
OpenCorba: a Reflective Open Broker

Thomas Ledoux

École des Mines de Nantes
4 rue Alfred Kastler

F-44307 Nantes cedex 3, France
Thomas.Ledoux@emn.fr

Abstract. Today, CORBA architecture brings the major industrial solution for
achieving the interoperability between distributed software components in
heterogeneous environments. While the CORBA project attempts to federate
distributed mechanisms within a unique architecture, its internal model is not
very flexible and seems not to be suitable for future evolutions. In this paper,
we present OpenCorba, a reflective open broker, enabling users to adapt
dynamically the representation and the execution policies of the software bus.

We first expose the reflective foundations underlying the implementation of
OpenCorba: i) metaclasses which provide a better separation of concerns in
order to improve the class reuse; ii) a protocol which enables the dynamic
changing of metaclass in order to allow run-time adaptation of systems.

Based on this reflective environment, OpenCorba enables the adaptability
of the internal characteristics of the broker in order to change its run-time
behavior (e.g. remote invocation, IDL type checking, IR error handling).
OpenCorba gives a clear example of the benefits of reflective middleware.

1 Introduction

In the last couple of years, the success of the Internet emphasizes the need to quickly
find solutions for interoperability between distributed heterogeneous environments.
Reusability and composability of software components are one of the main concerns
for the computer industry dealing with different languages, systems and locations.

By supporting specifications for portable and interoperable object components, the
OMG (Object Management Group) consortium proposes a solution to deal with the
construction of object-oriented distributed applications [OMG 95]. Indeed, OMG’s
standardization efforts led to the definition of a whole modular architecture approved
by the computer industry. The specifications describe independent modules of a large
system, from technical aspects to business objects, reviewing essential distributed
services such as security, transactions, event notification, etc. known as the CORBA
Services [OMG 97]. The CORBA (Common Object Request Broker Architecture)
software bus is the main module of this architecture and has the responsibility of

P. Cointe (Ed.): Reflection’99, LNCS 1616, pp. 197-214, 1999
 Springer-Verlag Berlin Heidelberg 1999

achieving a transparent communication between remote objects [OMG 98]. The
modularity of this architecture is a major advantage of the OMG solution.

However, the complexity of the broker specifications negatively impacts in the
intended flexibility of the CORBA model. For example, the invocation mechanism is
a "black box" described by fixed specifications. The introduction of a small evolution
leads to a new version of the specifications, making obsolete the last one. Dealing
with the invocation, the introduction of the interceptors mechanism in CORBA 2.2
and the request for proposal Messaging Service for CORBA 3.0, attempt to improve
the existing specifications (and resulting applications). Thus, we can be sceptical
about the stability of such improvement. In the current style of distributed systems,
we must support the dynamic modification of the broker mechanisms to deal with
changing contexts of execution (e.g. load balancing, fault tolerance). This dynamic
capability of the bus makes possible the evolution of execution policies (e.g. object
migration).

We propose an overall solution that allows the object bus to be adaptive, making
the broker "plug and play". The classification of concurrent and distributed
programming proposed by Briot et al. [BRI 98] constitutes an interesting framework
for tackling the adaptive issue. The authors distinguish three approaches:

• library approach applies object-oriented concepts in order to structure the
concurrent and distributed systems through class libraries;

• integrative approach consists in unifying concurrent and distributed systems
concepts with object-oriented ones;

• reflective approach integrates protocol libraries dealing with concurrency and
distribution within an object-based programming system.

Using this classification, we can notice that the OMG model both corresponds to
an integrative and a library approach, with the minimal object model and the CORBA
services perspective respectively. In this taxonomy, the reflective approach is
presented as a solution for combining the advantages of the two previous approaches.
So, reflection is the best choice for handling the adaptability of the object bus.
Reflection [SMI 82] [MAE 87] [KIC 91] allows the extension of the initial OMG
model with libraries of meta-protocols customizing mechanisms of distributed
programming. Then, it is possible to introduce – in a transparent way – new semantics
on the initial model such as concurrency, replication, security, etc. including ones
currently unthought of.

In this paper, we present an overview of OpenCorba [LED 98]: a CORBA broker
based on a reflective approach. Its architecture enables the reification of the internal
characteristics of the software bus in order to modify and adapt them at run-time.
Then, OpenCorba allows introspection and dynamic modification of the
representation and the execution policies of the CORBA bus. Its implementation is
based on the reflective language NeoClasstalk [RIV 97]. This language results from
an implementation of a MOP (Meta Object Protocol) [KIC 91] in Smalltalk
[GOL 89]. Its main contribution consists of an extension of dynamic aspects in
Smalltalk: an efficient solution for handling message sending and a way of achieving
dynamic behavior of a class.

