
THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY
Int J Med Robotics Comput Assist Surg 2009; 5: 423–434. ORIGINAL ARTICLE
Published online 20 July 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcs.274

OpenIGTLink: an open network protocol
for image-guided therapy environment

Junichi Tokuda1*, Gregory S.
Fischer2, Xenophon
Papademetris3, Ziv Yaniv4, Luis
Ibanez5, Patrick Cheng4, Haiying
Liu1, Jack Blevins6, Jumpei
Arata7, Alexandra J. Golby1,8,
Tina Kapur1, Steve Pieper9,
Everette C. Burdette6, Gabor
Fichtinger10, Clare M. Tempany1

and Nobuhiko Hata1

1Department of Radiology, Brigham and
Women’s Hospital and Harvard Medical
School, 75 Francis Street, Boston, MA
02115, USA; 2Department of Mechanical
Engineering, Worcester Polytechnic
Institute, 100 Institute Road, HL 130,
Worcester, MA 01609, USA; 3Diagnostic
Radiology and Biomedical Engineering,
Yale University School of Medicine, 300
Cedar Street, TAC N119, New Haven, CT
06511, USA; 4Department of Radiology,
Georgetown University Medical Centre,
2115 Wisconsin Avenue, Washington DC,
USA; 5Kitware Inc., 28 Corporate Drive,
Clifton Park, NY 12065, USA; 6Acoustic
MedSystems, Inc., Suite 301, 206
N.Randolph St., Champaign, IL 61820,
USA; 7Department of Computer Science
and Engineering, Nagoya Institute of
Technology, Gokiso-cho, Showa-ku,
Nagoya, Aichi 466-8555, Japan;
8Department of Neurosurgery, Brigham
and Women’s Hospital and Harvard
Medical School, 75 Francis Street, Boston,
MA 02115, USA; 9Isomics Inc., 55
Kirkland Street, Cambridge, MA 02138,
USA; 10School of Computing, Queen’s
University, 725 Goodwin Hall, 25 Union
Street, Kingston, ON K7L 3N6, Canada

*Correspondence to: Junichi Tokuda,
Surgical Planning Laboratory,
Department of Radiology, Brigham and
Women’s Hospital, 75 Francis Street,
ASB-I, Room L1-050, Boston, MA 02115,
USA. E-mail: tokuda@bwh.harvard.edu

Accepted: 31 May 2009

Abstract

Background With increasing research on system integration for image-
guided therapy (IGT), there has been a strong demand for standardized
communication among devices and software to share data such as target
positions, images and device status.

Method We propose a new, open, simple and extensible network
communication protocol for IGT, named OpenIGTLink, to transfer transform,
image and status messages. We conducted performance tests and use-case
evaluations in five clinical and engineering scenarios.

Results The protocol was able to transfer position data with submillisecond
latency up to 1024 fps and images with latency of <10 ms at 32 fps. The use-
case tests demonstrated that the protocol is feasible for integrating devices
and software.

Conclusion The protocol proved capable of handling data required in the
IGT setting with sufficient time resolution and latency. The protocol not
only improves the interoperability of devices and software but also promotes
transitions of research prototypes to clinical applications. Copyright 2009
John Wiley & Sons, Ltd.

Keywords image-guided therapy; surgical navigation; network communication
protocol

Introduction

Standardization of communication among devices and software in the
operating room (OR) environment is a common issue in image-guided
therapy (IGT) (1). Today it is quite common to locate surgical tools
relative to the patient’s body by using position and orientation tracking
systems with optical (2), electromagnetic (3) or ultrasonic (4,5) sensors,
or to acquire images using real-time ultrasound, computed tomography or
magnetic resonance imaging (MRI). This localization and image information
is transferred from acquisition devices to navigation software for visualization
and guidance. In addition, with increasing research on robotic devices that
support image-guided interventions, there has been a strong demand for
communication standards among these devices and navigation software to
allow sharing of information such as target positions, images and device
status.

There have been sporadic efforts to standardize the interconnections
between medical devices and computers. The ISO 11 073/IEEE 1073
Standard for Medical Device Communication (6) defines transportation

Copyright 2009 John Wiley & Sons, Ltd.

424 J. Tokuda et al.

profile (IEEE 1073.3.1) and physical layer (IEEE
1073.4.1) to allow plug-and-play operation for bedside
device communication. CANOpen (EN 50 325-4) (7),
which is an application layer for Controller-Area Network
(CAN) (ISO 118 988) (8), has also been used. In addition
to those standards in physical and transportation layers of
device connections, Massachusetts General Hospital and
the CIMIT are leading an initiative called Medical Device
Plug-and-Play (MD PnP) to facilitate interoperability
among a number of medical devices in the OR (9).

With the increasing number of IGT applications and the
availability of Ethernet in the IGT environment, standard-
ization of information and communication technology is
more important than ever (1). In particular, Ethernet is
becoming a frequent choice for communication between
devices and computers in the clinical research setting
because of its availability, flexibility and bandwidth. Most
modern personal computers have Ethernet interfaces and
run operating systems supporting the TCP/IP model,
which is the foundation of most network applications.
DICOM (10) is a well-known standard for the transfer of
image data through TCP/IP networks, as well as archiving
the image data in storage or a database, and has been
playing an important role in IGT. Recently, the DICOM
Working Group 24 has been compiling surgical workflow
models to determine the standard for integrating infor-
mation about patient equipment and procedure (11).
Despite the availability of DICOM in hospital networks,
it has not been practical in IGT applications involving
real-time imaging applications, e.g. ultrasound-guided
interventions. This is due in part to the fact that DICOM
contains large amounts of redundant information that
make data packets unfeasibly large for sequential image
transfer at sub-second frame rates, and most DICOM
implementations are not tuned for real-time applications.
Furthermore, there is no standard protocol for transfer-
ring synchronized image and tracking data through a
single connection.

