
Eur. Phys. J. C (2019) 79:866

https://doi.org/10.1140/epjc/s10052-019-7306-2

Regular Article - Theoretical Physics

OpenLoops 2

Federico Buccioni1, Jean-Nicolas Lang1, Jonas M. Lindert2,a, Philipp Maierhöfer3, Stefano Pozzorini1,

Hantian Zhang1, Max F. Zoller4

1 Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
2 Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, UK
3 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
4 Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland

Received: 22 August 2019 / Accepted: 13 September 2019 / Published online: 22 October 2019

© The Author(s) 2019

Abstract We present the new version of OpenLoops, an

automated generator of tree and one-loop scattering ampli-

tudes based on the open-loop recursion. One main novelty of

OpenLoops2 is the extension of the original algorithm from

NLO QCD to the full Standard Model, including electroweak

(EW) corrections from gauge, Higgs and Yukawa interac-

tions. In this context, among several new features, we dis-

cuss the systematic bookkeeping of QCD–EW interferences,

a flexible implementation of the complex-mass scheme for

processes with on-shell and off-shell unstable particles, a

special treatment of on-shell and off-shell external photons,

and efficient scale variations. The other main novelty is the

implementation of the recently proposed on-the-fly reduction

algorithm, which supersedes the usage of external reduction

libraries for the calculation of tree–loop interferences. This

new algorithm is equipped with an automated system that

avoids Gram-determinant instabilities through analytic meth-

ods in combination with a new hybrid-precision approach

based on a highly targeted usage of quadruple precision with

minimal CPU overhead. The resulting significant speed and

stability improvements are especially relevant for challeng-

ing NLO multi-leg calculations and for NNLO applications.

1 Introduction

Scattering amplitudes at one loop are a mandatory ingredi-

ent for any precision calculation at high-energy colliders. At

next-to-leading order (NLO), the calculation of hard cross

sections requires one-loop matrix elements with hard kine-

matics, while next-to-next-to leading order (NNLO) predic-

tions require one-loop amplitudes with one additional unre-

solved particle. Nowadays, thanks to a variety of modern

techniques [1–9], one-loop calculations can be carried out

a e-mail: j.lindert@sussex.ac.uk

with a number of automated and widely applicable programs

[10–20] that have strongly boosted the field of precision phe-

nomenology. Most notably, such tools have extended the

reach of NLO calculations to highly non-trivial multi-particle

processes [21–25] and have opened the door to the automa-

tion of multi-purpose Monte Carlo generators at NLO [26–

32].

In this paper we present the new version of OpenLoops,1

an automated tool for the calculation of tree and one-loop

scattering amplitudes within the Standard Model (SM). The

OpenLoops algorithm is based on a numerical recursion2

that generates loop amplitudes in terms of cut-open loop dia-

grams [9,33]. Such objects, called open loops, are charac-

terised by a tree topology but depend on the loop momentum.

In the original version of the algorithm [9], implemented in

OpenLoops1 [16], loop amplitudes are built in two phases. In

the first phase, Feynman diagrams are constructed in terms

of tensor integrals using the open-loop recursion, while in

the second phase, loop amplitudes are reduced to scalar inte-

grals using external libraries such as Collier [19] or Cut-

Tools [10]. The main strengths of this approach are the high

speed of the open-loop recursion and the possibility of cur-

ing numerical instabilities through the tensor-reduction tech-

niques [4,34] implemented in Collier [19].

In the original open-loop algorithm [9], the rank of open

loops increases at each step of the recursion. As a conse-

quence, the CPU time required for their processing, the mem-

ory footprint, and also numerical instabilities, tend to grow

rather fast with the number of scattering particles. For these

1 The original version of the algorithm was presented in a letter [9], and

its public implementation was only documented online [16] so far. Thus

this paper provides the first thorough description of the OpenLoops

program.

2 This type of recursion was first proposed in the context of off-shell

recurrence relations for colour-ordered gluon-scattering amplitudes [8].

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7306-2&domain=pdf
mailto:j.lindert@sussex.ac.uk

866 Page 2 of 56 Eur. Phys. J. C (2019) 79 :866

reasons, in OpenLoops 2 the construction of loop ampli-

tudes and their reduction have been unified in a single recur-

sive algorithm [33] that makes it possible to avoid high-rank

objects at all stages of the amplitude calculations. This is

achieved by interleaving single steps of the construction of

open loops with reduction operations at the integrand level

[2]. The implementation of this method, called on-the-fly

reduction, is one of the main novelties of OpenLoops2. So

far it is restricted to tree–loop interferences at NLO, while

squared loop amplitudes are still processed in the same way

as in OpenLoops1.

The on-the-fly reduction algorithm in OpenLoops 2 is

equipped with an automated system that avoids numerical

instabilities in a highly efficient way. This stability system

makes use of analytic techniques that have been introduced in

[33] and have meanwhile been extended in various directions,

and supplemented by a novel hybrid-precision system. The

latter monitors the level of stability by exploiting informa-

tion on the analytic structure of the reduction identities, and

residual instabilities are stabilised on-the-fly through quadru-

ple precision (qp). This system is implemented at the level of

individual operations. In this way, the usage of qp is restricted

to a minimal part of the calculations, which results in a huge

speed-up as compared to complete qp re-evaluations. Thanks

to these features, the on-the-fly reduction method makes it

possible to achieve an unprecedented level of numerical sta-

bility, both for multi-leg NLO calculations with hard kine-

matics and for NNLO applications with unresolved partons.

