
22 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Openflow switching: data plane performance / Bianco, Andrea; Birke, ROBERT RENE' MARIA; Giraudo, Luca; Palacin,
M.. - STAMPA. - (2010). ((Intervento presentato al convegno IEEE ICC, IEEE International Conference on
Communications, 2010 tenutosi a Cape Town (SA) nel 23-27 May 2010 [10.1109/ICC.2010.5502016].

Original

Openflow switching: data plane performance

Publisher:

Published
DOI:10.1109/ICC.2010.5502016

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2371343 since:

IEEE

OpenFlow Switching: Data Plane Performance
Andrea Bianco, Robert Birke, Luca Giraudo, Manuel Palacin

Dipartimento di Elettronica, Politecnico di Torino, Italy
Email: {andrea.bianco, robert.birke, luca.giraudo}@polito.it, manuelpalacin@gmail.com

Abstract—OpenFlow is an open standard that can be imple-
mented in Ethernet switches, routers and wireless access points
(AP). In the OpenFlow framework, packet forwarding (data
plane) and routing decisions (control plane) run on different
devices. OpenFlow switches are in charge of packet forwarding,
whereas a controller sets up switch forwarding tables on a per-
flow basis, to enable flow isolation and resource slicing. We focus
on the data path and analyze the OpenFlow implementation in
Linux based PCs. We compare OpenFlow switching, layer-2 Eth-
ernet switching and layer-3 IP routing performance. Forwarding
throughput and packet latency in underloaded and overloaded
conditions are analyzed, with different traffic patterns. System
scalability is analyzed using different forwarding table size, and
fairness in resource distribution is measured.

I. INTRODUCTION

Networks are a critical element for companies and insti-
tutions, because a network failure may dramatically influ-
ence business activities. Therefore, network administrators are
struggling to ensure high network availability. On the other
hand, there is an increasing need for researchers to experiment
on real networks new protocols and technologies. However,
running experiments on the production network may be risky,
and deploying a separate research network is often too costly
and does not allow researchers to scale the network to large
size. Programmable networks and network virtualization are
just two among the technologies that may help in solving
this dilemma, allowing researchers to operate on real networks
without challenging production traffic or network availability.

The OpenFlow technology allows network administrators
to segment telecommunication networks by properly program-
ming network devices. OpenFlow devices identify traffic flows
following forwarding rules established by network managers.
OpenFlow provides a flow-based network virtualization frame-
work to avoid interferences among different flows. Further-
more, the network administrator can delegate the management
of network segment/s to the researchers, as if it was a com-
pletely independent network. Finally, OpenFlow switches are
deployed into UNIX/Linux platforms and available in Ethernet
switches/routers from different vendors.

Virtualization is a key element to provide flow isolation.
Other technologies, like VPN (Virtual Private Network). Eth-
ernet VLANs (IEEE 802.1Q), MPLS tunneling, or even Frame
Relay and ATM, provide flow isolation. However, they often
lack easy management or flexibility, being tailored to a specific
set of protocols. Some research projects, e.g. GENI [1],
FEDERICA [2], try to develop a programmable network in
which a researcher can obtain a slice of resources (network,
CPU, RAM, disk...) to run its experiments. This approach

is very ambitious, but it may require several years to be
deployed, and it may turn out to be rater costly. OpenFlow is
largely protocol independent and readily available on currently
running networks. This justifies the interest of the research
community for this approach.

Since OpenFlow is a relatively new technology currently
under deployment, several research issues should be solved:
among others, robustness, ease of management, performance
and scalability. In this paper we focus on the OpenFlow
data plane performance. We compare OpenFlow with Ethernet
switching and IP routing functionalities in a Linux environ-
ment. Experiments were run in our Lab on a Linux PC
exploiting an HW traffic generator to stress packet forwarding
capabilities of the PC under test. Besides absolute performance
values, which clearly depend on the specific hardware and
software architecture, OpenFlow showed good forwarding
performance and fairness properties.

II. BRIEF INTRODUCTION TO OPENFLOW

We briefly outline the main characteristics of OpenFlow. A
more detailed and exhaustive documentation is available in the
OpenFlow white paper [3] and in the OpenFlow specification
[4].

The OpenFlow network architecture comprises several
OpenFlow switches, one (or more) controller, a secure channel
that interconnects the switch with the controller, and the
OpenFlow protocol for signaling between the switches and
the controller.

