent evaluation of any part of the model dataflow. As
OpenAlea is primarily intended for the FSPM community, we
hope that such aplatformwill facilitate the emergence and sharing
of generic components and algorithms able to perform standard
modelling tasks in this domain.We also paid a particular attention
to providing tools to ease the integration of existing models, so
that a large community of scientists could use and ‘feed’ the
platform. In its present state,OpenAlea is suited to build examples
like the one presented here, where individual components have to
be chained sequentially, andwith a genericity of algorithms at the
level ofmodel subunit. The visual programming environment has
been designed for model integration and connection rather than
for modelling feedback and retroaction between models. It has
been based on a dataflow model of computation where control
flow and feedback are difficult to represent, like in functional
languages. However, retro-action and feedback can be managed
within specific nodes such as simulation nodes or biophysical
solvers. OpenAlea only partially addresses the question, pointed
out by Prusinkiewicz et al. (2007), regarding the construction of
comprehensive models that incorporate several aspects of plant
functioning with intricate interactions between functions (for
example, a plant development model coupled with hormonal
control, partitioning of resources, water fluxes and
biomechanics). This would probably require one to define and
share generic data structures representing the plant on different

1. Load the database
    of leaves

5. Simulate 100 plants
    with cpfg

7. Define distribution of plants
    in a field

2. Fit the leaves with
    Nurbs curves.
3. Simplify the mesh
    of each leaf.

4. Build geometric models
    for leaf and stem symbol

8. Construct the goemetry of the crop.

9. Caribu Light model10. PlantGL visualization

11. Visualization of the light
      intercepted by the crop.

6. Parse the output
    string of cpfg and build a
    3D model

load leaf data

9

fit leaves

symbols

LSystem rules

(A)

(B)

(C)

turtle

Adel

regular

planter

plot

plot with values

caribu

4

100

Fig. 5. Snapshots of (A) the VisuAlea dataflow, and (B) two outputs of an application allowing to reconstruct a maize canopy, and (C) to estimate light
distribution within it. Annotations on the dataflow succinctly describe the functions of the different nodes. Nodes 1–4 defines the leaf shape model, which is a
function that returns leaf shape at a given stage of development, from a set of curves fitted to digitise mature leaf shape data. Node 5 is an L-system engine
simulatingplantdevelopment fromanL-systemscript (‘LSystemRules’).Nodes6–8are for the reconstructionof the3-Dscene:onenodecombines theL-system
outputwith the leafmodel to reconstruct the plants (‘turtle’), andonenode (‘planter’) is used for placing plants according to a pattern (‘regular’).Node9 is for the
radiative model, and nodes 10 and 11 are for producing 3-D outputs (B, C). Three parameters are represented with nodes to allow a direct interaction with the
application: the number of polygons used to represent leaves (9), the total number of plants in the scene (100) and the number of rows (4).
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scales, and address, both theoretically and algorithmically, the
problem of simulating different processes acting in parallel at
different scales.

A first step, might be, more modestly, to start connections
betweenOpenAlea and othermajor software platforms dedicated
to FSPM simulations (e.g. LStudio/Vlab, GroIMP) in order to
identify current limitations and start defining data standards and
databases that can be shared by the plant modelling community.
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