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ABSTRACT
Multiprotocol Label Switching (MPLS) [3] is a protocol widely 

used in commercial operator networks to forward packets by 

matching link-specific labels in the packet header to outgoing 

links rather than through standard IP longest prefix matching.  

However, in existing networks, MPLS is implemented by full IP 

routers, since the MPLS control plane protocols such as LDP [8] 

utilize IP routing to set up the label switched paths, even though 

the MPLS data plane does not require IP routing. OpenFlow 1.0 is 

an interface for controlling a routing or switching box by inserting 

flow specifications into the box’s flow table [1]. While 

OpenFlow 1.0 does not support MPLS1, MPLS label-based 

forwarding seems conceptually a good match with OpenFlow’s 

flow-based routing paradigm. In this paper we describe the design 

and implementation of an experimental extension of OpenFlow 

1.0 to support MPLS.  The extension allows an OpenFlow switch 

without IP routing capability to forward MPLS on the data plane. 

We also describe the implementation of a prototype open source 

MPLS label switched router, based on the NetFPGA hardware 

platform [4], utilizing OpenFlow MPLS. The prototype is capable 

of forwarding data plane packets at line speed without IP 

forwarding, though IP forwarding is still used on the control 

plane. We provide some performance measurements comparing 

the prototype to software routers. The measurements indicate that 

the prototype is an appropriate tool for achieving line speed 

forwarding in testbeds and other experimental networks where 

flexibility is a key attribute, as a substitute for software routers. 
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1 The latest version of OpenFlow, OpenFlow 1.1, does contain 

support for MPLS. 

1. INTRODUCTION
The OpenFlow 1.0 control protocol [1] provides a vendor agnostic 

flow-based routing interface for controlling network forwarding 

elements. The essence of OpenFlow is the separation of the 

control plane and data plane in routing and switching gear. In 

traditional routers and switches, the control and data plane are 

tightly intertwined, limiting the implementation and deployment 

options. Networks deployed with traditional routing and 

switching gear have a distributed control plane, and the control 

and data plane hardware and software for the routing and 

switching gear is contained in a single box. The OpenFlow 

interface simplifies the control plane on network forwarding 

hardware in which the control and data plane are bundled by 

providing a standardized interface between the control and data 

planes, simplifying the interface between the on-box control and 

data plane software and hardware. Alternatively, the control plane 

can be deployed on a centralized controller that controls multiple 

forwarding elements, or it can be deployed on a single forwarding 

element like traditional routers and switches, but with OpenFlow 

acting as a the control to data plane interface. 

In this paper, we describe an extension of OpenFlow to 

incorporate MPLS and its use in implementing a open source 

MPLS label switched router (LSR). As far as we are aware, this is 

the first implementation of MPLS in OpenFlow 1.0. After a brief 

review of the OpenFlow 1.0 architecture, we describe a 

modification to the OpenFlow switch data plane model - the 

virtual port - which supports MPLS encapsulation and 

decapsulation. We briefly describe the design of OpenFlow 

MPLS, and the hardware implementation, in NetFPGA [4]. 

Extensions to OpenVSwitch [6],  and the Stanford user space and 

Linux kernel space OpenFlow reference software switch were 

also implemented but are not described here. An initial report of 

this work appeared at MPLS 2010 [7]. We then describe the 

control plane for the open source LSR that was constructed using 

the Linux Quagga MPLS distribution [5]. The MPLS Label 

Distribution Protocol (LDP) [8] is used as a control plane for 

distributing label switched paths in a network consisting of 

standard IP/MPLS routers and a collection of OpenFlow MPLS 

NetFPGA devices configured as LSRs. The on-box OpenFlow 

controller programs the NetFPGA hardware using the labels 

distributed by LDP. Unlike standard IP/MPLS networks, the 

NetFPGA LSRs only utilize IP forwarding on the control plane, to 

allow communication between the controller and the LSRs. All 

data plane forwarding is done with MPLS. We provide 

performance measurements comparing the open source LSR 

switching performance with Quagga Linux software MPLS 

forwarding performance. We then conclude the paper with some 

remarks about the future potential of OpenFlow MPLS. 
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2. OpenFlow MPLS Architecture 
Since OpenFlow MPLS is built on top of OpenFlow 1.0, we 

briefly review the OpenFlow architecture here, and compare it 

with previous control/data plane separation work before 

describing the OpenFlow MPLS architecture.  

