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Abstract

Over the past few years, there has been an increased

interest in automatic facial behavior analysis and under-

standing. We present OpenFace – an open source tool

intended for computer vision and machine learning re-

searchers, affective computing community and people in-

terested in building interactive applications based on facial

behavior analysis. OpenFace is the first open source tool

capable of facial landmark detection, head pose estima-

tion, facial action unit recognition, and eye-gaze estimation.

The computer vision algorithms which represent the core of

OpenFace demonstrate state-of-the-art results in all of the

above mentioned tasks. Furthermore, our tool is capable of

real-time performance and is able to run from a simple we-

bcam without any specialist hardware. Finally, OpenFace

allows for easy integration with other applications and de-

vices through a lightweight messaging system.

1. Introduction

Over the past few years, there has been an increased in-

terest in machine understanding and recognition of affective

and cognitive mental states and interpretation of social sig-

nals especially based on facial expression and more broadly

facial behavior [18, 51, 39]. As the face is a very important

channel of nonverbal communication [20, 18], facial behav-

ior analysis has been used in different applications to facil-

itate human computer interaction [10, 43, 48, 66]. More

recently, there has been a number of developments demon-

strating the feasibility of automated facial behavior analysis

systems for better understanding of medical conditions such

as depression [25] and post traumatic stress disorders [53].

Other uses of automatic facial behavior analysis include au-

tomotive industries [14], education [42, 26], and entertain-

ment [47].

In our work we define facial behavior as consisting of:

facial landmark motion, head pose (orientation and mo-

tion), facial expressions, and eye gaze. Each of these modal-

ities play an important role in human behavior, both in-

dividually and together. For example automatic detection

and analysis of facial Action Units [19] (AUs) is an im-

Figure 1: OpenFace is an open source framework that im-

plements state-of-the-art facial behavior analysis algorithms

including: facial landmark detection, head pose tracking,

eye gaze and facial Action Unit estimation.

portant building block in nonverbal behavior and emotion

recognition systems [18, 51]. This includes detecting both

the presence and the intensity of AUs, allowing us to anal-

yse their occurrence, co-occurrence and dynamics. In ad-

dition to AUs, head pose and gesture also play an impor-

tant role in emotion and social signal perception and expres-

sion [56, 1, 29]. Finally, gaze direction is important when

evaluating things like attentiveness, social skills and mental

health, as well as intensity of emotions [35].

Over the past years there has been a huge amount of

progress in facial behavior understanding [18, 51, 39].

However, there is still no open source system available to

the research community that can do all of the above men-

tioned tasks (see Table 1). There is a big gap between state-

of-the-art algorithms and freely available toolkits. This is

especially true if real-time performance is wanted - a neces-

sity for interactive systems .

Furthermore, even though there exist a number of ap-



Tool Approach Landmark Head pose AU Gaze Train Fit Binary Real-time

COFW[13] RCPR[13] X X X X

FaceTracker CLM[50] X X X X X

dlib [34] [32] X X X X

DRMF[4] DRMF[4] X X X X

Chehra [5] X X X X

GNDPM GNDPM[58] X X

PO-CR[57] PO-CR [57] X X

Menpo [3] AAM, CLM, SDM1 X X X 2

CFAN [67] [67] X X X

[65] Reg. For [65] X X X X X X

TCDCN CNN [70] X X X X

EyeTab [63] X N/A X X X

Intraface SDM [64] X X ?3 X

OKAO ? X X X X X

FACET ? X X X X X

Affdex ? X X X X X

Tree DPM [71] [71] X X X

LEAR LEAR [40] X X X

TAUD TAUD [31] X X

OpenFace [7, 6] X X X X X X X X

Table 1: Comparison of facial behavior analysis tools. We do not consider fitting code to be available if the only code

provided is a wrapper around a compiled executable. Note that most tools only provide binary versions (executables) rather

than the model training and fitting source code. 1 The implementation differs from the originally proposed one based on

the used features, 2 the algorithms implemented are capable of real-time performance but the tool does not provide it, 3 the

executable is no longer available on the author’s website.

proaches for tackling each individual problem, very few of

them are available in source code form and would require

significant amount of effort to re-implement. In some cases

exact re-implementation is virtually impossible due to lack

of details in papers. Examples of often omitted details in-

clude: values of hyper-parameters, data normalization and

cleaning procedures, exact training protocol, model initial-

ization and re-initialization procedures, and optimization

techniques to make systems real-time. These details are of-

ten as important as the algorithms themselves in order to

build systems that work on real world data. Source code is

a great way of providing such details. Finally, even the ap-

proaches that claim they provide code instead only provide

a thin wrapper around a compiled binary making it impos-

sible to know what is actually being computed internally.

