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Abstract

We study a conversational reasoning model

that strategically traverses through a large-

scale common fact knowledge graph (KG) to

introduce engaging and contextually diverse

entities and attributes. For this study, we col-

lect a new Open-ended Dialog ↔ KG par-

allel corpus called OpenDialKG, where each

utterance from 15K human-to-human role-

playing dialogs is manually annotated with

ground-truth reference to corresponding enti-

ties and paths from a large-scale KG with 1M+

facts. We then propose the DialKG Walker

model that learns the symbolic transitions of

dialog contexts as structured traversals over

KG, and predicts natural entities to introduce

given previous dialog contexts via a novel

domain-agnostic, attention-based graph path

decoder. Automatic and human evaluations

show that our model can retrieve more natu-

ral and human-like responses than the state-of-

the-art baselines or rule-based models, in both

in-domain and cross-domain tasks. The pro-

posed model also generates a KG walk path

for each entity retrieved, providing a natural

way to explain conversational reasoning.

1 Introduction

The key element of an open-ended dialog sys-

tem is its ability to understand conversational con-

texts and to respond naturally by introducing rele-

vant entities and attributes, which often leads to

increased engagement and coherent interactions

(Chen et al., 2018). While a large-scale knowledge

graph (KG) includes vast knowledge of all the re-

lated entities connected via one or more factual

connections from conversational contexts, the core

challenge is in the domain-agnostic and scalable

prediction of a small subset from those reachable

entities that follows natural conceptual threads that

can keep conversations engaging and meaningful.

Hence, we study a data-driven reasoning model

Figure 1: Conversational reasoning with a parallel (a)

dialog and (b) knowledge graph (KG) corpus. Diverse

topical jumps across open-ended multi-turn dialogs are

annotated and grounded with a large-scale common-

fact KG. To generate a KG entity response at each di-

alog turn, the model learns walkable paths within KG

that lead to engaging and natural topics or entities given

dialog context, while pruning non-ideal (albeit factu-

ally correct) KG paths among 1M+ candidate facts.

that map dialog transitions with KG paths, aimed

at identifying a subset of ideal entities to mention

as a response to previous dialog contexts.

Figure 1 illustrates a motivating dialog exam-

ple between two conversation participants, which

spans multiple related KG entities from a start-

ing seed entity The Catcher in the Rye. Specif-

ically, we observe that there exists a small subset

of walkable patterns within a KG or a preferred se-

quence of graph traversal steps which often leads

to more engaging entities or attributes than oth-

ers (e.g. Literacy Realism, Nathaniel Hawthorne,

etc. vs. Catch Me If You Can, 277, etc. -
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all connected via one- or multi-hop factual con-

nections). Note also that the walkable degree of

each entity varies by dialog contexts and domains,

thus making conventional rule-based or entity-to-

entity learning approaches intractable or not scal-

able for open-ended dialogs with 1M+ candidate

facts. Therefore, pruning the search space for en-

tities based on dialog contexts and their relation-

based walk paths is a crucial step in operating

knowledge-augmented dialog systems at scale.

To this end, we propose a new model called

DialKG Walker that can learn natural knowledge

paths among entities mentioned over dialog con-

texts, and reason grounded on a large common-

sense KG. Specifically, we propose a novel graph

decoder that attends on viable KG paths to pre-

dict the most relevant entities from a KG, by asso-

ciating these paths with the given input contexts:

dialog, sentence, and a set of starting KG entities

mentioned in the previous turn. We then build a

parallel zeroshot learning model that predicts enti-

ties in the KG embeddings space, and ranks candi-

date entities based on decoded graph path output.

To train the DialKG Walker model with ground-

truth reference to KG entities, we collect a new

human-to-human multi-turn dialogs dataset (91K

utterances across 15K dialog sessions) using Par-

lAI (Miller et al., 2017), where conversation par-

ticipants play a role either as a user or as an assis-

tant, while annotating their mention of an entity in

a large-scale common fact KG. This new dataset

provides a new way for researchers to study how

conversational topics could jump across many dif-

ferent entities within multi-turn dialogs, grounded

on KG paths that thread all of them. To the best of

our knowledge, our OpenDialKG is the first par-

allel Dialog ↔ KG corpus where each mention of

a KG entity and its factual connection in an open-

ended dialog is fully annotated, allowing for in-

depth study of symbolic reasoning and natural lan-

guage conversations.