2.1 OpenFlow Architecture 
In the canonical OpenFlow 1.0 architecture, the control plane in 

network switching and routing equipment is moved into a 

separate controller. The controller communicates over a secure 

channel with the switches through the OpenFlow protocol. 

Software running on the controller “programs” the switches with 

flow specifications that control the routes of packets through the 

network. For routing purposes, the switches only need to run an 

OpenFlow control plane, considerably simplifying their 

implementation. An alternative architecture, shown in Fig. 1, 

utilizes OpenFlow as the interface between the control and data 

planes in the same box, while the control plane talks standard IP 

routing protocols with standard network routers and switches. In 

this architecture, OpenFlow’s flow-based routing design 

simplifies the on-box control plane/data plane interface. The open 

source LSR is designed according to the latter architecture. 

Fig. 1: Single Box OpenFlow Routing Architecture 

The switch data plane in OpenFlow is modeled as a flow table in 

which there are three columns: rules, actions, and counters. The 

rules column defines the flow. Rules are matched against the 

headers of incoming packets. If a rule matches, the actions from 

the action column are applied to the packet and the counters in the 

counter column are updated. If a packet matches multiple rules, 

the rule with the highest priority is applied. Each rule consists of 

elements from a ten-tuple of header fields (see Fig. 2, from [9]) or 

a wild card ANY. The set of possible actions are: forward as if 

OpenFlow were not present (usually utilizing the Ethernet 

spanning tree route), forward to the control plane, forward out a 

specific port, and modify various header fields (e.g. rewrite MAC 

address, etc.).  

Fig. 2: Ten-tuple for Rule Matching 

2.2 Previous Work 
Much previous work exists in the area of control/data plane 

separation for routing and switching. Most of the work is 

specifically directed at implementing the control plane on a 

separate box from the data plane. 

A standard for the separation of the control and data plane in 

circuit-switched networks is defined by RFC 3292 in the 

Generalized Switch Management Protocol (GSMP) [2]. GSMP 

models the network elements as cross-bar circuit switches. 

Particularly in optical circuit-switched networks, the switches 

often have physically separate control networks since it is often 

not possible to intercept the control packets from the optical 

lambdas, so separation of control and data plane becomes a 

necessity, GSMP provides a standardized protocol for those 

systems. Many vendors also have proprietary control protocols.    

The FORCES protocol [10] provides a standard framework for 

controlling data plane elements from a separate controller, but 

unlike OpenFlow, FORCES does not define a protocol for 

controlling a specific forwarding element. The FORCES 

forwarding element model [11] is quite general. OpenFlow, in 

contrast, defines a specific forwarding element model and 

protocol involving a flow table and ports. FORCES requires each 

logical forwarding block in the forwarding element to define its

own control protocol within the FORCES framework. 

The OpenFlow architecture is perhaps closest to the Clean Slate 

4D architecture defined by Greenberg, et. al. [12] The 4D 

architecture re-factors the network control,  data, and

management planes into 4 new planes (the “D”s in the name): the 

decision plane, the dissemination plane, the discovery plane, and 

the data plane. The data plane is much as before, the decision 

plane is the OpenFlow controller software, for example NOX 

[15], and the dissemination plane is provided by the OpenFlow 

protocol. The OpenFlow architecture defines no special support

for discovery.  In deployed OpenFlow systems,  the controller 

provides this function through legacy protocols such as LLDP 

[18].  The Tesseract system [13] implements the 4D architecture. 