A classical IP router or Ethernet switch runs both the data
and the control plane. The data plane is in charge of packet
forwarding, whereas routing decisions are taken in the control
plane. OpenFlow separates data and control plane functions:
packet forwarding is executed in the OpenFlow switch on the
basis of a flow table, whereas high-level routing decisions
are moved to a separate OpenFlow controller. A proprietary
protocol defines the messages exchanged between an Open-
Flow switch and an OpenFlow controller: messages include
information on received packets, sent packets, forwarding
table modifications, statistics collection, etc. When the switch
receives a packet that does not match any entry in the flow
table, it sends the packet to the controller. The controller may
drop the packet or may add a flow entry in the switch flow
table, to force the switch to forward packets belonging to the
same flow on a given path.

Each entry in the flow table of an OpenFlow switch contains
a set of packet header fields, an action to be performed on
packets matching the header field, and flow statistics. The

978-1-4244-6404-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

Authorized licensed use limited to: Politecnico di Torino. Downloaded on July 07,2010 at 07:42:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Test Setup

packet header field includes: port id; VLAN tag; Ethernet
type, source and destination address; IP protocol type, source
and destination address; UDP/TCP source and destination port.
Examples of possible actions are: send the packet to output
port i, modify packet header field f or drop the packet. Flow
statistics include number of packets and bytes for each flow,
and the time since the last packet matched the flow (to ease
the task of inactive flow removal).

Two types of OpenFlow switch can be identified. The first
one is the hardware-based commercial switch, which typically
uses TCAMs and a proprietary operating system to implement
the flow table and the OpenFlow protocol. The second one is
the software-based switch that use UNIX/Linux systems to
implement the OpenFlow switch functions. Two flow tables
are managed in the software based OpenFlow switch. The first
one is named linear table and exploits wildcards in the packet
header fields to match packets to flows. This table is of small
size: it contains only 100 entries. The second table is an exact
match table, exploiting a hashing function, and contains up to
131072 entries.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The test machine
(TM) is a standard PC mounting a C2SBX mainboard from
Supermicro, an Intel Core2 Duo processor and 8 Gbyte of
DDR3 1066 MHz RAM. Network connectivity is provided by
two Intel PRO/1000 PT dual port 1 Gbit/s NICs plugged into
PCI-Express bus. The operating system is Linux Ubuntu 8.10,
kernel version 2.6.27, with bridging and NAPI enabled.

Each test is based on synthetic traffic generated using an
Agilent N2X router tester [5] equipped with Gigabit Ethernet
modules. The use of the router tester ensures both bottleneck-
free traffic generation and high measurement precision not
achievable with standard PCs and software traffic generators.
Results are averaged over three runs lasting 60 seconds each.

Two port pairs are used (except for the fairness tests) to
interconnect directly the TM and the router tester. Traffic is
sent to the TM over the first link and collected over the second
one. In the case of the fairness tests, the two links are both
used to send traffic to the TM, and a third link (the dashed
one in Fig. 1) is used to sink the traffic. All links use UTP
cat 5e cabling.

Switching tests use directly the Linux kernel implementa-
tion of a 802.1d bridge. The bridge-utils software suite is used
to create a virtual switch and to connect the test interfaces to it.
Routing is performed using the IP forwarding engine available
in the Linux kernel. OpenFlow tests use version 0.8.9r2.

 0

 200

 400

 600

 800

 1000

64 96 128 256 512 1024 1500

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Packet Size [Bytes]

Offered Load
Routing

Openflow
Switching

Fig. 2. Maximum single flow throughput versus packet size.

IV. RESULTS

We present the main results of the experiments run in our
lab to compare the performance of OpenFlow to the ones
achievable by standard L-2 and L-3 forwarding. We mainly
focus on achieved throughput as the main comparison metric,
although we discuss packet latency in some scenarios.

A. Single-flow Performance

We start comparing the three technologies assessing the
maximum throughput as a function of the packet size in Fig. 2,
with single-entry forwarding tables. Using a single flow per-
mits to assess the maximum throughput, because it minimizes
the table lookup cost and it benefits from caching techniques.
The offered input load is also plotted as a reference.