The structure of the open-loop recursion [9,33] is model

independent, and the explicit form of its kernels depends only

on the Lagrangian of the model at hand. The original imple-

mentation [16] was applicable to any SM process at NLO

QCD, and the other major novelty of OpenLoops 2 is the

extension of NLO automation to the full SM [35,36], includ-

ing any correction effect of O(αs) and O(α).3 In this respect,

in this paper we present a detailed discussion of the interplay

of QCD and EW effects in scattering amplitudes with more

than one quark chain, which are relevant for LHC processes

with two or more light jets. In that case, Born amplitudes con-

sist of towers of terms of order α
p
s αq with fixed total power

p + q but variable powers in the QCD and EW couplings.

In such cases, as is well known, QCD and EW interactions

mix through interference effects and, in general, NLO terms

of fixed order αP
s αQ involve correction effects of QCD and

EW kind. However, as we will point out, each NLO term of

order αP
s αQ is always dominated either by QCD corrections

to Born terms of order αP−1
s αQ or by EW corrections to

Born terms of order αP
s αQ−1.

In this paper the renormalisation of the SM and its imple-

mentation in OpenLoops are discussed in detail. In the QCD

3 In the following, by O(α) or EW corrections we mean the full set of

NLO corrections in the EW, Higgs and Yukawa couplings.

sector, quark masses and Yukawa couplings can be renor-

malised in the on-shell and MS schemes, and the αs countert-

erm can be flexibly adapted to any flavour-number scheme.

The renormalisation of masses and couplings at O(α) is

based on the on-shell scheme [37] and its extension to com-

plex masses [38] for off-shell unstable particles. More pre-

cisely, in OpenLoops 2 these two approaches are unified in

a generic scheme that can address processes with combi-

nations of on-shell and off-shell unstable particles, such as

for pp → t t̄ℓ+ℓ−, where Z -bosons occur as internal reso-

nances, while top quarks are on-shell external states. Besides

UV counterterms, OpenLoops 2 implements also Catani–

Seymour’s I-operator for the subtraction of infrared (IR) sin-

gularities at O(αs) [39,40] and O(α) [36,41–44].

For the definition of EW couplings, three different

schemes based on the the input parameters α(0), α(M2
Z)

and Gμ are supported. Moreover, OpenLoops2 implements

an automated system for the optimal choice of the coupling

of on-shell and off-shell external photons. Concerning the

choice of αs and the renormalisation scale μR, a new auto-

mated scale-variation mechanism makes it possible to re-

evaluate scattering amplitudes for multiple values of αs and

μR with minimal CPU cost.

The OpenLoops 2 program can be combined with any

other code by means of its native Fortran and C/C ++ inter-

faces, which allow one to exploit its functionalities in a flex-

ible way. Besides the choice of processes and parameters,

the interfaces support the calculation of LO, NLO, and loop-

induced matrix elements and building blocks thereof, as well

as various colour and spin correlators relevant for the subtrac-

tion of IR singularities at NLO and NNLO. Additional inter-

face functions give access to the SU(3) colour basis and the

colour flow of tree amplitudes. Besides its native interfaces,

OpenLoops offers also a standard interface in the BLHA

format [45,46].

The OpenLoops program can be used as a plug-in by the

Monte Carlo programs Sherpa [26,47], Powheg- Box [27],

Herwig ++ [32], Geneva [48], and Whizard [49], which

possess built-in interfaces that control all relevant Open-

Loops functionalities in a largely automated way, requiring

only little user intervention. Moreover, OpenLoops is used

as a building block of Matrix [50] for the calculation of

NNLO QCD observables. In this context, the automation of

EW corrections in OpenLoops 2 opens the door to ubiq-

uitous NLO QCD+NLO EW simulations in Sherpa [51,52]

and NNLO QCD+NLO EW calculations in Matrix [53].

The OpenLoops2 code is publicly available on the Hep-

forge webpage

https://openloops.hepforge.org

and via the Git repository

https://gitlab.com/openloops/OpenLoops.

It consists of a process-independent base code and a pro-

cess library that covers several hundred partonic processes,

123

https://openloops.hepforge.org
https://gitlab.com/openloops/OpenLoops

Eur. Phys. J. C (2019) 79 :866 Page 3 of 56 866

including essentially all relevant processes at the LHC. The

desired processes can be easily accessed through an auto-

mated download mechanism. The set of available processes

is continuously extended, and possible missing processes can

be promptly generated by the authors upon request.

The paper is organised as follows. Section 2 presents the

structure of the original open-loop recursion and the new

on-the-fly reduction algorithm. Numerical instabilities and

the new hybrid-precision system are discussed in detail. Sec-

tion 3 deals with general aspects of NLO calculations and

their automation in OpenLoops. This includes the bookkeep-

ing of towers of terms of variable order α
p
s αq , the treatment

of input parameters, optimal couplings for external photons,

the renormalisation of the SM at O(αs) and O(α), the on-

shell and complex-mass schemes, and the I-operator. Sec-

tion 4 provides instructions on how to use the program, start-

ing from installation and process selection, and including

the various interfaces for the calculation of matrix elements,

colour/spin correlators, and tree amplitudes in colour space.

Technical benchmarks concerning the speed and numerical

stability of OpenLoops2 are presented in Sect. 5. A detailed

description of the syntax and usage of the OpenLoops inter-

faces can be found in the appendices.

While the paper as a whole serves as a detailed documenta-

tion of the algorithms implemented in OpenLoops2, Sect. 4

together with Appendix A can be used alone as a manual.

