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Progress in experimental tools and design is allowing the acquisition of increasingly large 

datasets. Storage, manipulation and effi cient analyses of such large amounts of data is now a 

primary issue. We present OpenElectrophy, an electrophysiological data- and analysis-sharing 

framework developed to fi ll this niche. It stores all experiment data and meta-data in a single 

central MySQL database, and provides a graphic user interface to visualize and explore the data, 

and a library of functions for user analysis scripting in Python. It implements multiple spike-

sorting methods, and oscillation detection based on the ridge extraction methods due to Roux 

et al. (2007). OpenElectrophy is open source and is freely available for download at http://

neuralensemble.org/trac/OpenElectrophy.
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how to simply and conjointly manipulate experimental data and 

meta-data.

OpenElectrophy was designed more as a framework for data 

analysis than a piece of completely frozen analysis software. For 

example, it is not specifi c to a given type of electrophysiological 

signal, and does not directly perform a specifi c type of analysis at 

the request of a researcher with a “point-and-click” scheme. Rather, 

it provides tools to facilitate data storage, exploration and analysis 

script writing. It gathers the best of the two open source approaches 

described previously, both in terms of purpose (time–frequency 

analysis and spike sorting) and in terms of user interface (GUI 

and toolboxes). In addition, it includes generic tools for conjointly 

manipulating both experimental data and meta-data. The project’s 

main philosophy has three parts: fi rst, for each experiment, the 

data and meta-data are all stored in a single central database. This 

strategy allows for fl exibility in mixing both types of data in the 

subsequent analyses. Second, it provides a GUI that is useful for 

exploring the data and detecting events of interest (oscillations or 

spikes). Third, it contains a library of “methods” (high-level func-

tions) to aid in the writing of analysis scripts, both in the interfac-

ing of these scripts with the database and in the manipulation of 

the data.

OpenElectrophy was developed through a collaboration of peo-

ple working on electrophysiological signals, such as extra- or intrac-

ellular recordings or EEG signals. In these fi elds, people are especially 

interested in detecting and analyzing transient oscillations or neu-

ronal spikes. When this project was started, the conjoint analysis 

of both spikes and oscillations could not be performed using any 

available software. Thus, one of the main goals of OpenElectrophy 

was to provide a complete and  convenient way to detect spikes and 

transient oscillations, store all of the detected events in the same 

INTRODUCTION

Recent developments in electrophysiology experimental techniques 

have lead to increases in the amount of data produced. It is now 

common to record continuous signals simultaneously from many 

electrodes with a sampling rate of 10 kHz or more. This increase 

in raw data fl ow has been accompanied by an increase in the com-

plexity of the experimental protocol and the subsequent analyses. 

Indeed, each experiment is controlled by a large number of param-

eters that are either set by the experimenter (e.g., according to the 

stimuli applied or the state of the subject) or constrained by the 

experimental setup (e.g., electrode properties). These parameters 

are the meta-data associated with the experiment. A variety of new 

software aiming to facilitate data storage, exploration and analysis 

are appearing to help scientists handle such large amounts of data 

and experimental parameters.

Several commercial software products have been developed to 

tackle the increasing data management demands of state-of-the-art 

electrophysiology. However, as such commercial software products 

have not always evolved as rapidly as the needs of the fi eld, sev-

eral open source projects have appeared which are developed by 

the researcher community. Among them are open source software 

that performs commonly used analysis methods (e.g., averaging, 

time–frequency analysis) for analyzing magnetoencephalography 

(MEG) or electroencephalography (EEG) data. These programs 

generally have a highly developed graphical user interface (GUI). 

In contrast, in the fi eld of spike sorting, various toolboxes are avail-

able, and these toolboxes usually require the researcher to write-

specifi c scripts in order to use the toolbox for a specifi c set of data. 

Thus, there are at least two different approaches with regard to 

purpose and user interface in open source software design. None 

of the  available software or toolboxes addresses the problem of 
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database as the original data, and then manipulate them conjointly. 

Subsequent analyses could then include simultaneously detected 

events, raw data and meta-data. We emphasize that OpenElectrophy 

is one of the few currently available open source tools designed to 

work simultaneously with spikes and oscillations.

This article presents the design and use of OpenElectrophy. It is 

organized into fi ve sections. We fi rst compare OpenElectrophy to sim-

ilar projects and detail the advantages, drawbacks and differences of 

purpose for each project. Second, we explain how we used the database 

manager MySQL and the scripting language Python (and its scientifi c 

module SciPy) to construct the core architecture of OpenElectrophy. 

Third, we present the OpenElectrophy work fl ow and the general 

way in which it is used. Fourth, we briefl y describe the spike and 

oscillation detection methods that are currently implemented. Last, 

we present an example of the standard usage of OpenElectrophy to 

analyze extracellular local fi eld potential (LFP) recordings and obtain 

information about action potential locking on LFP oscillation.