GMPLS [19] provides another architectural approach to 

control/data plane separation by extending MPLS to networks 

including circuit switches. GMPLS utilizes extensions of 

intradomain routing protocols to perform topology discovery, and 

RSVP and LMP to establish label-switched paths between 

network elements. A network element under GMPLS control can 

either also perform forwarding, in which case GMPLS acts as the 

control plane for a standard switch or a router, or the network 

element can control separate forwarding elements through a 

different forwarding element control protocol. If the latter, a 

separate switch control protocol, such as GSMP, controls the 

switches. GMPLS is restricted to transport networks, it does not 

provide support for IP routing even though it uses IP intradomain 

routing protocols for connectivity discovery. 
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There has also been work on control/data plane interfaces for 

conventional router implementations when the control and data 

plane are implemented on the same box. The Click modular router 

toolkit [14] defines interfaces between data plane components that 

allow modular data planes to be built, but Click does not specify

any control plane interface. The control plane interface is hidden 

behind the individual Click elements. The Xorp router platform 

[15] defines a composable framework of router control plane 

processes, each of which is itself composed of modular processing 

stages. Xorp defines an interface to the data plane through the 

Forwarding Engine Abstraction (FEA). The FEA interface allows 

different types of data plane implementations, for example Click 

or the NetBSD data plane, to be coupled to the control plane 

without having to change the entire control plane software base. 

The Conman architecture [16] defines a modular data plane and 

control plane architecture with a well defined pipe interface

between the two. Our work differs from prior work in this area in 

that we have taken an interface that was defined for simplifying 

and centralizing the control plane and instead implemented it as 

the control/data plane interface on a single box, providing a more 

flexible deployment model for cases where a centralized control 

plane is impractical. 

2.3 OpenFlow MPLS 

2.3.1  OpenFlow MPLS Design 
MPLS forms flow aggregations by modifying the packet header to 

include a label.  The label identifies the packet as a member of a 

forwarding equivalence class (FEC). A FEC is an aggregated 

group of flows that all receive the same forwarding treatment. 

A data plane MPLS node implements three header modification 

operations:

Push: Push a new label onto the MPLS label stack, or, if 

there is no stack currently, insert a label to form a new stack, 

Pop: Pop the top label off the MPLS label stack, 

Swap: Swap the top label on the stack for a new label. 

Fig. 3: OpenFlow Twelve-tuple for MPLS rules 

The MPLS label stack is inserted between the IP and MAC (Layer 

3 and Layer 2) headers in the packet. MPLS label stack entries 

consist of 32 bits, 20 of which form the actual label used in 

forwarding. The other bits indicate QoS treatment, top of stack, 

and time to live. 

The first modification required to OpenFlow is to increase the 

size of the tuple used for flow identification. In principle, the size 

of the MPLS label stack has no upper bound, but as a practical 

matter, most carrier transport networks use a maximum of two 

labels: one label defining a service (such as VPN) and one label 

defining a transport tunnel. We therefore decided to extend the 

header tuple used for flow matching from 10 fields to 12. Only 

the actual 20 bit forwarding label is matched, the other bits are not 

included. Fig. 3 shows the 12 tuple. 

Fig. 4: Virtual Port Table and Virtual Port Table Entry 

The next required modification was the addition of the MPLS 

header modification actions (push, pop, and swap) to the action 

set executed when a rule matches. With the exception of limited 

field rewriting, OpenFlow 1.0 actions perform simple forwarding. 

The MPLS push and pop actions, in contrast, rewrite the header 

by inserting fields into the header. Rather than inserting the 

MPLS protocol actions into the basic OpenFlow packet 

processing pipeline, we chose instead to isolate them using a 

abstraction called a virtual port. A virtual port is an abstraction 

mechanism that handles complex protocol specific actions 

requiring header manipulation, thereby hiding the complexity of 

the implementation. This allows yet more complex header 

manipulations to be implemented by composing them out of  

simpler virtual port building blocks.

Virtual ports can be hierarchically stacked to form processing 

chains on either input or output. On output, virtual ports can be 

included in flow table actions just like physical ports. Virtual 

ports are grouped together with physical ports into a virtual port 

table. Fig. 4 illustrates the virtual port table, together with a table 

row. Each virtual port table row contains entries for the port 

number, the parent port, the actions to be performed by the virtual 

port, and statistics.

