
OpenFlow MPLS and the Open Source Label Switched
Router

James Kempf, Scott Whyte, Jonathan Ellithorpe, Peyman Kazemian,
Mart Haitjema, Neda Beheshti, Stephen Stuart, Howard Green

james.kempf@ericsson.com, swhyte@google.com, jdellit@stanford.edu,
peyman.kazemian@stanford.edu, mah5@cec.wustl.edu, neda.beheshti@ericsson.com,

sstuart@google.com, howard.green@ericsson.com

ABSTRACT
Multiprotocol Label Switching (MPLS) [3] is a protocol widely

used in commercial operator networks to forward packets by

matching link-specific labels in the packet header to outgoing

links rather than through standard IP longest prefix matching.

However, in existing networks, MPLS is implemented by full IP

routers, since the MPLS control plane protocols such as LDP [8]

utilize IP routing to set up the label switched paths, even though

the MPLS data plane does not require IP routing. OpenFlow 1.0 is

an interface for controlling a routing or switching box by inserting

flow specifications into the box’s flow table [1]. While

OpenFlow 1.0 does not support MPLS1, MPLS label-based

forwarding seems conceptually a good match with OpenFlow’s

flow-based routing paradigm. In this paper we describe the design

and implementation of an experimental extension of OpenFlow

1.0 to support MPLS. The extension allows an OpenFlow switch

without IP routing capability to forward MPLS on the data plane.

We also describe the implementation of a prototype open source

MPLS label switched router, based on the NetFPGA hardware

platform [4], utilizing OpenFlow MPLS. The prototype is capable

of forwarding data plane packets at line speed without IP

forwarding, though IP forwarding is still used on the control

plane. We provide some performance measurements comparing

the prototype to software routers. The measurements indicate that

the prototype is an appropriate tool for achieving line speed

forwarding in testbeds and other experimental networks where

flexibility is a key attribute, as a substitute for software routers.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-

working—Routers; C.2.2 [Computer-Communication

Networks]: Network Protocols; C.2.1 [Computer-

Communication Networks]: Network Architecture and Design;

C.2.5 [Computer-Communication Networks]: Local and Wide-

Area Networks; C.2.6 [Computer-Communication Networks]:

Internetworking.

General Terms
Design, Experimentation, Management, Performance.

Keywords
OpenFlow, MPLS, NetFPGA, open source LSR.

1 The latest version of OpenFlow, OpenFlow 1.1, does contain

support for MPLS.

1. INTRODUCTION
The OpenFlow 1.0 control protocol [1] provides a vendor agnostic

flow-based routing interface for controlling network forwarding

elements. The essence of OpenFlow is the separation of the

control plane and data plane in routing and switching gear. In

traditional routers and switches, the control and data plane are

tightly intertwined, limiting the implementation and deployment

options. Networks deployed with traditional routing and

switching gear have a distributed control plane, and the control

and data plane hardware and software for the routing and

switching gear is contained in a single box. The OpenFlow

interface simplifies the control plane on network forwarding

hardware in which the control and data plane are bundled by

providing a standardized interface between the control and data

planes, simplifying the interface between the on-box control and

data plane software and hardware. Alternatively, the control plane

can be deployed on a centralized controller that controls multiple

forwarding elements, or it can be deployed on a single forwarding

element like traditional routers and switches, but with OpenFlow

acting as a the control to data plane interface.

In this paper, we describe an extension of OpenFlow to

incorporate MPLS and its use in implementing a open source

MPLS label switched router (LSR). As far as we are aware, this is

the first implementation of MPLS in OpenFlow 1.0. After a brief

review of the OpenFlow 1.0 architecture, we describe a

modification to the OpenFlow switch data plane model - the

virtual port - which supports MPLS encapsulation and

decapsulation. We briefly describe the design of OpenFlow

MPLS, and the hardware implementation, in NetFPGA [4].

