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Abstract
We provide an overview of the key architectural features of recent microprocessor designs and
describe the programming model and abstractions provided by OpenCL, a new parallel programming
standard targeting these architectures.

Introduction
The strong need for increased computational performance in science and engineering has led
to the use of heterogeneous computing, with GPUs and other accelerators acting as co-
processors for arithmetic intensive data-parallel workloads [1–4]. OpenCL is a new industry
standard for task-parallel and data-parallel heterogeneous computing on a variety of modern
CPUs, GPUs, DSPs, and other microprocessor designs[5]. The trend towards heterogeneous
computing and highly parallel architectures has created a strong need for software development
infrastructure in the form of parallel programming languages and subroutine libraries
supporting heterogeneous computing on hardware platforms produced by multiple vendors.
Many existing science and engineering applications have been adapted to make effective use
of multi-core CPUs and massively parallel GPUs using toolkits such as Threading building
blocks (TBB), OpenMP, CUDA [6], and others like them [7,8]. Existing programming toolkits
have either been limited to a single microprocessor family or did not support heterogeneous
computing. OpenCL provides easy-to-use abstractions and a broad set of programming APIs
based on past successes with CUDA, TBB, and other programming toolkits. OpenCL defines
a set of core functionality that is supported by all devices, as well as optional functionality that
may only be implemented on high-function devices, and includes an extension mechanism that
allows vendors to expose unique hardware features and experimental programming interfaces
for the benefit of application developers. Although OpenCL cannot mask significant
differences in hardware architectures, it does guarantee portability and correctness. This makes
it much easier for a developer to begin with a correctly functioning OpenCL program tuned
for one architecture, and produce a correctly functioning program optimized for another
architecture.

The OpenCL programming model
OpenCL provides a common language, programming interfaces, and hardware abstractions
enabling developers to accelerate applications with task-parallel or data-parallel computations
in a heterogeneous computing environment consisting of the host CPU and any attached
OpenCL “devices”. OpenCL devices may or may not share memory with the host CPU, and
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typically have a different machine instruction set, so the OpenCL programming interfaces
assume heterogeneity between the host and all attached devices. The key programming
interfaces provided by OpenCL include functions for enumerating available target devices
(CPUs, GPUs, and Accelerators of various types), managing “contexts” containing the devices
to be used, managing memory allocations, performing host-device memory transfers,
compiling OpenCL programs and “kernel” functions to be executed on target devices,
launching kernels on target devices, querying execution progress, and checking for errors.

Although OpenCL programs can be compiled and linked into binary objects using conventional
off-line compilation methodology, OpenCL also supports run-time compilation enabling
OpenCL programs to run natively on the target hardware, even on platforms unavailable to the
original software developer. Run-time compilation eliminates dependencies on instruction sets,
allowing hardware vendors to make significant changes to instruction sets, drivers, and
supporting libraries, from one hardware generation to the next. Applications that make use of
the run-time compilation features of OpenCL will automatically take advantage of the latest
hardware and software features of the target device without any need for recompilation of the
main application itself.

OpenCL targets a broad range of microprocessor designs, requiring that it support a multiplicity
of programming idioms that are matched to the target architectures. Although OpenCL
provides guarantees of portability and correctness of kernels across a variety of hardware, it
does not guarantee that a particular kernel will achieve peak performance on different
architectures. The nature of the underlying hardware may make some programming strategies
more appropriate for particular platforms than for others. As an example, a GPU-optimized
kernel may achieve peak memory performance when the work items in a single work group
collectively perform loads and stores, where a Cell-optimized kernel may perform better with
the use of of a double buffering strategy combined with calls to async_workgroup_copy().
Applications select the most appropriate kernel for the target devices by querying the
capabilities and hardware attributes of the installed devices at runtime.

The OpenCL programming model abstracts CPUs, GPUs, and other accelerators as “devices”
that contain one or more “compute units” (e.g., cores) composed of one or more SIMD
“processing elements” (PEs) that execute instructions in lock-step. OpenCL defines four types
of memory systems that devices may incorporate, a large high-latency “global” memory, small
low-latency read-only “constant” memory, shared “local” memory accessible from multiple
PEs within the same compute unit, and “private” memory or device registers accessible within
each PE. Local memory may be implemented using either high-latency global memory, or may
be implemented with fast on-chip SRAM or shared register file. Applications can query device
attributes to determine the properties of the available compute units and memory systems, using
them accordingly.