To address this gap in the standards, IGT system ven-
dors have created proprietary research interfaces for their
own products. For example, BrainLAB’s interface, Vec-
torVision Link (VVLink) (12–14), allows for output of
multiple images, tools, labelled points and streaming
bitmaps into the host system. Medtronic’s StealthSta-
tion product and Intuitive Surgical’s DaVinci robot
contain network interfaces similar to those used in
research projects (15,16). A perennial problem of pro-
prietary interfaces is that those protocols or libraries
are designed only for specific hardware/software, forc-
ing academic researchers to negotiate access privileges
and then customize their software to particular imag-
ing and tracking devices. This prevents modularity and
flexibility, and replacing a piece of the system requires
massive overhaul of the communication software and
often renegotiating access rights to proprietary inter-
faces. Making matters worse, vendor-provided protocols
often cause issues of license incompatibility between the
commercial and research software. Thus, several groups

have experimented with standardized network commu-
nication between IGT devices and software. Schorr et al.
proposed an application of the common object request
broker architecture (CORBA) framework to IGT (17).
Defined by the Object Management Group consortium,
CORBA is a remote procedure call standard to achieve
independence of programming languages and operating
systems (OSs). CORBA lends itself to IGT, where multi-
ple devices and software exchange various types of data
over local networks. Von Spiczak et al. proposed middle-
ware for device connectivity, based on the OpenTracker
library (18,19). Due to its modular design, this library
allows users to add a module for a specific device, after
which they can connect the device to any software to
transfer coordinate and/or image data. The connection
structure can be configured simply by editing a configura-
tion file described in extended markup language (XML),
and modules are available for multiple commercial track-
ing systems and imaging scanners. While both CORBA
and OpenTracker were extremely important initiatives,
they failed to achieve the status of de facto standard
in the IGT field, primarily because of overgeneraliza-
tion, overabstraction and limited portability. Complicated
specifications and libraries tend to force developers to
spend considerable effort on understanding communica-
tion mechanisms that are not essential for their operation.
No less important, they are decidedly inconvenient in mul-
tiplatform development, which is inherent in IGT. A wide
variety of operating systems and CPU architectures, from
embedded systems to high-performance computers, are
used in IGT, and it is impractical to support all of them
with a single library, due to differences in their application
programming interfaces (APIs) and processing capabili-
ties. As a consequence, we must deal with an ever-growing
maze of vendor-specific or application-specific communi-
cation libraries and protocols, resulting in a complete lack
of interoperability.

In this paper, we propose an extensible yet simple
and easy-to-implement network protocol that allows
for exchanging tracking data, images and device
control/monitoring information among tracking devices,
imaging scanners and systems software. We also describe
several use-case scenarios, including an ultrasound
navigation system, integration of tracking devices and
navigation software, integration of research software and
a commercial navigation system, an MRI-compatible robot
system for prostate intervention, and a neurosurgical
manipulator system.

Methods

OpenIGTLink Protocol

We defined an open, simple and extensible peer-to-
peer network protocol for IGT called OpenIGTLink.
This protocol emerged through a collaboration of
academic, clinical and industrial partners in developing
an integrated robotic system for MRI-guided prostate

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

OpenIGTLink 425

interventions (20). The OpenIGTLink protocol was
designed for use in the Application Layer on the TCP/IP
stack, while allowing developers to implement it for other
network models, such as the User Datagram Protocol.

The OpenIGTLink protocol itself does not include
mechanisms to establish and manage a session. A
message, the minimum data unit of this protocol,
contains all information necessary for interpretation by
the receiver. The message begins with a 58-byte header
section, which is common to all types of data, followed
by a body section. The format of the body section
varies by data type, specified in the header section.
Since any compatible receiver can interpret the header
section, which contains the size and data type of the
body, every receiver can gracefully handle any message,
even those with unknown data type. Therefore, this
two-section structure allows developers to define their
own data type while maintaining compatibility with
other software that cannot interpret their user-defined
data types. This simple message mechanism eases the
development of OpenIGTLink interfaces and improves
compatibility. Details of standard data types are described
in the following sections. Further information is available
in the web page provided by the National Alliance for
Medical Image Computing (21).

General header

The header contains generic information about the
message, including the type of the data, a field called
‘Device Name’, a time stamp and the size of the data
section. The ‘Device Name’ identifies the source of the
data and is useful in sending multi-channel data through
a single connection. For example, optical or electro-
magnetic tracking devices may track multiple objects
and report the position of each object in a separate
message. All numerical values (integers and floating and
fixed points) are stored in big-endian (or network) byte
order:

• Version number (2 bytes): The version number of
the OpenIGTLink protocol used (all data structures
described in this paper were defined as Version 1).

• Data type name (12 bytes): The OpenIGTLink protocol
defines five default types, which are frequently used
in most IGT use-case scenarios: ‘IMAGE’, ‘POSITION’,
‘TRANSFORM’, ‘STATUS’ and ‘CAPABILITY’, the details
of which are described in the next section. The
application developers may define their own data
types with names in addition to the default types,
as demonstrated in the ‘Use-cases’ section. It is
recommended to use names starting with ‘∗’ to
differentiate the name space for user-defined types
from the default name space. In the OpenIGTLink
protocol, usually the sender pushes data to the
receiver, but the sender can also request the receiver
to send data back. These requests are issued as
messages with special data types with null-body

section: ‘GET IMAGE’, ‘GET POSITION’, ‘GET TRANS’,
‘GET STATUS’, and ‘GET CAPABIL’. Developers can
also define an application-specific format for their data
type and associate it with a type name specified here
in the message header. This practice, however, is not
encouraged because it acts against portability.

• Device name (20 bytes): Name of the source device.
• Time stamp (8 bytes): This field informs the receiver of

the time when the data were generated. The data are
represented in seconds as a 64-bit fixed point number
relative to 00 : 00 : 00 1 January 1970 UTC. The integer
part is in the first 32 bits (Unix-style time-stamp) and
the fraction part in the last 32 bits. In the fraction part,
the non-significant low order can be set to 0 (developers
may opt out of using this field by filling it with 0).