COMPARISONS WITH OTHER PROJECTS AND THE MAIN 
GOALS OF OpenElectrophy
Commercial products like Plexon1, Tucker Davis2 or Spike23 exist for 

the analysis of electrophysiological signals and are in wide-spread 

use. We will not go into detail about these software programs, but we 

will point out that despite their high quality GUIs, support and con-

tinuous development, they use proprietary languages, which present 

barriers for code sharing and reuse, and which have limited uptake 

of tools being developed by the scientifi c computing community 

compared to languages such as Python. Moreover, the fi le format 

specifi cations are generally not available, making long-term storage 

or sharing of data problematic since anyone who wants to access the 

data needs the right software. To deal with this issue, Neuroshare4 

was created in an attempt to provide standardized libraries that can 

access proprietary fi le formats. However, Neuroshare provides only 

reading functionality, the code is not open source, and libraries are 

available only for the Windows 32 platform.

The various open source projects belong to two families: soft-

ware and toolboxes for analyzing EEG or MEG data, and software 

for spike sorting. Few projects mix spike and spectral analyses.

In the EEG/MEG family, visible projects include EEGLab5, 

FieldTrip6 and SPM7 (EEG sub-package). These three projects 

are all written with MATLAB, have a comprehensive GUI for 

non- programmer users, use a homemade data format based on 

MATLAB structures and store data in the MATLAB fi le format. 

Their main features include analyses of event-related potentials, 

time–frequency analyses, independent component analyses (ICA) 

and 3D plotting methods. They also implement methods for source 

detection.

In the spike-sorting software family, most projects can be sepa-

rated into two classes. The fi rst class includes tools dedicated 

solely to spike sorting: WavClus8, Mclus9, Spike-O-Matic10 and 

Klustakwik11. They do not perform any data management, but can 

load one or several data formats and store the results (detected 

spikes) in custom fi le formats. They generally provide only basic 

GUIs, except for Klustakwik, which provides no GUI. WavClus 

and Mclus are written in MATLAB; Spike-O-Matic is written with 

R; Klustakwik is a C++ library. In general, these projects were 

written to introduce a new spike-sorting method: WavClus is 

based on superparamagnetic clustering (SPC) and wavelet pro-

jection, Spike-O-Matic is based on Monte Carlo Markov Chain 

methods, and Mclus and Klustakwik are based on a classifi cation 

expectation maximization algorithm. The second class of projects 

is dedicated to the analysis of spike trains: Spike Train Analysis 

Toolkit12, NeuroTools13, and Pandora14. These three projects are 

collections of scripts for analyzing spike trains after spike sorting 

has already been completed. The Spike Train Analysis Toolkit is 

based on MATLAB and provides functions related to entropy and 

information theory. NeuroTools is written in Python and provides 

functions for analyzing simulated datasets generated from mod-

els. Pandora is MATLAB-based; it is one of the few projects that 

uses the concept of a database for managing datasets, but it uses 

a custom-built database system written in MATLAB, as opposed 

to employing an established database system such as MySQL.

Finally, we must mention three projects that mix spike fi ring 

analyses and spectral analyses on an LFP signal: FIND15, MEA-tools16 

and Chronux17. These projects were all written with the same pri-

mary goal as that of OpenElectrophy: to function as a framework for 

sharing analyses. They provide most of the standard analysis tools 

and others developed more recently, all written in MATLAB, but they 

include no database framework or meta-data management.

OpenElectrophy was written for several reasons:

• To have a project that is useful for all types of electrophy-

siological signals and experiments that mix time–frequency 

studies, spike-sorting and spike train analyses, and that uses 

pre- existing scripts or toolboxes whenever possible.

• To have a project that includes various spike-sorting methods 

and allows the user to choose which one best fi ts his data.

• To have a project that directly manages data and meta-data 

through a MySQL database that allows for sustainable data 

storage. Most previously developed projects use custom-built 

and language-dependent fi le formats. MySQL is open source 

and well established; datasets can be accessed with many 

 scripting languages (Python, MATLAB, Excel, R, Statistica) 

and with most of the traditional software used in a neuro-

science laboratory.

1http://www.plexoninc.com/
2http://www.tdt.com/
3http://www.ced.co.uk/
4http://neuroshare.org/
5http://sccn.ucsd.edu/eeglab
6http://www.ru.nl/neuroimaging/fi eldtrip
7http://www.fi l.ion.ucl.ac.uk/spm/

8http://www.vis.caltech.edu/∼rodri/Wave_clus/Wave_clus_home.htm
9http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
10http://www.biomedicale.univ-paris5.fr/SpikeOMatic
11http://klustakwik.sourceforge.net/
12http://neuroanalysis.org/toolkit/
13http://neuralensemble.org/trac/NeuroTools
14http://userwww.service.emory.edu/∼cgunay/pandora/
15http://fi nd.bccn.uni-freiburg.de/
16http://material.brainworks.uni-freiburg.de/research/meatools/
17http://chronux.org/
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• To have a free project that relies only on other open source 

projects. Most previously developed projects are based on 

MATLAB; it is quite contradictory to have an open source 

project that forces the community to pay a license to a third 

party (Matworks) while free alternatives exist (Python and its 

scientifi c module SciPy).