198 T. Ledoux

This paper is presented as follows. In section 2, we explain the reflective
foundations underlying the making of OpenCorba and show the advantages of
reflection for building open systems. In section 3, after an introduction of OpenCorba
itself, we present three possible reflective aspects of the bus. In section 4, we present
related work, and in section 5, we discuss about our works in progress. Finally, we
draw our conclusions on the contribution of dynamic adaptability to middleware.

2 Reflective Foundations for Building Open Systems

In this section, we show the benefits of the paradigm of metaclasses for building
reusable and adaptable architectures.

2.1 Metaclasses and Separation of Concerns

Reflection allows us to separate what an object does (the base level) from how it does
it (its meta level) [McA 95]. A reflective language encourages a clean separation
between the basic functionalities of the application from its representations and
controls. In class-based languages integrating reflective features [COI 87] [DAN 94],
the class of a class – a metaclass – defines some properties concerning object
creation, encapsulation, inheritance rules, message handling, etc. We call class
properties the properties that denote behavior for classes themselves, independently
from the behavior for their instances. In [LED 96], we present a taxonomy of reusable
metaclasses which represent class properties such as ensuring that a class has one sole
instance (like the pattern Singleton [GAM 95]), a class cannot be subclassed (like
Java final [GOS 96]), a class provides pre/post conditions for its methods (like the
Eiffel assertions [MEY 92]), etc.

The previous taxonomy was implemented in the MOP NeoClasstalk, which is a
based on a new kernel of metaclasses inside the Smalltalk world [RIV 96]. An
additional metaclass named StandardClass, is defined and strapped into the initial
Smalltalk meta-level architecture. StandardClass provides a starting point to the
NeoClasstalk system. Then, new metaclasses can be derived from StandardClass,
which describes common behavior for classes, by subclassing it.

Fig. 1 shows a class Account, instance of the metaclass BreakPoint that owns
the responsibility to set breakpoints in the methods of the class Account1. Message
sending is handled by the method #execute:receiver:arguments: of the MOP
NeoClasstalk: the metaclass BreakPoint intercepts messages received by the
instances of Account.

1
 It could be interesting to control class interactions with the rest of the system during the debugging phase.

199OpenCorba: A Reflective Open Broker

BreakPoint
< execute:receiver:arguments:>

Account
<credit:>

metaclass level

class level

instance of

StandardClass

inherits from

Fig. 1. Class properties and (meta)classes

The method #execute:receiver:arguments: described above, opens a
debugger with the execution context of the trapped method (e.g. #credit:), then
performs the originally intended method via traditional inheritance mechanisms.

metaclass code
BreakPoint>>execute: cm receiver: rec arguments: args

“Set a breakpoint on my instance methods”
self halt: ‘BreakPoint for ’, cm selector.
^super execute: cm receiver: rec arguments: args

class code
Account>>credit: aFloat

“Make a credit on the current balance”
self balance: self balance + aFloat

In this way, we avoid the mixing between the business code (bank account) and the
code describing a specific property on it (breakpoints). By increasing the separation of
concerns, class properties encourage readability, reusability and quality of code.
Then, reusable metaclasses propose a better organisation of class libraries for
designing open architectures.

2.2 Dynamic Change of Metaclass

The dynamic change of class introduced by NeoClasstalk is a protocol that makes it
possible for the objects to change their class at run-time [RIV 97]2. The purpose of

2
 This protocol compensates for the restrictions imposed by the method #changeClassToThatOf:

found in Smalltalk.

200 T. Ledoux

this protocol is to take into account the evolution of the behavior of the objects during
their life in order to improve their class implementations. The association of first class
objects with this protocol allows the dynamic change of metaclass at run-time.
Therefore, it is possible to dynamically add and remove class properties without
having to regenerate code.

By taking again the previous example, we can temporarily associate the
BreakPoint property with a class during its development. The class Account
changes its original metaclass towards metaclass BreakPoint3 for debugging the
messages, then returns towards its former state reversing its change of class (cf. Fig.
2).

StandardClass

Account
instance of
class change

BreakPoint
+

StandardClass

metaclass level

class level

Fig. 2. Dynamic adaptability of class properties

The protocol for dynamically changing the class of a class (the metaclass) allows
us to replace a class property by another, during execution. In our work dealing with
adaptive brokers, this protocol is extremely helpful because it provides a "plug and
play" environment for enabling the run-time modification of the distributed
mechanisms.

3 OpenCorba

Our first implementation of an open architecture dealt with the CORBA platform
[OMG 98] and gave place to the implementation of a software bus named
OpenCorba. The goal of this section is to expose the major reflective aspects of
OpenCorba. Others features of OpenCorba like the IDL compiler or the different
layers of the broker are described in details in [LED 98].