• Body size (8 bytes): The size of the message body
attached to this header in 64-bit unsigned integer.

• CRC (8 bytes): The 64-bit cycle redundancy check for
the body section. This is used to verify the integrity
of data and detect system faults. This feature may
be helpful when the protocol is integrated in devices
requiring Food and Drug administration (FDA) or other
regulatory approval for clinical use. Note that the CRC
does not include the header section, relying on the CRC
in the lower layers of the network protocol stack, e.g.
TCP/IP.

Data body

The body structure varies by the data type being
sent in the message as follows. All numerical values
are stored in big-endian (network) byte order except
image pixel values. Floating-point values are encoded in
IEEE 754.

IMAGE
The IMAGE format in the OpenIGTLink protocol supports
2D or 3D images with metric information, including image
matrix size, voxel size, coordinate system type, position
and orientation. The body section of the IMAGE data
consists of two parts: image header, to transfer the metric
information; and image body, to transfer the array of
pixel or voxel values. The data type of pixel or voxel can
be either scalar or vector, and numerical values can be
8-, 16- or 32-bit integers or 32- or 64-bit floating points.
The pixel values can be either big-endian or little-endian,
since the sender software can specify the byte order in
the image header. The format also supports ‘partial image
transfer’, in which a region of the image is transferred
instead of the whole image. This mechanism is suitable
for real-time applications, in which images are updated
region by region. The subvolume must be box-shaped and
defined by six parameters, consisting of the indices for the
corner voxel of the subvolume and the matrix size of the
subvolume (Figure 1). The indices begin at 0, similar to
the conventional zero-based array indices in the C/C++
programming languages.

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

426 J. Tokuda et al.

Figure 1. Parameters to support partial 3D volume update. The
outer cube denotes the entire range of the 3D image, and the
inner cube denotes the partial 3D image that is contained in the
message as a byte array

The position, orientation and pixel size are represented
in the top three rows of a 4 × 4 matrix defined by:

R =

r11 r12 r13 px
r21 r22 r32 py
r311 r32 r33 py

0 0 0 1

 =

(
t s n p
0 0 0 1

)
(1)

where the upper left 3 × 3 matrix represents rotation
and the upper right 3 × 1 column vector represents
transformation (centre position of the image). The matrix
is equivalent to the conjunction of normal column vectors
for directions of voxel arrays in i, j and k indices, which
are denoted as t, s, and n in equation (1). The position
and orientation vectors can be described in either a left
posterior superior (LPS) or right anterior superior (RAS)
coordinate system, depending on the coordinate system
specified, also in this data format. The LPS is a right-
handed coordinate system used in the DICOM standard,
while the RAS is more common in neuroimaging research
and is used in open-source surgical navigation software,
such as the 3D Slicer (22,23).

POSITION
The POSITION data type is used to transfer position
and orientation information. The data are a combination
of three-dimensional (3D) vector for the position and
quaternion for the orientation. Although equivalent
position and orientation can be described with the
TRANSFORM data type, the POSITION data type has the
advantage of smaller data size (19%). It is therefore more
suitable for pushing high frame-rate data from tracking
devices.

TRANSFORM
The TRANSFORM data type is used to transfer a
homogeneous linear transformation in 4 × 4 matrix

form. One such matrix is shown in equation (1).
Note that if a device is sending only translation and
rotation, then TRANSFORM is equivalent to POSITION.
But TRANSFORM can also be used to transfer affine
transformations or simple scaling. Like IMAGE and
POSITION, TRANSFORM carries information about the
coordinate system used.

STATUS
The STATUS data type is used to notify the receiver about
the current status of the sender. The data consist of status
code in a 16-bit unsigned integer, subcode in a 64-bit
integer, error name in a 20 byte-length character string,
and a status message. The length of the status message is
determined by the size information in the general header.
The status code is defined as a part of the OpenIGTLink
protocol specification listed in Table 1. The subcode is
device-specific and is defined by developers. In addition,
developers can build their own error name/code into the
status message and additional optional description in the
following data field.

CAPABILITY
The CAPABILITY data type lists the names of message
types that the receiver can interpret. Although the
OpenIGTLink protocol guarantees that any receiver can
at least skip messages with unknown type and continue
to interpret the following messages, it is a good idea to
get the capability information at system start-up to ensure
application-level compatibility of the various devices. In
a CAPABILITY message type, each message type name
comes with a format version number. If the receiver can
interpret multiple versions for a certain message type,
they should be listed as independent types.

Table 1. Device status defined in OpenIGTLink protocol

Code Description

0 Invalid packet
1 OK
2 Unknown error
3 Panic
4 Not found
5 Access denied
6 Busy
7 Time out
8 Overflow
9 Checksum error
10 Configuration error
11 Resource error
12 Unknown instruction
13 Device not ready
14 Manual mode
15 Device disabled
16 Device not present
17 Unknown device
18 Hardware failure
19 Shutdown in progress

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

OpenIGTLink 427

User-defined data types

The OpenIGTLink protcol allows developers to define
their own message types. As long as the general header
has correct information about the size of the data body,
it retains compatibility with any software compliant with
the OpenIGTLink protocol because the receiver can skip
data that it cannot interpret. The OpenIGTLink protocol
specification recommends that the developer adds an
asterisk (∗) at the beginning of the type name in the
general header, to avoid future conflicts with standard
types and also to make it easier to distinguish between
standard and user-defined message types.

The OpenIGTLink library

To provide a reference implementation of OpenIGTLink
interface, we developed the OpenIGTLink Library (21).
The library is a free open-source software (FOSS)
distributed under a BSD-style open-source license, placing
no restrictions on use. The library consists of three
components, as seen in Figure 2:

1. A C-based library defining structures and utility
functions to serialize data into OpenIGTLink Message.
This library is useful in developing embedded systems
or software for platforms where a modern C++
compiler is not available.