• To have the capability to quickly design a high quality GUI. 

This goal is achievable with PyQt, a Python wrapper for the 

modern graphics library Qt. This is in contrast to MATLAB, 

which possesses a less appropriate object-oriented program-

ming approach and GUI toolkit.

We must emphasize that OpenElectrophy is neither a simple 

GUI interface nor a library of functions, but rather a combina-

tion of both, depending on what needs to be done with the data. 

Hence, the GUI is used mainly for data storage, visualization, and 

exploration; it also guides the initial analysis steps, such as the 

detection of events of interest (e.g., spikes or oscillations). Script 

writing is necessary to perform the specifi c analyses that are needed 

by the researcher. In order to make analysis writing as simple and 

as fl exible as possible, OpenElectrophy provides Python methods 

to appropriately query the database and manipulate the electro-

physiological data.

Finally, we must point out that at its current development stage, 

OpenElectrophy is primarily designed for the LFP and spike com-

munity rather than the multi-channel EEG community. For exam-

ple, it does not currently include any advanced visualization tools, 

such as 3D scalp plot or source localization techniques.

TECHNICAL CHOICES
The development of OpenElectrophy is based on two technologies: 

MySQL, an open source database server, and SciPy, the Python 

scientifi c module. The GUI was implemented with PyQt4. We 

chose to rely on these open sources projects because they are widely 

used and have strong support communities that ensure free avail-

ability and reliability. Moreover, they provide effi cient interfaces 

with other scripting or compiled languages (e.g., MATLAB, R, 

C/C++, Statistica, Excel). These interfaces are important to allow 

for interaction with previously developed methods from other 

open source projects. Lastly, Python is an object-oriented lan-

guage that is well adapted to developing long-term projects with 

highly structured designs, thus facilitating collaboration between 

developers and users.

In this section, we present a summary of the core architecture of 

OpenElectrophy. In particular, we show how MySQL and Python 

are used to help fulfi ll OpenElectrophy’s goals.

MySQL

Briefl y, as a reminder, it should be stated that the intrinsic concept 

of a database system is a collection of tables. Each table has a collec-

tion of fi elds of different types. Tables are linked to one another by 

indexes or keys. Putting data into a database is equivalent to splitting 

it up in an atomic way and organizing it into different tables. The 

logical or hierarchical organization between tables is not known a 

priori, but is formed while exploring the data, as opposed to fi le sys-

tems, which are organized into directories and sub-directories with a 

fi xed organization. Thus, it is possible to have multiple views of the 

same database. This mechanism, while apparently basic, proves to be 

fl exible and effi cient. To work with this system, the user must learn 

structured query language (SQL). This language permits the user 

to reconstruct, fi lter and sort the data. The user can also add fi elds 

or tables at a later point without affecting previous work.

A crucial point is the design of the table’s schema: the list of 

tables, and their contents and links. The idea was to design a generic 

core schema that can deal as naturally as possible with any elec-

trophysiological dataset. In electrophysiology, people manipulate 

two main types of signals: continuous signals, which come from 

electrodes, and discrete or stepwise signals such as triggers or 

time events, which come from the context of the data acquisition 

(e.g., stimulus, subject states). Based on this requirement, the core 

schema that was chosen for OpenElectrophy is detailed in Figure 1. 

The three central tables are trial, epoch and electrode. The table trial 

includes a coherent recording of continuous or discrete events. The 

table electrode holds the raw continuous signals from each physical 

electrode. The table epoch manages all discrete events: trigger times, 

periods of stimulation, animal states or event markers. These three 

tables can accommodate a generic electrophysiological recording. 

The tables spike, spiketrain and cell were then added to manage 

neuron spike discharge. The table oscillation manages transient 

oscillatory events in the LFP.

This schema has already been proven to be fl exible enough to fi t 

several types of experimental setups, such as one-cell intracellular 

recordings, extracellular multi-electrode recordings, short- or long-

protocol recordings, LFP studies, multiple repetitions of stimuli, and 

animal behavior data. For each experiment, this design is at the core 

of the data management; however, each new study usually requires a 

short extension of the table schema. Extra fi elds commonly need to 

be added to the original tables, and new tables must sometimes be 

added to address new concepts such as animal position or heartbeat. 

The versatility of the database allows for this kind of customization 

without interfering with the core of OpenElectrophy.

Today, many data manipulation tools include an SQL interface; 

MySQL is a kind of “universal” data format that does not depend 

on a particular language. Another advantage of this type of data 

storage is the MySQL client/server design. Indeed, all of the data 

is collected on a single server that is simultaneously accessible by 

many users of OpenElectrophy (or other tools). This access does 

not need to be local, such that collaborations between labs working 

on the same dataset are possible. We note here that transferring 

large sets of raw data over the Internet can take a prohibitively 

long time, but it is generally not a problem to transfer only discrete 

events such as spike times (also present in the database), which 

can be done by using appropriate SQL queries. Another benefi t of 

the database scheme is that each time someone makes a new entry 

into the database (e.g., raw data or meta-data, spikes, oscillations, 

a new fi eld with a specifi c type of information), that information 

is immediately available to all of his collaborators. Lastly, MySQL 

offers many effi cient backup capabilities (from single global or 

partial transfers of the whole database to continuous incremental 

saves) to secure the data or make them portable.

