
Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 1

NEUROINFORMATICS

ORIGINAL RESEARCH ARTICLE
published: 27 May 2009

doi: 10.3389/neuro.11.014.2009

OpenElectrophy: an electrophysiological data- and
analysis-sharing framework

Samuel Garcia* and Nicolas Fourcaud-Trocmé

Neurosciences Sensorielles Comportement Cognition, CNRS – UMR5020 – Université Claude Bernard Lyon 1, Lyon, France

Progress in experimental tools and design is allowing the acquisition of increasingly large

datasets. Storage, manipulation and effi cient analyses of such large amounts of data is now a

primary issue. We present OpenElectrophy, an electrophysiological data- and analysis-sharing

framework developed to fi ll this niche. It stores all experiment data and meta-data in a single

central MySQL database, and provides a graphic user interface to visualize and explore the data,

and a library of functions for user analysis scripting in Python. It implements multiple spike-

sorting methods, and oscillation detection based on the ridge extraction methods due to Roux

et al. (2007). OpenElectrophy is open source and is freely available for download at http://

neuralensemble.org/trac/OpenElectrophy.

Keywords: python, electrophysiology, analysis, oscillation, spike sorting, database, SQL

how to simply and conjointly manipulate experimental data and

meta-data.

OpenElectrophy was designed more as a framework for data

analysis than a piece of completely frozen analysis software. For

example, it is not specifi c to a given type of electrophysiological

signal, and does not directly perform a specifi c type of analysis at

the request of a researcher with a “point-and-click” scheme. Rather,

it provides tools to facilitate data storage, exploration and analysis

script writing. It gathers the best of the two open source approaches

described previously, both in terms of purpose (time–frequency

analysis and spike sorting) and in terms of user interface (GUI

and toolboxes). In addition, it includes generic tools for conjointly

manipulating both experimental data and meta-data. The project’s

main philosophy has three parts: fi rst, for each experiment, the

data and meta-data are all stored in a single central database. This

strategy allows for fl exibility in mixing both types of data in the

subsequent analyses. Second, it provides a GUI that is useful for

exploring the data and detecting events of interest (oscillations or

spikes). Third, it contains a library of “methods” (high-level func-

tions) to aid in the writing of analysis scripts, both in the interfac-

ing of these scripts with the database and in the manipulation of

the data.

OpenElectrophy was developed through a collaboration of peo-

ple working on electrophysiological signals, such as extra- or intrac-

ellular recordings or EEG signals. In these fi elds, people are especially

interested in detecting and analyzing transient oscillations or neu-

ronal spikes. When this project was started, the conjoint analysis

of both spikes and oscillations could not be performed using any

available software. Thus, one of the main goals of OpenElectrophy

was to provide a complete and convenient way to detect spikes and

transient oscillations, store all of the detected events in the same

INTRODUCTION

Recent developments in electrophysiology experimental techniques

have lead to increases in the amount of data produced. It is now

common to record continuous signals simultaneously from many

electrodes with a sampling rate of 10 kHz or more. This increase

in raw data fl ow has been accompanied by an increase in the com-

plexity of the experimental protocol and the subsequent analyses.

Indeed, each experiment is controlled by a large number of param-

eters that are either set by the experimenter (e.g., according to the

stimuli applied or the state of the subject) or constrained by the

experimental setup (e.g., electrode properties). These parameters

are the meta-data associated with the experiment. A variety of new

software aiming to facilitate data storage, exploration and analysis

are appearing to help scientists handle such large amounts of data

and experimental parameters.

Several commercial software products have been developed to

tackle the increasing data management demands of state-of-the-art

electrophysiology. However, as such commercial software products

have not always evolved as rapidly as the needs of the fi eld, sev-

eral open source projects have appeared which are developed by

the researcher community. Among them are open source software

that performs commonly used analysis methods (e.g., averaging,

time–frequency analysis) for analyzing magnetoencephalography

(MEG) or electroencephalography (EEG) data. These programs

generally have a highly developed graphical user interface (GUI).

In contrast, in the fi eld of spike sorting, various toolboxes are avail-

able, and these toolboxes usually require the researcher to write-

specifi c scripts in order to use the toolbox for a specifi c set of data.

Thus, there are at least two different approaches with regard to

purpose and user interface in open source software design. None

of the available software or toolboxes addresses the problem of

Edited by:

Rolf Kötter, Radboud University

Nijmegen, The Netherlands

Reviewed by:

Robert Oostenveld, Cognition and

Behaviour Centre for Cognitive

Neuroimaging, The Netherlands

Eilif Muller, Brain Mind Institute, EPFL,

Switzerland

*Correspondence:

Samuel Garcia, Laboratoire de

Neurosciences Sensorielles

Comportement Cognition, CNRS –

UMR5020 – Université Claude Bernard

Lyon 1, Equipe logistique et technique,

50 Avenue Tony Garnier, 69366 Lyon

Cedex 07, France.

e-mail: sgarcia@olfac.univ-lyon1.fr

http://neuralensemble.org/trac/OpenElectrophy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 2

Garcia and Fourcaud-Trocmé OpenElectrophy

database as the original data, and then manipulate them conjointly.

Subsequent analyses could then include simultaneously detected

events, raw data and meta-data. We emphasize that OpenElectrophy

is one of the few currently available open source tools designed to

work simultaneously with spikes and oscillations.

This article presents the design and use of OpenElectrophy. It is

organized into fi ve sections. We fi rst compare OpenElectrophy to sim-

ilar projects and detail the advantages, drawbacks and differences of

purpose for each project. Second, we explain how we used the database

manager MySQL and the scripting language Python (and its scientifi c

module SciPy) to construct the core architecture of OpenElectrophy.