The MPLS actions in the virtual port table consist of the 

following:

push_mpls: Push a 32 bit label on the top of the MPLS label 

stack , and copy the TTL and QoS bits from the IP header or 

previous MPLS label, 
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pop_mpls: Pop the top label on the MPLS stack, and copy the 

TTL and QoS bits to the IP header or previous MPLS label, 

swap_mpls: Swap the 20 bit forwarding label on top of the 

MPLS stack. 

decrement_ttl: Decrement the TTL and drop the packet if it 

has expired. 

copy_bits: Copy the TTL and QoS bits to/from the IP header 

or previous MPLS label 

We also added a counter to the OpenFlow statistics that is 

incremented every time a virtual port drops a packet due to the 

expiration of the TTL. 

The OpenFlow protocol was extended with the following 

messages to allow the controller to program label switched paths 

(LSPs) into the switches: 

vport_mod: Add or remove a virtual port number. Parameters 

are the parent port number, the virtual port number, and an 

array of virtual port actions, 

vport_table_stats: Return statistics for the virtual port table. 

The statistics include maximum virtual ports supported by 

the switch, number of virtual ports in use, and the lookup 

count, port match count, and chain match count. 

port_stats: The OpenFlow port_stats message applies to 

virtual ports as well, but only the tx_bytes and tx_packets

fields are used. 

Finally, the OpenFlow switch_features_reply message was 

modified to include a bit indicating whether the switch supports 

virtual ports. 

2.3.2 NetFPGA Implementation 
NetFPGA is a PCI card that contains a Virtex-2 Xilinx FPGA, 4 

Gigabit Ethernet ports, SRAM and DDR2 DRAM [4]. The board 

allows researchers and students to build working prototypes of 

line speed network hardware. 

The MPLS implementation extends the OpenFlow 10 tuple with 

two additional fields for MPLS labels, and adds virtual port 

functionality to support MPLS-specific actions. Fig. 5 shows the 

functional block diagram of the NetFPGA design. Our 

implementation of OpenFlow MPLS in NetFPGA is based on the 

OpenFlow v0.89 reference implementation for NetFPGA. 

OpenFlow v0.89 differs slightly from OpenFlow 1.0 in that 

OpenFlow 1.0 supports VLAN type and IP ToS headers whereas 

v0.89 doesn’t. We used v0.89 because it was available at the time 

the work was done, since these features aren’t necessary for the 

open source LSR and would have taken up valuable FPGA 

memory (only 5% of NetFPGA Virtex-2 FPGA remained empty 

after implementing MPLS OpenFlow), we decided not to update.

As packets arrive, a lookup key is created by concatenating the 12 

fields together. The lookup key is used in parallel by two lookup 

engines, one performing exact match using two CRC hash 

functions and the other one doing wildcard match using a TCAM. 

Each of the exact and wildcard tables has 32 entries. The result of 

these lookup operations is fed into a match arbiter that always 

prefers an exact match to a wildcard match. The OpenFlow 

actions associated with the match are then performed. If the action 

involves a port, the port number is checked to see if the number 

matches a virtual port. If it does, the virtual port header 

manipulation actions are performed. 

In the OpenFlow MPLS implementation, virtual ports implement 

the MPLS actions: push a new label, pop the top of the stack 

label, decrement the TTL, copy the TTL and copy the QoS bits. 

As an optimization, the swap operation is handled by an 

OpenFlow rewrite action instead of in the virtual port. If the 

copy_bits action is performed during a push operation, it copies 

the TTL/QoS bits from previous MPLS label, and if it is done as 

part of pop operation, the TTL/QoS bits of current label are 

copied to the previous label. If only one MPLS label exists, IP 

TTL or IP ToS is the source or target instead. The decrement_ttl

action decrements the TTL value for the top of the stack label and 

drops the packet when the label value hits zero. To decrement the 

MPLS TTL, without any push/pop operation or as part of a swap 

action, the packet is forwarded to a pop virtual port with the pop 

and copy TTL/QoS functionality disabled. 