Note that our approaches are distinct from the

previous work on dialog systems in that we com-

pletely ground dialogs in a large-scale common-

fact KG, allowing for domain-agnostic conver-

sational reasoning in open-ended conversations

across various domains and tasks (e.g. chit-chat,

recommendations, etc.) We therefore perform ex-

tensive cross-domain and transfer learning evalu-

ations to demonstrate its flexibility. See Section 5

for the detailed literature review.

Our contributions are as follows: we propose

(1) a novel attention-based graph decoder that

walks an optimal path within a large common-

sense KG (100K entities, 1.1M facts) to effectively

prune unlikely candidate entities, and (2) a ze-

roshot learning model that leverages previous sen-

tence, dialog, and KG contexts to re-rank candi-

dates from pruned decoder graph output based on

their relevance and path scores, which allows for

generalizable and robust classification with a large

number of candidate classes. We present (3) a new

parallel open-ended dialog ↔ KG corpus called

OpenDialKG where each mention of an entity in

dialog is manually linked with its corresponding

ground-truth KG path. We show that the pro-

posed approaches outperform baselines in both in-

domain and cross-domain evaluation, demonstrat-

ing that the model learns domain-agnostic walking

patterns that are generalizable for unseen domains.

2 Method

Figure 2 illustrates the overall architecture of the

DialKG Walker model which retrieves a set of en-

tities from a provided KG given multiple modali-

ties of dialog contexts. Specifically, for each turn

the model takes as input a set of KG entities men-

tioned at its current turn, a full sentence at the cur-

rent turn, and all sentences from previous turns of

dialog, which are encoded using Bi-LSTMs with

self-attention modules (Section 2.2). The auto-

regressive graph decoder takes attention-based en-

coder output at each decoding step to generate a

walk path for each starting KG entity, which is

combined with zeroshot KG embeddings predic-

tion results to rank candidate entities (Section 2.3).

2.1 Notations

We define the knowledge graph GKG = VKG ×
RKG which is composed of all common-sense en-

tity nodes VKG and the relation set RKG that con-

nects each pair of two nodes. Let us also denote

Vr(v) to be a set of nodes directly connected to a

node v ∈ VKG by a relation r ∈ RKG. Similarly,

we denote VR,n(v) to be a set of nodes connected

to v via n-hops with a set of relations R.

Each input is composed of three modalities:

x = {xe;xs;xd}, where xe = {x
(i)
e } is a set of

entities mentioned in the current turn, xs is its sur-

rounding sentence context in the same turn, and xd

is its dialog context up to the previous turn.

Each output is a KG path sequence that con-
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Figure 2: Overall architecture. x = {xe;xs;xd} is encoded with the input encoder (left), aggregated via multiple

attention mechanism. The decoder (right) predicts both the optimal paths and the final entities y = {ye;yr} based

on their zeroshot relevance scores as well as soft-attention based walk paths, which prunes unlikely entities.

nects x with entities mentioned in the next turn,

which is represented in two modalities: y =

{ye;yr}, where ye = {y
(i)
e } is a set of entity

paths, where each entity path with length T is de-

fined as y
(i)
e = {y

(i)
e,t}

T
t=1. Similarly, yr = {y

(i)
r }

is a set of relation paths, each with length T that

connects x
(i)
e and y

(i)
e via relations in RKG.

We formulate the future entity retrieval task as:

y = argmax
y′

e
⊂V(xe)

score
(

fx→y(x),y
′
)

where fx→y is a function with learnable parame-

ters that projects input samples at the current turn

(x) into the same space as the output representa-

tions (y), i.e. entities to be mentioned in the next

turn and their optimal paths. V(xe) ⊂ VKG de-

notes a set of KG entity nodes reachable from xe,

defined accordingly to each decoding method.