Third, we present the OpenElectrophy work fl ow and the general

way in which it is used. Fourth, we briefl y describe the spike and

oscillation detection methods that are currently implemented. Last,

we present an example of the standard usage of OpenElectrophy to

analyze extracellular local fi eld potential (LFP) recordings and obtain

information about action potential locking on LFP oscillation.

COMPARISONS WITH OTHER PROJECTS AND THE MAIN
GOALS OF OpenElectrophy
Commercial products like Plexon1, Tucker Davis2 or Spike23 exist for

the analysis of electrophysiological signals and are in wide-spread

use. We will not go into detail about these software programs, but we

will point out that despite their high quality GUIs, support and con-

tinuous development, they use proprietary languages, which present

barriers for code sharing and reuse, and which have limited uptake

of tools being developed by the scientifi c computing community

compared to languages such as Python. Moreover, the fi le format

specifi cations are generally not available, making long-term storage

or sharing of data problematic since anyone who wants to access the

data needs the right software. To deal with this issue, Neuroshare4

was created in an attempt to provide standardized libraries that can

access proprietary fi le formats. However, Neuroshare provides only

reading functionality, the code is not open source, and libraries are

available only for the Windows 32 platform.

The various open source projects belong to two families: soft-

ware and toolboxes for analyzing EEG or MEG data, and software

for spike sorting. Few projects mix spike and spectral analyses.

In the EEG/MEG family, visible projects include EEGLab5,

FieldTrip6 and SPM7 (EEG sub-package). These three projects

are all written with MATLAB, have a comprehensive GUI for

non- programmer users, use a homemade data format based on

MATLAB structures and store data in the MATLAB fi le format.

Their main features include analyses of event-related potentials,

time–frequency analyses, independent component analyses (ICA)

and 3D plotting methods. They also implement methods for source

detection.

In the spike-sorting software family, most projects can be sepa-

rated into two classes. The fi rst class includes tools dedicated

solely to spike sorting: WavClus8, Mclus9, Spike-O-Matic10 and

Klustakwik11. They do not perform any data management, but can

load one or several data formats and store the results (detected

spikes) in custom fi le formats. They generally provide only basic

GUIs, except for Klustakwik, which provides no GUI. WavClus

and Mclus are written in MATLAB; Spike-O-Matic is written with

R; Klustakwik is a C++ library. In general, these projects were

written to introduce a new spike-sorting method: WavClus is

based on superparamagnetic clustering (SPC) and wavelet pro-

jection, Spike-O-Matic is based on Monte Carlo Markov Chain

methods, and Mclus and Klustakwik are based on a classifi cation

expectation maximization algorithm. The second class of projects

is dedicated to the analysis of spike trains: Spike Train Analysis

Toolkit12, NeuroTools13, and Pandora14. These three projects are

collections of scripts for analyzing spike trains after spike sorting

has already been completed. The Spike Train Analysis Toolkit is

based on MATLAB and provides functions related to entropy and

information theory. NeuroTools is written in Python and provides

functions for analyzing simulated datasets generated from mod-

els. Pandora is MATLAB-based; it is one of the few projects that

uses the concept of a database for managing datasets, but it uses

a custom-built database system written in MATLAB, as opposed

to employing an established database system such as MySQL.

Finally, we must mention three projects that mix spike fi ring

analyses and spectral analyses on an LFP signal: FIND15, MEA-tools16

and Chronux17. These projects were all written with the same pri-

mary goal as that of OpenElectrophy: to function as a framework for

sharing analyses. They provide most of the standard analysis tools

and others developed more recently, all written in MATLAB, but they

include no database framework or meta-data management.

OpenElectrophy was written for several reasons:

• To have a project that is useful for all types of electrophy-

siological signals and experiments that mix time–frequency

studies, spike-sorting and spike train analyses, and that uses

pre- existing scripts or toolboxes whenever possible.

• To have a project that includes various spike-sorting methods

and allows the user to choose which one best fi ts his data.

• To have a project that directly manages data and meta-data

through a MySQL database that allows for sustainable data

storage. Most previously developed projects use custom-built

and language-dependent fi le formats. MySQL is open source

and well established; datasets can be accessed with many

 scripting languages (Python, MATLAB, Excel, R, Statistica)

and with most of the traditional software used in a neuro-

science laboratory.

1http://www.plexoninc.com/
2http://www.tdt.com/
3http://www.ced.co.uk/
4http://neuroshare.org/
5http://sccn.ucsd.edu/eeglab
6http://www.ru.nl/neuroimaging/fi eldtrip
7http://www.fi l.ion.ucl.ac.uk/spm/

8http://www.vis.caltech.edu/∼rodri/Wave_clus/Wave_clus_home.htm
9http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
10http://www.biomedicale.univ-paris5.fr/SpikeOMatic
11http://klustakwik.sourceforge.net/
12http://neuroanalysis.org/toolkit/
13http://neuralensemble.org/trac/NeuroTools
14http://userwww.service.emory.edu/∼cgunay/pandora/
15http://fi nd.bccn.uni-freiburg.de/
16http://material.brainworks.uni-freiburg.de/research/meatools/
17http://chronux.org/

http://www.plexoninc.com/
http://www.tdt.com/
http://www.ced.co.uk/
http://neuroshare.org/
http://sccn.ucsd.edu/eeglab
http://www.ru.nl/neuroimaging/fi eldtrip
http://www.fi l.ion.ucl.ac.uk/spm/
http://www.vis.caltech.edu/%E2%88%BCrodri/Wave_clus/Wave_clus_home.htm
http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
http://www.biomedicale.univ-paris5.fr/SpikeOMatic
http://klustakwik.sourceforge.net/
http://neuroanalysis.org/toolkit/
http://neuralensemble.org/trac/NeuroTools
http://userwww.service.emory.edu/%E2%88%BCcgunay/pandora/
http://fi nd.bccn.uni-freiburg.de/
http://material.brainworks.uni-freiburg.de/research/meatools/
http://chronux.org/