2. A set of high-level C++ classes wrapping the C-based
library that provide a safer and more convenient way
to implement OpenIGTLink messaging function into
software. Developers can define their own message
types by inheriting the base message class defined in
the library.

3. A set of multi-platform C++ classes to handle sockets
and threads. The multi-platform socket and thread

classes are currently compatible with 32-bit Windows,
Linux/UNIX and Mac OS X platforms.

Performance Evaluations

Experimental methods

We conducted experiments to evaluate the performance
of the OpenIGTLink protocol and the library implemen-
tation. The objective of the study was to determine the
capability of the protocol in terms of frame rate and
latency of data transfer, to anticipate its possible applica-
tions. In the experiments, two Linux-based workstations
were used:

• Host 1, Dell Precision 470; CPU, Intel Xeon (dual
core/64 bit) 2.8 GHz; memory, 4 GB; OS, Fedora Core
6 (Dell Inc., Round Rock, TX, USA).

• Host 2, SunJava Worksation W2100z; CPU, Dual AMD
Opteron 246; memory, 2 GB; OS, Fedora Core 2 (Sun
Microsystems Inc, CA, USA).

Both Linux kernels were compiled with timer clock
resolution of 1 KHz. The hosts were connected to a
gigabit switch (Linksys SD2008, Cisco Systems Inc,
Irvine, CA, USA) with category 5e cables. To measure
the latency of data transfers between the two hosts,
the system clocks of those hosts were synchronized
using PTPd (24), the software-only implementation of
the precision time protocol (PTP). The PTP is a time-
transfer protocol defined in IEEE Standard 1588–2002
for precise time synchronization over networks (25)
and is used as a key technology of LAN eXtensions for
Instrumentation (LXI), which is a standard for connecting
test and measurement instruments. Compared with other
time protocols, such as network time protocol (NTP),
PTP is more specialized for local systems that require

Figure 2. The structure of the OpenIGTLink Library (left) and an example code to send TRANSFORM data using the C++ message
class and socket class (right). At the lowest level, the messages are defined as C structures with several supporting functions for
message serialization. On top of the C structures and function, C++ message classes are built to provide an easier, safer and
more extensible way to access to OpenIGTLink messages. As shown in the example code, the message classes have several access
functions to set parameters for both message header and body, and a function to serialize the message and body. Besides message
classes, multi-platform C++ socket and thread classes are provided to support writing platform-independent application codes

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

428 J. Tokuda et al.

high-accuracy time synchronization. According to the
literature (24), the synchronization accuracy of PTPd
under ideal conditions is on the order of 10 µs, which
is sufficient for our evaluation. In the PTPd protocol,
the most stable and accurate clock is selected as a
master clock among the connected devices, based on
the best master clock algorithm (BMCA) and used as the
reference time. Clock servoing is performed to adjust
the tick rate of the other slave clocks, so that the
master-to-slave delay is minimized without resetting the
clocks. During our experiments, the clock synchronization
was performed every 500 ms as a background process,
and clock difference of the hosts was monitored. It
was reported that the PTPd’s CPU utilization is below
1% on a 66 MHz m68k processor (24); thus, resource
consumption by clock synchronization was negligible. In
all experiments we examined data transfer from host
1 to host 2 and vice versa, to account for differences
in performance between the hosts. We evaluated the
performance of data transfer using the OpenIGTLink
library under typical conditions. Three sets of experiments
were performed:

Tracking data transfer
First we evaluated the latency and CPU load during
tracking data transfer, varying the frame rate. The
latency was defined as the time between the start of
generating dummy tracking data at the sender host and
the end of deserialization of OpenIGTLink message at
the receiver host. The time point to start serialization of
the message was implemented in the time-stamp field
of the OpenIGTLink messages at the sender host and
transferred to the receiver host, where the time-stamp was
compared with the time point to finish deserialization.
The frame rate of the tracking data was 2n frames/s
(fps), where n varied in the range 1–10, based on
the fact that the frame rate of tracking devices is in
the range 40–375 Hz and that of the sensor feedback
of real-time robot controlling is usually on the order
of KHz. The number of channels varied in the range
1–16.

Image transfer
Second, we evaluated the latency and CPU load in image
data transfer, varying the data size of images. The image
sizes were defined by 2n bytes, where n was varied in
the range 12–20 with a single channel. The frame rate
was fixed at 32 fps (25 fps), which was near the typical
frame rate of real-time ultrasound imaging and standard
video frame rates. In this experiment, a series of dummy
images were generated prior to the experiment and stored
in a memory pool. The latency was defined as the time
between the start of copying the dummy image into the
OpenIGTLink message from the memory pool and the
end of deserialization of the message at the receiver
host.

Simultaneous tracking and image data transfer
The last experiment was to evaluate simultaneous
transfer of tracking and image data. The objective
was to demonstrate how image data transfer interferes
with tracking data transfer. It is critical to keep
latency of the tracking data transfer below a certain
threshold in the clinical situation, where different
types of data are transferred simultaneously through
a single connection. In this experiment, each image
was split into multiple messages and transferred part
by part. The frame rate and the size of frames
were varied by 2n fps and 4096/2n KB, respectively,
so that the bandwidth was fixed at 4096 KB/s. The
frame rate of tracking data transfer was fixed at
100 fps.

All time measurements were performed using the
gettimeofday() function defined in 4.3 BSD UNIX and
a part of Standard POSIX 1003.1–2001. Although the
function has a resolution of 1 µs, the precision of
time measurement depended on the accuracy of clock
synchronization between the sender and receiver hosts.