2 The OPENLOOPS algorithm

The calculation of loop amplitudes in OpenLoops proceeds

through the recursive construction of open loops and their

reduction to master integrals. In this section we outline two

variants of this procedure: the original open-loop method [9],

which was used throughout in OpenLoops1 and is still used

for loop-induced processes in OpenLoops 2, and the new

on-the-fly reduction method [33] used for tree–loop interfer-

ences in OpenLoops2.

2.1 Scattering amplitudes and probability densities

The main task carried out by OpenLoops is the computation

of the colour and helicity-summed scattering probability den-

sities

W00 = 〈M0|M0

〉
= 1

Nhcs

∑

hel

∑

col

|M0|2, (2.1)

W01 = 2 Re 〈M0|M1

〉
= 1

Nhcs

∑

hel

∑

col

2 Re[M∗
0M1],

(2.2)

W11 = 〈M1|M1

〉
= 1

Nhcs

∑

hel

∑

col

|M1|2, (2.3)

which consist of the various interference terms that involve

the Born amplitude M0 and the one-loop amplitude M1 for

a certain process selected by the user. The usual summa-

tions and averaging over external helicities4 and colours, as

well as symmetry factors for identical particles, are included

throughout and implicitly understood in the bra–ket notation

in (2.1)–(2.3). The relevant average factors are encoded in

Nhcs =

⎛
⎝ ∏

p∈Pout

n p!

⎞
⎠
⎛
⎝∏

i∈Sin

Nhel,i Ncol,i

⎞
⎠ , (2.4)

where Sin denotes the set of initial-state particles, while Nhel,i

and Ncol,i are the number of helicity and colour states of

particle i . The symmetry factors depend on the number n p

of identical final-state particles. They are applied to all types

of final-state particles, p ∈ Pout, treating particles and anti-

particles as different types.

For standard processes with M0 �= 0, leading-order (LO)

cross sections involve only squared tree contributions W00,

while at next-to-leading order (NLO) virtual one-loop con-

tributions W01 and real-emission contributions of type W00

with one additional parton are needed. The squared one-loop

probability density W11 is the main LO building block for

loop-induced processes, i.e. processes with M0 = 0. For the

calculation of such processes at NLO also W11-type densities

with one additional parton are needed. Otherwise W11 is rel-

evant as ingredient of next-to-next-to-leading order (NNLO)

calculations.

In OpenLoops, L-loop matrix elements ML are com-

puted in terms of Feynman diagrams, whose structures are

generated with Feynarts [54]. The Feynman diagrams are

expressed as helicity amplitudes,

ML(h) =
∑

I∈ΩL

ML(I, h) =
∑

I∈ΩL

C(I)AL(I, h), (2.5)

for L = 0, 1. Here ΩL is the set of all L-loop Feynman

diagrams, h describes a specific helicity configuration of

the external particles, and each diagram I is factorised into

a colour factor C(I) and a colour-stripped diagram ampli-

tude5 AL(I, h). The colour structures C(I) are algebraically

reduced to a standard colour basis {Ci } (see Sect. 4.5),

C(I) =
∑

i

ai (I) Ci , (2.6)

4 In OpenLoops it is also possible to select polarisations of external

particles in (2.1)–(2.3), i.e. to perform a sum only over a subset of the

helicity configurations.

5 Quartic gluon couplings involving three different colour structures are

split into colour-factorised contributions which are treated as separate

diagrams.

123

866 Page 4 of 56 Eur. Phys. J. C (2019) 79 :866

where scattering amplitudes take the form

ML(h) =
∑

i

Ci A
(i)
L (h), (2.7)

and colour-summed interferences in (2.1)–(2.3) are built by

means of the colour-interference matrix

Ki j =
∑

col

C
†
i C j . (2.8)

In the following we focus on the construction of the colour-

stripped amplitudes AL(I, h).

2.2 Tree amplitudes

At tree level, each colour-stripped Feynman diagram is built

by contracting two subtrees that are connected through a cer-

tain cut propagator,6

A0(I, h) = wa wb

= wσa

a (ka, ha) δσaσb
w̃

σb

b (kb, hb) .

(2.9)

Here ka = −kb and σa, σb are the momenta and spinor/

Lorentz indices of the subtrees, while ha, hb denote the helic-

ity configurations of the external particles connected to the

respective subtrees.7 The tilde in w̃b marks the absence of

the cut propagator, which is included in wa . All relevant sub-

trees are generated through a numerical recursion that starts

from the external wave functions and connects an increasing

number of external particles through operations of the form

wσa

a (ka, ha) = σa wa
= σa

wb

wc

=
Xσa

σbσc
(kb, kc)

k2
a − m2

a

w
σb

b (kb, hb) wσc

c (kc, hc) .

(2.10)

The tensor X
σa
σbσc corresponds to the triple vertex that con-

nects wa, wb, wc, combined with the numerator of the prop-

agator attached to wa . For quartic vertices an analogous

relation is used. Each step needs to be carried out for all

6 The Feynman diagrams in this paper are drawn with Axodraw [55].

7 See [33] for more details.

independent helicity configurations hb, hc. The resulting tree

recursion is implemented in an efficient way by caching the

amplitudes of subtrees that contribute to multiple Feynman

diagrams.

2.3 One-loop amplitudes

Renormalised one-loop amplitudes are split into three build-

ing blocks,

M1(h) = M1,4D(h) + M1,R2(h) + M1,CT(h), (2.11)

where M1,CT denotes UV counter-terms, while bare one-

loop amplitudes are decomposed into a contribution that is

computed with four-dimensional loop numerator (M1,4D)

plus a so-called R2 rational term stemming form the (D−4)-

dimensional part of loop numerators (M1,R2). The latter is

reconstructed via R2 counter-terms [56–63], and M1,R2 +
M1,CT are generated in a similar way as tree amplitudes.