Extensions to OpenVSwitch [6], and the Stanford user space and

Linux kernel space OpenFlow reference software switch were

also implemented but are not described here. An initial report of

this work appeared at MPLS 2010 [7]. We then describe the

control plane for the open source LSR that was constructed using

the Linux Quagga MPLS distribution [5]. The MPLS Label

Distribution Protocol (LDP) [8] is used as a control plane for

distributing label switched paths in a network consisting of

standard IP/MPLS routers and a collection of OpenFlow MPLS

NetFPGA devices configured as LSRs. The on-box OpenFlow

controller programs the NetFPGA hardware using the labels

distributed by LDP. Unlike standard IP/MPLS networks, the

NetFPGA LSRs only utilize IP forwarding on the control plane, to

allow communication between the controller and the LSRs. All

data plane forwarding is done with MPLS. We provide

performance measurements comparing the open source LSR

switching performance with Quagga Linux software MPLS

forwarding performance. We then conclude the paper with some

remarks about the future potential of OpenFlow MPLS.

8978-0-9836283-0-9 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of ITC 2011

2. OpenFlow MPLS Architecture
Since OpenFlow MPLS is built on top of OpenFlow 1.0, we

briefly review the OpenFlow architecture here, and compare it

with previous control/data plane separation work before

describing the OpenFlow MPLS architecture.

2.1 OpenFlow Architecture
In the canonical OpenFlow 1.0 architecture, the control plane in

network switching and routing equipment is moved into a

separate controller. The controller communicates over a secure

channel with the switches through the OpenFlow protocol.

Software running on the controller “programs” the switches with

flow specifications that control the routes of packets through the

network. For routing purposes, the switches only need to run an

OpenFlow control plane, considerably simplifying their

implementation. An alternative architecture, shown in Fig. 1,

utilizes OpenFlow as the interface between the control and data

planes in the same box, while the control plane talks standard IP

routing protocols with standard network routers and switches. In

this architecture, OpenFlow’s flow-based routing design

simplifies the on-box control plane/data plane interface. The open

source LSR is designed according to the latter architecture.

Fig. 1: Single Box OpenFlow Routing Architecture

The switch data plane in OpenFlow is modeled as a flow table in

which there are three columns: rules, actions, and counters. The

rules column defines the flow. Rules are matched against the

headers of incoming packets. If a rule matches, the actions from

the action column are applied to the packet and the counters in the

counter column are updated. If a packet matches multiple rules,

the rule with the highest priority is applied. Each rule consists of

elements from a ten-tuple of header fields (see Fig. 2, from [9]) or

a wild card ANY. The set of possible actions are: forward as if

OpenFlow were not present (usually utilizing the Ethernet

spanning tree route), forward to the control plane, forward out a

specific port, and modify various header fields (e.g. rewrite MAC

address, etc.).

Fig. 2: Ten-tuple for Rule Matching

2.2 Previous Work
Much previous work exists in the area of control/data plane

separation for routing and switching. Most of the work is

specifically directed at implementing the control plane on a

separate box from the data plane.

A standard for the separation of the control and data plane in

circuit-switched networks is defined by RFC 3292 in the

Generalized Switch Management Protocol (GSMP) [2]. GSMP

models the network elements as cross-bar circuit switches.

Particularly in optical circuit-switched networks, the switches

often have physically separate control networks since it is often

not possible to intercept the control packets from the optical

lambdas, so separation of control and data plane becomes a

necessity, GSMP provides a standardized protocol for those

systems. Many vendors also have proprietary control protocols.

The FORCES protocol [10] provides a standard framework for

controlling data plane elements from a separate controller, but

unlike OpenFlow, FORCES does not define a protocol for

controlling a specific forwarding element. The FORCES

forwarding element model [11] is quite general. OpenFlow, in

contrast, defines a specific forwarding element model and

protocol involving a flow table and ports. FORCES requires each

logical forwarding block in the forwarding element to define its

own control protocol within the FORCES framework.