PYTHON

Python is a high-level object-oriented programming language. It 

is available for a wide range of platforms and comes with a large 
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collection of libraries (modules). For scientists and engineers deal-

ing with computing, one of the most interesting Python modules 

is SciPy. This module provides N-dimensional array manipula-

tion with the NumPy module and a fast implementation of an 

extensive set of scientifi c algorithms, such as fi ltering, statistics, 

interpolation, and linear algebra. For neuroscience studies that 

generate increasingly large datasets, Python is the equivalent of a 

Swiss army knife.

Using MySQL to explore and select data is effi cient, but creating a 

table schema and inserting or modifying data is a repetitive and tedi-

ous task with pure SQL. Object-relational mapping (ORM) is a tech-

nical programming method that converts between a database and a 

Python object. Thus, OpenElectrophy incorporates a  custom-built 

ORM to simplify read/write database access (see Section “A Typical 

Use-case” for an example of its use). This SQL mapper, a Python 

class included in OpenElectrophy, allows the user to declare a table 

structure with fi eld names and types with only a few lines of code. 

Each instance of this class can directly map onto all of the fi elds of a 

table entry. Each SQL fi eld becomes a member of the class instance. 

There are two methods (load_from_db and save_to_db) for auto-

matically loading or saving all fi elds from the database without writ-

ing any SQL. The conversion from Python types to MySQL types 

is straightforward for basic types (int, fl oat, str). For numpy.array 

(the basic type for N-dimensional arrays of the SciPy module), the 

conversion is automatically done by OpenElectrophy in three fi elds: 

one blob fi eld for the buffer of the array, one fi eld for the dimensions 

FIGURE 1 | Database schema. This is a classical relational design. Each frame 

corresponds to a table that holds all of the properties of an element in its fi elds. 

For example, the table spike holds for each spike its own index (id_spike), the 

index of the spike train it belongs to (id_spiketrain), its position (pos), the 

maximum amplitude (val_max) and its raw waveform (waveform). All of the 

tables and fi elds are natively generated by OpenElectrophy; the schema is 

fl exible and extensible to accommodate specifi c needs. The core of the schema 

includes the trial, electrode and epoch tables. A trial is a combination of several 

simultaneous coherent recordings. These recordings are continuous or discrete, 

and are stored in the electrode or epoch tables, respectively. Additional tables 

are as follows. The series table, which gathers a set of trials (e.g., those 

recorded in the same location). The spike table contains all detected spikes and 

their positions and shapes. The spikes are grouped according to their spike train 

(there may be many spike trains per electrode). The cell table groups spike trains 

that were recorded from the same cell but in different trials; thus, the cell table 

groups them relationally. Finally, the oscillation table contains all of the 

information related to transient oscillatory events (see Section “Oscillation 

Extraction”).
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and one for the array element type. Thus, the user can store vectors 

or matrices in MySQL, which is normally not allowed. Each MySQL 

table corresponds to a specifi c Python class that inherits the SQL 

mapper base class and that implements methods that are specifi c 

to the table content. For example, the Electrode class can query the 

electrode table and implements different plotting methods (raw or 

fi ltered signals and time–frequency maps).

As a further example, the SpikeTrain class offers methods for recon-

structing a spike train in different ways, such as a vector of time stamps, 

as sample indexes, as intervals or in Boolean form for information 

theoretical methods. Of course, all of these methods directly query the 

spike table, collect all individual spikes that are linked with an element 

of the spiketrain table and reorganize the results into the appropriate 

format. Three plotting methods are also available: raster, large dots 

superposed on the electrode signal and cumulative waveform.

Currently, only tables and fi elds that are present in the schema 

in Figure 1 are loaded by OpenElectrophy classes. Thus, additional 

fi elds or tables that are created for specifi c experiments must be 

accessed via SQL queries directly with a Python script. Alternatively, 

existing OpenElectrophy Python classes can be manually  overloaded 

to take into account the new elements.

WORK FLOW
In this section, we describe the general workfl ow of OpenElectrophy 

as summarized as a series of steps in Figure 2. Each step of the 

workfl ow is discussed in detail in turn below.

DATA INTEGRATION

The fi rst step of OpenElectrophy workfl ow involves import-

ing data into the database. The idea is to integrate all available 

 information into the database, including data (e.g., signal, trig-

gers, events) and meta-data (e.g., protocol context, date, time). 