2.2 Input Encoding

Entity representation: We construct KG embed-

dings to encode each entity mention (Bordes et al.,

2013), in which semantically similar entities are

distributed closer in the embeddings space. In

brief formulation, the model for obtaining embed-

dings from a KG (composed of subject-relation-

object (s, r, o) triples) is as follows:

P (Ir(s, o)=1|θ) = score
(

e(s), er(r), e(o)
)

(1)

where Ir is an indicator function of a known re-

lation r for two entities (s,o) (1: valid relation,

0: unknown relation), e is a function that extracts

embeddings for entities, er extracts embeddings

for relations, and score(·) is a deep neural network

that produces a likelihood of a valid triple.

Sentence representation: We represent textual

context of surrounding words of a mention with

a state-of-the-art attention-based Bi-LSTM lan-

guage model (Conneau et al., 2017) with GloVe

(Pennington et al., 2014) distributed word embed-

dings trained on the Wikipedia and the Gigaword

corpus with a total of 6B tokens.

Dialog representation: To encode previous dia-

log history, we use a hierarchical Bi-LSTM (Yang

et al., 2016) over a sequence of previous sentences

with a fixed window size. We apply self-attention

over sentences to attenuate and amplify sentence

contexts based on their relevance to the task, al-

lowing for more robust and explainable prediction.

Input aggregation: We aggregate input contexts

x from entities, sentences and dialogs, by apply-

ing the modality attention (Moon et al., 2018a,b),

which selectively attenuates or amplifies each

modality based on their importance on the task:

[ae;as;ad] = σ
(

Wm · [xe;xs;xd] + bm

)

(2)

αm =
exp(am)
∑

m′∈{e,s,d}

exp(am′)
∀m ∈ {e, s, d}

x =
∑

m∈{e,s,d}

αmxm (3)

where α = [αe;αs;αd] ∈ R
3 is an attention vec-

tor, and x is a final context vector that maximizes

information gain.
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2.3 Graph Decoder

Using the contextual information extracted from

an entity and its surrounding text (Section 2.2), we

build a network which predicts a corresponding

KG entity based on its knowledge graph embed-

dings with the following objective:

min
W

Lf (x,ye;Wf ,Wp)+Lwalk(x,yp;Wp)

R(W): regularization (4)

where Lf (·) is a supervised loss for generating
the correct entity at the next turn, and Lwalk(·) is

a loss defined for taking the optimal path within

a knowledge graph. W = {Wf ,Wp,Winput} are

the learnable parameters for the final entity classi-

fier (Wf ), the path walker model (Wp), and the

input encoder, respectively. R(W) denotes the

weight decay regularization term.

2.3.1 Zeroshot Relevance Score

We compute zeroshot relevance score in the KG

embeddings space, thus allowing for robust pre-

diction for KG entities and domains unseen dur-

ing training as well. Specifically, we use the su-

pervised hinge rank loss for KG embeddings pre-

diction as a choice of Lf , defined for each sample

(Moon and Carbonell, 2017).
∑

i

∑

ỹ 6=y
(i)
e

max[0, ỹ · y(i)
e −f(x(i)) ·(y(i)

e − ỹ)⊤] (5)

where f(·) is a transformation function that walks
through the knowledge graph and projects a pre-

dicted future entity in the KG embeddings space,

and ỹ refers to the embeddings of negative sam-

ples randomly sampled from KG entities except

the ground truth label of the instance. Intuitively,

the model is trained to produce a higher dot prod-

uct similarity between the projected embeddings

of a sample with its correct label (f(x(i))·y
(i)
e ) than

with an incorrect negative label in the KG label

embeddings space (f(x(i)) · ỹ), where the margin

is defined as the similarity between a ground truth

sample and a negative sample (ỹ · y
(i)
e ).