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 3

Garcia and Fourcaud-Trocmé OpenElectrophy

• To have a free project that relies only on other open source

projects. Most previously developed projects are based on

MATLAB; it is quite contradictory to have an open source

project that forces the community to pay a license to a third

party (Matworks) while free alternatives exist (Python and its

scientifi c module SciPy).

• To have the capability to quickly design a high quality GUI.

This goal is achievable with PyQt, a Python wrapper for the

modern graphics library Qt. This is in contrast to MATLAB,

which possesses a less appropriate object-oriented program-

ming approach and GUI toolkit.

We must emphasize that OpenElectrophy is neither a simple

GUI interface nor a library of functions, but rather a combina-

tion of both, depending on what needs to be done with the data.

Hence, the GUI is used mainly for data storage, visualization, and

exploration; it also guides the initial analysis steps, such as the

detection of events of interest (e.g., spikes or oscillations). Script

writing is necessary to perform the specifi c analyses that are needed

by the researcher. In order to make analysis writing as simple and

as fl exible as possible, OpenElectrophy provides Python methods

to appropriately query the database and manipulate the electro-

physiological data.

Finally, we must point out that at its current development stage,

OpenElectrophy is primarily designed for the LFP and spike com-

munity rather than the multi-channel EEG community. For exam-

ple, it does not currently include any advanced visualization tools,

such as 3D scalp plot or source localization techniques.

TECHNICAL CHOICES
The development of OpenElectrophy is based on two technologies:

MySQL, an open source database server, and SciPy, the Python

scientifi c module. The GUI was implemented with PyQt4. We

chose to rely on these open sources projects because they are widely

used and have strong support communities that ensure free avail-

ability and reliability. Moreover, they provide effi cient interfaces

with other scripting or compiled languages (e.g., MATLAB, R,

C/C++, Statistica, Excel). These interfaces are important to allow

for interaction with previously developed methods from other

open source projects. Lastly, Python is an object-oriented lan-

guage that is well adapted to developing long-term projects with

highly structured designs, thus facilitating collaboration between

developers and users.

In this section, we present a summary of the core architecture of

OpenElectrophy. In particular, we show how MySQL and Python

are used to help fulfi ll OpenElectrophy’s goals.

MySQL

Briefl y, as a reminder, it should be stated that the intrinsic concept

of a database system is a collection of tables. Each table has a collec-

tion of fi elds of different types. Tables are linked to one another by

indexes or keys. Putting data into a database is equivalent to splitting

it up in an atomic way and organizing it into different tables. The

logical or hierarchical organization between tables is not known a

priori, but is formed while exploring the data, as opposed to fi le sys-

tems, which are organized into directories and sub-directories with a

fi xed organization. Thus, it is possible to have multiple views of the

same database. This mechanism, while apparently basic, proves to be

fl exible and effi cient. To work with this system, the user must learn

structured query language (SQL). This language permits the user

to reconstruct, fi lter and sort the data. The user can also add fi elds

or tables at a later point without affecting previous work.

A crucial point is the design of the table’s schema: the list of

tables, and their contents and links. The idea was to design a generic

core schema that can deal as naturally as possible with any elec-

trophysiological dataset. In electrophysiology, people manipulate

two main types of signals: continuous signals, which come from

electrodes, and discrete or stepwise signals such as triggers or

time events, which come from the context of the data acquisition

(e.g., stimulus, subject states). Based on this requirement, the core

schema that was chosen for OpenElectrophy is detailed in Figure 1.

The three central tables are trial, epoch and electrode. The table trial

includes a coherent recording of continuous or discrete events. The

table electrode holds the raw continuous signals from each physical

electrode. The table epoch manages all discrete events: trigger times,

periods of stimulation, animal states or event markers. These three

tables can accommodate a generic electrophysiological recording.

The tables spike, spiketrain and cell were then added to manage

neuron spike discharge. The table oscillation manages transient

oscillatory events in the LFP.

This schema has already been proven to be fl exible enough to fi t

several types of experimental setups, such as one-cell intracellular

recordings, extracellular multi-electrode recordings, short- or long-

protocol recordings, LFP studies, multiple repetitions of stimuli, and

animal behavior data. For each experiment, this design is at the core

of the data management; however, each new study usually requires a

short extension of the table schema. Extra fi elds commonly need to

be added to the original tables, and new tables must sometimes be

added to address new concepts such as animal position or heartbeat.

The versatility of the database allows for this kind of customization

without interfering with the core of OpenElectrophy.

Today, many data manipulation tools include an SQL interface;

MySQL is a kind of “universal” data format that does not depend

on a particular language. Another advantage of this type of data

storage is the MySQL client/server design. Indeed, all of the data

is collected on a single server that is simultaneously accessible by

many users of OpenElectrophy (or other tools). This access does

not need to be local, such that collaborations between labs working

on the same dataset are possible. We note here that transferring

large sets of raw data over the Internet can take a prohibitively

long time, but it is generally not a problem to transfer only discrete

events such as spike times (also present in the database), which

can be done by using appropriate SQL queries. Another benefi t of

the database scheme is that each time someone makes a new entry

into the database (e.g., raw data or meta-data, spikes, oscillations,

a new fi eld with a specifi c type of information), that information

is immediately available to all of his collaborators. Lastly, MySQL

offers many effi cient backup capabilities (from single global or

partial transfers of the whole database to continuous incremental

saves) to secure the data or make them portable.