3
 Or a composition of metaclasses dealing with BreakPoint and other class properties (cf. 5.1).

201OpenCorba: A Reflective Open Broker

3.1 Introduction

OpenCorba is an application implementing the API CORBA in NeoClasstalk. It
reifies various properties of the broker – by the means of explicit metaclasses – in
order to support the separation of the internal characteristics of the ORB. The use of
the dynamic change of metaclass allows to modify the ORB mechanisms represented
by metaclasses. Then, OpenCorba is a reflective ORB, which allows to adapt the
behavior of the broker at run-time.

In the following paragraphs, we present three aspects of the bus that have been
reified:
1. the mechanism of remote invocation via a proxy;

2. the IDL type checking on the server class;

3. the management of exceptions during the creation of the interface repository4.

First, we introduce the two basic concepts for creating classes in OpenCorba. This
creation deals directly with the reflective aspects.

Account

Client Server

metaclass
level

Smalltalk
code

compilation

TypeChecking

Account class
 level

instance of

ProxyRemote

AccountProxy

metaclass
level

class
 level

instance of

IDL
interface Account

Smalltalk
class

O
penC

orba w
orld

OpenCorba
registration

Fig. 3. Creation of OpenCorba classes

IDL Mapping in OpenCorba.

Following the Smalltalk mapping described in the CORBA specifications [OMG 98],
the OpenCorba IDL compiler generates a proxy class on the client side and a template
class on the server side. The proxy class is associated with the metaclass

4
 Let us recall that the interface repository (IR) is similar to a run-time database containing all the IDL

specifications reified as objects.

202 T. Ledoux

ProxyRemote implementing the remote invocation mechanisms; the template class,
with the metaclass TypeChecking which implements the IDL type checking on the
server. The left hand of Fig. 3 shows the results from IDL mapping of the Account
interface in OpenCorba: the proxy class AccountProxy is instance of ProxyRemote
and the template class Account is instance of TypeChecking.

Feature Smalltalk2OpenCorba.

OpenCorba allows the Smalltalk developers to transform any Smalltalk standard class
into a Smalltalk server class in the ORB. This feature was introduced to reuse existing
Smalltalk code, and to free the programmer from the writing of the bulk of IDL
specification. Technically, a semi-automatic process is applied to the Smalltalk class
in order to generate the interface repository and the IDL file. Then, to become a server
class in OpenCorba, the class must be an instance of TypeChecking (cf. Fig. 3, right
hand). By analogy with similar techniques, we called this special feature
Smalltalk2OpenCorba.

3.2 The OpenCorba Proxy

In distributed architectures, the proxy object is a local representation in the client side
of the server object. Its purpose is to ensure the creation of the requests and their
routing towards the server, then to turn over the result to the client. In order to remain
transparent, a proxy class adapts the style of local call to the mechanism of remote
invocation [SHA 86].

Separation of Concerns.

The remote invocation mechanism is completely independent of the semantics of the
IDL interface (e.g. Account). That is, remote invocation refers to the control of the
application and not to the application functionality; it deals with meta-level
programming. The OpenCorba IDL compiler automatically generates the proxy class
on the basic level of the application and associates the proxy class with the metaclass
ProxyRemote in charge of calling the real object. The remote invocation remains
thus transparent for the client. We can manipulate the proxy class with the traditional
Smalltalk tools (browser, inspector).

Base level features. Methods of the proxy class are purely descriptive and represent
interfaces like IDL operations [LED 97]. In the Smalltalk browser, the methods do not
contain any code, only one comment denoting that OpenCorba generated them. Table
1 presents some examples of mapping for OpenCorba. The type of the returned values
is put in comments to announce IDL information to the programmer.

203OpenCorba: A Reflective Open Broker

Table 1. Examples of IDL mapping

IDL attribute/operation Methods of a proxy class OpenCorba

readonly attribute float balance; balance
 “Generated by OpenCORBA

 *** DO NOT EDIT ***”

 “^aFloat ”

void credit(in float amount); credit: aFloat
 “Generated by OpenCORBA

 *** DO NOT EDIT ***”

 “^nil”

Meta level features. By definition, the sending of a message to a proxy object
involves a remote message send to the server object it represents. The idea is to
intercept the message at its reception time by the proxy object and to launch a remote
invocation. Thus, the control of the message sending is suitable for our purpose. The
metaclass ProxyRemote redefines the method #execute:receiver:arguments:
of the MOP NeoClasstalk to intercept the messages received by a proxy. This
redefinition carries out the remote invocation by using the DII CORBA API
according to [OMG 98].

Dynamic Adaptability.