OpenFace is not only the first open source tool for facial

behavior analysis, it demonstrates state-of-the art perfor-

mance in facial landmark detection, head pose tracking, AU

recognition and eye gaze estimation. It is also able to per-

form all of these tasks together in real-time. Main contribu-

tions of OpenFace are: 1) implements and extends state-of-

the-art algorithms; 2) open source tool that includes model

training code; 3) comes with ready to use trained models;

4) is capable of real-time performance, without the need of

a GPU; 5) includes a messaging system allowing for easy

to implement real-time interactive applications; 6) available

as a Graphical User Interface (for Windows) and as a com-

mand line tool (for Ubuntu, Mac OS X and Windows).

Our work is intended to bridge that gap between existing

state-of-the-art research and easy to use out-of-the-box so-

lutions for facial behavior analysis. We believe our tool will

stimulate the community by lowering the bar of entry into

the field and enabling new and interesting applications1.

First, we present a brief outline of the recent advances in

face analysis tools (section 2). Then we move on to describe

our facial behavior analysis pipeline (section 3). We follow,

by a description of a large number of experiments to asses

our framework (section 4). Finally, we provide a brief de-

scription of the interface provided by OpenFace (section 5).

2. Previous work

A full review of work in facial landmark detection, head

pose, eye gaze, and action unit estimation is outside the

scope of this paper, we refer the reader to recent reviews

of the field [17, 18, 30, 46, 51, 61]. We instead provide an

1https://www.cl.cam.ac.uk/research/rainbow/

projects/openface/

https://www.cl.cam.ac.uk/research/rainbow/projects/openface/
https://www.cl.cam.ac.uk/research/rainbow/projects/openface/


Figure 2: OpenFace facial behavior analysis pipeline, including: facial landmark detection, head pose and eye gaze estima-

tion, facial action unit recognition. The outputs from all of these systems (indicated by red) can be saved to disk or sent over

a network.

overview of available tools for accomplishing the individual

facial behavior analysis tasks. For a summary of available

tools see Table 1.

Facial landmark detection - there exists a broad selec-

tion of freely available tools to perform facial landmark de-

tection in images or videos. However, very few of the ap-

proaches provide the source code and instead only provide

executable binaries. This makes the reproduction of experi-

ments on different training sets or using different landmark

annotation schemes difficult. Furthermore, binaries only al-

low for certain predefined functionality and are often not

cross-platform, making real-time integration of the systems

that would rely on landmark detection almost impossible.

Although, there exist several exceptions that provide both

training and testing code [3, 71], those approaches do not

allow for real-time landmark tracking in videos - an impor-

tant requirement for interactive systems.

Head pose estimation has not received the same amount

of interest as facial landmark detection. An earlier exam-

ple of a dedicated head pose estimation is the Watson sys-

tem, which is an implementation of the Generalized Adap-

tive View-based Appearance Model [45]. There also exist

several frameworks that allow for head pose estimation us-

ing depth data [21], however they cannot work on webcams.

While some facial landmark detectors include head pose es-

timation capabilities [4, 5], most ignore this problem.

AU recognition - there are very few freely available

tools for action unit recognition. However, there are a num-

ber of commercial systems that amongst other functional-

ity perform Action Unit Recognition: FACET2, Affdex3,

and OKAO4. However, the drawback of such systems is the

sometimes prohibitive cost, unknown algorithms, and often

unknown training data. Furthermore, some tools are incon-

venient to use by being restricted to a single machine (due

2http://www.emotient.com/products/
3http://www.affectiva.com/solutions/affdex/
4https://www.omron.com/ecb/products/mobile/

to MAC address locking or requiring of USB dongles). Fi-

nally, and most importantly, the commercial product may

be discontinued leading to impossible to reproduce results

due to lack of product transparency (this is illustrated by the

recent unavailability of FACET).