Before an application can compile OpenCL programs, allocate device memory, or launch
kernels, it must first create a “context” associated with one or more devices. Memory
allocations are associated with a context rather than a specific device. Devices with inadequate
memory capacity should be excluded when creating a context, otherwise the maximum
memory allocation will be limited by the least-capable device. Similarly, it may be necessary
to exclude some devices from a context in the case that they do not support features required
by OpenCL programs to be run on the newly created context. Once a context is created, OpenCL
programs can be compiled at runtime by passing the source code to OpenCL compilation
functions as arrays of strings. After an OpenCL program is compiled, handles can be obtained
for specific “kernels” contained by the program. The “kernel” functions can then be launched
on devices within the OpenCL context. OpenCL host-device memory I/O operations and
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kernels are executed on a target device by enqueing them into a command queue associated
with the target device.

OpenCL and Modern Processor Architectures
State-of-the-art microprocessors contain a number of architectural features that have
historically been poorly supported or are difficult to utilize in existing programming languages.
This has led vendors to create their own programming tools, language extensions, vector
intrinsics, and subroutine libraries to close the gap in programmability created by these
hardware features. To help clarify the relationship between OpenCL programming model and
the diversity of potential target hardware, we compare the architectural characteristics of three
exemplary microprocessor families and relate them to key OpenCL abstractions and features
of the OpenCL programming model.

Multi-core CPUs
Modern CPUs are typically composed of a small number of high-frequency processor cores
with advanced features such as out-of-order execution and branch prediction. CPUs are
generalists that perform well for a wide variety of applications including latency-sensitive
sequential workloads, and coarse-grained task-parallel or data-parallel workloads. Since they
are typically used for latency sensitive workloads with minimal parallelism, CPUs make
extensive use of large caches to hide main memory latency. Many CPUs also incorporate small
scale use of single-instruction multiple-data (SIMD) arithmetic units to boost the performance
of dense arithmetic and multimedia workloads. These SIMD units are not directly exposed by
conventional programming languages like C and Fortran, so their use requires calling
vectorized subroutine libraries or proprietary vector intrinsic functions, or trial-and-error
source level restructuring and autovector-izing compilers. AMD, Apple, and IBM provide
OpenCL implementations that target multi-core CPUs, and support the use of SIMD instruction
set extensions such as x86 SSE and Power/VMX. The current CPU implementations for x86
processors often make best use of SSE when OpenCL kernels are written with explicit use of
float4 types. CPU implementations often map all memory spaces onto the same hardware
cache, so a kernel that makes explicit use of constant and local memory spaces may actually
incur more overhead than a simple kernel that only uses global memory references.

The Cell Processor
The Cell Broadband Engine Architecture (CBEA) is a heterogeneous chip architecture
consisting of one 64-bit Power-compliant Processor Element (PPE), multiple Synergistic
Processor Elements (SPE), a Memory Interface Controller and I/O units, connected with an
internal high speed bus [9]. The PPE is a general purpose processor based on the IBM Power-
architecture and it is designed to run conventional operating system and control-intensive code
to coordinate tasks running on SPEs. The SPE, a SIMD streaming processor, provides most of
the computing power for the Cell systems with its design optimized for massive data
processing. An application’s task parallelism can be realized using multiple SPEs while the
data parallelism and instruction parallelism can be realized using the SIMD instructions and
dual execution pipelines in SPEs. Each SPE has a small software-managed cache-like fast
memory local to an SPE, called local store. Applications can load data from system memory
to local store or the other way around using DMA requests, with the best bandwidth achieved
when both source and destination are aligned to 128 bytes. The data transfer and instructions
execution can happen simultaneously, enabling application programmers to hide memory
latency using techniques like double buffering. Shi e al. have provided a detailed description
of the architecture and a sample application ported to the Cell processor [1].
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IBM has released an OpenCL toolkit supporting both the Cell and Power processors on the
Linux platform. The IBM OpenCL implementation supports the embedded profile for the Cell
SPUs, and uses software techniques to smooth over some of the architectural differences
between the Cell SPUs and conventional CPUs. On the Cell processor, global memory accesses
perform best when operands are a multiple of 16 bytes, e.g. an OpenCL float4 type. The use
of larger vector types such as float16 enables the compiler to unroll loops, further increasing
performance. The 256 kB Cell SPU local store, is shared among the program text, and OpenCL
“local”, and “private” variables. This places practical limits on the size of work-groups since
private data storage is required for each work-item. The Cell DMA engine performs most
effectively with the use of double buffering strategies combined with calls to
async_workgroup_copy() to load data from global memory into local store.