The OpenFlow architecture is perhaps closest to the Clean Slate

4D architecture defined by Greenberg, et. al. [12] The 4D

architecture re-factors the network control, data, and

management planes into 4 new planes (the “D”s in the name): the

decision plane, the dissemination plane, the discovery plane, and

the data plane. The data plane is much as before, the decision

plane is the OpenFlow controller software, for example NOX

[15], and the dissemination plane is provided by the OpenFlow

protocol. The OpenFlow architecture defines no special support

for discovery. In deployed OpenFlow systems, the controller

provides this function through legacy protocols such as LLDP

[18]. The Tesseract system [13] implements the 4D architecture.

GMPLS [19] provides another architectural approach to

control/data plane separation by extending MPLS to networks

including circuit switches. GMPLS utilizes extensions of

intradomain routing protocols to perform topology discovery, and

RSVP and LMP to establish label-switched paths between

network elements. A network element under GMPLS control can

either also perform forwarding, in which case GMPLS acts as the

control plane for a standard switch or a router, or the network

element can control separate forwarding elements through a

different forwarding element control protocol. If the latter, a

separate switch control protocol, such as GSMP, controls the

switches. GMPLS is restricted to transport networks, it does not

provide support for IP routing even though it uses IP intradomain

routing protocols for connectivity discovery.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 9

There has also been work on control/data plane interfaces for

conventional router implementations when the control and data

plane are implemented on the same box. The Click modular router

toolkit [14] defines interfaces between data plane components that

allow modular data planes to be built, but Click does not specify

any control plane interface. The control plane interface is hidden

behind the individual Click elements. The Xorp router platform

[15] defines a composable framework of router control plane

processes, each of which is itself composed of modular processing

stages. Xorp defines an interface to the data plane through the

Forwarding Engine Abstraction (FEA). The FEA interface allows

different types of data plane implementations, for example Click

or the NetBSD data plane, to be coupled to the control plane

without having to change the entire control plane software base.

The Conman architecture [16] defines a modular data plane and

control plane architecture with a well defined pipe interface

between the two. Our work differs from prior work in this area in

that we have taken an interface that was defined for simplifying

and centralizing the control plane and instead implemented it as

the control/data plane interface on a single box, providing a more

flexible deployment model for cases where a centralized control

plane is impractical.

2.3 OpenFlow MPLS

2.3.1 OpenFlow MPLS Design
MPLS forms flow aggregations by modifying the packet header to

include a label. The label identifies the packet as a member of a

forwarding equivalence class (FEC). A FEC is an aggregated

group of flows that all receive the same forwarding treatment.

A data plane MPLS node implements three header modification

operations:

Push: Push a new label onto the MPLS label stack, or, if

there is no stack currently, insert a label to form a new stack,

Pop: Pop the top label off the MPLS label stack,

Swap: Swap the top label on the stack for a new label.

Fig. 3: OpenFlow Twelve-tuple for MPLS rules

The MPLS label stack is inserted between the IP and MAC (Layer

3 and Layer 2) headers in the packet. MPLS label stack entries

consist of 32 bits, 20 of which form the actual label used in

forwarding. The other bits indicate QoS treatment, top of stack,

and time to live.

The first modification required to OpenFlow is to increase the

size of the tuple used for flow identification. In principle, the size

of the MPLS label stack has no upper bound, but as a practical

matter, most carrier transport networks use a maximum of two

labels: one label defining a service (such as VPN) and one label

defining a transport tunnel. We therefore decided to extend the

header tuple used for flow matching from 10 fields to 12. Only

the actual 20 bit forwarding label is matched, the other bits are not

included. Fig. 3 shows the 12 tuple.

Fig. 4: Virtual Port Table and Virtual Port Table Entry

The next required modification was the addition of the MPLS

header modification actions (push, pop, and swap) to the action

set executed when a rule matches. With the exception of limited

field rewriting, OpenFlow 1.0 actions perform simple forwarding.