Results

All measurement started after the synchronization error
was converged (Figure 3). The mean and standard
deviation (SD) of time synchronization error between
two hosts was 12.3 ± 11.8 µs throughout the experiments.
Table 2 and Figure 4A show the latency and CPU loads,
respectively, during tracking data transfer. For tracking
data, the latencies were evaluated from 500 samples
for each condition. To obtain the CPU loads, the user
and system times are measured on both the sender
and the receiver while performing the data transfer
for 1000 s for each condition. The level of CPU load
strongly depends on the number of channels and the
role of the host, as shown in Figure 4A. The result of
image data transfer is shown in Table 3 and Figure 4B.

Figure 3. The convergence of time offset between two hosts
during time synchronization by PTPd

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

OpenIGTLink 429

For imaging data, the latencies were evaluated based
on 100 samples for each condition. In addition, the
latencies of the simultaneous data transfer are shown
in Tables 4 and 5. The latency of the image data
was approximately proportional to the size of the
message.

Table 2. Mean, standard deviation (SD) and maximum latency of
the tracking data transfer

Frame rate (fps) Mean (ms) SD (ms) Maximum (ms)

128 0.36 0.01 0.47
512 0.36 0.02 0.52
1024 0.45 0.07 0.83

The table shows only the result from 16-channel tracking, which is the
worst case among the conditions we tested in terms of latency

Table 3. Mean, SD and maximum latency of the image data
transfer for image sizes 128, 256 and 512 KB

Image size (KB) Mean (ms) SD (ms) Maximum (ms)

128 3.94 0.01 5.16
256 7.68 0.01 8.96
512 15.51 0.03 17.93

Table 4. Latencies of the tracking data transfers during simulta-
neous data transfer with image transfer frame rates of 2, 16,
and 32 fps, to demonstrate how imaging data transfer affects
the tracking data transfer performed in the same OpenIGTLink
connection. The size rate of image data transfer was fixed at
4096 KB/s

Frame rate (fps)/image
size (KB) Mean (ms) SD (ms) Maximum (ms)

2/2048 3.42 10.15 66.19
16/256 0.51 1.40 7.84
32/128 0.31 0.78 4.01

Table 5. Latency of image data transfers during simultaneous
data transfer with image transfer frame rates of 2, 16, and 32 fps
in the same experiment as Table 4

Frame rate (fps)/image
size (KB) Mean (ms) SD (ms) Maximum (ms)

2/2048 66.23 0.27 67.37
16/256 7.71 0.12 8.70
32/128 3.93 0.07 4.37

Use-cases

To demonstrate the extensibility and feasibility of the pro-
posed method in integration of an image-guided therapy
system, we have evaluated the OpenIGTLink protocol in
several clinical and engineering use-case scenarios. The
hypothesis here is that the open and simple protocol
allows the developers to perform multivendor and mul-
tiplatform integration of image-guided therapy systems.
We describe integration of: (a) an ultrasound naviga-
tion system; (b) tracking devices and navigation software;
(c) a research software and commercial navigation sys-
tem; and (d) an MRI-compatible robot system for prostate
intervention.

Ultrasound navigation system

We utilized the OpenIGTLink protocol to incorporate
intraoperative ultrasound (US) imaging into an existing
CT-based navigation system for needle biopsies (26).
The challenge for this application was integration of
the imaging device and navigation software, which
run on different computer platforms. This multiplatform
integration was required by constraints of this particular
application; the US imaging device must have a small
physical footprint to keep the navigation system’s physical
obtrusiveness to a minimum in the cramped clinical
environment. Thus, we chose the Terason T2000 portable
US system (Teratech Corp., Burlington, MA, USA), in

Figure 4. (A) CPU loads during tracking data transfer are compared among 1-, 8- and 16-channel tracking. Comparison is also
made between sender and receiver. (B) CPU loads during the image data transfer are compared between sender and receiver

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

430 J. Tokuda et al.

which APIs are available only for the Microsoft Windows
platform; our navigation software, which was developed
using Image-Guided Surgery Toolkit (IGSTK) (27), runs
on a Linux-based system. Instead of incorporating the
US image acquisition into our navigation software, we
extended it using a client–server architecture, where the
navigation software (server) receives US images from
the client that runs on a Windows-based system. To
minimize the lag between image acquisition and display,
the two computers were connected via a dedicated local
network. Figure 5 shows the hardware components of
the extended navigation system. The architecture that
decouples US acquisition from the main navigation system
allows switching US systems to another system without
modifying the navigation system.

Tracking devices and navigation
software integration

To utilize various types of tracking devices, including
encoded mechanical arms, optical tracking systems and
electromagnetic tracking (28) from surgical navigation
software in image-guided therapy, we implemented
a client–server architecture for tracking devices and
navigation software integration, using free open-source
image-processing and visualization software, 3D Slicer
(22) and IGSTK, which provides a high-level interface
to commonly used optical and electromagnetic tracking
devices. The rationale underlying this integration is
that the OpenIGTLink protocol enabled us to develop
a navigation system that does not require modification of
software to support various tracking devices. Since there
is no common API that can be used to communicate
with tracking devices, it has been the application
developer’s responsibility to establish communication
between navigation software and tracking devices, which
is a tedious task. In our architecture, 3D Slicer works
as a server to receive tracking data from an IGSTK-
based client program, which acquires measurement values
from a tracking device through a network using the
OpenIGTLink protocol. The server and client can run on
the same computer as separate processes or on different
computer systems connected via a network. Therefore the

OpenIGTLink protocol provides a method to decouple the
device-dependent software from the navigation software.
This decoupling approach enables the navigation system
to support tracking devices that will be added to the
toolkit in the future without requiring any modification of
its original implementation.