The remaining part, M1,4D, is constructed in terms of

colour-stripped loop diagrams,

A1(IN , h) =
∫

dDq̄
Tr[N (IN ,q,h)]
D̄0 D̄1···D̄N−1

=

wN−1wN

w1 w2

D0

D1

D2

DN−1

q ,

(2.12)

with four-dimensional numerators N (IN , q, h) and denom-

inators D̄i (q̄) = (q̄ + pi)
2 − m2

i , where the bar is used for

quantities in D dimensions, and the (D−4)-dimensional part

of the loop momentum is denoted q̃ = q̄ − q. The trace rep-

resents the contraction of spinor/Lorentz indices along the

loop, and the index IN stands for the N -point topology at

hand.

The numerator is computed by cut-opening the loop at

a certain propagator, which results into a tree-like structure

consisting of a product of loop segments,

[
N (q, h)

]βN

β0

=

wN

w1

βN

β0

=
[
S1(q, h1)

]β1

β0

[
S2(q, h2)

]β2

β1

· · ·

[
SN (q, hN)

]βN

βN−1

,

(2.13)

123

Eur. Phys. J. C (2019) 79 :866 Page 5 of 56 866

where β0, βN are the spinor/Lorentz indices of the cut propa-

gator. Loop segments that are connected to the loop via triple

vertices have the form

[
Si(q, hi)

]βi

βi−1

=
βi−1

wi

ki

Di

βi

=

{[
Y i

σi

]βi

βi−1

+
[
Zi

ν;σi

]βi

βi−1

qν

}
wσi

i (ki, hi) ,

(2.14)

where an external subtree wi is connected to a loop vertex

and to the adjacent loop propagator. The latter correspond

to a rank-one polynomial in the loop momentum with coef-

ficients Y and Z . A similar relation is used for quartic ver-

tices.

The loop numerator is constructed by attaching the various

segments to each other through recursive dressing steps,

Nk(q, ĥk) = Nk−1(q, ĥk−1)Sk(q, hk), (2.15)

for k = 1, . . . , N , starting from the initial condition N0 = 1.
The labels hk and ĥk correspond, respectively, to the helicity

configuration of the external legs entering the kth segments

and the first k segments. The partially dressed numerator

(2.15) is called an open loop. Schematically it can be repre-

sented as

Nk(q, ĥk) =

k∏

i=1

Si(q, hi)

= β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN

(2.16)

where blue and grey blobs correspond, respectively, to those

loop segments that are already dressed and remain to be

dressed. Each open loop is a polynomial in q,

Nk(q, ĥk) =
R∑

r=0

N (k)
μ1...μr

(ĥk) qμ1 · · · qμr , (2.17)

and all dressing steps are implemented at the level of the

open-loop tensor coefficients N
(k)
μ1...μr .

2.4 Reduction to master integrals

In OpenLoops the reduction of loop amplitudes to master

integrals is carried out with two different methods. Squared

loop amplitudes and tree-loop interferences in the Higgs

Effective Field Theory (HEFT)8 are handled along the lines

of the original open-loop approach [9], where the reduction is

performed a posteriori of the dressing recursion. Since every

dressing step can increase the tensor rank by one (see Fig. 1 a),

this generates intermediate objects of high tensor rank, i.e.

high complexity, with a negative impact on CPU speed. In

contrast, all other tree–loop interferences are computed with

the on-the-fly reduction approach [33], where dressing steps

are interleaved with integrand reduction steps in such a way

that the tensor rank, and thus the complexity, remain low at

all stages of the calculation (see Fig. 1b).

2.4.1 A posteriori reduction

The a posteriori reduction to scalar integrals is done by means

of external tools. By default, the reduction is performed at

the level of tensor integrals,

T
μ1···μR

N =
∫

dDq̄
qμ1 · · · qμR

D̄0 D̄1 · · · D̄N−1

, (2.18)

using the Collier library [19], which implements the

Denner–Dittmaier reduction techniques [4,34] as well as the

scalar integrals of [64]. Alternatively, the reduction can be

performed at the integrand level using CutTools [10], which

implements the OPP reduction method [5], in combination

with the OneLOop library [65] for scalar integrals.

2.4.2 On-the-fly reduction

In the on-the-fly approach, the dressing of open loops is inter-

leaved with reduction steps. The latter are applied in such a

way that the tensor rank never exceeds two.

For objects with more than three loop propagators,

D0, D1, D2, D3, . . ., the tensor rank is reduced using an

integrand-reduction identity [2] of the form

qμqν =
3∑

i=−1

(A
μν
i + B

μν
i,λ qλ)Di , (2.19)

with

Di =
{

1 for i = −1,

(q + pi)
2 − m2

i for i ≥ 0,
(2.20)

where the coefficients A
μν
i and B

μν
i,λ depend on the inter-

nal masses and external momenta. The four-dimensional

8 By HEFT we mean effective Higgs–gluon and Higgs–quark interac-

tions in the heavy-top limit.