In so doing, during the analysis, the user no longer has to work 

with a heterogeneous collection of fi les; instead, the user works 

directly with the database system. OpenElectrophy is already 

able to integrate into the database data that is stored in different 

fi le formats, including ASCII, raw binary, Elan, TDT, Elphy, and 

Micromed. In the near future, many additional data formats will 

be incorporated. The end user can go deeper into data integration 

by writing new scripts that not only incorporate neural data but 

also setup-specifi c meta-data. For instance, stimulus generation 

software often provides lists of stimuli and context information in 

a clear fi le format. These fi les can be parsed and integrated during 

the integration of neural data. Finally, note that the database can 

also be directly accessed and fi lled or edited with a basic MySQL 

client editor.

At this stage, it is possible to explore the database using differ-

ent hierarchical tree views and to plot raw signals (bandwidth or 

fi ltered) or wavelet-based time–frequency maps.

SPIKE AND OSCILLATION DETECTION

The next major step is the extraction of the phenomena of inter-

est: spikes and transient oscillatory events. In these two cases, a 

graphical interface helps in searching for parameters that allow 

for good detection. This step is crucial for subsequent stages of 

the analysis. There are two possible methods for detection: indi-

vidual detection, which is done signal-by-signal, or bulk detection, 

which is done by applying the same parameters to an ensemble 

of signals targeted by an SQL query that is directly written in the 

OpenElectrophy GUI.

FIGURE 2 | General work fl ow. The main steps for using OpenElectrophy are: 

(A) integration of data from a heterogeneous collection of fi les into the 

database; (B) exploration and plotting of raw signals directly from the 

database; (C) extraction of spikes from the raw signals and integration of 

these spikes into the spike, spiketrain and cell tables; (D) extraction of 

oscillations and integration of these oscillations into the oscillation table; 

(E) analysis with Python scripts using OpenElectrophy-specifi c classes and 

methods.
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With regard to spike detection, methods used in OpenElectrophy 

will be detailed in Section “Spike Extraction”. The central idea of the 

framework is to store individual spike events in the MySQL spike 

table and group them using the spiketrain and cell tables. All studies 

on spike discharge will deal directly with these three tables using 

SQL queries, but will benefi t from all of the tables when working 

with protocol information and context meta-data.

The oscillation detection method is based on a new approach 

detailed in Section “Oscillation Extraction”. The result is a list of 

oscillations for each signal. In this case, each oscillation is stored 

in the oscillation table. Thus, for studies on multi-frequency oscil-

latory regimes (e.g., theta, gamma, and beta bands), the analysis 

is computed directly in this table, although it again also benefi ts 

from the data stored in all other tables.

SQL FILTERING

The ability of SQL to dynamically provide different views of the 

database is heavily exploited during analysis. Consequently, a basic 

knowledge of this language is required. Data analysis can be sum-

marized as applying an algorithm or a statistical measure or plotting 

synthetic views of a subset of the data. The traditional method for 

analyzing data is to manipulate and aggregate the data by hand, 

creating a text list for each condition or factor or constructing many 

synthetic tables with an external knowledge of protocol factors. 

With SQL, this tedious work is done directly. With a few lines of 

code, values of interest can be rapidly and effi ciently aggregated. 

Using SQL, there is no need to store lists, sublists or sub-sublists of 

data; the user only needs to store the queries and use them for each 

analysis. Overall, the user must manage queries that are useful for 

selecting data according to context and factor fi elds; then, the user 

must write new analyses in Python that can be applied to a subset 

of the data that is extracted with these SQL queries.

ANALYSIS

Analysis is the fi nal stage of the OpenElectrophy workfl ow, which 

transforms the now pre-processed data into meaningful results. 

The OpenElectrophy framework does not provide ready-made 

“point-and-click” analyses for obtaining a given result. Rather, it 

is necessary to write scripts in Python to perform statistical tests 

or other specifi c analyses. Here, the management of the data in 

a central database simplifi es the selection of the data to analyze 

(see Section “SQL Filtering”), and the Python classes provided by 

OpenElectrophy ease the manipulation of the data to match a given 

analysis. Additionally, the Python SciPy module provides many 

standard and high-level analysis tools, and the Matplotlib module 

offers extensive 2D plotting methods.

Writing analysis scripts can seem diffi cult for researchers not 

familiar with programming, but the power and fl exibility of this 

approach is quickly preferred over the restrictive convenience of a 

GUI. For example, to our knowledge none of the available software 

for doing spike analysis provides a GUI as an alternative to analysis 

scripting. Starting with simple script examples is usually suffi cient 

to allow beginners to compose very sophisticated analyses. Thus, 

OpenElectrophy does not constrain data analysis with a fi xed GUI, 

but allows for the use of user programmable scripts.

As already mentioned, a major advantage of using the Python 

scripting language is its ability to interface with other languages. 

Packages like Mlabwrap18, rpy19, cython20 or SciPy.weave21 

enable to use pre-existent code from MATLAB, R, or C/C++. 

Employing these tools, the list of external modules that can be 

linked to OpenElectrophy to help write analysis scripts is long: 

the International Neuroinformatics Coordinating Facility provides 

a list of tools available for studying neural data22. In particular, 

OpenElectrophy, as a framework for managing data, would likely 

complement recent Python-based approaches to neural data stud-

ies, such as PyEntropy (Ince et al., 2009) for information theory 

and PyMVPA (Hanke et al., 2009) for machine learning.