To allow the dynamic adaptability of the invocation mechanisms in OpenCorba, it is
possible to develop others metaclasses. We distinguished them in two categories:

• The first one deals with the possible variations on the proxy mechanisms. We
think of policies modelling Java RMI [SUN 98], a future version of the CORBA
DII or a local invocation. This last mechanism was implemented in OpenCorba in
order to model proxies with cache.

• The second category considers extensions of the proxy concept for introducing
new mechanisms like object migration [JUL 88] [OKA 94] or active replication
[BIR 91] [GUE 97].
- Object migration consists in transferring a server object towards the client

side in order to optimize the performances of the distributed system. This
mechanism reduces the bottlenecks of the network and minimizes the remote
communications.

- Replication is another mechanism of administration of the objects
distribution. It consists of a duplication of the server in several replicas,
which are the exact representation of the original server object. The
mechanism of active replication supposes that the message is sent by the
client to the replicas – via the proxy – thanks to an atomic protocol of
diffusion (broadcast).

204 T. Ledoux

Thus, the dynamic adaptability of metaclasses allows to implement some variations
on the remote invocation mechanism, without upsetting existing architecture.

3.3 IDL Type Checking on the Server Classes

The CORBA standard [OMG 98] specifies that the server side uses the interface
repository to check the conformity of the signature of a request by checking the
argument and return objects. On the other hand, it does not specify how it must be
carried out.

Separation of Concerns.

We are convinced that it falls within the competence of the server class to check if
one of its methods can be applied or not. Indeed, if this kind of checking could be
carries out more upstream by the ORB (during the unmarshalling of request by the
server for example), that would introduce a more inflexible management: a little
change in the mechanism of control involves a rewriting of the lower layers of the
broker. On the contrary, we propose an externalisation of the control of these layers
towards the server class, which will test if the application of a method is possible or
not.

Moreover, the type checking is independent of the functionalities defined by the
server class: it can be separated from the base code and constituted as a class property
that will be implemented by a metaclass. Thus, the code of the server class does not
carry out any test on the type of the data in arguments. The developer can then write,
modify or recover its code without worrying about the control of the type handled by
the metaclass TypeChecking.

Technically, this metaclass controls the message sending on the server class – via
the method #execute:receiver:arguments: – to interrogate the interface
repository before and after application of its methods. This query enables us to check
the type of the arguments and the type of the result of the method.

In conclusion, OpenCorba externalises the type checking, at the same time from
the lower layers of the ORB, and from the server class.

Dynamic Adaptability.

Thanks to our approach, we can bring new mechanisms for type checking, without
modifying the existing implementation. For example, we can develop a new metaclass
managing a system of cache for the types of the parameters. During the first query of
the interface repository, OpenCorba locally backs up the type of each argument of the
method5. Then, with the next invocations of the method, the metaclass questions
memorized information in order to carry out the type checking.

Another example: we can also remove the control of the type for reasons of
performance or when the type of the parameters is known before hand. A dynamic

5
 For example, in a Smalltalk shared dictionary or in the byte code of the compiled method.

205OpenCorba: A Reflective Open Broker

change of metaclass allows then to associate the server class with the default
metaclass of the OpenCorba system (i.e. StandardClass).

3.4 Interface Repository and Error Handling

There are two ways used to populate the interface repository: the IDL mapping and
the feature Smalltalk2OpenCorba. In the first case, the generation of each proxy class
is handled in the creation of the objects in the repository. In the second case, this
creation is allowed by a table of Smalltalk equivalence towards IDL (retro-mapping).
Technically, these two mechanisms do not have the same degree of intercession:

• In the case of Smalltalk2OpenCorba, the Smalltalk compiler already carried out
the syntactic analysis and the semantic checking of the class. Also, the
installation of a Smalltalk class in the ORB does not cause errors during the
creation of the objects in the repository;

• On the other hand, in the IDL case, it is an authentic compilation where the
semantic actions check the integrity of IDL specifications before the creation of
objects in the repository (e.g. the same attribute duplicated).

Thus, in order to distinguish the Smalltalk case from the IDL case where creation
can lead to error handling, we must encapsulate the CORBA creational APIs of the
interface repository. Let us recall that these creational APIs are implemented by the
container classes of the interface repository specified by CORBA standard
[OMG 98].

Separation of Concerns.

By analyzing the tests of integrity necessary for the IDL compilation, it appears that
they are generic and independent from the creational APIs of the containers. Thus,
they can be externalized from the container classes to constitute a class property
which will be implemented by a metaclass. The code of the container classes does not
carry out any tests. It is then helpful to differentiate the IDL case from the Smalltalk
case, in order to associate a given metaclass or not to the container classes.

The metaclass IRChecking plays this role. It specializes the method
#execute:receiver:arguments: of the MOP NeoClasstalk in order to intercept
the messages received by the instances of the container class. For the creational APIs,
the integrity tests are carried out and an exception is raised if an error occurs.