Gaze estimation - there are a number of tools and com-

mercial systems for eye-gaze estimation, however, majority

of them require specialist hardware such as infrared cam-

eras or head mounted cameras [30, 37, 54]. Although, there

exist a couple of systems available for webcam based gaze

estimation [72, 24, 63], they struggle in real-world scenar-

ios and some require cumbersome manual calibration steps.

In contrast to other available tools OpenFace provides

both training and testing code allowing for easy repro-

ducibility of experiments. Furthermore, our system shows

state-of-the-art results on in-the-wild data and does not re-

quire any specialist hardware or person specific calibration.

Finally, our system runs in real-time with all of the facial

behavior analysis modules working together.

3. OpenFace pipeline

In this section we outline the core technologies used by

OpenFace for facial behavior analysis (see Figure 2 for a

summary). First, we provide an explanation of how we de-

tect and track facial landmarks, together with a hierarchical

model extension to an existing algorithm. We then provide

an outline of how these features are used for head pose es-

timation and eye gaze tracking. Finally, we describe our

Facial Action Unit intensity and presence detection system,

which includes a novel person calibration extension to an

existing model.

3.1. Facial landmark detection and tracking

OpenFace uses the recently proposed Conditional Lo-

cal Neural Fields (CLNF) [8] for facial landmark detection

and tracking. CLNF is an instance of a Constrained Local

Model (CLM) [16], that uses more advanced patch experts

http://www.emotient.com/products/
http://www.affectiva.com/solutions/affdex/
https://www.omron.com/ecb/products/mobile/


Figure 3: Sample registrations on 300-W and MPIIGaze

datasets.

and optimization function. The two main components of

CLNF are: Point Distribution Model (PDM) which captures

landmark shape variations; patch experts which capture lo-

cal appearance variations of each landmark. For more de-

tails about the algorithm refer to Baltrušaitis et al. [8].

3.1.1 Model novelties

The originally proposed CLNF model performs the detec-

tion of all 68 facial landmarks together. We extend this

model by training separate sets of point distribution and

patch expert models for eyes, lips and eyebrows. We later

fit the landmarks detected with individual models to a joint

(PDM).

Tracking a face over a long period of time may lead to

drift or the person may leave the scene. In order to deal

with this, we employ a face validation step. We use a simple

three layer convolutional neural network (CNN) that given

a face aligned using a piecewise affine warp is trained to

predict the expected landmark detection error. We train the

CNN on the LFPW [11] and Helen [36] training sets with

correct and randomly offset landmark locations. If the val-

idation step fails when tracking a face in a video, we know

that our model needs to be reset.

In case of landmark detection in difficult in-the-wild im-

ages we use multiple initialization hypotheses at different

orientations and pick the model with the best converged

likelihood. This slows down the approach, but makes it

more accurate.

3.1.2 Implementation details

The PDM used in OpenFace was trained on two datasets -

LFPW [11] and Helen [36] training sets. This resulted in a

model with 34 non-rigid and 6 rigid shape parameters.

For training the CLNF patch experts we used: Multi-PIE

[27], LFPW [11] and Helen [36] training sets. We trained a

separate set of patch experts for seven views and four scales

(leading to 28 sets in total). Having multi-scale patch ex-

perts allows us to be accurate both on lower and higher res-

Figure 4: Sample gaze estimations on video sequences;

green lines represent the estimated eye gaze vectors.

olution face images. We found optimal results are achieved

when the face is at least 100px across. Training on different

views allows us to track faces with out of plane motion and

to model self-occlusion caused by head rotation.

To initialize our CLNF model we use the face detector

found in the dlib library [33, 34]. We learned a simple

linear mapping from the bounding box provided by dlib

detector to the one surrounding the 68 facial landmarks.

When tracking landmarks in videos we initialize the CLNF

model based on landmark detections in previous frame. If

our CNN validation module reports that tracking failed we

reinitialize the model using the dlib face detector.

OpenFace also allows for detection of multiple faces in

an image and tracking of multiple faces in videos. For

videos this is achieved by keeping a track of active face

tracks and a simple logic module that checks for people

leaving and entering the frame.

3.2. Head pose estimation

Our model is able to extract head pose (translation and

orientation) information in addition to facial landmark de-

tection. We are able to do this, as CLNF internally uses a 3D

representation of facial landmarks and projects them to the

image using orthographic camera projection. This allows us

to accurately estimate the head pose once the landmarks are

detected by solving the PnP problem.