2.3.2 KG Path Walker

Generating candidate KG entities solely based on

their relevance score (Eq.5) is challenging due

to the exponentially large search space. To this

end, we define the attention-based DialKG graph

decoder model which prunes unattended paths,

which effectively reduce the search space. Decod-

ing steps are formulated as follows (bias terms for

gates are omitted for simplicity of notation):

it = σ(Whiht−1 +Wcict−1)

ct = (1− it)⊙ ct−1

+ it ⊙ tanh(Wzczt +Whcht−1)

ot = σ(Wzozt +Whoht−1 +Wcoct)

ht = WALK(x, zt) = ot ⊙ tanh(ct) (6)

where zt is a context vector at decoding step t, pro-

duced from the attention over walkable path which

is defined as follows:

αt = σ(Whαht−1 +Wxαxt)

zt = ht−1 +
∑

rk∈RKG

αt,krk (7)

where αt ∈ R
|RKG| is an attention vector over the

relations space, rk is relation embeddings, and zt
is a resulting entity context vector after walking

from its previous entity on an attended path.

We guide the graph decoder with the ground-

truth walk paths by computing the following loss

Lwalk(x,y) =
∑

i,t Lent + Lrel between predicted

paths and each of {ye,yr}, respectively (Lent: loss

for entity paths, and Lent for relation paths):

∑

ỹe 6=y
(i)
e,t

max[0, ỹe · ye,t
(i)−ht

(i) · (y
(i)
e,t− ỹe)

⊤]

+
∑

ỹr 6=y
(i)
r,t

max[0, ỹr · yr,t
(i)−αtr · (y

(i)
r,t− ỹr)

⊤]

Once the model is trained, at each decoding

step, we can rank the potential paths based on

the sum of their zeroshot relevance (left) and soft-

attention-based output path (right) scores:

y
(i)
e,t = argmax

y
(i)
e ∈VR,1(y

(i)
e,t−1)

ht · y
(i)
e

⊤
+
∑

αt,krk · y
(i)
r

⊤
(8)

Adversarial Transfer Learning: if domain la-

bels (yd) are available (e.g. movie, book, sports,

etc.), we can utilize these labels to further aid

training by extracting transferrable features and

learning optimal paths conditioned on domain em-

beddings (Ganin et al., 2016). We implement ad-

versarial transfer learning for DialKG Walker as

follows and study this specific setting in one of

our experiments to demonstrate that the model can

better generalize over multiple domains:

L = Lf + Lwalk + Entropy(σ(Wdx),yd)

ht = WALK([x; (Wdx)], zt) (9)
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3 Dataset: OpenDialKG

To empirically evaluate the proposed approach,

we collected a new dataset, OpenDialKG, of chat

conversations between two agents engaging in a

dialog about a given topic (91K turns across 15K

dialog sessions). Each dialog is paired with its

corresponding “KG paths” that weave together the

KG entities and relations that are mentioned in the

dialog. This parallel corpus of textual dialogs and

corresponding KG walks enables learning models

that ground the implicit reasoning in human con-

versations to discrete KG operations.

Wizard-of-Oz setup The dialogs were gener-

ated in a Wizard-of-Oz setting (Shah et al., 2018)

by connecting two crowd-workers to engage in a

chat session, with the joint goal of creating natu-

ral and engaging dialogs. The first agent is given

a seed entity and asked to initiate a conversation

about that entity. The second agent is provided

with a list of facts relevant to that entity, and asked

to choose the most natural and relevant facts and

use them to frame a free-form conversational re-

sponse. Each fact is a 1-hop or 2-hop path initiat-

ing from the conversation topic. After the second

agent sends their response, various new multi-hop

facts from KG are surfaced to include paths initiat-

ing from new entities introduced in the latest mes-

sage. This process allows the conversation partic-

ipants to annotate any new fact or entity they want

to introduce at each turn, along with the ground-

truth KG walk path that connect the two KG en-

tities. At this point the first agent is instructed to

continue the conversation by choosing among the

updated set of facts and framing a new message.

This cycle continues for 6 messages per session

on average spanning multiple KG paths, until one

of the agents decides to end the conversation (e.g.

the task goal is met).