Dynamic Adaptability.

Our design leads to a greater flexibility to carry out or transform the integrity tests
without having to modify the creational APIs. Thus, it allows the distinction between
the Smalltalk case and the IDL case at run-time. In the Smalltalk case, creation is
carried out normally (default metaclass StandardClass); in the IDL case, there is a
dynamic adaptability of the behavior to carry out creation only if the integrity tests do

206 T. Ledoux

not raise an error (metaclass IRChecking). OpenCorba connects the appropriate
metaclasses at run-time according to needs of the system.

3.5 Implementation and Performance Issues

Reflective aspects of OpenCorba are essentially based in the ability of handling
message sends. Therefore, the extra cost of the reflective broker is highly dependent
on the performance of the message sending.

The implementation of this control in NeoClasstalk is based on a technique called
method wrappers [BRA 98]. The main idea of this feature is the following: rather than
changing the method lookup process directly at run-time, we modify the compiled
method objects that the lookup process returns. In NeoClasstalk, the method wrappers
deal both with compile-time and run-time reflection. We briefly describe the two
steps involved:

• At compile-time

The original method defined in a class is wrapped so that it sends to the class
itself the message #execute:receiver:arguments: defined in its class (the
metaclass). The arguments are i) the original compiled method which is stored in
the method wrapper, ii) the object originally receiving the message, iii) the
arguments of the message.

• At run-time

Method lookup is unmodified: the activation of the method wrapper does the call
to the metaclass and starts the meta-level processing.

By analysing these two steps, we conclude that the cost is actually significant.
First, the meta-level indirection occurring at run-time involves additional method
invocations. Since the meta-level indirection is applied to each message send, the
performance of the whole system decreases. However, we can notice that since
OpenCorba deals with distributed environment, the network traffic moderates the
impact of this overhead.

Secondly, at compile-time, there is a real difficulty in applying the method
wrappers concept: which are the methods that we need to wrap? It depends on the
problem at hand. For example, in OpenCorba, all the methods of a server class and all
the inherited ones must be wrapped. Thus, the technique of method wrappers imposes
some decisions at design time, which imply a cost that should not be overlooked.

In summary, the flexibility provided by reflection impacts on the system
efficiency. Many works attempt to find a way for efficient reflective systems such as
the optimization of virtual machine for meta-programming, the reification categories
which provide the opportunity to specifically reify a given class [GOW 96], the
partial evaluation for MOP [MAS 98], etc.

207OpenCorba: A Reflective Open Broker

4 Related Work

4.1 Reflective Adaptive Middleware

Like the OpenCorba broker, other research projects are under development in the field
of adaptive middleware. The ADAPT project of the University of Lancaster has
investigated the middleware implementation for mobile multimedia applications
which are capable of dynamically adapting to QoS fluctuations [BLA 97]. Its
successor, the OpenORB project, studies the role of reflection in the design of
middleware platforms [BLA 98]. The implementation of the current reflective
architecture is based on a per-object meta-space (structured as three distinct meta-
space models) and on the concept of open bindings, differing from the per-class
reflective environment and the MOP of OpenCorba. These two design approaches
result in two different ways of investigating reflective middleware.

The FlexiNet platform [HAY 98], a Java middleware, proposes to reify the layers
of the communication stack into different meta-objects (in order to customize them).
Each meta-object represents a specific aspect such as call policy, serialization,
network session, etc. OpenCorba currently reifies characteristics dealing the upper
layers of the invocation mechanism, and could reify the lower layers (e.g.
marshalling, transport).

Researchers at the University of Illinois developed dynamicTAO, a CORBA-
compliant reflective ORB that supports run-time reconfiguration [ROM 99]. Specific
strategies are implemented and packed as dynamically loadable libraries, so they can
be linked to the ORB process at run-time. Rather than implementing a new ORB from
scratch as done in OpenCorba, they chose to use TAO [SCH 99], causing a
dependency to this ORB.

Finally, since its experiment in the development of MOP [GOW 96], the
distributed system team of the Trinity College of Dublin has recently started the
Coyote project whose goal is to provide the adaptation of distributed system (e.g.
administration of telecommunication network, CORBA bus).

4.2 Reflection in Distributed Systems

The use of reflection in the concurrent and distributed systems is certainly not recent
[WAT 88], but seems to take a new rise in the last years. Indeed, many research
projects in the field of reflection or in the distributed domain use the reification of the
distributed mechanisms to modify them and specialize them. Let us quote the
mechanisms of migration [OKA 94], marshalling [McA 95], replication [GOL 97],
security [FAB 97], etc. The CORBA architecture is a federate platform of the various
mechanisms of distribution. Also, it seems interesting to study these projects to
implement their mechanisms within OpenCorba.