Research software integrated with
commercial navigation system

We connected 3D Slicer to a commercial neurosur-
gical navigation system (VectorVision Cranial Naviga-
tion, BrainLAB AG, Feldkirchen, Germany), using the
OpenIGTLink protocol to transfer image and tracking data
from the commercial system to 3D Slicer during a clini-
cal case. The idea behind this work is to take advantage
of advanced image processing and visualization, which
are not commercially available, from external research
navigation software (e.g. 3D Slicer) and reliable surgical
navigation features from an approved commercial naviga-
tion system (e.g. BrainLAB), in order to investigate new
technologies without interfering with the existing clini-
cal procedure. A key challenge in this work is that the
BrainLAB system does not contain an OpenIGTLink layer.
Instead it provides access using its internal VectorVision
Link (VVLink) interface (29). In order to establish commu-
nication between the two systems, we developed bridge
software that receives images and tracking data from
the BrainLAB system using VVLink, converts them into
OpenIGTLink messages, and sends them to 3D Slicer over
the network. The bridge/proxy module is implemented
within Yale University’s BioImage Suite image analysis
software suit (30), which already incorporates a VVLink
interface. The integrated system has started to be tested in
clinical cases to investigate new visualization techniques,
which is not available in commercial systems (Figure 6).
Despite the need for a ‘double-hop’ network connection,
we have been able to maintain real-time tool tracking
performance across the combined systems, demonstrat-
ing the feasibility of using a proxy system to translate
from the proprietary protocol to OpenIGTLink, hence
allowing for the interfacing of two unmodified systems
(3D Slicer, BrainLAB VVCranial). This approach should

Figure 5. CT navigation system with ultrasound (US) image acquisition: (a) workstation for navigation system; (b) tracking device;
(c) US Scanner; (d) US probe; (e) abdominal phantom

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

OpenIGTLink 431

Figure 6. Overview (left) and system diagram (right) of VectorVision -3D Slicer integration in the operating room. VectorVision
provides basic navigation features, including tool tracking and image display, while 3D Slicer provides advanced image processing.
The surgeons can check both the VectorVision console and the 3D Slicer user interface on dedicated displays during surgery

be generalized to other commercial navigation systems,
where a proxy server could be implemented to translate
its internal research interface to OpenIGTLink, to simplify
the task on the research end enormously.

MRI-compatible robot system
for prostate intervention

We have integrated an MRI-compatible needle placement
manipulator (20) with navigation software and an MRI
scanner using the OpenIGTLink protocol. The goal of
this work is to provide a ‘closed-loop’ therapy, where
the robot’s action is immediately captured in semi-real-
time MRI, and instantaneous feedback is provided to
a physician who decides about the next action. The
software system consists of three major components: (a) a
control unit for the needle placement robot; (b) a closed-
bore whole-body 3T MRI scanner (GE Excite HD 3T, GE
Healthcare, Chalfont St. Giles, UK); and (c) commercial
navigation software for prostate intervention (RadVision,
Acoustic MedSystems, Champaign, IL, USA) or free
open-source software, 3D Slicer, as a user interface for
the entire system (Figure 7). Both navigation software
packages display preoperative 3D images for planning
and intraoperative semi-real-time MR images for guiding
the procedure, so that the physician can interactively

specify the target points on the preoperative image set.
We used 3D Slicer for prototyping the system, while
we developed RadVision for future commercialization.
The advantage of RadVision is that the software is
integrated with intraoperative dosimetry calculation,
which have been used in clinical cases of MRI-guided
prostate brachytherapy. The current position of the
needle is indicated on the 3D view of 3D Slicer. All
components were connected to one another via 100Base-
T Ethernet. The OpenIGTLink protocol is used to exchange
various types of data, including commands to the robot
and scanner, semi-real-time images and positional data.
The positions of the target lesion are specified on the
navigation software and transferred to the robot control
unit. While the robot control unit is driving the needle
towards the target, the needle position is calculated from
the optical encoders and sent back to the navigation
software every 100 ms. The navigation software calculates
the imaging plane that intersects the needle’s axis and
transfers it to the scanner, which in turn acquires semi-
real-time images in that plane.

Neurosurgical manipulator system

We developed an open software platform for a neurosur-
gical manipulator system using OpenIGTLink protocol

Figure 7. A robot for transperineal prostate biopsy and treatment (left) and its system configuration (right). Pneumatic actuators
and optical encoders allow the robot to be operated inside a closed-bore 3T MRI scanner

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

432 J. Tokuda et al.

Figure 8. The optical tracking device and surgical navigation software 3D Slicer were integrated into the master–slave surgical
manipulator system developed at Nagoya Institute of Technology, Japan. The OpenIGTLink protocol was used for communication
between the tracking device and navigation software. The position of the end-effector was tracked by the optical tracking system
and transferred to the surgical navigation software. The end-effector was displayed as a 3D model with a patient model, which was
created from pre-operative images

(Figure 8) (31). The manipulator system has a mas-
ter–slave configuration, under which the slave manip-
ulator follows the motion of the master manipulator,
which is operated by the surgeon. The slave’s end-effector
position is measured in two ways for safety: by encoders
implemented in the slave manipulator, and by an optical
tracking device (Optotrak, Northern Digital Inc., Canada).
Therefore, the system consists of four software compo-
nents: (a) a master manipulator controller; (b) a slave
manipulator controller; (c) an optical tracking interface;
and (d) navigation software (3D Slicer). We used the
OpenIGTLink protocol to transfer the position data from
(a) to (b) to notify the slave of the current position of the
master manipulator, and from (c) to (d) to visualize the
3D model of the surgical tool overlaid with a 3D brain
model created from MR images. Our initial trial demon-
strated that the tracking data were successfully obtained
every 100 ms from the optical tracking, and the 3D model
of the surgical tool was displayed at the current position
of the virtual space overlaid with the brain model, on the
3D Slicer. The tool model moves as the user operates the
master manipulator, allowing interactive operation of the
slave manipulator using the 3D Slicer as a console.

Discussion

We have designed an open, simple, and extensible
network communication protocol that can be used to
transfer data required in the IGT setting, e.g. tracking
and image data, device control/monitoring information,
among the devices and software. The simple protocol
allows developers to implement interfaces easily for their
software and hardware, while allowing definition of
application-specific data types. We have also developed a
multi-platform open library as a reference implementation
of the protocol, with the associated interface for the 3D
Slicer, thereby aiding developers in the implementation
and testing of OpenIGTLink with navigation software.