123

866 Page 6 of 56 Eur. Phys. J. C (2019) 79 :866

Fig. 1 Evolution of the tensor

rank and the number of

open-loop tensor coefficients

(right vertical axis) as a function

of the number k of dressed

segments during the open-loop

recursion. The red diagonal

lines illustrate the dressing

steps, and the blue vertical lines

the reduction steps

0 1 2 3 4 N−1 N
0

1

2

3

4

N−1

N

5

15

35

70

N+4
4

)
rank Ntc oeff

k 0 1 2 3 4 N−1 N
0

1

2

3

4

N−1

N

rank

k

(a) A posteriori reduction (b) On-the-fly reduction

Di terms on the rhs of (2.20) are cancelled against the D-

dimensional loop denominators. This gives rise to q̃2 depen-

dent terms, Di/D̄ j = 1 − q̃2/D̄ j , which are consistently

taken into account and result into rational contributions of

kind R1 [2,33]. Note that the reduction (2.20) and the pinch-

ing of propagators can be carried out as soon as rank two

is reached, irrespective of which loop segments are still

undressed. Every reduction step generates four new pinched

sub-topologies, and the proliferation of pinched objects is

avoided by means of the merging approach described in

Sect. 2.5.

Rank-two open loops with only three loop denominators

can be reduced on-the-fly in a similar way as open loops with

more than three propagators [33]. The remaining reducible

integrals have the following number of propagators N and

tensor rank R: N ≥ 5 and R = 1, 0; N = 4, 3 and

R = 1; N = 2 and R = 2, 1. For their reduction to mas-

ter integrals we use a combination of integral reduction and

OPP reduction identities [33]. Master integrals are evalu-

ated with Collier [19], which is the default in double pre-

cision, or OneLOop [65], which is the default in quadruple

precision.

2.5 Tree–loop interference

In the following we outline the calculation of tree–loop inter-

ferences (2.2) according to the original open-loop algorithm

and with the on-the-fly approach [33]. The latter is used by

default in OpenLoops2. In both cases, the colour treatment is

based on the factorisation of colour structures at the level of

individual loop diagrams, M1(I, h) = C(I)A1(I, h). This

makes it possible to cast the interference of loop diagrams

with the Born amplitude into the form

2
∑

col

M∗
0(h)M1(I, h) = U0(I, h)A1(I, h), (2.21)

where A1(I, h) is the colour-stripped loop amplitude, and

the colour information is entirely absorbed into the colour-

summed interference factor

U0(I, h) = 2

(∑

col

M∗
0(h) C(I)

)

= 2
∑

i, j

[A(i)
0 (h)]∗ Ki j a j (I), (2.22)

where a j (I), A
(i)
0 (h), and Ki j are defined in (2.6)–(2.8). In

this way, as detailed below, the full tree–loop interference can

be constructed in terms of colour-stripped or colour-summed

objects.

2.5.1 Parent-child algorithm

In the original open-loop approach, tree–loop interference

contributions of type (2.21) are constructed as follows.

(i) The numerator of a colour-stripped N -point loop dia-

gram (2.12) is constructed as outlined in Sect. 2.3, i.e.

starting from N0 = 1 and applying N dressing steps

of type (2.15).

(ii) In general, open loops with higher number N of loop

propagators do not need to be built from scratch, but can

be constructed starting form pre-computed open loops

with lower N exploiting parent–child relations [9] as

illustrated in Fig. 2. The efficiency of the parent–child

approach is maximised by means of cutting rules that

set the position of the cut propagator and the dressing

direction in a way that favours parent–child matching

(for details see [9,33]).

(iii) After the last dressing step, the loop numerator is closed

by taking the trace and, for every helicity state h, the

colour-summed Born interference (2.21) is built as

123

Eur. Phys. J. C (2019) 79 :866 Page 7 of 56 866

Nk(IN) =

w1 wk wk+1 wk+2

Nk(ĨN−1) =

w1 wk wk+1 wk+2

Fig. 2 Example of parent-child relation between open loops. The parent N -point diagram IN and the child (N − 1)-point diagram ĨN−1 share

the first k segments (blue blobs). Thus Nk(IN , q) and Nk(ĨN−1, q) are identical and need to be constructed only once

U(IN , q, h) = U0(IN , h)Tr
[
N (IN , q, h)

]
. (2.23)

(iv) Helicity sums are performed, and the set of loop dia-

grams with the same one-loop topology t = {D0, . . .,

DN−1}, denoted ΩN (t), is combined to form a single

numerator,

V(t, q) =
∑

h

∑

IN ∈ΩN (t)

U(IN , q, h). (2.24)

(v) The corresponding loop integral,

W01(t) =
∫

dDq̄
V(t, q)

D̄0 D̄1 · · · D̄N−1

, (2.25)

is reduced to master integrals as described in Sect. 2.4.1,

and all topologies are summed.

All operations in (i)–(v) are performed at the level of open-

loop tensor coefficients.

2.5.2 On-the-fly algorithm

The on-the-fly construction of Born-loop interferences pro-

ceeds through objects of type

Uk(IN , q, ȟk) =
∑

ĥk

U0(IN , h)Nk(IN , q, ĥk), (2.26)

where the partially dressed open loops, Nk(IN , q, ĥk), are

always interfered with the Born amplitude, summed over

colours, and also over the helicities ĥk of all segments that

are already dressed. The helicities of the remaining undressed

segments are labelled with the index ȟk . As outlined in the

following, the algorithm interleaves dressing, merging and

reduction operations in a way that keeps the tensor rank

always low and avoids the proliferation of pinched objects

that arise from the reduction. For a detailed description see

[33].

(i) The generalised open loops (2.26) are constructed through

subsequent dressing steps

Uk(IN , q, ȟk) =
∑

hk

Uk−1(IN , q, ȟk−1)Sk(q, hk),

(2.27)

starting from U0(IN , q, ȟ0) = U0(IN , h). The summa-

tion over the helicities hk is performed on-the-fly after the

dressing of the related segment. This results in a reduction

of helicity degrees of freedom, and thus of the number of

required operations, at each dressing step.