We did two separate collections: a recommen-

dation task where the second agent acts as an as-

sistant who is providing useful recommendations

to the user, and a chit-chat task where both agents

act as users engaging in open-ended chat about a

particular topic. To ensure sufficient separation

of the dialog content, we used entities related to

movies (titles, actors, directors) and books (titles,

authors) for the recommendation task, and enti-

ties related to sports (athletes, teams) and music

(singers) for the chit-chat task (Table 1). Seed en-

tities for each domain are crawled from various

public resources (e.g. IMDB top movies list, top

Task: Recommendation Chit-chat
(All)

Domain: Movies Books Sports Music

# of dialogs 6,429 5,891 2,495 858 15,673

# of turns 37,838 34,035 14,344 4,992 91,209

Table 1: Task / domain distribution of OpenDialKG.

athletes list, etc.) and linked with the correspond-

ing KG entities.

KG sources: We use the Freebase (Bast et al.,

2014) KG which is a publicly available and com-

prehensive source of general-knowledge facts. To

reduce noise, we filter tail-end entities based

on their prominence scores, the resulting KG of

which consists of total 1,190,658 fact triples over

top 100,813 entities and 1,358 relations.

We randomly split the dialog sessions into train

(70%), validation (15%), and test sets (15%).

4 Empirical Evaluation

Task: Given a set of KG entity mentions from

current turn, and dialog history of all current and

previous sentences, the goal is to build a robust

model that can retrieve a set of natural entities to

mention from a large-scale KG that resemble hu-

man responses. Note that end-to-end generation

of sentences (e.g. based on the retrieved entities)

is not part of this study - instead, we focus on the

important challenge of scaling the conversational

reasoning and knowledge retrieval task to open-

domain dialogs, requiring an aggressive subset se-

lection (from 1M+ facts subset of Freebase).

4.1 Baselines

We choose as baselines the following state-of-the-

art approaches that augment external knowledge

to dialog systems for various tasks (see Section 5

for details), and modify accordingly to fit to our

entity retrieval task (e.g. we use the same 1M-facts

FreeBase KG for all of the baselines):

• seq2seq (Sutskever et al., 2014) with di-

alog contexts + zeroshot: we apply the

seq2seq approach for entity path generation,

given all of the dialog contexts. To make this

baseline stronger, we add a zeroshot learning

layer in the KG embeddings space (replacing

typical softmax layers to improve generality)

for entity token decoding.

• Tri-LSTM (Young et al., 2018): encodes

each utterance and all of its related facts
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Input Model
All Domains → All Movie → Movie

r@1 3 5 10 25 r@1 3 5 10 25

E + S + D seq2seq (Sutskever et al., 2014) 3.1 18.3 29.7 44.1 60.2 3.0 13.4 23.4 38.5 55.5

E + S Tri-LSTM (Young et al., 2018) 3.2 14.2 22.6 36.3 56.2 1.5 10.3 17.4 30.7 51.1

E + S Ext-ED (Parthasarathi and Pineau, 2018) 1.9 5.8 9.0 13.3 19.0 1.3 5.4 7.8 11.8 15.8

E DialKG Walker (ablation) 10.7 22.9 32.0 44.9 57.4 5.3 13.5 18.5 25.2 39.1

E + S DialKG Walker (ablation) 11.3 23.3 31.0 44.0 60.5 7.2 19.2 27.9 40.7 58.7

E + S + D DialKG Walker (proposed) 13.2 26.1 35.3 47.9 62.2 7.8 20.0 27.9 40.4 58.6

Table 2: In-domain (train/test on the same domain) response generation performance on the OpenDialKG dataset

(metric: recall@k). Our proposed model is compared against state-of-the-art models as well as several ablation

variations of the proposed model. All of the 100K+ KG entities are considered initial candidates for generation

(before masking). E: entities, S: sentence, D: dialog contexts.