208 T. Ledoux

4.3 Programming with Aspects

The mixing in the system’s basic functionality of several technical aspects (e.g.
distribution, synchronization, memory management) dealing with the application
domain, constitutes one of the major obstacles to the reusability of the software
components. A possible solution is then to consider the isolation of these specific
aspects for their individual reuse. The "tangled" code is separated and aspects can
evolve independently thus formulating the paradigm of separation of concerns
[HUR 95].

There are some models and techniques allowing the separation of concerns:
composition filters [BER 94], adaptive programming [LIE 96], aspect-oriented
programming (AOP) [KIC 97]. However, the latter implement particular constructs to
achieve the programming with aspects. We preferred a reflective approach that does
not impose a new model, but extends the existing languages to open them. Moreover,
contrary to these models, our solution allows the dynamic adaptability of aspects.

5 Work in Progress

5.1 Metaclass Composition

Distributed architectures are complex and require many mechanisms for their
implementation. The question of how to compose these mechanisms is essential. For
example, the functionality of "logging within a class the remote invocations" uses the
mechanism of "logging" combined with the mechanism of "remote invocation". As
we have seen previously, each of these mechanisms corresponds with a class property
and is implemented by a metaclass. Thus, the combination of several mechanisms
raises the problem of the composition of the metaclasses: this composition causes
conflicts a priori when there is a behavior overlap.

To tackle this problem, our recent work consists in the definition of a "metaclass
compatibility model" in order to offer a reliable framework for the composition of the
metaclasses [BS 98]. We attempt to define a classification of the various distribution
mechanisms to prevent possible overlappings of behavior.

5.2 Towards Specifications of a Reflective Middleware

By studying concurrent and distributed architectures, we can notice that they deal
with well-known mechanisms and policies, which are independent from the system’s
basic functionality (i.e. business objects) and could be implemented at the meta-level.
Then, we can suggest a first classification of middleware features related to reflective
components:

• Distribution
proxy mechanism, replication, migration, persistence, etc.

209OpenCorba: A Reflective Open Broker

• Communication
synchronous, asynchrounous, no reply, future, multicast, etc.

• Object concurrency
inter-objects, intra-object (readers/writer model, monitor), etc.

• Reliability
exceptions, transactions, etc.

• Security
authentification, authorisation, licence, etc.

• Thread management
single-threaded, thread-per-message, thread-pool, etc.

• Data transport
sockets, pipes, shared memory, etc.

The richness of future middlewares will depend on their capabilities to
dynamically adapt and (fine) tune such features. Then, we are strongly convinced that
the first step to build such a middleware is to find a good reflective model and
environment.

In OpenCorba, we experimented with a per-class reflective environment on the top
of Smalltalk. We are currently investigating other models like meta-object or message
reification models in order to compare them with our metaclass approach. We noticed
that the design of reflective distributed mechanisms could be common to any
reflective language dealing with similar features. For example, the handling of the
message sending is an important feature because several mechanisms have to deal
with it (in their implementation). Then, most of the reflective languages support the
same design of the meta-level in order to implement a given distributed mechanism
(e.g. primary replication [CHI 93] [McA 95] [GOL 97]).

To reason about a language independent environment, we sketched out an abstract
MOP allowing the control and customization of the message sending and state
accessing. Thus, we plan to describe the specifications of distributed mechanisms in
the context of meta-programming, i.e. reflective distributed components.

6 Conclusion

In this paper, we developed the idea in which reflection is a tremendous vector for the
building of open architectures. Languages considering classes as full entities allow
separation of concerns through metaclasses, improving reusability and quality of
code. Then, associated to the dynamic change of class, metaclasses offer an exclusive
reflective scheme for the building of reusable and adaptable, open architectures.

In the context of distributed architectures, these reflective foundations offer a
dynamic environment allowing the reuse and the adaptability of mechanisms related
to the distribution. Our first experimentation enabled us to "open" some internal
characteristics of the CORBA software bus, such as the invocation mechanism. The

210 T. Ledoux

result – OpenCorba – is an open broker capable of dynamically adapting the policies
of representation and execution within the CORBA middleware.

 Acknowledgements

The research described in this paper was funded by IBM Global Services (France)
during the author's PhD (1994-1997). The author wishes to thanks Noury Bouraqadi-
Saâdani, Pierre Cointe, Fred Rivard for many discussions about OpenCorba, Xavier
Alvarez for his reviewing of the final version of the paper.

References

[BER 94] BERGMANS L. — Composing Concurrent Objects. PhD thesis, University of
Twente, Enschede, Netherlands, June 1994.

[BIR 91] BIRMAN K., SCHIPER A., STEPHENSON P. — Lightweight Causal and Atomic
Group Multicast. In ACM Transactions on Computer Systems, vol.9, n°3, p.272-
314, 1991.