Graphics Processing Units
Contemporary GPUs are composed of hundreds of processing units running at a low to
moderate frequency, designed for throughput-oriented latency insensitive workloads. In order
to hide global memory latency, GPUs contain small or moderate sized on-chip caches, and
they make extensive use of hardware multithreading, executing tens of thousands of threads
concurrently across the pool of processing units. The GPU processing units are typically
organized in SIMD clusters controlled by a single instruction decoder, with shared access to
fast on-chip caches and shared memories. The SIMD clusters execute machine instructions in
lock-step, and branch divergence is handled by executing both paths of the branch and masking
off results from inactive processing units as necessary. The use of SIMD architecture and in-
order execution of instructions allows GPUs to contain a larger number of arithmetic units in
the same area as compared to traditional CPUs.

Massively parallel arithmetic-heavy hardware design enables state-of-the-art GPUs to achieve
single-precision floating point arithmetic rates approaching 2 TFLOPS (trillions of instructions
per second). Due to the demands of graphics workloads, GPUs are designed with global
memory systems capable of bandwidths approaching 200 GB/sec. GPU global memory is
organized in multiple banks, with peak performance attained when accesses are aligned on
appropriate address boundaries, and groups of SIMD units cooperatively load data from a
contiguous block of memory addresses, known as a “coalesced” memory access. When a
memory access is not aligned on an appropriate address boundary and in consecutive sequence,
the memory access must be split into multiple transactions resulting in a significant reduction
in effective bandwidth, and increasing latency.

Although GPUs are powerful computing devices in their own right, they must currently be
managed by the host CPUs. GPUs are typically attached to the host by a PCI-Express bus, and
in most cases have their own independent on-board memory system. In order to exchange input
and output data with the GPU, the host CPU schedules DMA transfers between the host and
GPU memory systems. OpenCL provides APIs for CPU-directed data transfers between
independent host and GPU memory systems. Recent GPUs are capable of direct access to host
memory over PCI-e, and in some cases may allow their on-board to be mapped into the host
address space, providing the necessary hardware support for zero-copy access to data that are
read or written only once during kernel execution. At the present time, OpenCL does not include
mechanisms for zero-copy memory access, though it could be provided as an extension or as
part of a future version.

Both AMD and NVIDIA have released OpenCL implementations supporting their respective
GPUs. These devices require a large number of OpenGL work-items and work-groups to fully
saturate the hardware and hide latency. NVIDIA GPUs use a scalar processor architecture for
the individual PEs seen by OpenCL, enabling them to work with high efficiency on most
OpenCL data types. AMD GPUs use a vector architecture, and typically achieve best
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performance such that OpenCL work-items operate on 4-element vector types such as float4.
In many cases, a vectorized OpenCL kernel can be made to perform well on x86 CPUs and on
AMD and NVIDIA GPUs, though the resulting kernel code may be less readable than the scalar
equivalent. Differences in low level GPU architecture including variations on what memory
is cached and what memory access patterns create bank conflicts affect kernel optimality.
Vendor-provided OpenCL literature typically contains low level optimization guidelines. In
the examples that follow we refrain from detail and focus on general OpenCL programming
concepts.

An Example OpenCL Kernel
To illustrate the process of moving serial code to OpenCL, we discuss an example kernel from
the Adaptive Poisson-Boltzmann Solver (APBS) [10]. APBS is a package for calculating
biomolecular solvation through the use of the Poisson-Boltzmann equation (PBE). The PBE
is a popular continuum model that describes electrostatic interactions between molecular
solutes. As part of the solution of the PBE, potentials are discretized onto a grid sized larger
than the bounding volume containing the molecule of interest. Under Dirichlet boundary
conditions, the potential contribution of grid points on the faces of the grid can be solved using
the Single Debye-Hückel (SDH) method or Multiple Debye-Hückel (MDH) method. For the
MDH method, the potential at a grid point i located at position ri is given by

(1)

with the sum taken over all atoms, where α is a prefactor that accounts for the system of units
and solution dielectric values, atom j is located at rj and has partial charge qj and size σj, and
the pairwise distance is rij = |rj − ri|. The potential at each grid point is effectively the sum of
all atomic potential contributions in the molecule. The MDH method is inherently data-parallel
when decomposed over grid points since they are computed independently and there are no
output conflicts. A serial MDH algorithm is summarized in Alg. 1, and a C implementation is
shown in Fig. 2.

Since the potential at each grid point can be calculated independently, the above example can
be trivially parallelized on a CPU using standard methods (pthreads or OpenMP, for example).
This type of calculation can also be performed with OpenCL with almost no modification. The
kernel is simply the inner loop over the atoms, as shown in Fig. 3. In effect, the OpenCL
dispatcher becomes the outer loop over grid points. The OpenCL global work-group size is set
to the total number of grid points. Each work-item dispatched by OpenCL is responsible for
calculating a potential using the above kernel. Each OpenCL work-item obtain its grid point
index its global work-item index.