As expected, in all three cases, performance increases with
packet size. This is due to the well-known fact that the
operations performed to forward packets scale with the number
of packets. Thus, the smaller the packet size, the higher
the load on the CPU, which becomes the bottleneck. Both
routing and OpenFlow perform well, being able to almost
match the offered load, if not for small packet size. Having a
single flow means that IP routing exploits the internal (hash-
based) cache, which simply tests the IP header without the
need to perform a demanding longest-prefix look-up operation.
Thus, the small difference between OpenFlow and routing
performance can be credited to the fact that the OpenFlow
switch has to consider additional header fields with respect to
the L-3 forwarder. Strangely enough, switching performs quite
worse than the other two forwarding techniques. We could not
find any explanation for this, apart from the suspicion that
the bridging code is not optimized. However, starting from
256-byte packets, all three forwarding techniques are able to
achieve the full wire speed.

Since small packets are the worst case, we take a slightly
deeper look at this scenario. Fig. 3 and Fig. 4 report throughput
and latency for 64-byte packets for different input loads. As
expected, thanks to NAPI, the throughput reaches a saturation
level and does not suffer from performance drops after the
peak has been reached. From the latency plot, it is easy

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

Authorized licensed use limited to: Politecnico di Torino. Downloaded on July 07,2010 at 07:42:38 UTC from IEEE Xplore. Restrictions apply.

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Offered Load [%]

Offered Load
Routing

Openflow
Switching

Fig. 3. Single 64-byte packet flow throughput.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

L
at

en
cy

 [
us

]

Offered Load [%]

Routing
Openflow
Switching

 20
 22
 24

 26
 28
 30

 5 10 15 20 25

Fig. 4. Single 64-byte packet flow latency.

to discern the underloaded from the overloaded region. The
results are very similar for all three technologies. In the
underloaded region, the average latencies are quite small
(slightly less then 30 µs).

B. Multi-flow Performance

We consider now the effects of the forwarding table size.
We perform tests with three different table size: 8K , 64K and
128K, labelled in Fig. 5 as (s)mall, (m)edium and (l)arge. The
large table is set to 128K entries because this is the maximum
table size supported by the OpenFlow software.

To fill up the forwarding tables, we use bash scripts.
The routing table is filled with C-class networks, while the
OpenFlow rules are created using both different UDP source
and destination port numbers. An extra note is needed for
the switching table. This table is usually created automatically
adding entries through the backward learning algorithm: en-
tries are removed after a timeout expiration. Hence, no explicit
commands to manipulate the table content are provided. To fill
up the table, we set the timeout value to one hour, and, before
starting any test, we send through the switch a proper number
of packets with different source addresses.

 0

 200

 400

 600

 800

 1000

 1200

96 128 256 512 1024 1500

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Packet Size [Bytes]

S M L
S M L

S M L

S M L
S M L S M L

Offered Load
Routing

Openflow
Switching

Fig. 5. Maximum throughput for different packet and forwarding table size.
Each bar within the groups of three refers to different table size: (s)mall 8K,
(m)edium 64K and (l)arge 128K entries.

To minimize the beneficial effects of caching techniques,
which would make the comparison more difficult, we generate
packets with random header fields (uniform distribution within
the admissible range). More precisely, we use packets with
randomly generated destination IP addresses for the routing
tests, UDP port numbers for OpenFlow tests and destination
MAC addresses for switching.

Fig. 5 presents the results. For each packet size, three
columns are plotted: one for each table size. Furthermore,
in each column the offered load and throughput achieved
by the three forwarding engines are superimposed: offered
load is plotted first, in the background, then, moving to the
foreground, routing, OpenFlow and switching.

As expected, the larger the size of the forwarding table,
the worse the achieved performance. However, while for both
routing and OpenFlow the performance degradation is quite
limited, the effect on switching is disastrous. For 96-byte pack-
ets, routing and OpenFlow present a relative performance drop
of 0.1%, 5.4%, 8.9% and 0.6%, 5.0%, 11.3% respectively, for
the three table size. Switching instead looses an astonishing
13.6%, 70.4%, 89.5%, with a throughput smaller than 10% of
the link capacity in the worst case. Of course, increasing the
packet size helps. Routing and OpenFlow need at least 256
byte packets to achieve wire-speed, for small table size. In
the case of switching, the minimum packet size to obtain wire
speed becomes 1024 bytes.