[BLA 97] BLAIR G.S., COULSON G., DAVIES N., ROBIN P., FITZPATRICK T. — Adaptive
Middleware for Mobile Multimedia Applications. In Proceedings of the 8th
International Workshop on NOSSDAV’97, St-Louis, Missouri, May 1997.

[BLA 98] BLAIR G.S., COULSON G., ROBIN P., PAPATHOMAS M. — An Architecture for
Next Generation Middleware. In Proceedings of Middleware’98, Springer-
Verlag, p.191-206, N. Davies, K. Raymond, J. Seitz Eds, September 1998.

[BRA 98] BRANT J., FOOTE B., JOHNSON R., ROBERTS D. — Wrappers to the Rescue. In
Proceedings of ECOOP’98, Springer-Verlag, Brussels, Belgium, July 1998.

[BRI 98] BRIOT J.P., GUERRAOUI R., LÖHR K.P. — Concurrency and Distribution in
Object-oriented Programming. In ACM Computer Surveys, vol.30, n°3, p.291-
329, September 1998.

[BS 98] BOURAQADI-SAÂDANI N., LEDOUX T., RIVARD F. — Safe Metaclass
Programming. In Proceedings of OOPSLA’98, ACM Sigplan Notices,
Vancouver, Canada, October 1998.

[CHI 93] CHIBA S., MASUDA T. — Designing an Extensible Distributed Language with a
Meta-Level Architecture. In Proceedings of ECOOP’93, p.482-501, LNCS 707,
Springer-Verlag, Kaiserslautern, Germany, 1993.

[COI 87] COINTE P. — Metaclasses are First Class : the ObjVlisp Model. In Proceedings
of OOPSLA’87, ACM Sigplan Notices, p.156-167, Orlando, Florida, October
1987.

211OpenCorba: A Reflective Open Broker

[DAN 94] DANFORTH S., FORMAN I.R. — Reflections on Metaclass Programming in SOM.
In Proceedings of OOPSLA’94, ACM Sigplan Notices, Portland, Oregon,
October 1994.

[FAB 97] FABRE J.C, PÉRENNOU T. — A metaobject architecture for fault tolerant
distributed systems: the FRIENDS approach. In IEEE Transactions on
Computers. Special Issue on Dependability of Computing Systems, vol.47, n°1,
p.78-95, January 1998

[GAM 95] GAMMA E., HELM R., JOHNSON R., VLISSIDES John — Design Patterns, Addison-
Wesley Reading, Massachusetts, 1995.

[GOL 89] GOLDBERG A., ROBSON D. — Smalltalk-80 : The Language, Addison-Wesley,
Reading, Massachusetts, 1989.

[GOL 97] GOLM M. — Design and Implementation of a Meta Architecture for Java.
Master’s Thesis, University of Erlangen, Germany, January 1997.

[GOS 96] GOSLING J., JOY B., STEELE G. — The Java Language Specification. The Java
Series, Addison-Wesley, Reading, Massachusetts, 1996.

[GOW 96] GOWING B., CAHILL V. — Meta-Object Protocols for C++ : The Iguana
Approach. In Proceedings of Reflection’96, Ed. Kiczales, San Francisco,
California, April 1996.

[GUE 97] GUERRAOUI R., SCHIPER A. — Software Based Replication for Fault Tolerance.
In IEEE Computer, vol.30 (4), April 1997.

[HAY 98] HAYTON R., HERBERT A., DONALDSON D. — FlexiNet - A flexible component
oriented middleware system. In Proceedings of ACM SIGOPS European
Workshop, Sintra, Portugal, September 1998.

[HUR 95] HÜRSH W.L., LOPES C.V. — Separation of Concerns. Technical Report NU-
CCS-95-03, College of Computer Science, Northeastern University, Boston,
MA, February 1995.

[JUL 88] JUL E., LEVY H., HUTCHINSON N., BLACK A. — Fine-grained mobility in the
Emerald system. In ACM Transactions on Computer Systems, vol.6(1), p.109-
133, February 1988.

[KIC 91] KICZALES G., DES RIVIERES J., BOBROW D.G.— The Art of the Metaobject
Protocol. The MIT Press, 1991.

[KIC 97] KICZALES G., LAMPING J., MENDHEKAR A., MAEDA C., LOPES C., LOINGTIER

J.M, IRWIN J. — Aspect-Oriented Programming. In Proceedings of ECOOP’97,
LNCS 1241, Springer-Verlag, p.220-242, Jyväskyla, Finland, June 1997.