PYTHON

Python is a high-level object-oriented programming language. It

is available for a wide range of platforms and comes with a large

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 4

Garcia and Fourcaud-Trocmé OpenElectrophy

collection of libraries (modules). For scientists and engineers deal-

ing with computing, one of the most interesting Python modules

is SciPy. This module provides N-dimensional array manipula-

tion with the NumPy module and a fast implementation of an

extensive set of scientifi c algorithms, such as fi ltering, statistics,

interpolation, and linear algebra. For neuroscience studies that

generate increasingly large datasets, Python is the equivalent of a

Swiss army knife.

Using MySQL to explore and select data is effi cient, but creating a

table schema and inserting or modifying data is a repetitive and tedi-

ous task with pure SQL. Object-relational mapping (ORM) is a tech-

nical programming method that converts between a database and a

Python object. Thus, OpenElectrophy incorporates a custom-built

ORM to simplify read/write database access (see Section “A Typical

Use-case” for an example of its use). This SQL mapper, a Python

class included in OpenElectrophy, allows the user to declare a table

structure with fi eld names and types with only a few lines of code.

Each instance of this class can directly map onto all of the fi elds of a

table entry. Each SQL fi eld becomes a member of the class instance.

There are two methods (load_from_db and save_to_db) for auto-

matically loading or saving all fi elds from the database without writ-

ing any SQL. The conversion from Python types to MySQL types

is straightforward for basic types (int, fl oat, str). For numpy.array

(the basic type for N-dimensional arrays of the SciPy module), the

conversion is automatically done by OpenElectrophy in three fi elds:

one blob fi eld for the buffer of the array, one fi eld for the dimensions

FIGURE 1 | Database schema. This is a classical relational design. Each frame

corresponds to a table that holds all of the properties of an element in its fi elds.

For example, the table spike holds for each spike its own index (id_spike), the

index of the spike train it belongs to (id_spiketrain), its position (pos), the

maximum amplitude (val_max) and its raw waveform (waveform). All of the

tables and fi elds are natively generated by OpenElectrophy; the schema is

fl exible and extensible to accommodate specifi c needs. The core of the schema

includes the trial, electrode and epoch tables. A trial is a combination of several

simultaneous coherent recordings. These recordings are continuous or discrete,

and are stored in the electrode or epoch tables, respectively. Additional tables

are as follows. The series table, which gathers a set of trials (e.g., those

recorded in the same location). The spike table contains all detected spikes and

their positions and shapes. The spikes are grouped according to their spike train

(there may be many spike trains per electrode). The cell table groups spike trains

that were recorded from the same cell but in different trials; thus, the cell table

groups them relationally. Finally, the oscillation table contains all of the

information related to transient oscillatory events (see Section “Oscillation

Extraction”).

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 5

Garcia and Fourcaud-Trocmé OpenElectrophy

and one for the array element type. Thus, the user can store vectors

or matrices in MySQL, which is normally not allowed. Each MySQL

table corresponds to a specifi c Python class that inherits the SQL

mapper base class and that implements methods that are specifi c

to the table content. For example, the Electrode class can query the

electrode table and implements different plotting methods (raw or

fi ltered signals and time–frequency maps).

As a further example, the SpikeTrain class offers methods for recon-

structing a spike train in different ways, such as a vector of time stamps,

as sample indexes, as intervals or in Boolean form for information

theoretical methods. Of course, all of these methods directly query the

spike table, collect all individual spikes that are linked with an element

of the spiketrain table and reorganize the results into the appropriate

format. Three plotting methods are also available: raster, large dots

superposed on the electrode signal and cumulative waveform.

Currently, only tables and fi elds that are present in the schema

in Figure 1 are loaded by OpenElectrophy classes. Thus, additional

fi elds or tables that are created for specifi c experiments must be

accessed via SQL queries directly with a Python script. Alternatively,

existing OpenElectrophy Python classes can be manually overloaded

to take into account the new elements.

WORK FLOW
In this section, we describe the general workfl ow of OpenElectrophy

as summarized as a series of steps in Figure 2. Each step of the

workfl ow is discussed in detail in turn below.

DATA INTEGRATION

The fi rst step of OpenElectrophy workfl ow involves import-

ing data into the database. The idea is to integrate all available

 information into the database, including data (e.g., signal, trig-

gers, events) and meta-data (e.g., protocol context, date, time).

In so doing, during the analysis, the user no longer has to work

with a heterogeneous collection of fi les; instead, the user works

directly with the database system. OpenElectrophy is already

able to integrate into the database data that is stored in different

fi le formats, including ASCII, raw binary, Elan, TDT, Elphy, and

Micromed. In the near future, many additional data formats will

be incorporated. The end user can go deeper into data integration

by writing new scripts that not only incorporate neural data but

also setup-specifi c meta-data. For instance, stimulus generation

software often provides lists of stimuli and context information in

a clear fi le format. These fi les can be parsed and integrated during

the integration of neural data. Finally, note that the database can

also be directly accessed and fi lled or edited with a basic MySQL

client editor.

At this stage, it is possible to explore the database using differ-

ent hierarchical tree views and to plot raw signals (bandwidth or

fi ltered) or wavelet-based time–frequency maps.