Input Model
Movie → Book Movie → Music

r@1 3 5 10 25 r@1 3 5 10 25

E + S + D seq2seq (Sutskever et al., 2014) 2.9 21.3 35.1 50.6 64.2 1.5 12.1 19.7 34.9 49.4

E + S Tri-LSTM (Young et al., 2018) 2.3 17.9 29.7 44.9 61.0 1.9 8.7 12.9 25.8 44.4

E + S Ext-ED (Parthasarathi and Pineau, 2018) 2.0 7.9 11.2 16.4 22.4 1.3 2.6 3.8 4.1 8.3

E DialKG Walker (ablation) 8.2 15.7 22.8 31.8 48.9 4.5 16.7 21.6 25.8 33.0

E + S DialKG Walker (ablation) 12.6 28.6 38.6 54.1 65.6 6.0 15.9 22.8 33.0 47.5

E + S + D DialKG Walker (proposed) 13.5 28.8 39.5 52.6 64.8 5.3 13.3 19.7 28.8 38.0

Table 3: Cross-domain (train/test on the different domain) response generation performance on the OpenDialKG

dataset (metric: recall@k). E: entities, S: sentence, D: dialog contexts.

within 1-hop from a KG to retrieve a re-

sponse from a small (N=10) pre-defined sen-

tence bank. We modify the retrieval bank to

be the facts from the KG instead.

• Extended Enc-Dec (Parthasarathi and

Pineau, 2018): conditions response genera-

tion with external knowledge vector input. A

response entity token is generated at its final

softmax layer, hence not utilizing structural

information from KG.

We also consider several configurations of our

proposed approach to examine contributions of

each component (input modalities (E): entities,

(S): sentence, (D): dialog contexts).

• (Proposed; E+S+D): is the proposed ap-

proach as described in Figure 2

• (E+S): relies only on its previous sentence

and excludes dialog history from input.

• (E): only uses starting KG entities as input

contexts, and excludes any textual context.

4.2 Results

Parameters: We tune the parameters of each

model with the following search space (bold in-

dicate the choice for our final model): KG em-

beddings size: {64, 128, 256, 512}, LSTM hid-

den states: {64, 128, 256, 512}, word embeddings

size: {100, 200, 300}, max dialog window size:

{2, 3, 4, 5}. We optimize the parameters with

Adagrad (Duchi et al., 2011) with batch size 10,

learning rate 0.01, epsilon 10−8, and decay 0.1.

In-domain evaluation: Table 2 shows the gen-

eration results of the top-k predictions of the

model for in-domain train and test pairs (train &

test on: all domains / train & test on: movie do-

main split). It can be seen that the proposed Di-

alKG Walker model outperforms other state-of-

the-art baselines, especially for recalls at small ks.

Specifically, when textual contexts are added as in-

put (E+S and E+S+D), the model learns to condi-

tion its walk path output on textual contexts, thus

outperforming the non-textual ablation model (E).

seq2seq and Tri-LSTM models consider the

nodes connected via all possible relations as candi-

dates in the final layer (without pruning), resulting

in extensive search space and consequently poor

recall performance. In addition, Tri-LSTM only

considers the facts connected via 1-hop relations

as input contexts, which limits its prediction for

multi-hop facts. Ext-ED relies its prediction in
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Input Dialog (start entity)
Response

Model Walk Path Predicted Entity

A: Yes, I believe he [Muller] has played in Munich. GT award won by → position Forward

B: He also won a Bravo Award. I think that’s awesome! KG Walker award won by Lionel Messi

A: [response] Ext-ED award won by Muller

A: Could you recommend a book by Mark Overstall? GT wrote → has genre Romance

B: [response] KG Walker wrote → has genre Romance

Ext-ED language English

A: Do you like Lauren Oliver. I think her books are great! GT written by → wrote Requiem

B: I do, Vanishing Girls is one of my favorite books. KG Walker written by → wrote Annabel

A: [response] Tri-LSTM released year 2015

A: What about the Oakland Raiders? GT Champion Packers

B: Oh yes, I do like them. I’ve been a fan since they were KG Walker Champion Packers

runner-up in Super Bowl II. What about you? // A: [response] seq2seq Runner-up → Is A NFL Team

A: Do you like David Guetta? I enjoy his music. GT composer → composed Club Can’t Handle Me

B: Oh, I love his lyrics to Love is Gone and the song KG Walker composer → composed I Love It

Wild Ones. What are your favorites? // A: [response] Tri-LSTM composer David Guetta

Table 4: Error analysis: DialKG Walker with attention (ours) vs. baselines. Ground-truth response (GT) and

model predictions of walk paths and future entities for the underlined entity mentions are shown. Dialogs are only

partially shown due to space constraints.