[LED 96] LEDOUX T., COINTE P. — Explicit Metaclasses as a Tool for Improving the
Design of Class Libraries. In Proceedings of ISOTAS’96, LNCS 1049, p.38-55,
Springer-Verlag, Kanazawa, Japan, March 1996.

[LED 97] LEDOUX T. — Implementing Proxy Objects in a Reflective ORB. In Workshop
CORBA : Implementation, Use and Evaluation, ECOOP’97, Jyväskylä, Finland,
June 1997.

212 T. Ledoux

[LED 98] LEDOUX T. — Réflexion dans les systèmes répartis : application à CORBA et
Smalltalk. PhD thesis, Université de Nantes, École des Mines de Nantes, March
1998. (in french)

[LIE 96] LIEBERHERR K.J. — Adaptive Object-Oriented Software : The Demeter Method
with Propagation Patterns. PWS Publishing Company, Boston, 1996.

[MAE 87] MAES P. — Concepts and Experiments in Computational Reflection. In
Proceedings of OOPSLA’87, ACM Sigplan Notices, p.147-155, Orlando,
Florida, October 1987.

[MAS 98] MASUHARA H., YONEZAWA A. — Design and Partial Evaluation of Meta-objects
for a Concurrent Reflective Language. In Proceedings of ECOOP’98, LNCS
1445, p.418-439, Springer-Verlag, Brussels, Belgium, July 1998.

[McA 95] MCAFFER J. — Meta-level architecture support for distributed objects. In
Proceedings of IWOOOS’95, p.232-241, Lund, Sweden, 1995.

[MEY 92] MEYER B. — Eiffel: The Language. Prentice Hall, second printing, 1992.

[OKA 94] OKAMURA H., ISHIKAWA Y. — Object Location Control Using Meta-level
Programming. In Proceedings of ECOOP’94, p.299-319, LNCS 821, Springer-
Verlag, July 1994.

[OMG 95] OBJECT MANAGEMENT GROUP — Object Management Architecture Guide,
Revision 3.0. OMG TC Document ab/97-05-05, June 1995.

[OMG 97] OBJECT MANAGEMENT GROUP — CORBAservices: Common Object Services
Specification. OMG TC Document formal/98-07-05, November 1997.

[OMG 98] OBJECT MANAGEMENT GROUP — The Common Object Request Broker :
Architecture and Specification, Revision 2.2. OMG TC Document formal/98-07-
01, February 1998.

[RIV 96] RIVARD F. — A New Smalltalk Kernel Allowing Both Explicit and Implicit
Metaclass Programming. In Workshop “Extending the Smalltalk Language”,
OOPSLA’96, San Jose, California, October 1996.

[RIV 97] RIVARD F. — Évolution du comportement des objets dans les langages à classes
réflexifs. PhD thesis, Université de Nantes, École des Mines de Nantes, June
1997. (in french)

[ROM 99] ROMAN M., KON F., CAMPBELL R.H. — Design and Implementation of Runtime
Reflection in Communication Middleware: the dynamicTAO Case. In Workshop
on Middleware, ICDCS'99, Austin, Texas, May 1999.

[SCH 99] SCHMIDT D., CLEELAND C. — Applying Patterns to Develop Extensible ORB
Middleware. In IEEE Communications Magazine, 1999. (to appear)

[SHA 86] SHAPIRO M. — Structure and Encapsulation in Distributed Systems : The Proxy
Principle. In Proceedings of the 6th International Conference on Distributed
Computer Systems, p.198-204, Cambridge, MA, May 1986.

213OpenCorba: A Reflective Open Broker

[SMI 82] SMITH B.C. — Reflection and Semantics in a Procedural Programming
Language. PhD thesis, MIT, January 1982.

[SUN 98] SUN MICROSYSTEMS — Java Remote Method Invocation (RMI). At
http://java.sun.com/products/jdk/rmi/index.html

[WAT 88] WATANABE T., YONEZAWA A. — Reflection in an Object-Oriented Concurrent
Language. In Proceedings of OOPSLA’88, ACM Sigplan Notices, p.306-315,
San Diego, California, September 1988.

214 T. Ledoux

	1 Introduction
	2 Reflective Foundations for Building Open Systems
	2.1 Metaclasses and Separation of Concerns
	2.2 Dynamic Change of Metaclass

	3 OpenCorba
	3.1 Introduction
	3.2 The OpenCorba Proxy
	3.3 IDL Type Checking on the Server Classes
	3.4 Interface Repository and Error Handling
	3.5 Implementation and Performance Issues

	4 Related Work
	4.1 Reflective Adaptive Middleware
	4.2 Reflection in Distributed Systems
	4.3 Programming with Aspects

	5 Work in Progress
	5.1 Metaclass Composition
	5.2 Towards Specifications of a Reflective Middleware

	6 Conclusion
	Acknowledgements
	References