SPIKE AND OSCILLATION DETECTION

The next major step is the extraction of the phenomena of inter-

est: spikes and transient oscillatory events. In these two cases, a

graphical interface helps in searching for parameters that allow

for good detection. This step is crucial for subsequent stages of

the analysis. There are two possible methods for detection: indi-

vidual detection, which is done signal-by-signal, or bulk detection,

which is done by applying the same parameters to an ensemble

of signals targeted by an SQL query that is directly written in the

OpenElectrophy GUI.

FIGURE 2 | General work fl ow. The main steps for using OpenElectrophy are:

(A) integration of data from a heterogeneous collection of fi les into the

database; (B) exploration and plotting of raw signals directly from the

database; (C) extraction of spikes from the raw signals and integration of

these spikes into the spike, spiketrain and cell tables; (D) extraction of

oscillations and integration of these oscillations into the oscillation table;

(E) analysis with Python scripts using OpenElectrophy-specifi c classes and

methods.

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 6

Garcia and Fourcaud-Trocmé OpenElectrophy

With regard to spike detection, methods used in OpenElectrophy

will be detailed in Section “Spike Extraction”. The central idea of the

framework is to store individual spike events in the MySQL spike

table and group them using the spiketrain and cell tables. All studies

on spike discharge will deal directly with these three tables using

SQL queries, but will benefi t from all of the tables when working

with protocol information and context meta-data.

The oscillation detection method is based on a new approach

detailed in Section “Oscillation Extraction”. The result is a list of

oscillations for each signal. In this case, each oscillation is stored

in the oscillation table. Thus, for studies on multi-frequency oscil-

latory regimes (e.g., theta, gamma, and beta bands), the analysis

is computed directly in this table, although it again also benefi ts

from the data stored in all other tables.

SQL FILTERING

The ability of SQL to dynamically provide different views of the

database is heavily exploited during analysis. Consequently, a basic

knowledge of this language is required. Data analysis can be sum-

marized as applying an algorithm or a statistical measure or plotting

synthetic views of a subset of the data. The traditional method for

analyzing data is to manipulate and aggregate the data by hand,

creating a text list for each condition or factor or constructing many

synthetic tables with an external knowledge of protocol factors.

With SQL, this tedious work is done directly. With a few lines of

code, values of interest can be rapidly and effi ciently aggregated.

Using SQL, there is no need to store lists, sublists or sub-sublists of

data; the user only needs to store the queries and use them for each

analysis. Overall, the user must manage queries that are useful for

selecting data according to context and factor fi elds; then, the user

must write new analyses in Python that can be applied to a subset

of the data that is extracted with these SQL queries.

ANALYSIS

Analysis is the fi nal stage of the OpenElectrophy workfl ow, which

transforms the now pre-processed data into meaningful results.

The OpenElectrophy framework does not provide ready-made

“point-and-click” analyses for obtaining a given result. Rather, it

is necessary to write scripts in Python to perform statistical tests

or other specifi c analyses. Here, the management of the data in

a central database simplifi es the selection of the data to analyze

(see Section “SQL Filtering”), and the Python classes provided by

OpenElectrophy ease the manipulation of the data to match a given

analysis. Additionally, the Python SciPy module provides many

standard and high-level analysis tools, and the Matplotlib module

offers extensive 2D plotting methods.

Writing analysis scripts can seem diffi cult for researchers not

familiar with programming, but the power and fl exibility of this

approach is quickly preferred over the restrictive convenience of a

GUI. For example, to our knowledge none of the available software

for doing spike analysis provides a GUI as an alternative to analysis

scripting. Starting with simple script examples is usually suffi cient

to allow beginners to compose very sophisticated analyses. Thus,

OpenElectrophy does not constrain data analysis with a fi xed GUI,

but allows for the use of user programmable scripts.

As already mentioned, a major advantage of using the Python

scripting language is its ability to interface with other languages.

Packages like Mlabwrap18, rpy19, cython20 or SciPy.weave21

enable to use pre-existent code from MATLAB, R, or C/C++.

Employing these tools, the list of external modules that can be

linked to OpenElectrophy to help write analysis scripts is long:

the International Neuroinformatics Coordinating Facility provides

a list of tools available for studying neural data22. In particular,

OpenElectrophy, as a framework for managing data, would likely

complement recent Python-based approaches to neural data stud-

ies, such as PyEntropy (Ince et al., 2009) for information theory

and PyMVPA (Hanke et al., 2009) for machine learning.

Details on how to use OpenElectrophy classes for scripting are

available on the OpenElectrophy wiki page23.

DETAILS OF EXTRACTION METHODS
SPIKE EXTRACTION

One crucial part of multi-extracellular electrophysiological record-

ings is spike detection and sorting. All subsequent interpretations rely

on the accuracy of these steps. Many approaches to this challenge

already exist. Some systems use in-line, real-time, and unsupervised

spike sorting, while others, including OpenElectrophy, prefer off-line

and semi-automatic spike sorting. There is no perfect method; a

compromise must exist between fully automatic and fully super-

vised processing. Several numerical algorithms for spike sorting

have been published. Processing can be separated into four steps:

fi ltering, detection, decomposition (or projection) and clustering.

The literature on projection and clustering is extensive (Lewicki,

1998; Pouzat et al., 2004; Quiroga et al., 2004; Wood et al., 2006).