Details on how to use OpenElectrophy classes for scripting are 

available on the OpenElectrophy wiki page23.

DETAILS OF EXTRACTION METHODS
SPIKE EXTRACTION

One crucial part of multi-extracellular electrophysiological record-

ings is spike detection and sorting. All subsequent interpretations rely 

on the accuracy of these steps. Many approaches to this challenge 

already exist. Some systems use in-line, real-time, and unsupervised 

spike sorting, while others, including OpenElectrophy, prefer off-line 

and semi-automatic spike sorting. There is no perfect method; a 

compromise must exist between fully automatic and fully super-

vised processing. Several numerical algorithms for spike sorting 

have been published. Processing can be separated into four steps: 

fi ltering, detection, decomposition (or projection) and clustering. 

The literature on projection and clustering is extensive (Lewicki, 

1998; Pouzat et al., 2004; Quiroga et al., 2004; Wood et al., 2006). 

Less effort has been put into fi ltering and detection. These two steps 

cannot be neglected, however, as bad fi ltering directly infl uences spike 

shape, and can thereby generate strange results even with a good 

clustering algorithm. To overcome these diffi culties, OpenElectrophy 

is designed in a modular way and offers several methods for each 

step. Thus, spike extraction can be tuned for many experimental 

setups, and new methods can be added to the framework by external 

contributors.

At the moment, the implemented algorithms are:

• Filtering: “fast Fourier transform”-based fi lter, Bessel, Butterworth, 

median sliding fi lter for removing slow components.

• Detection: threshold on maximum amplitude.

• Projection: principal component (PCA) of the spike shape, 

independent component (ICA), raw waveform shape. 

Wavelet projection will be implemented soon. PCA and 

ICA projections are done with the Modular toolkit for Data 

Processing, a machine learning package for Python (Zito 

et al., 2008).

• Clustering: “k-means” method and “SPC” (Blatt et al., 1996).

A future step for OpenElectrophy will be to incorporate addi-

tional spike-sorting methods developed in other open source 

18http://mlabwrap.sourceforge.net/
19http://rpy.sourceforge.net/
20http://www.cython.org/
21http://www.scipy.org/Weave
22http://software.incf.org
23http://neuralensemble.org/trac/OpenElectrophy/wiki/OEScriptTutorial

http://mlabwrap.sourceforge.net/
http://rpy.sourceforge.net/
http://www.cython.org/
http://www.scipy.org/Weave
http://software.incf.org
http://neuralensemble.org/trac/OpenElectrophy/wiki/OEScriptTutorial
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projects (see Section “Comparisons with Other Projects and the 

Main Goals of OpenElectrophy”).

OSCILLATION EXTRACTION

The detection of non-stationary oscillations in LFPs by 

OpenElectrophy is based on a new method described by S. Roux 

(Roux et al., 2007). Classical studies on oscillatory phenomena have 

used time–frequency Morlet scalograms. The Roux method goes 

further to use the scalogram to extract individual oscillations with 

a ridge extraction method. This method is useful when signals 

have oscillations in different frequency bands, when oscillation 

frequencies shift as a function of time or when there is no a priori 

knowledge of the signal.

The main steps in the processing are:

• computing the Morlet scalogram

• choosing a signifi cant threshold for the detection of 

oscillations

• detecting local maxima above this threshold in the frequency 

bands of interest

• extracting ridges point by point, starting from the maximum 

and continuing until the threshold is reached.

Finally, each ridge is a time–frequency line that describes a 

trajectory in time and frequency point by point; it is a complex 

number. The complex modulus estimates the energy envelope of 

the oscillation, and the angle from the real axis estimates its instan-

taneous phase.

From each extracted line, the oscillatory epoch duration and 

onset can be estimated, as well as the frequency, phase and ampli-

tude evolution as a function of time. In short, this method allows 

for the extraction of all oscillation parameters.

This approach introduces a more intuitive and more accurate 

method to analyze non-stationary local fi elds with oscillations. 

Statistics can be applied, for example to the duration or frequency 

shift, as analyses become quantitative.

A Python class associated with a MySQL table manages all 

oscillations. All parameters are stored in the appropriate fi elds; the 

time–frequency line itself is directly stored as a “numpy.array”.

A TYPICAL USE CASE
In this section, we will present an example of how OpenElectrophy 

might typically be used and demonstrate its GUI. We consider an 

experiment in which the extracellular LFP was recorded in the 

piriform cortex of an anesthetized rat. The aim of this experiment 

was to study the relationship between local fi eld oscillatory activity 

(network level) and single unit activity (neuron level) (Litaudon 

et al., 2008).

The raw signal was fi rst saved into the database as previously 

explained. The next step was then to extract oscillatory events. Upon 

completion of the extraction, the GUI is as shown in Figure 3A. 