C. OpenFlow Table Types: Hash vs Linear

Up to now, we considered only exact matches for the
OpenFlow forwarding rules. However, OpenFlow permits to
set up rules with wildcards. The rules for exact matching are
stored in a hash table, while the wild-card table is implemented
using a linear search table allowing for up to 100 entries. The
two tables are organized in a chain, and priority is given to
the hash table matching.

Fig. 6 reports throughput performance when using the two
tables for different packet size. Despite the small table size,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

Authorized licensed use limited to: Politecnico di Torino. Downloaded on July 07,2010 at 07:42:38 UTC from IEEE Xplore. Restrictions apply.

 0

 200

 400

 600

 800

 1000

96 128 256 512 1024 1500

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Packet Size [Bytes]

Offered Load
Hash: 128K entries
Linear: 100 entries

Fig. 6. OpenFlow throughput versus packet size with different table types.

 0

 200

 400

 600

 800

 1000

100%
/0%

90%
/10%

70%
/30%

50%
/50%

30%
/70%

10%
/90%

0%
/100%

T
hr

ou
gh

pu
t [

M
bi

t-
s]

Traffic Mix Hash/Linear [%]

Entries: Hash 96K / Linear 100
Entries: Hash 128K / Linear 100

Fig. 7. OpenFlow throughput when varying the traffic mix for hash and
linear tables.

the throughput achieved, when using the linear table only, is
lower than the throughput of the hash table. The performance
drop for 96-byte packets is about 33%.

Fig. 7 shows that mixing up traffic of flows that are
forwarded using both tables does not modify forwarding
performance too much. As expected, performance is always
bounded by those obtained when using, respectively, the hash
table only and the linear table only. The performance drop is
proportional to the amount of traffic matching the linear table.
This is due to the fact that the table chain smartly puts the
hash table before the linear table.

The hash table should find the match in constant time,
independently of the table size, while the lookup operation
within the linear table should be directly proportional to its
size. To verify this, we tried to estimate the average per packet
processing time Tp. To estimate Tp, we use the model shown
in Fig. 8: the packet latency L is the sum of the transmission
time Tt, the propagation delay D for both the forward and
reverse direction plus Tp. Therefore:

Tp = L − 2(Tt + D) (1)

Fig. 8. Timing model to estimate the processing time from latency
measurements.

L is measured by the router tester, Tt depends on the packet
size S and the link capacity C (Tt = S

C) which are known.
Since the UTP cables are short (3 meters), D is negligible.

Table I shows the computed processing times for different
table size, table types and packet size. If we read the table by
rows, the hash processing time is constant and independent
of the table size. More surprisingly, also the linear table
processing time seems to be constant and independent of the
table size. This is in contrast with our expectations. Since
the maximum table size is rather small, we believe that the
effect of the table size is too small to be measurable if
compared to other delay variations induced for example by
CPU scheduling.

Reading the table by columns, we observe that the pro-
cessing time is constant with respect to the packet size. This
confirms two well-known facts: i) forwarding delay is a per
packet operation, and ii) with small packets, performance is
limited by the CPU.

D. Fairness

The fairness test uses two different flows. The first flow F1
has a fixed rate equal to 10% of the link capacity. The second
flow F2 has a variable input load (40%, 50%, 60% and 90%
of link capacity), and is used to overload the system. Both
flows use 96-byte packets, and the forwarding table has 64K
entries.

We measured fairness looking at the loss probability PL

for the two flows. In particular, we consider as a fairness
parameter the difference between the two loss probabilities
(PLF1 − PLF2). If the difference is zero, the same relative
amount of packets is lost by both flows, and the system is
fairly managing the flows. If the difference is positive/negative,
F1/F2 is obtaining more than its fair share.

Furthermore, we considered two different scenarios. In the
first one, one input port is used for both flows, the same setup
used for all other tests. In the second one, the two flows arrive
at different input ports. In both cases, a free output port is
connected to the traffic generator to collect statistics.

Results for the first scenario are reported in Fig. 9. We
observe that all three forwarding technologies are quite fair:
the packet loss difference is always smaller than 1.5%. Within

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

Authorized licensed use limited to: Politecnico di Torino. Downloaded on July 07,2010 at 07:42:38 UTC from IEEE Xplore. Restrictions apply.