Less effort has been put into fi ltering and detection. These two steps

cannot be neglected, however, as bad fi ltering directly infl uences spike

shape, and can thereby generate strange results even with a good

clustering algorithm. To overcome these diffi culties, OpenElectrophy

is designed in a modular way and offers several methods for each

step. Thus, spike extraction can be tuned for many experimental

setups, and new methods can be added to the framework by external

contributors.

At the moment, the implemented algorithms are:

• Filtering: “fast Fourier transform”-based fi lter, Bessel, Butterworth,

median sliding fi lter for removing slow components.

• Detection: threshold on maximum amplitude.

• Projection: principal component (PCA) of the spike shape,

independent component (ICA), raw waveform shape.

Wavelet projection will be implemented soon. PCA and

ICA projections are done with the Modular toolkit for Data

Processing, a machine learning package for Python (Zito

et al., 2008).

• Clustering: “k-means” method and “SPC” (Blatt et al., 1996).

A future step for OpenElectrophy will be to incorporate addi-

tional spike-sorting methods developed in other open source

18http://mlabwrap.sourceforge.net/
19http://rpy.sourceforge.net/
20http://www.cython.org/
21http://www.scipy.org/Weave
22http://software.incf.org
23http://neuralensemble.org/trac/OpenElectrophy/wiki/OEScriptTutorial

http://mlabwrap.sourceforge.net/
http://rpy.sourceforge.net/
http://www.cython.org/
http://www.scipy.org/Weave
http://software.incf.org
http://neuralensemble.org/trac/OpenElectrophy/wiki/OEScriptTutorial

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 7

Garcia and Fourcaud-Trocmé OpenElectrophy

projects (see Section “Comparisons with Other Projects and the

Main Goals of OpenElectrophy”).

OSCILLATION EXTRACTION

The detection of non-stationary oscillations in LFPs by

OpenElectrophy is based on a new method described by S. Roux

(Roux et al., 2007). Classical studies on oscillatory phenomena have

used time–frequency Morlet scalograms. The Roux method goes

further to use the scalogram to extract individual oscillations with

a ridge extraction method. This method is useful when signals

have oscillations in different frequency bands, when oscillation

frequencies shift as a function of time or when there is no a priori

knowledge of the signal.

The main steps in the processing are:

• computing the Morlet scalogram

• choosing a signifi cant threshold for the detection of

oscillations

• detecting local maxima above this threshold in the frequency

bands of interest

• extracting ridges point by point, starting from the maximum

and continuing until the threshold is reached.

Finally, each ridge is a time–frequency line that describes a

trajectory in time and frequency point by point; it is a complex

number. The complex modulus estimates the energy envelope of

the oscillation, and the angle from the real axis estimates its instan-

taneous phase.

From each extracted line, the oscillatory epoch duration and

onset can be estimated, as well as the frequency, phase and ampli-

tude evolution as a function of time. In short, this method allows

for the extraction of all oscillation parameters.

This approach introduces a more intuitive and more accurate

method to analyze non-stationary local fi elds with oscillations.

Statistics can be applied, for example to the duration or frequency

shift, as analyses become quantitative.

A Python class associated with a MySQL table manages all

oscillations. All parameters are stored in the appropriate fi elds; the

time–frequency line itself is directly stored as a “numpy.array”.

A TYPICAL USE CASE
In this section, we will present an example of how OpenElectrophy

might typically be used and demonstrate its GUI. We consider an

experiment in which the extracellular LFP was recorded in the

piriform cortex of an anesthetized rat. The aim of this experiment

was to study the relationship between local fi eld oscillatory activity

(network level) and single unit activity (neuron level) (Litaudon

et al., 2008).

The raw signal was fi rst saved into the database as previously

explained. The next step was then to extract oscillatory events. Upon

completion of the extraction, the GUI is as shown in Figure 3A.

On the left of the screen are all of the parameters that are used for

detection; these parameters can be modifi ed by the user and saved for

later use. These parameters cover the time/frequency space and the

precision used for the detection, as well as the threshold above which

oscillations are detected (an absolute level or relative to a reference

period in the same signal); in addition, some of these parameters

are used to remove overlapping or unwanted short oscillations. On

the right of the screen, the list of oscillations detected for this elec-

trode is shown. Below, their trajectories are plotted superimposed

both on the electrode Morlet scalogram and on the electrode raw

signal (lower right of the screen). When the user is satisfi ed with the

results, he can save it to the database. Note that in this example, the

detection of oscillations was done for a single electrode. Another GUI

can be used to detect oscillations for many electrodes simultaneously.

In this case, the GUI presents the same parameters as for the single

electrode GUI, but with an additional window in which the user may

provide the SQL query to select the electrodes for detection.

The next step was the detection of spikes in the same signal.

The GUI shown in Figure 3B presents fi ve tabs corresponding to

the four steps used in the spike detection (see Section “MySQL”)

and a fi fth for the database options (which summarizes the results

and, in the case of multiple detected spike trains, allows the user to

choose which results should be saved to the database). At any step,

the parameters can be set and saved for later use. Spike detection

can be done in its entirety or in a step-by-step fashion, with various

plots on each tab dedicated to the intermediate results. Again, this

task can be performed for multiple electrodes simultaneously with

a similar GUI that includes all tabs (without graphic feedback) and

a window to specify the SQL query. A special case is the detection

of spikes from the same electrode channel across all trials from

a given series. In this case, the signals from all trials are pooled

before spike detection, and the resulting spike trains (one for each

trial) are linked in the database via the cell table, so that it can be

documented that they are all associated with the same neuron.