(ii) Before each new dressing step, the set ΩN = {I(n)
N } of

open loops with the same loop topology and the same

undressed segments is combined into a single object,

Vk(ΩN , q, ȟk) =
∑

n

Uk(I
(n)
N , q, ȟk). (2.28)

In this way, the remaining dressing operations for the

objects in ΩN need to be performed only once. This pro-

cedure, called on-the-fly merging, is illustrated in Fig. 3.

It plays an analogous role as the parent-child approach

in Sect. 2.5.1, and its efficiency is maximised by means

of cutting rules tailored to the needs of merging.

(iii) Open-loop objects of type (2.28) with more than three

loop propagators are reduced on-the-fly using the inte-

grand-reduction identity (2.20). This generates new open

loops of the form

Vk(Ω
k
N , q̄)

D̄0 · · · D̄3 · · · D̄N−1

=
3∑

j=−1

Vk(Ω
k
N [j], q̄)

D̄0 · · ·
/̄
D j · · · D̄3 · · · D̄N−1

,

(2.29)

where
/̄
D j denotes a pinched propagator. This reduction

is applied to rank-two objects directly before dressing

steps that would otherwise increase the rank to three. In

order to avoid the proliferation of new objects, pinched

open loops are merged on-the-fly with other open loops

stemming from lower-point Feynman diagrams or from

other pinched open loops [33]. The numerators in (2.29)

have the form

Vk(Ω, q̄)=
∑

s,r

Vs
k;μ1...μr

(Ω) qμ1 · · ·qμr (q̃2)s, (2.30)

where q̃2 terms that arise from pinched propagators (see

Sect. 2.4.2) are retained in all UV divergent integrals and

lead to R1 rational terms.

123

866 Page 8 of 56 Eur. Phys. J. C (2019) 79 :866

Vk(ΩN) =

ŵ1 ŵk
wk+1 wN

=
n

U0(I(n)
N

)

w(n)
1 w

(n)

k
wk+1 wN

Fig. 3 Schematic representation of on-the-fly merging. Open loops with the same loop topology and the same undressed segments (grey blobs)

are combined in a single object

Steps (i)—(iii) are iterated until the loop is entirely

dressed.9

(iv) At this stage, the loops are closed by taking the trace,

and the resulting loop integrals,

W01(Ω) =
∫

dDq̄
Tr [V(Ω, q̄)]

D̄0 D̄1 · · · D̄N−1

, (2.31)

are reduced to master integrals upon extraction of R1

terms, as described at the end of Sect. 2.4.2. Finally, all

topologies are summed.

As demonstrated in Sect. 5, the on-the-fly approach yields

significant efficiency improvements wrt the original open-

loop algorithm. Moreover, based on the one-the-fly reduction

algorithm, OpenLoops 2 has been equipped with an auto-

mated stability system that cures Gram-determinant instabil-

ities with unprecedented efficiency (see Sect. 2.7).

2.6 Squared loop amplitudes

As outlined in the following, the calculation of squared loop

amplitudes (2.3) is organised along the same lines of the

parent-child algorithm of Sect. 2.5.1 but with a different

colour treatment.

(i) The numerators of colour-stripped loop diagrams are

constructed with the dressing recursion (2.15) exploit-

ing parent–child relations.

(ii) After the last dressing step, loop numerators are closed

by taking the trace, and colour-stripped diagrams

expressed in terms of integrals T
μ1···μr

N (2.18),

A1(IN , h) =
∫

dDq̄
Tr
[
N (IN , q, h)

]

D̄0 D̄1 · · · D̄N−1

=
∑

r

Tr
[
Nμ1...μr (IN , h)

]
T

μ1···μr

N ,

(2.32)

which are then computed with Collier. While the

Nμ1...μr (IN , h) coefficients need to be evaluated for

9 Note that it is also possible to apply only (i)–(ii). This leads to the

same objects V(t, q) as in (2.24), which can then be reduced a posteriori.

every helicity state h, the reduction is done only once

– and thus very efficiently – at the level of the h-

independent tensor integrals.

(iii) Individual colour-stripped diagram amplitudes are

combined with the corresponding colour structure and

converted into colour vectors in the colour basis {Ci },

M1(IN , h) = C(IN)A1(IN , h)

=
∑

i

Ci A
(i)
1 (IN , h). (2.33)

Then, summing all diagrams yields the full one-loop

colour vector

A
(i)
1 (h) =

∑

I

A
(i)
1 (I, h). (2.34)

(iv) Finally, the helicity/colour summed squared loop ampli-

tude is built though the colour-interference matrix (2.8)

as

W11 = 1

Nhcs

∑

h

∑

col

M∗
1(h)M1(h)

= 1

Nhcs

∑

h

∑

i, j

Ki j

[
A

(i)
1 (h)

]∗
A

(j)
1 (h). (2.35)

2.7 Numerical stability

The reduction of one-loop amplitudes to scalar integrals suf-

fers from numerical instabilities in exceptional phase-space

regions. Such instabilities are related to small Gram deter-

minants of the form

Δ1...n = Δ(p1, . . . , pn) = det
(

pi · p j

)
i, j=1,...,n

, (2.36)

where pk are the external momenta in the loop propagators

Dk . In regions where rank-two and rank-three Gram determi-

nants become small, the objects that result from the pinching

of propagators can be enhanced by spurious 1/Δ singulari-

ties. At the end, when all pinched objects are combined and

the integrals evaluated, such singularities disappear. How-

ever, this cancellation can be so severe that all significant

digits are lost, and the amplitude output can be inflated in an

uncontrolled way by orders of magnitude. This calls for an

automated system capable of detecting and curing all relevant

123

Eur. Phys. J. C (2019) 79 :866 Page 9 of 56 866

instabilities in a reliable way. This is especially important for

multi-particle and multi-scale NLO calculations, and even

more for NNLO applications, which require high numeri-

cal accuracy in regions where one external parton becomes

unresolved, thereby inflating spurious poles.