For accurate head pose estimation OpenFace needs to

be provided with the camera calibration parameters (focal

length and principal point). In their absence OpenFace uses

a rough estimate based on image size.

3.3. Eye gaze estimation

CLNF framework is a general deformable shape regis-

tration approach so we use it to detect eye-region landmarks

as well. This includes eyelids, iris and the pupil. We used

the SynthesEyes training dataset [62] to train the PDM and



Figure 5: Prediction of AU12 on DISFA dataset [7]. Notice

how the prediction is always offset by a constant value.

CLNF patch experts. This model achieves state-of-the-art

results in eye-region registration task [62]. Some sample

registrations can be seen in Figure 3.

Once the location of the eye and the pupil are detected

using our CLNF model we use that information to compute

the eye gaze vector individually for each eye. We fire a ray

from the camera origin through the center of the pupil in the

image plane and compute it’s intersection with the eye-ball

sphere. This gives us the pupil location in 3D camera coor-

dinates. The vector from the 3D eyeball center to the pupil

location is our estimated gaze vector. This is a fast and ac-

curate method for person independent eye-gaze estimation

in webcam images. See Figure 4 for sample gaze estimates.

3.4. Action Unit detection

OpenFace AU intensity and presence detection module

is based on a recent state-of-the-art AU recognition frame-

work [7, 59]. It is a direct implementation with a couple

of changes that adapt it to work better on natural video se-

quences from unseen datasets. A more detailed explanation

of the system can be found in Baltrušaitis et al. [7]. In

the following section we describe our extensions to the ap-

proach and the implementation details.

3.4.1 Model novelties

In natural interactions people are not expressive very often

[2]. This observation allows us to safely assume that most

of the time the lowest intensity (and in turn prediction) of

each action unit over a long video recording of a person

should be zero. However, the existing AU predictors tend

to sometimes under- or over-estimate AU values for a par-

ticular person, see Figure 5 for an illustration of this.

To correct for such prediction errors, we take the lowest

nth percentile (learned on validation data) of the predictions

on a specific person and subtract it from all of the predic-

tions. We call this approach – person calibration. Such a

correction can be easily implemented in an online system as

well by keeping a histogram of previous predictions. This

extension only applies to AU intensity prediction.

AU Full name Prediction

AU1 Inner brow raiser I

AU2 Outer brow raiser I

AU4 Brow lowerer I

AU5 Upper lid raiser I

AU6 Cheek raiser I

AU7 Lid tightener P

AU9 Nose wrinkler I

AU10 Upper lip raiser I

AU12 Lip corner puller I

AU14 Dimpler I

AU15 Lip corner depressor I

AU17 Chin raiser I

AU20 Lip stretched I

AU23 Lip tightener P

AU25 Lips part I

AU26 Jaw drop I

AU28 Lip suck P

AU45 Blink P

Table 2: List of AUs in OpenFace. I - intensity, P - presence.

Another extension we propose is to combine AU pres-

ence and intensity training datasets. Some datasets only

contain labels for action unit presence (SEMAINE [44] and

BP4D) and others contain labels for their intensities (DISFA

[41] and BP4D [69]). This makes the training on combined

datasets not straightforward. We use the distance to the hy-

perplane of the trained SVM model as a feature for an SVR

regressor. This allows us to train a single predictor using

both AU presence and intensity datasets.

3.4.2 Implementation details

In order to extract facial appearance features we used a sim-

ilarity transform from the currently detected landmarks to a

representation of frontal landmarks from a neutral expres-

sion. This results in a 112 × 112 pixel image of the face

with 45 pixel interpupilary distance (similar to Baltrušaitis

et al.[7]).

We extract Histograms of Oriented Gradients (HOGs)

features as proposed by Felzenswalb et al. [23] from the

aligned face. We use blocks of 2 × 2 cells, of 8 × 8 pix-

els, leading to 12×12 blocks of 31 dimensional histograms

(4464 dimensional vector describing the face). In order

to reduce the feature dimensionality we use a PCA model

trained on a number of facial expression datasets: CK+

[38], DISFA [41], AVEC 2011 [52], FERA 2011 [60], and

FERA 2015 [59]. Applying PCA to images (sub-sampling

from peak and neutral expressions) and keeping 95% of ex-

plained variability leads to a reduced basis of 1391 dimen-

sions. This allows for a generic basis, more suitable to un-

seen datasets.