On the left of the screen are all of the parameters that are used for 

detection; these parameters can be modifi ed by the user and saved for 

later use. These parameters cover the time/frequency space and the 

precision used for the detection, as well as the threshold above which 

oscillations are detected (an absolute level or relative to a reference 

period in the same signal); in addition, some of these parameters 

are used to remove overlapping or unwanted short oscillations. On 

the right of the screen, the list of oscillations detected for this elec-

trode is shown. Below, their trajectories are plotted superimposed 

both on the electrode Morlet scalogram and on the electrode raw 

signal (lower right of the screen). When the user is satisfi ed with the 

results, he can save it to the database. Note that in this example, the 

detection of oscillations was done for a single electrode. Another GUI 

can be used to detect oscillations for many electrodes simultaneously. 

In this case, the GUI presents the same parameters as for the single 

electrode GUI, but with an additional window in which the user may 

provide the SQL query to select the electrodes for detection.

The next step was the detection of spikes in the same signal. 

The GUI shown in Figure 3B presents fi ve tabs corresponding to 

the four steps used in the spike detection (see Section “MySQL”) 

and a fi fth for the database options (which summarizes the results 

and, in the case of multiple detected spike trains, allows the user to 

choose which results should be saved to the database). At any step, 

the parameters can be set and saved for later use. Spike detection 

can be done in its entirety or in a step-by-step fashion, with various 

plots on each tab dedicated to the intermediate results. Again, this 

task can be performed for multiple electrodes simultaneously with 

a similar GUI that includes all tabs (without graphic feedback) and 

a window to specify the SQL query. A special case is the detection 

of spikes from the same electrode channel across all trials from 

a given series. In this case, the signals from all trials are pooled 

before spike detection, and the resulting spike trains (one for each 

trial) are linked in the database via the cell table, so that it can be 

documented that they are all associated with the same neuron.

The fi nal step was the analysis of the results, which here consisted 

of a histogram of spike phases (relative to the oscillations). This 

analysis has already been implemented in OpenElectrophy, and the 

user needs only to specify a list of oscillations and a list of spike 

trains with two SQL queries to obtain the graph in Figure 3C. To 

demonstrate how this process can be done using an external script, 

we present here the Python code that was used in this analysis:

# Initialize result array

phase_spike = empty((0))

# write a query for spike train of interest

# for example, spike trains of electrode 5

query_spiketrain = """

                   SELECT spiketrain.id_spiketrain

                   FROM spiketrain, electrode

                   WHERE electrode.id_

                   electrode = spiketrain.id_electrode

                   AND electrode.num_channel = 5

                   """

# execute query and get id list

list_id_spiketrain, = sql(query_spiketrain)

for id_spiketrain in list_id_spiketrain:

       # Python class implemented by OpenElectrophy

       # that maps one spike train

       sptr = SpikeTrain()

       # method to load spiketrain properties from the

         database

       sptr.load_from_db(id_spiketrain)

       # method to get spike positions of the spiketrain

       pos_spike = sptr.pos_spike()
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FIGURE 3 | (A) Snapshot of the oscillation detection dialog. On the left side, 

frames encapsulate different kinds of parameters: for the Morlet scalogram, the 

threshold defi nition and “cleaning” the detection. On upper right, there is a list 

of detected oscillations. On lower right, there is a zoomed picture of one time–

frequency line, which represents an oscillatory event, and the relative phase 

reconstruction superimposed on the raw signal. When the detection is done, the 

results can be stored in the MySQL database. (B) Snapshot of the spike 

detection dialog. On the left, there are different tabs corresponding to the 

different steps of spike extraction: fi ltering, detection, projection and clustering. 

The result of a particular detection that can be saved into the database is on the 

shown tab. (C) Example of how spike and oscillatory events can be mixed, 

showing how a spike train is phase locked on the LFP phase. One oscillation 

cycle is depicted in red, and a histogram of the phases of spike discharge is 

shown in blue.
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       # Select oscillations from the same trial as the 

         spike train

       # and that are in the gamma band

       query = """ SELECT oscillation.id_oscillation

                   FROM oscillation

                   WHERE oscillation.id_trial = %s

                   AND oscillation.freq_max > 35

                   AND oscillation.freq_max < 100

               """

       list_id_oscillation, = sql(query,(sptr. id_trial),

                                  Array=True)

       for id_oscillation in list_id_oscillation:

              # Python class implemented by 

                OpenElectrophy

              # that maps one oscillation

              osci = Oscillation()

              # method to load the oscillation’s 

                properties from the database

              osci.load_from_db(id_oscillation)

              # get phase of spikes that are on the

                oscillation

              phase_spike = r_[phase_spike,angle(osci. 

                               line_val[setmember1d

                               (osci.line_t,pos_spike)])]

# Plot the result…

CONCLUSION
In summary, we have presented OpenElectrophy, an open source 

project aimed at facilitating the management and manipulation of 

electrophysiological data along with experiment meta-data. The 

key contribution of OpenElectrophy is the framework architecture: 

MySQL married to Python + SciPy, all of which are reliable, widely 

used and free tools. We have shown how the use of a MySQL data-

base allows for long-term storage, easy access and sharing of data. 