The MPLS push and pop actions, in contrast, rewrite the header

by inserting fields into the header. Rather than inserting the

MPLS protocol actions into the basic OpenFlow packet

processing pipeline, we chose instead to isolate them using a

abstraction called a virtual port. A virtual port is an abstraction

mechanism that handles complex protocol specific actions

requiring header manipulation, thereby hiding the complexity of

the implementation. This allows yet more complex header

manipulations to be implemented by composing them out of

simpler virtual port building blocks.

Virtual ports can be hierarchically stacked to form processing

chains on either input or output. On output, virtual ports can be

included in flow table actions just like physical ports. Virtual

ports are grouped together with physical ports into a virtual port

table. Fig. 4 illustrates the virtual port table, together with a table

row. Each virtual port table row contains entries for the port

number, the parent port, the actions to be performed by the virtual

port, and statistics.

The MPLS actions in the virtual port table consist of the

following:

push_mpls: Push a 32 bit label on the top of the MPLS label

stack , and copy the TTL and QoS bits from the IP header or

previous MPLS label,

10 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

pop_mpls: Pop the top label on the MPLS stack, and copy the

TTL and QoS bits to the IP header or previous MPLS label,

swap_mpls: Swap the 20 bit forwarding label on top of the

MPLS stack.

decrement_ttl: Decrement the TTL and drop the packet if it

has expired.

copy_bits: Copy the TTL and QoS bits to/from the IP header

or previous MPLS label

We also added a counter to the OpenFlow statistics that is

incremented every time a virtual port drops a packet due to the

expiration of the TTL.

The OpenFlow protocol was extended with the following

messages to allow the controller to program label switched paths

(LSPs) into the switches:

vport_mod: Add or remove a virtual port number. Parameters

are the parent port number, the virtual port number, and an

array of virtual port actions,

vport_table_stats: Return statistics for the virtual port table.

The statistics include maximum virtual ports supported by

the switch, number of virtual ports in use, and the lookup

count, port match count, and chain match count.

port_stats: The OpenFlow port_stats message applies to

virtual ports as well, but only the tx_bytes and tx_packets

fields are used.

Finally, the OpenFlow switch_features_reply message was

modified to include a bit indicating whether the switch supports

virtual ports.

2.3.2 NetFPGA Implementation
NetFPGA is a PCI card that contains a Virtex-2 Xilinx FPGA, 4

Gigabit Ethernet ports, SRAM and DDR2 DRAM [4]. The board

allows researchers and students to build working prototypes of

line speed network hardware.

The MPLS implementation extends the OpenFlow 10 tuple with

two additional fields for MPLS labels, and adds virtual port

functionality to support MPLS-specific actions. Fig. 5 shows the

functional block diagram of the NetFPGA design. Our

implementation of OpenFlow MPLS in NetFPGA is based on the

OpenFlow v0.89 reference implementation for NetFPGA.

OpenFlow v0.89 differs slightly from OpenFlow 1.0 in that

OpenFlow 1.0 supports VLAN type and IP ToS headers whereas

v0.89 doesn’t. We used v0.89 because it was available at the time

the work was done, since these features aren’t necessary for the

open source LSR and would have taken up valuable FPGA

memory (only 5% of NetFPGA Virtex-2 FPGA remained empty

after implementing MPLS OpenFlow), we decided not to update.

As packets arrive, a lookup key is created by concatenating the 12

fields together. The lookup key is used in parallel by two lookup

engines, one performing exact match using two CRC hash

functions and the other one doing wildcard match using a TCAM.

Each of the exact and wildcard tables has 32 entries. The result of

these lookup operations is fed into a match arbiter that always

prefers an exact match to a wildcard match. The OpenFlow

actions associated with the match are then performed. If the action

involves a port, the port number is checked to see if the number

matches a virtual port. If it does, the virtual port header

manipulation actions are performed.

In the OpenFlow MPLS implementation, virtual ports implement

the MPLS actions: push a new label, pop the top of the stack

label, decrement the TTL, copy the TTL and copy the QoS bits.