We note that our framework allows the saving of these

intermediate features (aligned faces together with actual

and dimensionality reduced HOGs), as they are useful for

a number of facial behavior analysis tasks.

For AU presence prediction OpenFace uses a linear ker-

nel SVM and for AU intensity a linear kernel SVR. As fea-

tures we use the concatenation of dimensionality reduced

HOGs and facial shape features (from CLNF). In order to

account for personal differences the median value of the fea-

tures (observed so far in online case and overall for offline

processing) is subtracted from the estimates in the current

frame. This has been shown to be cheap and effective way

to increase model performance [7].

Our models are trained on DISFA [41], SEMAINE [44]

and BP4D [69] datasets. Where the AU labels overlap

across multiple datasets we train on them jointly. This leads

to OpenFace recognizing the AU listed in Table 2.

4. Experimental evaluation

In this section, we evaluate each of our OpenFace sub-

sytems: facial landmark detection, head pose estimation,

eye gaze estimation, and facial Action Unit detection. For

each of our experiments we also include comparisons with

a number of recently proposed approaches for tackling the

same problems (although none of them tackle all of them

at once). Furthermore, all of the approaches we compared

against provide only binaries with pre-trained models and

not the full training and testing code (except for EyeTab

[63] and regression forests [21]).

4.1. Landmark detection

The facial landmark detection capability was evaluated

on the 300-W face validation dataset which comprises of

four sub-datasets: Annotated Faces in the Wild (AFW)[71],

IBUG [49], LFPW[11], and Helen [36]. For initialization

we used the bounding boxes provided by the challenge or-

ganizers.

First, we evaluated the benefit of our proposed hierarchi-

cal model. The results can be seen in 6a. It can be seen

that the hierarchical model leads to better facial landmark

detection accuracies.

As a second experiment, we compared our approach

to other facial landmark detection algorithms whose im-

plementations are available online and which have been

trained to detect the same facial landmarks (or their sub-

sets). The baselines were: Discriminative Response Map

Fitting (DRMF) [4], tree based deformable models [71],

extended version of Constrained Local Models [6], Gauss-

Newton Deformable Parts Model (GNDPM) [58], and Su-

pervised Descent Method (SDM) [64].

The results can be seen in Figure 6. For reporting of

49 landmark detection results we only used the 865 images

Method Yaw Pitch Roll Mean Median

Reg. forests [22] 9.2 8.5 8.0 8.6 N/A

CLM [50] 8.2 8.2 6.5 7.7 3.3

CLM-Z [9] 8.0 6.1 6.0 6.7 3.2

Chehra [5] 13.9 14.7 10.2 12.9 5.4

OpenFace 7.9 5.6 4.5 6.0 2.6

Table 3: Head pose estimation results on the Biwi Kinect

head pose dataset. Measured in mean absolute degree error.

Method Yaw Pitch Roll Mean Median

CLM [50] 3.0 3.5 2.3 2.9 2.0

Chehra [5] 3.8 4.6 2.8 3.8 2.5

OpenFace 2.8 3.3 2.3 2.8 2.0

Table 4: Head pose estimation results on the BU dataset.

Measured in mean absolute degree error. Note that BU

dataset only contains RGB images so no comparison agains

CLM-Z and Regression forests was perfomed.

Method Yaw Pitch Roll Mean

Reg. forests [22] 7.2 9.4 7.5 8.0

CLM-Z [9] 5.1 3.9 4.6 4.6

CLM [50] 4.8 4.2 4.5 4.5

Chehra [5] 13.9 14.7 10.3 13.0

OpenFace 3.6 3.6 3.6 3.6

Table 5: Head pose estimation results on ICT-3DHP. Mea-

sured in mean absolute degree error.

for which all of our baselines were able to detect faces, an-

other issue with provided binaries (and not the code) is that

we sometimes cannot change the face detector used. Open-

Face demonstrates state-of-the-art performance and along-

side tree based models [71] is the only model that provides

both model training and fitting source code.

4.2. Head pose estimation

To measure OpenFace performance on a head pose esti-

mation task we used three publicly available datasets with

existing ground truth head pose data: BU [15], Biwi [21]

and ICT-3DHP [9].

For comparison, we report the results of using Chehra

framework [5], CLM [50], CLM-Z [9], and Regression

Forests [21]. The results can be see in Table 3, Table 4

and Table 5. It can be seen that our approach demonstrates

state-of-the-art performance on all three of the datasets.