In particular, all of the data and meta-data are recorded in a central 

database and can be combined for further analyses, allowing the 

user, for example, to fuse electrophysiological and behavioral data. 

We have also shown how OpenElectrophy uses the Python language 

to simplify interaction with the database and manipulation of data 

during the writing of analysis scripts. Another primary feature of 

OpenElectrophy is the integration of the detection and storage of 

spikes and transient oscillatory events found in electrophysiologi-

cal recordings. We note that the CARMEN24 project has recently 

been created and appears to pursue goals similar to ours, but it 

is now primarily a repository of diverse methods without much 

global integration.

The OpenElectrophy project is free and open source, which 

means that anyone can download, use, modify or extend it and 

then share his work with the whole user community. It is hosted in 

a forge with a Trac system25, which offers SVN as a version control 

system and a wiki for live documentation. A mailing listing for 

discussion between users and developers is available26.

Like many other free projects, the success of OpenElectrophy 

depends on the size of the community using it and developing 

it. For the moment, OpenElectrophy is a young project and the 

community is relatively small (about 20 people). Its development 

has thus mostly involved addressing the needs of this small com-

munity. Nonetheless, we hope to have designed the foundations 

of OpenElectrophy with enough care in terms of fl exibility and 

technological choices such that adapting it to a wider range of 

needs and use cases would require minimal effort.

At the moment, the OpenElectrophy GUI adequately covers 

the exploration of data, spike sorting and detection of transient 

oscillations. The analyses must be computed with Python scripts, 

which need to be provided by the user. Obviously, these scripts 

can be written from scratch, but as we already have mentioned, 

one of the advantages of Python is that it can be interfaced with 

previously developed analysis toolboxes. Thus, it will be useful 

in the future to provide, either directly in OpenElectrophy or 

as script examples (which could be available on the wiki pages 

for OpenElectrophy), simple ways to interface the data managed 

by OpenElectrophy with other open source toolboxes, such as 

the ones presented in this issue, e.g., PyMVPA, PyEntropy or 

NeuroTools. Additionally, one possible extension would be to 

write an intuitive GUI for launching some simple analyses in 

order to make OpenElectrophy more attractive to users who do 

not write scripts.

Finally, with regard to the more technical aspects of OpenElectrophy, 

we must mention two future improvements. The fi rst is the integra-

tion of a standard ORM such as SQLAlchemy for mapping data to 

OpenElectrophy objects. At the moment, the SQL mapper is home-

made, but it has the advantage of incorporating “numpy.array”. Using 

SQLAlchemy instead will allow for the direct use of database systems 

other than MySQL, such as SQLlite or PostgreeSQL. Second, use of 

the concept of BLOB streaming27 while using MySQL to read continu-

ous electrode data should be a great improvement. This technique 

consists in loading BLOB (binary) fi elds into a stream chunk by 

chunk. This is a defi nitive solution for long recordings at high sample 

rates and solves memory problems.

In the present article, it has been argued that MySQL is a good 

choice for a data storage architecture, given its powerful features 

to store, organize, and provide dynamic views of data. However, 

its socket-based architecture might raise concerns of perform-

ance over other scientifi c binary formats. A simple comparison of 

read and write performance with the widely used and performant 

hdf528 for an array of 10e7 elements shows OpenElectrophy (local 

MySQL server) has only slight penalties for read (factor of 1.4) 

and  moderate penalties for write (factor of 4). Assuming that in a 

normal study cycle, we spend more time in reading than writing, 

we believe that the architectural advantages of MySQL mentioned 

previously counterbalance the moderate performance penalty, and 

it remains an attractive alternative to hdf5.

In developing OpenElectrophy, we have endeavored to follow 

the fundamental philosophy that the integration of database stor-

age and object-oriented programming paves the way for more 

effi cient and usable data management and analysis systems. In 

this task, we have built on open source tools as other research-

ers in the growing community of neuroscientist Python users, 

27http://blobstreaming.org/
28http://www.hdfgroup.org/HDF5//

24http://www.carmen.org.uk/
25http://neuralensemble.org/trac/OpenElectrophy
26http://groups.google.fr/group/openelectrophy
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and classification of neural action 

 potentials. Network 9, R53–R78.

Li taudon, P. , Garc ia , S . , and 

Buonviso, N. (2008). Strong cou-

pling between pyramidal cell activ-

ity and network oscillations in the 

olfactory cortex. Neuroscience 156, 

781–787.

Pouzat, C., Delescluse, M., Viot, P., and 

Diebolt, J. (2004). Improved spike-

sorting by modeling fi ring statistics 

and burst-dependent spike amplitude 

attenuation: a Markov chain Monte 

Carlo approach. J. Neurophysiol. 91, 

2910–2928.

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, 

Y. (2004). Unsupervised spike  detection 
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paramagnetic clustering. Neural. 
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represented in this special issue. Emerging from this community 

are new solutions to promote data and code sharing, and we 

encourage others to participate and join in the development of a 

new generation of software to benefi t to the whole neuroscience 

community.
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