As an optimization, the swap operation is handled by an

OpenFlow rewrite action instead of in the virtual port. If the

copy_bits action is performed during a push operation, it copies

the TTL/QoS bits from previous MPLS label, and if it is done as

part of pop operation, the TTL/QoS bits of current label are

copied to the previous label. If only one MPLS label exists, IP

TTL or IP ToS is the source or target instead. The decrement_ttl

action decrements the TTL value for the top of the stack label and

drops the packet when the label value hits zero. To decrement the

MPLS TTL, without any push/pop operation or as part of a swap

action, the packet is forwarded to a pop virtual port with the pop

and copy TTL/QoS functionality disabled.

Virtual ports can be concatenated together for up to two layers to

perform two push or two pop operations in one NetFPGA card.

The last virtual port in the chain forwards the packet to a physical

port on output, or the first virtual port accepts a packet from a

physical port on input.

Fig. 5: OpenFlow-MPLS on NetFPGA Block Diagram

The last 8 positions in the wildcard table are always filled by

default entries to handle forwarding unmatched packets to the

control plane. For each of the 4 NetFPGA ports, there is one entry

at the bottom of the wildcard table that has everything except an

incoming port wildcarded. If a packet doesn’t match any other

entry in the table, it will at least match that default entry and is

forwarded to the DMA port corresponding to its input port. The

packet is then received by the OpenFlow kernel module running

on the host machine and is forwarded to the control plane.

Similarly, packets coming from the control plane, are sent out on

a DMA port by the OpenFlow kernel module, and are received by

NetFPGA. There are 4 default rules in the wildcard table that

match on the packets coming from each of the 4 DMA ports and

forward them to corresponding output port.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 11

3. Open Source Label Switched Router

3.1 OpenFlow-MPLS LDP Control Plane
As a demonstration of OpenFlow MPLS, we built a low-cost label

switched router (LSR) consisting of a NetFPGA board running

OpenFlow MPLS in a PC running the Linux OpenFlow driver,

and the Quagga open source routing stack, including Quagga LDP

and MPLS Linux [22]. In this model, the OpenFlow controller

runs on the same box as the NetFPGA LSR and acts as the control

plane only for the NetFPGA on the box as is the case in standard

routers and switches, in contrast to the canonical OpenFlow

model discussed in Section 2.1. Fig. 6 contains a block diagram of

the open source LSR. The entire bill of materials for the open

source LSR was around $2000.

LDP, the Label Distribution Protocol [8], connects the open

source LSR with other forwarding elements in the network. LDP

allows two devices to form an adjacency and establish label

bindings for label switched paths between them. An LDP

neighbor sends a LDP packet to the open source LSR in-band on

one of its connected interfaces. The open source LSR identifies

the packet as part of a LDP flow and forwards it to the control

plane on the box, where it is sent to the Quagga LDP daemon. As

is the case for IP-MPLS routers, the open source LSR exchanges

OSPF route information with external routers so that MPLS paths

can be established along known IP routes.

Fig. 6: Open source LSR Block Diagram

The LDP Daemon maintains and builds a normal LDP adjacency.

Once LDP has formed an adjacency and completed a label

binding, it updates the kernel MPLS LFIB with the corresponding

label information. The LSP Synchronizer is a user level daemon

that polls the MPLS LFIB in the kernel periodically for changes,

and when it detects a change it pushes a an OpenFlow flow

modification into the NetFPGA, enabling data plane packets

received with those labels to be forwarded correctly in hardware.

3.2 Performance Measurements and

Interoperability Verification
The open source LSR is primarily a tool for prototyping new

ideas in networking, in that it offers line speed performance with

the flexibility to change control plane and data plane software.

Consequently, we performed a couple of simple performance tests

against the MPLS Linux to demonstrate the performance

advantage. The tests measured bidirectional throughput for

packets of 68 byes or 1504 bytes in length on a single port. The

results are shown in Fig. 7. As should be clear from the figure,

there is 2 orders of magnitude difference in forwarding

performance between the NetFPGA and MPLS Linux. In

addition, the performance of the NetFPGA LSR was constant

regardless of packet size, whereas the performance of MPLS

Linux decreased for smaller packets.