4.3. Eye gaze estimation

We evaluated the ability of OpenFace to estimate eye

gaze vectors by evaluating it on the challenging MPIIGaze

dataset [68] intended to evaluate appearance based gaze es-



(a) Hierarchical (b) No jawline (c) All points

Figure 6: Fitting on the wild datasets using the CLNF approach included in OpenFace compared against state-of-the-

art methods. All of the methods have been trained on in the wild data from different than test datasets a) Benefit of our

hierarchical extension b) Comparison of detection of 49 landmark points (without the jawline) c) Comparison of detection of

68 landmark points (with the jawline). The reason some approaches were evaluated only with 49 point models is that not all

authors release trained 68 point models.

AU 1 2 4 5 6 9 12 15 17 20 25 26 Mean

No callibration 0.55 0.44 0.58 0.36 0.57 0.43 0.82 0.27 0.31 0.16 0.80 0.56 0.49

Callibration 0.57 0.42 0.65 0.57 0.54 0.51 0.82 0.27 0.31 0.23 0.86 0.63 0.53

Table 6: Benefit of person specific output calibration. The difference is statistically significant (paired t test p < 0.05)

MODEL GAZE ERROR

EyeTab [63] 47.1

CNN on UT [68] 13.91

CNN on SynthesEyes [62] 13.55

CNN on SynthesEyes + UT [62] 11.12

OpenFace 9.96

Table 7: Results comparing our method to previous work

for cross dataset gaze estimation on MPIIGaze [68], mea-

sure in mean absolute degree error.

timation. MPIIGaze was collected in realistic laptop use

scenarios and poses a challenging and practically-relevant

task for eye gaze estimation. Sample images from the

dataset can be seen in the right two columns of Figure 4.

We evaluated our approach on a 750 face image subset of

the dataset - leading to 1500 eye images (one per eye). We

did not use the manually labeled eye corner location pro-

vided with the dataset but used the full pipeline from Open-

Face. The error rates of our model can be seen in Table 7.

4.4. Action Unit recognition

We performed AU recognition experiments on three pub-

licly available datasets: SEMAINE, DISFA, and BP4D. The

evaluation was done in a person independent manner.

In our first experiment we validated our person calibra-

tion extension on the DISFA dataset The results can be seen

in Table 6. It can be clearly seen that our calibration scheme

6 10 12 14 17 µ

Fully automatic

BG [59] 0.67 0.73 0.78 0.59 0.14 0.58

BA [59] 0.62 0.66 0.77 0.39 0.17 0.52

DL [28] 0.66 0.73 0.79 0.55 0.33 0.61

OF 0.69 0.73 0.83 0.50 0.37 0.62

Pre-segmented

BG [59] 0.48 0.51 0.69 0.59 0.05 0.46

BA [59] 0.33 0.48 0.60 0.50 0.11 0.40

DL [28] 0.42 0.54 0.61 0.50 0.22 0.46

OF 0.58 0.49 0.70 0.52 0.41 0.54

Table 8: AU intensity results (intra-class correlation coef-

ficient) on FERA 2015 test dataset comparing against their

proposed appearance and geometry based baselines[59].

leads to more better overall AU intensity prediction.

As a second experiment, we submitted an earlier version

of OpenFace to the 2015 Facial Expression Recognition and

Analysis (FERA2015) challenge [59]. The challenge orga-

nizers evaluated it on an unseen (and unreleased) subset of

SEMAINE and BP4D datasets. The system was evaluated

in both AU presence and intensity prediction tasks. The

results on the challenge data can be seen in Table 9 and Ta-

ble 8.

Note that the OpenFace system has been extended since

then (as outlined in the previous sections), but as the chal-

lenge data was not released we are unable to provide the



BP4D SEMAINE

AU 1 2 4 6 7 10 12 14 15 17 23 2 12 17 25 28 45 Mean

BG [59] 0.19 0.19 0.20 0.65 0.80 0.80 0.80 0.72 0.24 0.31 0.32 0.57 0.60 0.09 0.45 0.25 0.40 0.45

BA [59] 0.18 0.16 0.23 0.67 0.75 0.80 0.79 0.67 0.14 0.25 0.24 0.76 0.52 0.07 0.40 0.01 0.21 0.40

DL [28] 0.40 0.35 0.32 0.72 0.78 0.80 0.79 0.68 0.23 0.37 0.31 0.37 0.71 0.07 0.60 0.04 0.26 0.46

OF 0.26 0.25 0.25 0.73 0.80 0.84 0.82 0.72 0.34 0.33 0.34 0.41 0.57 0.20 0.69 0.26 0.42 0.48

Table 9: AU occurrence results on FERA 2015 test dataset (F1). Only OpenFace (OF) provides a full out-of-the-box system.