Virtual ports can be concatenated together for up to two layers to 

perform two push or two pop operations in one NetFPGA card. 

The last virtual port in the chain forwards the packet to a physical 

port on output, or the first virtual port accepts a packet from a 

physical port on input. 

Fig. 5: OpenFlow-MPLS on NetFPGA Block Diagram 

The last 8 positions in the wildcard table are always filled by 

default entries to handle forwarding unmatched packets to the 

control plane. For each of the 4 NetFPGA ports, there is one entry 

at the bottom of the wildcard table that has everything except an 

incoming port wildcarded. If a packet doesn’t match any other 

entry in the table, it will at least match that default entry and is 

forwarded to the DMA port corresponding to its input port. The 

packet is then received by the OpenFlow kernel module running 

on the host machine and is forwarded to the control plane. 

Similarly, packets coming from the control plane, are sent out on 

a DMA port by the OpenFlow kernel module, and are received by 

NetFPGA. There are 4 default rules in the wildcard table that 

match on the packets coming from each of the 4 DMA ports and 

forward them to corresponding output port.
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3. Open Source Label Switched Router 

3.1 OpenFlow-MPLS LDP Control Plane 
As a demonstration of OpenFlow MPLS, we built a low-cost label 

switched router (LSR) consisting of a NetFPGA board running 

OpenFlow MPLS in a PC running the Linux OpenFlow driver, 

and the Quagga open source routing stack, including Quagga LDP 

and MPLS Linux [22]. In this model, the OpenFlow controller 

runs on the same box as the NetFPGA LSR and acts as the control 

plane only for the NetFPGA on the box as is the case in standard 

routers and switches, in contrast to the canonical OpenFlow 

model discussed in Section 2.1. Fig. 6 contains a block diagram of 

the open source LSR. The entire bill of materials for the open 

source LSR was around $2000. 

LDP, the Label Distribution Protocol [8], connects the open 

source LSR with other forwarding elements in the network. LDP 

allows two devices to form an adjacency and establish label 

bindings for label switched paths between them. An LDP 

neighbor sends a LDP packet to the open source LSR in-band on 

one of its connected interfaces. The open source LSR identifies 

the packet as part of a LDP flow and forwards it to the control 

plane on the box, where it is sent to the Quagga LDP daemon.  As 

is the case for IP-MPLS routers, the open source LSR exchanges 

OSPF route information with external routers so that MPLS paths 

can be established along known IP routes. 

Fig. 6:  Open source LSR Block Diagram 

The LDP Daemon maintains and builds a normal LDP adjacency.  

Once LDP has formed an adjacency and completed a label 

binding, it updates the kernel MPLS LFIB with the corresponding 

label information. The LSP Synchronizer is a user level daemon 

that polls the MPLS LFIB in the kernel periodically for changes, 

and when it detects a change it pushes a an OpenFlow flow 

modification into the NetFPGA, enabling data plane packets 

received with those labels to be forwarded correctly in hardware. 

3.2  Performance Measurements and 

Interoperability Verification 
The open source LSR is primarily a tool for prototyping new 

ideas in networking, in that it offers line speed performance with 

the flexibility to change control plane and data plane software. 

Consequently, we performed a couple of simple performance tests 

against the MPLS Linux to demonstrate the performance 

advantage. The tests measured bidirectional throughput for 

packets of 68 byes or 1504 bytes in length on a single port. The 

results are shown in Fig. 7. As should be clear from the figure, 

there is 2 orders of magnitude difference in forwarding 

performance between the NetFPGA and MPLS Linux. In 

addition, the performance of the NetFPGA LSR was constant 

regardless of packet size, whereas the performance of MPLS 

Linux decreased for smaller packets. 