Our study showed that the protocol is capable of
handling 1 KHz multi-channel tracking data, which is
generally required for sensor feedback for real-time robot

control. In realistic conditions, however, the latency may
be prolonged by other processes, such as navigation
software running on the same host. At the same time,
the stability of interval and latency of data transfer
are also affected by other network activity and an OS’s
timer resolution, which is typically 10 ms and can be
configured up to 1 ms in recent Linux and Microsoft
Windows OSs (32). Therefore, it seems prudent to
use real-time communication techniques and real-time
operating systems in a high-performance critical clinical
application that requires accurate interval and latency for
position data feedback. This is desirable, for example, in
controlling robots compensating for organ motion (33) or
delivering conformal radiotherapy to mobile targets. In
some real-time applications, it is also important to monitor
the time-stamp in tracking data messages. Since time-
stamp is usually checked by a computer different from
the one that issued the time-stamp, clock synchronization
between those two computers is crucial. In this study PTP
was used for this purpose, where the synchronization
error was kept within 12.3 ± 11.8 µs throughout the
experiment. Although the time for convergence in the
experiment (10–20 min) was too long for the clinical
setting, the method is still feasible in most clinical
applications that require clock synchronization with errors
on the order of milliseconds, which can be achieved within
10 s from the start of synchronization.

We found that the latency of the tracking data transfer
was in the order of sub-milliseconds, with frame rate of
<1024 fps. The CPU load depended on the number of
channels and frame rates, and the 16-channel tracking
data transfer with frame rate of 1024 consumed less than
30% of the CPU load. Such performance is adequate
for most IGT applications, for which the frame rate of
optical tracking data is typically <100 fps. In the imaging
data transfer, larger latencies were recorded, due to the
larger size of the data (1 MB/message) compared with the
tracking data (106 bytes/message). In fact, the latency of
image data transfer increased with the size of the image
data. The latency of image data transfer becomes more
critical in transferring multiple types of data through a
single connection simultaneously, because image transfer

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

OpenIGTLink 433

may block transfers of other types of data. Our study
of simultaneous data transfer suggests that large bodies
of data should be split into multiple messages, so as
not to block other data that need to be transferred
more quickly. Our experiments also revealed that in
most cases receiving a message consumes more CPU time
than sending it. This is partly because the OpenIGTLink
message contains character strings to specify data type
and device name, which requires the receiver to perform
string comparison, a generally CPU-intensive function.
This is the price we pay for having eliminated ‘sessions’,
whereas every message self-contains the information
necessary for parsing it.

Our experience with several clinical and engineering
use-case scenarios revealed that a standardized com-
munication protocol has other important roles besides
providing improved interoperability for IGT. First, such
protocols enable smooth transitions from prototyping to
product phases. In contemporary IGT systems, where
numerous hardware and software components are inte-
grated, each component is developed independently. With
a standardized communication protocol, developers can
easily replace each of components from one develop-
mental phase of prototype to another. The proposed
protocol was initially designed through discussion of the
development of an MRI-compatible robot for prostate
interventions under a research partnership among aca-
demic and industrial sites (20), where the plan is to
utilize academic research to transition to a commercial
product. Second, as we investigated in this paper, stan-
dardizing this protocol is critical for linking clinical cases
and scientific research. There has been the issue of shar-
ing clinical data between proprietary software for clinical
routines and research software for scientific data analysis.
In terms of patient safety, proprietary software approved
by the FDA or other regulatory agencies is preferable,
but this usually limits access to image and other types of
data from clinical cases to research purposes. Adding an
open-protocol interface to the proprietary software allows
researchers to access clinical data from their research
software, promoting clinical research. It is our hope that
research groups that have substantial experience with one
particular commercial system that does not implement
OpenIGTLink directly (or even the vendors themselves)
will write and make available such bridge/proxy software
for a given system, and that the rest of the research
community can simply interface to such systems using
OpenIGTLink. Third, it has been proposed to record vital
signs, images and device-monitoring information dur-
ing clinical cases for later review (34). The standardized
communication protocol allows the introduction of a com-
prehensive recording system that can store every message
passed through the network and replay them after a
clinical case.

In conclusion, we have proposed an open, simple and
extensible network communication protocol specialized
for IGT. We developed the library as a reference
implementation for this protocol and the interface module
for surgical navigation software as a research platform.

Image and tracking data transfers were evaluated, and
the protocol proved capable of handling data required in
the IGT setting with sufficient time resolution and latency.
The protocol helps not only to improve the interoperability
of IGT devices and software but also to promote rapid
and safe transition of research results to clinical use and
commercial utilization.

Acknowledgements

The authors thank Mr Csaba Csoma from Johns Hopkins
University and Mr Hiroaki Kozuka from Nagoya Institute of
Technology for their help in designing and implementing
the OpenIGTLink protocol. This work was supported by NIH
Grants Nos 1R01CA111288, 5U41RR019703, 5P01CA067165,
1R01CA124377, 5P41RR013218, 5U54EB005149, 5R01CA
109246, R01EB006494 and R21EB007770, and also in part
by NSF 9731748, CIMIT and the Intelligent Surgical Instruments
Project of METI (Japan).

References

1. Dimaio S, Kapur T, Cleary K, et al. Challenges in image-
guided therapy system design. NeuroImage 2007; 37(suppl 1):
S144–151.

2. Bucholz RD, Smith KR, Henderson J. Intraoperative localization
using a three-dimensional optical digitizer. SPIE 1993; 312–322.

3. Birkfellner W, Watzinger F, Wanschitz F, et al. Calibration of
tracking systems in a surgical environment. IEEE Trans Med
Imag 1998; 17(5): 737–742.

4. Barnett GH, Kormos DW, Steiner CP, et al. Intraoperative
localization using an armless, frameless stereotactic wand.
Technical note. J Neurosurg 1993; 78(3): 510–514.