The fi nal step was the analysis of the results, which here consisted

of a histogram of spike phases (relative to the oscillations). This

analysis has already been implemented in OpenElectrophy, and the

user needs only to specify a list of oscillations and a list of spike

trains with two SQL queries to obtain the graph in Figure 3C. To

demonstrate how this process can be done using an external script,

we present here the Python code that was used in this analysis:

Initialize result array

phase_spike = empty((0))

write a query for spike train of interest

for example, spike trains of electrode 5

query_spiketrain = """

 SELECT spiketrain.id_spiketrain

 FROM spiketrain, electrode

 WHERE electrode.id_

 electrode = spiketrain.id_electrode

 AND electrode.num_channel = 5

 """

execute query and get id list

list_id_spiketrain, = sql(query_spiketrain)

for id_spiketrain in list_id_spiketrain:

 # Python class implemented by OpenElectrophy

 # that maps one spike train

 sptr = SpikeTrain()

 # method to load spiketrain properties from the

 database

 sptr.load_from_db(id_spiketrain)

 # method to get spike positions of the spiketrain

 pos_spike = sptr.pos_spike()

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 8

Garcia and Fourcaud-Trocmé OpenElectrophy

FIGURE 3 | (A) Snapshot of the oscillation detection dialog. On the left side,

frames encapsulate different kinds of parameters: for the Morlet scalogram, the

threshold defi nition and “cleaning” the detection. On upper right, there is a list

of detected oscillations. On lower right, there is a zoomed picture of one time–

frequency line, which represents an oscillatory event, and the relative phase

reconstruction superimposed on the raw signal. When the detection is done, the

results can be stored in the MySQL database. (B) Snapshot of the spike

detection dialog. On the left, there are different tabs corresponding to the

different steps of spike extraction: fi ltering, detection, projection and clustering.

The result of a particular detection that can be saved into the database is on the

shown tab. (C) Example of how spike and oscillatory events can be mixed,

showing how a spike train is phase locked on the LFP phase. One oscillation

cycle is depicted in red, and a histogram of the phases of spike discharge is

shown in blue.

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 9

Garcia and Fourcaud-Trocmé OpenElectrophy

 # Select oscillations from the same trial as the

 spike train

 # and that are in the gamma band

 query = """ SELECT oscillation.id_oscillation

 FROM oscillation

 WHERE oscillation.id_trial = %s

 AND oscillation.freq_max > 35

 AND oscillation.freq_max < 100

 """

 list_id_oscillation, = sql(query,(sptr. id_trial),

 Array=True)

 for id_oscillation in list_id_oscillation:

 # Python class implemented by

 OpenElectrophy

 # that maps one oscillation

 osci = Oscillation()

 # method to load the oscillation’s

 properties from the database

 osci.load_from_db(id_oscillation)

 # get phase of spikes that are on the

 oscillation

 phase_spike = r_[phase_spike,angle(osci.

 line_val[setmember1d

 (osci.line_t,pos_spike)])]

Plot the result…

CONCLUSION
In summary, we have presented OpenElectrophy, an open source

project aimed at facilitating the management and manipulation of

electrophysiological data along with experiment meta-data. The

key contribution of OpenElectrophy is the framework architecture:

MySQL married to Python + SciPy, all of which are reliable, widely

used and free tools. We have shown how the use of a MySQL data-

base allows for long-term storage, easy access and sharing of data.

In particular, all of the data and meta-data are recorded in a central

database and can be combined for further analyses, allowing the

user, for example, to fuse electrophysiological and behavioral data.

We have also shown how OpenElectrophy uses the Python language

to simplify interaction with the database and manipulation of data

during the writing of analysis scripts. Another primary feature of

OpenElectrophy is the integration of the detection and storage of

spikes and transient oscillatory events found in electrophysiologi-

cal recordings. We note that the CARMEN24 project has recently

been created and appears to pursue goals similar to ours, but it

is now primarily a repository of diverse methods without much

global integration.

The OpenElectrophy project is free and open source, which

means that anyone can download, use, modify or extend it and

then share his work with the whole user community. It is hosted in

a forge with a Trac system25, which offers SVN as a version control

system and a wiki for live documentation. A mailing listing for

discussion between users and developers is available26.

Like many other free projects, the success of OpenElectrophy

depends on the size of the community using it and developing

it. For the moment, OpenElectrophy is a young project and the

community is relatively small (about 20 people). Its development

has thus mostly involved addressing the needs of this small com-

munity. Nonetheless, we hope to have designed the foundations

of OpenElectrophy with enough care in terms of fl exibility and

technological choices such that adapting it to a wider range of

needs and use cases would require minimal effort.

At the moment, the OpenElectrophy GUI adequately covers

the exploration of data, spike sorting and detection of transient

oscillations. The analyses must be computed with Python scripts,

which need to be provided by the user. Obviously, these scripts

can be written from scratch, but as we already have mentioned,

one of the advantages of Python is that it can be interfaced with

previously developed analysis toolboxes. Thus, it will be useful

in the future to provide, either directly in OpenElectrophy or

as script examples (which could be available on the wiki pages

for OpenElectrophy), simple ways to interface the data managed

by OpenElectrophy with other open source toolboxes, such as

the ones presented in this issue, e.g., PyMVPA, PyEntropy or

NeuroTools. Additionally, one possible extension would be to

write an intuitive GUI for launching some simple analyses in

order to make OpenElectrophy more attractive to users who do

not write scripts.