The NetFPGA was able to maintain line speed performance up to

3 ports, but scaled down to 6 Giga packets/second at 4 ports. This

limitation had nothing to do with the MPLS implementation, other

NetFPGA applications exhibit the same performance profile. Note

that many carefully coded and highly optimized software routers

are able to achieve much better performance than MPLS Linux

exhibited in this study, but our objective here is not to compare

the best software router with hardware, but rather to show the

open source LSR provides good, reasonably scalable performance

in comparison with a widely available, off the shelf software

implementation.

1000 1000

10

100

0

200

400

600

800

1000

1200

68 Bytes 1504 Bytes

Packet Size

M
e
g

a
b

it
s
/S

e
c
o

n
d

open source LSR

mpls-linux

Fig. 7: Comparative Forwarding Performance

We also performed a test to verify that the open source LSR could

be used in a network consisting of standard IP/MPLS routing gear

running the standard IP/MPLS LDP/OSPF control plane. The

network, shown in Fig. 8, consisted of two standard IP/MPLS

routers, the SmartEdge100 [20] and the Juniper M10. All devices

were running OSPF and LDP. The open source LSR was able to

exchange OSPF and LDP messages with the IP/MPLS routers to

set up LSPs through the network.

Finally, we set up a test network to verify that it is possible to

perform MPLS forwarding within a core network without

requiring iBGP. The core test network is shown in Fig. 9. Again,

all devices speak OSPF and LDP. Two Juniper M10 routers

function as label edge routers (LERs) and speak iBGP. The iBGP

packets are routed through the network of open source LSRs. Two

hosts serve as sources and destinations of traffic. The LERs push

and pop MPLS labels onto/off of the host traffic packets to route

through the open source LSR core. Note that while OpenFlow

MPLS is designed to allow an OpenFlow MPLS switch to act as

an LER too, in this case, we wanted to use the M10s to

12 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

demonstrate how the open source LSR could be used to set up a

iBGP free core. The addition of a BGP module to the control

plane on the open source LSR would allow it to act as an LSR.

Fig. 8: Interoperability Test Network

Fig. 9: Core Interoperability Test Network

4. Summary and Conclusions
In this paper, we described an extension of the OpenFlow

forwarding element control interface and model to include MPLS.

The extension involves modifying the OpenFlow flow table

entries to include two MPLS labels and defining an extension of

the OpenFlow port model to allow definition of virtual ports. The

virtual ports implement the MPLS per packet processing

operations. An extension to the OpenFlow protocol allows the

controller to program the OpenFlow MPLS forwarding element to

match and process MPLS flows.

The extension to OpenFlow was implemented on OpenVSwitch,

the Stanford reference software switch (both user and kernel

modules), and on the NetFPGA hardware. The NetFPGA

implementation supports up to 2 virtual ports for MPLS. A

demonstration system, the open source LSR, was built using

OpenFlow as the control/data plane interface for a NetFPGA

running on the same PC as the control plane. This use of

OpenFlow is in contrast to the canonical architecture in which a

whole network of switches is controlled by one OpenFlow

controller.

Some simple performance tests were run comparing the open

source LSR to MPLS Linux for prototyping purposes. The tests

demonstrated that the open source LSR could significantly

improve the performance of forwarding in prototype networks.

An interoperability demonstration system was built using the

open source LSR and two standard Internet routers capable of

MPLS routing. The routers exchange LDP with the open source

LSRs and each other to set up LSPs through the network. Finally,

a prototype iBGP free core network was set up that performs

MPLS forwarding without the need for IP routing or iBGP

speakers. The network consisted of two hosts connected up to

routers and a collection of open source LSRs. No interoperability

problems were found.