In principle, numerical accuracy can be augmented through

quadruple precision (qp) arithmetic. But the resulting CPU

overhead, of about two orders of magnitude, is often pro-

hibitive. In OpenLoops, numerical instabilities are thus

addressed as much as possible in double precision (dp) using

analytic methods. In OpenLoops1, as detailed below, numer-

ical instabilities are avoided by means of the Collier library

[19] in combination with a stability rescue system that makes

use of CutTools [10] in qp. In OpenLoops2, loop-induced

processes are handled along the same lines, while standard

NLO calculations are carried out with the new on-the-fly

reduction algorithm, which is equipped with its own stability

system (see Sect. 2.7.2). The latter combines analytic tech-

niques together with a new hybrid-precision system that uses

qp in a highly targeted way, requiring only a tiny CPU over-

head as compared to a complete qp re-evaluation.

An additional source of numerical instabilities originates

from the violation of on-shell relations or total momentum

conservation of external particles, i.e. due to the quality of

the provided phase-space point. To this end before ampli-

tude evaluation on-shell conditions and momentum con-

servation are checked. A warning is printed when these

conditions are violated beyond a certain relative threshold,

which can be altered via the parameter psp_tolerance

(default = 10−9). Additionally, we apply a “cleaning proce-

dure” which ensures kinematic constraints of the phase-space

up to double precision, rsp. qp where applicable.

2.7.1 Stability rescue system

In the original open-loop algorithm – which was used

throughout in OpenLoops1 and is still used in OpenLoops

2 for squared loop amplitudes and tree–loop interferences in

the HEFT – the reduction to scalar integrals is entirely based

on external libraries, and the best option is to carry out the

reduction of tensor integrals using the Collier library [19].

In the vicinity of spurious poles, Collier cures numerical

instabilities by means of expansions in the Gram determi-

nants and alternative reduction methods [4,34]. Such ana-

lytic techniques are applied in a fully automated way, and the

resulting level of numerical stability is generally very good.

Alternatively, the reduction can be performed at the integrand

level using CutTools [10], but this option is mainly used

as rescue system in qp, since CutTools does not dispose of

any mechanism to avoid instabilities in dp.

In the calculation of tree–loop interferences, numerical

instabilities are monitored and cured by means of an auto-

mated rescue system based on the following strategy.

(i) The stability of tensor integrals is assessed by compar-

ing the two independent Collier implementations of

the tensor reduction, Coli-Collier (default) and DD-

Collier. This test can be applied to all phase-space

points or restricted to a certain fraction of points with

the highest virtual K -factor10 Given the desired frac-

tion, the points to be tested are automatically selected

by sampling the distribution in the K -factor at runtime.

(ii) Points that are classified as unstable are re-evaluated in

qp using CutTools and OneLOop.

(iii) In CutTools, numerical instabilities can remain sig-

nificant even in qp. Their magnitude is estimated

through a so-called rescaling test, where one-loop

amplitudes are computed with rescaled masses, dimen-

sionful couplings and momenta and scaled back accord-

ing to the mass dimensionality of the amplitude.

In this approach, the re-evaluation of the amplitude for

stability tests causes a non-negligible CPU overhead. More-

over, additional re-evaluations of the full amplitude in qp are

very CPU intensive. Fortunately, thanks to the high stability

of Collier, they are typically needed only for a tiny frac-

tion of phase-space points. However, the usage of qp strongly

depends on the complexity of the process, and for challeng-

ing multi-scale NLO calculations and NNLO applications it

can become quite significant.

In the case of squared loop amplitudes, the qp rescue with

CutTools is disabled, because of the inefficiency of OPP

reduction for loop-squared amplitudes. This is due to the fact

that all helicity and colour configurations must be reduced

independently. Thus the above stability system is restricted to

stage (i). Moreover, due to the fact that a K -factor is not avail-

able for loop-squared amplitudes, the comparison of Coli-

Collier versus DD-Collier to assess numerical stability is

extended to all phase-space points. Details on the usage of

the stability rescue system can be found in Sect. 4.6.

2.7.2 On-the-fly stability system

The on-the-fly reduction methods [33] implemented in

OpenLoops 2 are supplemented by a new stability system,

which is based on the analysis of the analytic structure of

spurious singularities in the employed reduction identities.

In general, the reduction of loop objects with four or more

propagators, D0, D1, D2, D3 . . . , can give rise to spurious

singularities in the rank-three Gram determinant Δ123, and

in the rank-two Gram determinants Δ12, Δ13 and Δ23. In the

case of the on-the-fly reduction (2.19), the reduction coeffi-

cients associated with a Di pinch generate spurious singu-

larities of the form

10 This approach allows one to trigger the most extreme instabilities,

where the K -factor is altered by O(1) or more.

123

866 Page 10 of 56 Eur. Phys. J. C (2019) 79 :866

A
μν
i = 1

Δ12
a

μν
i ,

B
μν
i,λ = 1

Δ2
12

1√
Δ123

[
b

(1)
i,λ

]μν

+ 1

Δ12

[
b

(2)
i,λ

]μν

, (2.37)

with a clear hierarchical pattern: very strong instabilities in

Δ12, mild instabilities in Δ123, and no instability in Δ13 and

Δ23. The on-the-fly reduction of objects with only three loop

propagators involve only Δ12 and yields similar spurious sin-

gularities as in (2.37), but without the Δ123 term.