Linear Table Size Hash Table Size
Packet Size [byte] 1 25 50 75 100 1 32K 64K 96K 128K

96 28,18 28,18 28,18 28,18 28,18 28,18 28,18 28,18 28,18 28,18
128 28,66 28,66 28,66 28,66 27,66 28,66 28,66 28,66 28,66 28,66
256 29,62 29,62 28,62 28,62 28,62 29,62 29,62 29,62 29,62 29,62
512 28,52 28,52 28,52 28,52 28,52 28,52 28,52 28,52 28,52 28,52
1024 28,33 29,33 29,33 29,33 29,33 28,33 28,33 28,33 29,33 29,33
1500 25,71 25,71 25,71 26,71 26,71 25,71 26,71 26,71 26,71 26,71

TABLE I
ESTIMATED OPENFLOW PACKET PROCESSING TIMES [µS] FOR DIFFERENT TABLE TYPES AND SIZE.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

10/40 10/50 10/60 10/90

D
if

fe
re

nc
e

in
 P

L
 [

%
]

Input load F1/F2 [%]

Routing
Openflow
Switching

Fig. 9. Fairness test when flows are generated on a single link, for a packet
size of 96 byte.

this small range, OpenFlow seems to do slightly better and
switching slightly worse.

For the second scenario, the results are quite different
(Fig. 10): flow F1 is given higher priority. The reason is the
NAPI deficit round robin scheduler used within the Linux
kernel, that gives service to the different network interfaces.
The deficit round robin scheduler ensures a max-min fairness
mechanism, which privileges the smaller flow (F1 in our
case). The more the system is overloaded, the more this
effect is evident. Both routing and OpenFlow clearly show this
behaviour, and OpenFlow is slightly fairer. Instead, switching
is already overloaded even at the lowest load. Having reached
a saturation point, no difference can be observed by further
increasing the load of the second flow.

V. CONCLUSIONS

The OpenFlow implementation in Linux systems is able
to offer very good performance. The hash table performance
matches almost always the ones obtained by the layer-3 rout-
ing. Only when the system is overloaded, e.g., small packets
load the switch, throughput performance becomes slightly
worse. Roughly a performance drop of 11% is measured for
64-byte packets only, which reduces to 3.5% for 96-byte pack-
ets and 128K forwarding table entries (hash table). When using
the linear table (wildcards), performance becomes worse than
those of the hash-based case, but wire speed is reached with
packets larger or equal to 256-byte. Finally, OpenFlow shows

 0

 20

 40

 60

 80

 100

 120

10/40 10/50 10/60 10/90
D

if
fe

re
nc

e
in

 P
L
 [

%
]

Input load F1/F2 [%]

Routing
Openflow
Switching

Fig. 10. Fairness test when flows are generated on two different links, for a
packet size of 96 byte.

good fairness capability in dealing with multiple flows. In
summary, the ability to handle up to 128K exact matches and
up to 100 wild-card matches, combined with good throughput,
latency and fairness performance, seems an encouraging result
toward the use of OpenFlow in production networks.

Surprisingly, the Layer-2 switching Linux implementation
shows a performance drop of about 40% and 30% respectively
with respect to layer-3 routing and OpenFlow for single 64-
byte packet flows. Furthermore, layer-2 switching suffers large
forwarding tables: in the worst case of 96-byte packets and
128K table entries, layer-2 switching is unable to sustain an
input load of 10%.

ACKNOWLEDGMENTS

These activities were developed in the framework of the
FEDERICA project, funded by the European Commission.

REFERENCES

[1] GENI: Global Environment for Network Innovations. Web site: http://
geni.net.

[2] FEDERICA: Federated E-infrastructure Dedicated to European Re-
searchers Innovating in Computing network Architectures http://www.
fp7-federica.eu/.

[3] OpenFlow: Enabling Innovation in Campus Networks. Web site: http:
//www.OpenFlowswitch.org/documents/OpenFlow-wp-latest.pdf

[4] OpenFlow Switch Specification v0.8.9. Brandon Heller
(brandonh@stanford.edu). Web site: http://www.OpenFlowswitch.
org/documents/OpenFlow-spec-v0.8.9.pdf

[5] Agilent N2X router tester. Web site: http://advanced.comms.agilent.com/
n2x/

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

Authorized licensed use limited to: Politecnico di Torino. Downloaded on July 07,2010 at 07:42:38 UTC from IEEE Xplore. Restrictions apply.