Model
% in top-k

k=1 k=2 k=3

(Parthasarathi and Pineau, 2018) 17.5 33.6 47.2

(Young et al., 2018) 30.8 50.1 70.3

(Sutskever et al., 2014) 31.5 57.7 73.1

KG Walker (proposed) 38.6 61.8 76.3

Table 5: Human evaluation: “Which response is the

most natural for given dialog context?” (metric: % of

cases chosen as top-k response by the raters)

the final softmax layer, which typically performs

poorly for a large number of output class, com-

pared to zeroshot learning approaches.

Cross-domain evaluation: Table 3 demon-

strates that the DialKG Walker model can gen-

eralize to multiple domains better than the base-

line approaches (train: movie & test: book / train:

movie & test: music). This result indicates that

our method also allows for zeroshot pruning by re-

lations based on their proximity in the KG embed-

dings space, thus effective in cross-domain cases

as well. For example, relations ‘scenario by’ and

‘author’ are close neighbors in the KG embed-

dings space, thus allowing for zeroshot prediction

in cross-domain tests, although their training ex-

amples usually appear in two separate domains:

movie and book.

Human evaluation: To compare the subjective

quality of the models, i.e. the relative naturalness

and relevance of the generated KG paths, we per-

formed a human evaluation where paid raters were
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Figure 3: Transfer learning results (r@5) of DialKG

Walker at varying availability of target data with (a)

Book and (b) Sports domains as a Target (Source:

Movie). (TL:Adv): data transfer with adversarial dis-

criminator for source and target domains, (TL:FT):

model transfer with fine-tuning, (No-TL): target only.

shown partial dialogs taken from the test dataset,

along with the top 2 paths output from each model.

The rater was asked to choose the 3 most appropri-

ate paths for continuing the dialog. We evaluated

250 dialogs, showing each dialog to 3 raters, for

a total 750 tasks. We report the % of cases when

a top-k chosen fact was generated by each of the

models (Table 5). The numbers add up to more

than 100% as models can generate identical paths.

If such a path is chosen by the rater, it is counted

towards each of the models that generated the path.

We show that the generated responses by our

proposed methods achieve the highest scores in

all top-k evaluation, validating that the model can

output more natural human-like responses.
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Transfer learning: In Figure 3, we show that

cross-domain performance can greatly improve

with a relatively small addition of in-domain target

data, via the transfer learning approaches. Specif-

ically, it can be seen that (TL:Adv), which simul-

taneously trains for both source and target data

(effectively doubling the training size) with ad-

ditional adversarial discriminator for source and

target domains, achieves the best performance es-

pecially for domains that are semantically close

(e.g. movie and book). (TL:FT) transfers knowl-

edge from a pre-trained source model via fine-

tuning (hence requiring significantly less train-

ing resources), and effectively avoids “cold start”

training (Moon et al., 2015). This result shows that

the DialKG model can quickly adapt to other new

low-resource domains and improve upon the ze-

roshot cross-domain performance, demonstrating

its potential capability to reason on open-ended

conversations.

Error analysis: Table 4 shows some of the ex-

ample output from each model (as well as ground-

truth responses), given dialog contexts. In general,

the DialKG Walker tends to explore more multi-

hop relations than other baselines in order to gen-

erate natural and engaging entities, which conse-

quently improves the diversity of answers. Note

that if the graph decoder arrives at a sufficiently

good entity to generate, it stops its traversal oper-

ation and outputs the most viable entity based on

the relevance score. Some of the models do not

take into account the dialog history, hence gener-

ating redundant topics from previous turns. There

are some cases where the final entity prediction

is different from the ground-truth, whereas its re-

lation path is correctly predicted. The generated

entities are often still considered valid and natu-

ral, because the proposed model uses zeroshot rel-

evance score to best predict the candidates.