Finally, with regard to the more technical aspects of OpenElectrophy,

we must mention two future improvements. The fi rst is the integra-

tion of a standard ORM such as SQLAlchemy for mapping data to

OpenElectrophy objects. At the moment, the SQL mapper is home-

made, but it has the advantage of incorporating “numpy.array”. Using

SQLAlchemy instead will allow for the direct use of database systems

other than MySQL, such as SQLlite or PostgreeSQL. Second, use of

the concept of BLOB streaming27 while using MySQL to read continu-

ous electrode data should be a great improvement. This technique

consists in loading BLOB (binary) fi elds into a stream chunk by

chunk. This is a defi nitive solution for long recordings at high sample

rates and solves memory problems.

In the present article, it has been argued that MySQL is a good

choice for a data storage architecture, given its powerful features

to store, organize, and provide dynamic views of data. However,

its socket-based architecture might raise concerns of perform-

ance over other scientifi c binary formats. A simple comparison of

read and write performance with the widely used and performant

hdf528 for an array of 10e7 elements shows OpenElectrophy (local

MySQL server) has only slight penalties for read (factor of 1.4)

and moderate penalties for write (factor of 4). Assuming that in a

normal study cycle, we spend more time in reading than writing,

we believe that the architectural advantages of MySQL mentioned

previously counterbalance the moderate performance penalty, and

it remains an attractive alternative to hdf5.

In developing OpenElectrophy, we have endeavored to follow

the fundamental philosophy that the integration of database stor-

age and object-oriented programming paves the way for more

effi cient and usable data management and analysis systems. In

this task, we have built on open source tools as other research-

ers in the growing community of neuroscientist Python users,

27http://blobstreaming.org/
28http://www.hdfgroup.org/HDF5//

24http://www.carmen.org.uk/
25http://neuralensemble.org/trac/OpenElectrophy
26http://groups.google.fr/group/openelectrophy

http://blobstreaming.org/
http://www.hdfgroup.org/HDF5//
http://www.carmen.org.uk/
http://neuralensemble.org/trac/OpenElectrophy
http://groups.google.fr/group/openelectrophy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 10

Garcia and Fourcaud-Trocmé OpenElectrophy

and classification of neural action

 potentials. Network 9, R53–R78.

Li taudon, P. , Garc ia , S . , and

Buonviso, N. (2008). Strong cou-

pling between pyramidal cell activ-

ity and network oscillations in the

olfactory cortex. Neuroscience 156,

781–787.

Pouzat, C., Delescluse, M., Viot, P., and

Diebolt, J. (2004). Improved spike-

sorting by modeling fi ring statistics

and burst-dependent spike amplitude

attenuation: a Markov chain Monte

Carlo approach. J. Neurophysiol. 91,

2910–2928.

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul,

Y. (2004). Unsupervised spike detection

and sorting with wavelets and super-

paramagnetic clustering. Neural.

Comput. 16, 1661–1687.

represented in this special issue. Emerging from this community

are new solutions to promote data and code sharing, and we

encourage others to participate and join in the development of a

new generation of software to benefi t to the whole neuroscience

community.

ACKNOWLEDGMENTS
We thank Nathalie Buonviso, Tristan Cenier and Phillipe Litaudon

for being the courageous fi rst users of OpenElectrophy, Stephan

Roux for original contributions to this project, and Eilif Muller for

helpful proofreading of this manuscript.

REFERENCES
Blatt, M., Wiseman, S., and Domany, E.

(1996). Superparamagnetic clus-

tering of data. Phys. Rev. Lett. 76,

3251–3254.

Hanke , M. , Ha lchenko, Y.O. ,

Sederberg, P. B., Olivetti, E., Fründ, I.,

Rieger, J.W., Herrmann, C. S.,

Haxby, J. V., Hanson, S., and

Pollmann, S. (2009). PyMVPA: a uni-

fying approach to the analysis of neu-

roscientifi c data. Front. Neuroinform.

3,3. doi: 10.3389/neuro.11.003.2009.

Ince, R. A., Petersen, R. S., Swan, D. C., and

Panzeri, S. (2009). Python for infor-

mation theoretic analysis of neural

data. Front. Neuroinform. 3,4. doi:

10.3389/neuro.11.004.2009.

Lewicki, M. S. (1998). A review of meth-

ods for spike sorting: the detection

Roux, S. G., Cenier, T., Garcia, S., Litaudon, P.,

and Buonviso, N. (2007). A wavelet-

based method for local phase extraction

from a multi- frequency oscillatory sig-

nal. J. Neurosci. Methods 160, 135–143.

Wood, F., Goldwater, S., and Black, M. J.

(2006). A non-parametric Bayesian

approach to spike sorting. Conf.

Proc. IEEE Eng. Med. Biol. Soc. 1,

1165–1168.

Zito, T., Wilbert, N., Wiskott, L., and

Berkes, P. (2008). Modular toolkit

for data processing (MDP): a

Python data processing frame-

work. Front. Neuroinform. 2, 8. doi:

10.3389/neuro.11.008.2008.

Conflict of Interest Statement: The

authors declare that the research was con-

ducted in the absence of any commercial

or fi nancial relationships that could be con-

strued as a potential confl ict of interest.

Received: 12 September 2008; paper pend-

ing published: 27 October 2008; accepted:

30 April 2009; published online: 27 May

2009.

Citation: Garcia S and Fourcaud-Trocmé N

(2009) OpenElectrophy: an electrophysiological

data- and analysis-sharing framework.

Front. Neuroinform. (2009) 3:14. doi:

10.3389/neuro.11.014.2009

Copyright © 2009 Garcia and Fourcaud-

Trocmé. This is an open-access article subject

to an exclusive license agreement between

the authors and the Frontiers Research

Foundation, which permits unrestricted

use, distribution, and reproduction in any

medium, provided the original authors and

source are credited.