The code shown in Fig. 3 runs approximately 20× faster on an NVIDIA GeForce GTX 285
GPU than the serial code on a 2.5 GHz Intel Nehalem CPU. For reference, on 16-cores, the
parallel CPU performance is almost 13× faster. However, the kernel in Fig. 3 does not take
advantage of locality of concurrent accesses to the atom data. In this form, each work-item
(grid point) is responsible for loading each atom’s data (x, y, z, charge and size) resulting in
global memory transactions that could be avoided with some changes to the algorithm. By
taking advantage of the fast on-chip “local” memory present on each OpenCL compute unit,
data can be staged in local memory and then efficiently broadcast to all of the work-items
within the same work-group. This greatly amplifies the effective memory bandwidth available
to the algorithm, improving performance. The global work-group size remains the same,
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however, the local work-group size is increased from 1 to some multiple of the hardware SIMD
width. In the example shown in Fig. 4 the work-group size is limited by the amount of data
that can be loaded into shared memory (typically 16 kB, on NVIDIA GPUs). The on-chip
shared memory is partitioned so that each work-item of a work-group loads a block of the
position, charge and size data into shared memory at a specific offset. Local memory barriers
are placed to ensure that data is not overwritten in the shared memory before all of the work-
items in a work-group have accessed it. This coordinated loading and sharing of data reduces
the number of slow global memory accesses.

Another optimization involves the use of vector types such as float4 or float16 making it easier
for the OpenCL compiler to effectively fill VLIW instruction slots, and enabling wider memory
transfer operations. The use of vector types causes an individual work-item to process multiple
grid points at a time, reducing the global work dimensions accordingly, and with a
corresponding increase in register usage. By calculating multiple grid points per work-item,
the ratio of arithmetic operations to memory operations is increased, since the same atom data
is referenced multiple times. On the AMD and NVIDIA GPUs, the use of vector types yields
a 20% increase in performance. On the Cell processor, the use of float16 vectors yields a factor
of 11× increase in performance for this kernel.

One variation of these concepts (many others are possible) is shown in Fig. 4. When compared
to the original serial CPU code, the approximate performance increase for an IBM Cell blade
(using float16) is 17× faster, an AMD Radeon 5870 GPU is 129× faster, and an NVIDIA
GeForce GTX 285 GPU is 141× faster. With further platform-specific tuning, each of these
platforms could undoubtably achieve even higher performance. More important is that the
numerical result is exact, within the floating point rounding mode, to the methods used on the
CPU (both serial and parallel).

Summary and Concluding Remarks
Our initial experiences in adapting molecular modeling applications such as APBS [10] and
VMD [11] to OpenCL 1.0 have been generally positive. In the coming year, we expect that
OpenCL will incorporate new features and that previously optional features will be promoted
to core features of OpenCL 1.1 and later versions. As OpenCL matures we hope to see increased
support for thread-safety, increased interoperability with OpenGL, and extension with
advanced features found in APIs like CUDA. With the arrival of future hardware platforms
that operate on wider vectors (e.g. Intel AVX), we are eager for OpenCL implementations to
incorporate a greater degree of autovectorization, enabling efficient kernels to be written with
less vector width specificity. We feel that OpenCL holds great promise as a standard low-level
parallel programming interface for heterogeneous computing devices.
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Figure 1.
OpenCL describes hardware in terms of a hierarchy of devices, compute units, and clusters of
SIMD processing elements. Before becoming accessible to an application, devices must first
be incorporated into an OpenCL context. OpenCL programs contain one or more kernel
functions as well as supporting routines that may be used by kernels.
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Figure 2.
The innermost loops of a sequential C implementation of the MDH method.
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Figure 3.
A simple OpenCL kernel for the MDH method is very similar to the original sequential C loops,
except that the outer loop over grid points has been replaced by a parallel instantiation of
independent grid points as OpenCL work-items, and the “igrid” index is determined by the
OpenCL work-item index.
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Figure 4.
The optimized OpenCL kernel for the MDH method is similar to the simple OpenCL kernel,
but each work-group collectively loads and processes blocks of atom data in fast on-chip local
memory. OpenCL barrier instructions enforce coordination between the loading and processing
phases to maintain local memory consistency. The inner loop uses vector types to process
multiple grid points per work-item, and atom data is processed entirely from on-chip local
memory, greatly increasing both arithmetic intensity and effective memory bandwidth.
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Algorithm 1

The MDH algorithm calculates the total potential at each grid point on a grid face, as described in Eq. 1.

1: for i = 1 to M do {loop over grid points on face}

2:  grid potential ⇐ 0.0

3:  for j = 1 to N do {loop over all atoms}

4:   grid potential ⇐ grid potential + (potential from atom j)

5:  end for

6: end for

7: return grid potential
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