5 Discussion and Related Work

Knowledge augmented dialog systems: Young

et al. (2018) propose to explicitly augment input

text with concepts expanded via 1-hop relations

(where KG triples are represented in the sentence

embeddings space), and He et al. (2017) propose

a system which iteratively updates KG embed-

dings and attends over connected entities for re-

sponse generation. However, several challenges

remain to scale the simulated knowledge graph

used in the study to our open-ended and large-

scale KG with 1M+ facts. Other line of work

(Parthasarathi and Pineau, 2018; Ghazvininejad

et al., 2018; Long et al., 2017) uses embedding

vectors obtained from external knowledge sources

(e.g. NELL (Carlson et al., 2010), Wikipedia,

Freebase (Bast et al., 2014), free-form text, etc.)

as an auxiliary input to the model in dialog gen-

eration. Our model extends the previous work by

(1) explicitly modeling output reasoning paths in

a structured KG, (2) by introducing an attention-

based multi-hop concept decoder to improve both

recall and precision.

End-to-end dialog systems: Several models and

corresponding datasets have recently been pub-

lished. Most work focuses on task or goal ori-

ented dialog systems such as conversational rec-

ommendations (Salem et al., 2014; Bordes et al.,

2017; Sun and Zhang, 2018; Dalton, 2018), infor-

mation querying (Williams et al., 2017; de Vries

et al., 2018; Reddy et al., 2018), etc., with datasets

collected mostly through bootstrapped simulations

(Bordes et al., 2017), Wizard-of-Oz setup (Zhang

et al., 2018; Wei et al., 2018), or online corpus (Li

et al., 2016). Our OpenDialKG corpus is unique in

that it includes open-ended natural human conver-

sations over multiple scenarios (e.g. chit-chat and

recommendation on various domains), where rea-

soning paths from each dialog are annotated with

their corresponding discrete KG operations. Our

work can also be viewed as extending the conven-

tional state-tracking approaches (Henderson et al.,

2014) to more flexible KG path as states.

KG embeddings and inference: Several meth-

ods have been proposed for KG inference tasks

(e.g. edge prediction), which include neural mod-

els trained to discern positive and negative triples

(Bordes et al., 2013; Wang et al., 2014; Nickel

et al., 2016; Dettmers et al., 2018), or algorithms

with discrete KG operations on structured data

(Lao et al., 2011; Chen et al., 2015). KG em-

beddings have been shown effective in other NLP

tasks when they are used as target labels for clas-

sification tasks, which also allows for effective

transfer learning (Moon and Carbonell, 2017). For

effective application of KG embeddings in NLP

tasks, recent studies (Kartsaklis et al., 2018) pro-

posed to map word embeddings and KG embed-

dings via end-to-end tasks. In contrast to the line

of work on KG edge prediction, we aim to learn

an optimal path within existing paths that resem-

ble human reasoning in conversations.
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6 Conclusions

We study conversational reasoning grounded on

knowledge graphs, and formulate an approach

in which the model learns to navigate a large-

scale, open-ended KG given conversational con-

texts. For this study, we collect a newly anno-

tated Dialog ↔ KG parallel corpus of 15K human-

to-human dialogs which includes ground-truth an-

notation of each dialog turn to its reasoning ref-

erence in a large-scale common fact KG. Our

proposed DialKG Walker model improves upon

the state-of-the-art knowledge-augmented conver-

sation models by 1) a novel attention-based graph

decoder that penalizes decoding of unnatural paths

which effectively prunes candidate entities and

paths from a large search space (1.1M facts), 2) a

zeroshot learning model that predicts its relevance

score in the KG embeddings space, combined

score of which is used for candidate ranking. The

empirical results from in-domain, cross-domain,

and transfer learning evaluation demonstrate the

efficacy of the proposed model in domain-agnostic

conversational reasoning.
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