5. Roberts DW, Strohbehn JW, Hatch JF, et al. A frameless
stereotaxic integration of computerized tomographic imaging
and the operating microscope. J Neurosurg 1986; 65(4):
545–549.

6. IEEE Standard for medical device communications – overview
and framework. IEEE Standard No. 1073–1996; 1996.

7. EN 50325–4: 2002 Industrial communications subsystem based
on ISO 11898 (CAN) for controller–device interfaces, Part 4:
CANopen. EN 50325–4: 2002; 1995.

8. ISO 11898–1; 2003. Road vehicles – interchange of digital
information – controller area network (CAN) for high-speed
communication. ISO 11898–1: 2003; 2003.

9. Schrenker RA. Software engineering for future healthcare and
clinical systems. Computer 2006; 39(4): 26–32.

10. The National Electrical Manufacturers Association (NEMA).
Digital Imaging and Communication in Medicine (DICOM). NEMA
Publications PS: Rosslyn, VA, USA, 2007; 31–318.

11. Lemke H, Vannier M. The operating room and the need for an
IT infrastructure and standards. Int J Comput Assist Radiol Surg
2006; 1(3): 117–121.

12. Papademetris X, Vives KP, DiStasio M, et al. Development of
a research interface for image-guided intervention: initial
application to epilepsy neurosurgery. International Symposium
on Biomedical Imaging (ISBI), 2006; 490–493.

13. Fischer J, Neff M, Freudenstein D. Medical augmented reality
based on commercial image guided surgery. Eurographics
Symposium on Virtual Environments (EGVE), 2004; 83–86.

14. Joshi A, Scheinost D, Vives KP, et al. Novel interaction
techniques for neurosurgical planning and stereotactic
navigation. IEEE Trans Visualiz Comput Graphics 2008; 14(6):
1587–1594.

15. Matinfar M, Baird C, Batouli A, et al. Robot assisted skull base
surgery. IEEE International Conference on Intelligent Robots
and Systems (IROS), 2007.

16. Xia T, Baird C, Jallo G, et al. An integrated system for planning,
navigation and robotic assistance for skull base surgery. Int J
Med Robot 2008; 4(4): 321–330.

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

434 J. Tokuda et al.

17. Schorr O, Hata N, Bzostek A, et al. Distributed modular
computer-integrated surgical robotic systems: architecture
for intelligent object distribution. Medical Image Computing
and Computer Assisted Intervention (MICCAI) International
Conference 2000; 1935: 979–987.

18. Reitmayr G, Schmalstieg D. A flexible software design for three-
dimensional interaction. In Virtual Reality December 2005.
Springer: London, 2006; 79–92.

19. von Spiczak J, Samset E, Dimaio S, et al. Device connectivity for
image-guided medical applications. Stud Health Technol Inform
2007; 125: 482–484.

20. Fischer GS, Iordachita I, Csoma C, et al. MRI-compatible
pneumatic robot for transperineal prostate needle placement.
IEEE/ASME Trans Mechatron 2008; 13(3): 295–305.

21. National Alliance for Medical Image Computing (NA-MIC).
OpenIGTLink, 2008; http://www.na-mic.org/Wiki/index.php/
OpenIGTLink

22. Gering DT, Nabavi A, Kikinis R, et al. An integrated visualization
system for surgical planning and guidance using image fusion
and an open MR. J Magn Reson Imag 2001; 13(6): 967–975.

23. Pieper S, Halle M, Kikinis R. 3D Slicer. IEEE International
Symposium on Biomedical Imaging: Nano to Macro, Arlington,
VA, USA, 2004.

24. Correll K, Barendt N, Branicky M. Design considerations for
software only implementations of the IEEE 1588 precision
time protocol. Conference on IEEE 1588–2002; Standard for
a Precision Clock Synchronization Protocol for Networked
Measurement and Control System, Winterthur, Switzerland,
10–12 October 2005; 1–6.

25. IEEE Standard No. 1588–2002. IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement

and Control Systems. IEEE Standard No. 1588–2002; 2002;
i–144.

26. Ordas S, Yaniv Z, Cheng P, et al. Interfacing proprietary
hardware with the image-guided surgery toolkit (IGSTK): a
case for the OpenIGTLink protocol. SPIE 2009, Lake Buena
Vista, FL, USA, 11 February 2009.

27. Enquobahrie A, Cheng P, Gary K, et al. The image-guided
surgery toolkit IGSTK: an open source C++ software toolkit.
J Digit Imag 2007; 20(suppl 1): 21–33.

28. Birkfellner W, Hummel J, Wilson E. Tracking devices. In Image-
Guided Intervention: Technology and Applications, Peters T,
Cleary K (eds). Springer: London, 2008; 23–44.

29. Papademetris X, Delorenzo C, Flossmann S, et al. From medical
image computing to computer-aided intervention: development
of a research interface for image-guided navigation. Int J Med
Robot 2009; (in press).

30. BioImage Suite. Yale University; http://www.bioimagesuite
.org/

31. Arata J, Kozuka H, Kim W, et al. An open source control software
using virtual fixture for surgical robots. 23th International
Congress and Exhibition, Computer Assisted Radiology and
Surgery, Berlin, Germany, 23–27 June 2009.

32. Microsoft. MSDN Library. 2009; http://msdn.microsoft.com/en-
us/library/default.aspx

33. Lesniak J, Tokuda J, Kikinis R, et al. A device guidance method
for organ motion compensation in MRI-guided therapy. Phys
Med Biol 2007; 52(21): 6427–6438.

34. Ikuta K, Kato T, Ando S, et al. Development of surgery recorder
system for minimally invasive surgery. World Congress on
Medical Physics and Biomedical Engineering, Seoul, Korea, 27
August–1 September 2006.

Copyright 2009 John Wiley & Sons, Ltd. Int J Med Robotics Comput Assist Surg 2009; 5: 423–434.
DOI: 10.1002/rcs