AU 1 2 4 5 6 9 10 12 14 15 17 20 25 26 Mean

OpenFaced 0.40 0.46 0.72 0.74 0.52 0.69 0.61 0.88 0.28 0.53 0.28 0.24 0.87 0.65 0.56

OpenFaces 0.27 0.02 0.66 0.55 0.41 0.23 0.68 0.87 0.38 0.05 0.32 0.30 0.85 0.53 0.43

Table 10: Evaluating OpenFace on DISFA (5 unseen subjects), and BP4D (for AU10 and AU14). The target subjects were

chosen using stratified cross-validation. Dynamic models (OpenFaced) use calibration and neutral expression subtraction,

whereas static models (OpenFaces) rely on a single image of an individual. The dynamic models seem to be particularly

important for AUs that might involve wrinkling of the face. The results are reported in Canonical Correlation Coefficients.

AU 7 23 28 45 Mean

Dynamic 0.74 0.37 0.36 0.40 0.47

Static 0.75 0.36 0.30 0.31 0.43

Table 11: Evaluating OpenFace classifiers (F1 scores) on

SEMAINE (28, 45) and BP4D (AU7 AU23) FERA 2015

validation sets.

results of the newest system on the FERA2015 test sets.

Because of this, we evaluated OpenFace on three publicly

available datasets. The results for AU intensity can be found

in Table 10 and presence in Table 11. Our system was

specifically tailored for Action Unit recognition in videos

rather than individual images, hence the performance of the

dynamic models is much higher.

The recognition of certain AUs is not as reliable as that

of others partly due to lack of representation in training data

and inherent difficulty of the problem. This is an area of

OpenFace that is still under active development and that will

continue to be refined with time, especially as more datasets

become available.

5. Interface

OpenFace is an easy to use toolbox for the analysis of

facial behavior. There are three main ways of using Open-

Face: Graphical User Interface, command line, and real-

time messaging system (based on ZeroMQ). As the system

is open source it is also possible to integrate it in any C++ or

C♯ based project. To make the system easier to use we pro-

vide sample Matlab scripts that demonstrate how to extract,

save, read and visualize each of the behaviors. The system

is cross-platform and has been tested on Windows, Ubuntu

and Mac OS X.

OpenFace can operate on real-time data video feeds from

a webcam, recorded video files, image sequences and indi-

vidual images. It is possible to save the outputs of the pro-

cessed data as CSV files in case of facial landmarks, shape

parameters, Action Units and gaze vectors. HOG features

are saved as Matlab readable binary streams, and aligned

face images are saved as either image sequences or videos.

Moreover, it is possible to load the saved behaviors into

ELAN [12] for easy visualization. Example use case of sav-

ing facial behaviors using OpenFace would involve using

them as features for emotion prediction, medical condition

analysis, and social signal analysis systems.

Finally, OpenFace can be easily used to build real-time

interactive applications that rely on various facial analysis

subsystems. This is achieved by using a lightweight mes-

saging system - ZeroMQ 5. It allows to send estimated facial

behaviors over a network to anyone requesting the features.

Such a system has already been used in ophthalmology re-

search [55]. We also provide examples in Python and C++

to show examples of listening to ZeroMQ messages from

OpenFace in real time.

6. Conclusion

In this paper we presented OpenFace – a first fully open

source real-time facial behavior analysis system. OpenFace

is a useful tool for the computer vision, machine learning

and affective computing communities and will stimulate re-

search in facial behavior analysis an understanding. Fur-

thermore, the future development of the tool will continue

and it will attempt to incorporate the newest and most re-

liable approaches for the problem at hand while remaining

a transparent open source tool and retaining its real-time

capacity. We hope that this tool will encourage other re-

searchers in the field to share their code.

5http://zeromq.org/

http://zeromq.org/
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[6] T. Baltrušaitis, N. Banda, and P. Robinson. Dimensional af-

fect recognition using continuous conditional random fields.

In FG, 2013.
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