The NetFPGA was able to maintain line speed performance up to 

3 ports, but scaled down to 6 Giga packets/second at 4 ports. This 

limitation had nothing to do with the MPLS implementation, other 

NetFPGA applications exhibit the same performance profile. Note 

that many carefully coded and highly optimized software routers 

are able to achieve much better performance than MPLS Linux 

exhibited in this study, but our objective here is not to compare 

the best software router with hardware, but rather to show the 

open source LSR provides good, reasonably scalable performance 

in comparison with a widely available, off the shelf software 

implementation. 
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Fig. 7: Comparative Forwarding Performance 

We also performed a test to verify that the open source LSR could 

be used in a network consisting of standard IP/MPLS routing gear 

running the standard IP/MPLS LDP/OSPF control plane.  The 

network, shown in Fig. 8, consisted of two standard IP/MPLS 

routers, the SmartEdge100 [20] and the Juniper M10.  All devices 

were running OSPF and LDP. The open source LSR was able to 

exchange OSPF and LDP messages with the IP/MPLS routers to 

set up LSPs through the network.

Finally, we set up a test network to verify that it is possible to 

perform MPLS forwarding within a core network without 

requiring iBGP.  The core test network is shown in Fig. 9. Again, 

all devices speak OSPF and LDP. Two Juniper M10 routers 

function as label edge routers (LERs) and speak iBGP. The iBGP 

packets are routed through the network of open source LSRs. Two 

hosts serve as sources and destinations of traffic. The LERs push 

and pop MPLS labels onto/off of the host traffic packets to route 

through the open source LSR core. Note that while OpenFlow 

MPLS is designed to allow an OpenFlow MPLS switch to act as 

an LER too, in this case, we wanted to use the M10s to 
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demonstrate how the open source LSR could be used to set up a 

iBGP free core. The addition of a BGP module to the control 

plane on the open source LSR would allow it to act as an LSR. 

Fig. 8: Interoperability Test Network 

Fig. 9: Core Interoperability Test Network

4. Summary and Conclusions 
In this paper, we described an extension of the OpenFlow 

forwarding element control interface and model to include MPLS. 

The extension involves modifying the OpenFlow flow table 

entries to include two MPLS labels and defining an extension of 

the OpenFlow port model to allow definition of virtual ports. The 

virtual ports implement the MPLS per packet processing 

operations. An extension to the OpenFlow protocol allows the 

controller to program the OpenFlow MPLS forwarding element to 

match and process MPLS flows. 

The extension to OpenFlow was implemented on OpenVSwitch, 

the Stanford reference software switch (both user and kernel 

modules), and on the NetFPGA hardware. The NetFPGA 

implementation supports up to 2 virtual ports for MPLS. A 

demonstration system, the open source LSR, was built using 

OpenFlow as the control/data plane interface for a NetFPGA 

running on the same PC as the control plane. This use of 

OpenFlow is in contrast to the canonical architecture in which a 

whole network of switches is controlled by one OpenFlow 

controller.

Some simple performance tests were run comparing the open 

source LSR to MPLS Linux for prototyping purposes. The tests 

demonstrated that the open source LSR could significantly 

improve the performance of forwarding in prototype networks.  

An interoperability demonstration system was built using the 

open source LSR and two standard Internet routers capable of 

MPLS routing. The routers exchange LDP with the open source 

LSRs and each other to set up LSPs through the network. Finally, 

a prototype iBGP free core network was set up that performs 

MPLS forwarding without the need for IP routing or iBGP 

speakers. The network consisted of two hosts connected up to 

routers and a collection of open source LSRs. No interoperability 

problems were found. 

Going forward, the success of MPLS in OpenFlow 1.0 has led to 

the incorporation of MPLS into the next version of OpenFlow, 

OpenFlow 1.1. Support for MPLS in the canonical OpenFlow 

centralized control plane model is necessary to utilize MPLS in 

OpenFlow 1.1. For the open source LSR model, the current 

NetFPGA 1G only supports a realistic maximum of 32 flows, 

which is really too few for production use, even in a small campus 

testbed. The NetFPGA 10G [21] is a much better platform and is 

the target for future work. In addition, a port to NetBSD is 

planned, since the MPLS implementation in NetBSD is more 

stable.  Code for the open source LSR is available at 

http://code.google.com/p/opensource-lsr. 
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