Going forward, the success of MPLS in OpenFlow 1.0 has led to

the incorporation of MPLS into the next version of OpenFlow,

OpenFlow 1.1. Support for MPLS in the canonical OpenFlow

centralized control plane model is necessary to utilize MPLS in

OpenFlow 1.1. For the open source LSR model, the current

NetFPGA 1G only supports a realistic maximum of 32 flows,

which is really too few for production use, even in a small campus

testbed. The NetFPGA 10G [21] is a much better platform and is

the target for future work. In addition, a port to NetBSD is

planned, since the MPLS implementation in NetBSD is more

stable. Code for the open source LSR is available at

http://code.google.com/p/opensource-lsr.

5. ACKNOWLEDGMENTS
The authors would like to thank Andre Khan for his founding

contribution during the initial phases of the design, and Nick

McKeown for his helpful direction during the design of the virtual

port abstraction.

6. REFERENCES
[1] “OpenFlow: Enabling Innovation in Campus Networks”,

McKeown, N., et. al., March, 2008,

http://www.openflowswitch.org//documents/openflow-wp-

latest.pdf.

[2] Doria, A., Hellstrand, F., Sundell, K., Worster, T., ”General

Switch Management Protocol (GSMP)”, RFC 3292, June

2002.

[3] Rosen, E., Viswanathan, A., and Callon, R., “Multiprotocol

Label Switching Architecture”, RFC 3031, Internet

Engineering Task Force, January, 2001.

[4] http://www.netfpga.org.

[5] http://www.quagga.net.

[6] http://openvswitch.org.

[7] http://www.isocore.com/mpls2010/program/abstracts.htm#w

ed1_5.

[8] Andersson, L., Minei, I., Thomas, B., “LDP Specification”,

RFC 5036, Internet Engineering Task Force, October, 2007.

[9] OpenFlow Switch Specification V1.0.0,

http://www.openflowswitch.org/documents/openflow-spec-

v1.0.0.pdf.

[10] Doria, A., Ed., Salim, J., Ed., Haas, R., Ed., Khosravi, H.,

Ed., and Wang, W., Ed., “Forwarding and Control Element

Separation (ForCES) Protocol Specification”, RFC 5810,

Internet Engineering Task Force, March 2010.

[11] Halpern, J., and Salim, J., “ForCES Forwarding Element

Model”, RFC 5812, Internet Engineering Task Force, March

2010.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 13

[12] Greenberg, A. et. al., “A Clean Slate 4D Approach to

Network Control and Management,” Proceedings of ACM

SIGCOMM, 2005.

[13] Yan, H., Maltz, D., Ng, E., Gogineni, H., Zhang, H., and

Cai, Z., “Tesseract: A 4D Network Control Plane”,

Proceedings of the 4th USENIX Symposium on Networked

Systems Design & Implementation, pp. 369–382, March,

2007.

[14] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kasshoek,

F., “The Click Modular Router”, Operating Systems Review,

34(5), pp 217{231, December, 1999.

[15] Handley, M., Hodson, O., and Kohler, E., “XORP goals and

architecture” , Proceedings of the ACM SIGCOMM Hot

Topics in Networking, 2002.

[16] Ballani, H., and Francis, P., “CONMan: A Step Towards

Network Manageability”, Proceedings of the ACM

SIGCOMM Workshop on Internet Network Management,

September, 2006.

[17] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M.,

McKeown, N., Shenker, S., “NOX: Towards an Operating

System for Networks”, Computer Communications Review,

July, 2008.

[18] IEEE standard 802.1ab, “802.1ab rev – Station and Media

Access Control Connectivity Discovery”, September, 2009.

[19] Farrel, A. ad Bryskin, I., GMPLS: Architecture and

Applications, Morgan Kaufmann Publishers, Amsterdam,

412pp., 2006.

[20] http://www.ericsson.com/ourportfolio/network-

areas/se100?nav=networkareacategory002%7Cfgb_101_504

%7Cfgb_101_647.

[21] http://netfpga.org/foswiki/NetFPGA/TenGig/Netfpga10gInitI

nfoSite.

[22] http://sourceforge.net/apps/mediawiki/mpls-

linux/index.php?title=Main_Page.

14 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