Rank-two Gram determinants Instabilities from rank-two

Gram determinants are completely avoided in OpenLoops2.

In topologies with four or more propagators, this is achieved

via permutations of the loop denominators, (D1, D2, D3) →
(Di1 , Di2 , Di3), in the reduction identities. Such permuta-

tions are applied on an event-by-event basis in order to guar-

antee

|Δi1i2 | = max {|Δ12|, |Δ13|, |Δ23|} , (2.38)

so that the reduction is always protected from the smallest

rank-two Gram determinant.

In this way, rank-two Gram instabilities are delayed to

later stages of the reduction, where three-point objects with

a single Gram determinant Δ12 are encountered. In this case,

instabilities at small Δ12 are cured by means of an analytic

Δ12-expansion, which have been introduced in [33] for the

first few orders in Δ12 and are meanwhile available to any

order [66].

Such expansions have been worked out for those topolo-

gies and regions that can lead to Δ12 → 0 in hard scattering

processes. This can happen only in t-channel triangle config-

urations, where two external momenta k1, k2 are space-like,

and (k1+k2)
2 = 0. The relevant virtualities are parametrised

as k2
1 = −Q2 and k2

2 = −(1 + δ)Q2, where Q2 is a (high)

energy scale, and the Gram determinant is related to δ via√
Δ12 = Q2 δ/2. The corresponding three-point tensor inte-

grals are expanded in δ based on covariant decompositions

of type

Cμ1...μr (−p2,−p2(1 + δ), 0, m2
0, m2

1, m2
2)

=
∑

i

Ci (δ) L
μ1...μr

i , (2.39)

where L
μ1...μr

i are Lorentz structures made of metric tensors

and external momenta. Their coefficients Ci (δ) are reduced

to scalar tadpole, bubble and triangle integrals,

T 1
0 (δ) = A0(m

2
0),

T 2
0 (δ) = B0(−p2(1 + δ), m2

0, m2
1),

T 3
0 (δ) = C0(−p2,−p2(1 + δ), 0, m2

0, m2
1, m2

2), (2.40)

i.e.

Ci (δ) =
3∑

N=1

cN
i (δ) T N

0 (δ), (2.41)

where cN
i (δ) are rational functions containing 1/δK poles,

while the Ci (δ) coefficients are regular at δ → 0. Numeri-

cally stable δ-expansions for Ci (δ) are obtained via Taylor

expansions of the scalar integrals. The required coefficients,

SN
k = 1

k!

(
∂

∂δ

)k

T N
0 (δ)

∣∣∣∣
δ=0

, (2.42)

have been determined to any order k in the form of analytic

recurrence relations [33] for all mass configurations of type

(m0, m1, m2) = (0, 0, 0), (0, m, m), (m, 0, 0), (m, M, M),

which cover all possible QCD amplitudes with massless par-

tons and massive top and bottom quarks. Recently, such any-

order expansions have been extended to all mass configura-

tions that can occur at NLO EW.11

To stabilise the tensor coefficients (2.41), singular terms

of the form δ−K T N
0 (δ) are separated via partial fractioning

and replaced by

δ−K T N
0 (δ) = T

N ,K
0,sing(δ) + T

N ,K
0,fin (δ), (2.43)

with

T
N ,K

0,fin (δ) =
∞∑

k=K

SN
k δk−K . (2.44)

The singular parts cancel exactly when combining the contri-

butions from A0, B0 and C0 functions as well as the rational

terms. Thus only the finite series T
N ,K

0,fin (δ) need to be eval-

uated. The fact that all tensor integrals are stabilised using

only C0 and B0 expansions makes it possible to expand with

excellent CPU efficiency up to very high orders in δ, thereby

controlling a broad δ-range. In practice, the δ-expansions are

applied for δ < δthr, with a threshold δthr that is large enough

to avoid significant instabilities for δ > δthr, while below δthr

the expansions are carried out up to a relative accuracy of

10−16 (10−32) in dp (qp). By default δthr is set to 10−2.

Rank-three Gram determinants The on-the-fly reduction

coefficients (2.37) associated with Di pinches with i =
1, 2, 3 are proportional to 1/

√
Δ123 and read [33]

11 The implementation of such NLO EW expansions is in progress and

will be completed in a future update of the code. In the meanwhile,

Gram-determinant instabilities for which no expansion is implemented

are cured by means of the hybrid-precision system (see below).

123

Eur. Phys. J. C (2019) 79 :866 Page 11 of 56 866

K1 = p3 · (ℓ1 − α1ℓ2)

p3 · ℓ3
, K2 = p3 · (ℓ2 − α2ℓ1)

p3 · ℓ3
,

K3 = 2
ℓ1 · ℓ2

p3 · ℓ3
, (2.45)

where αi = p2
i /[p1 · p2(1 +

√
δ)], and ℓ

μ
1,2,3 are aux-

iliary momenta used to parametrise the loop momen-

tum [33]. In topologies with more than four propagators,

D0, D1, D2, D3, D4, . . ., such rank-three Gram instabilities

are avoided by performing the reduction in terms of four of

the first five propagators, Di0 Di1 Di2 Di3 , which are chosen by

first maximising |Δi1i2 |, to avoid rank-two instabilities, and

by subsequently minimising max{|Ki1 |, |Ki2 |, |Ki3 |}. In this

way, small rank-three (-two) Gram determinants can largely

be avoided until later stages of the recursion, where box (tri-

angle) topologies have to be reduced.

OPP reduction The OPP method, used for five- and higher-

point objects of rank smaller than two, is based on the same

auxiliary momenta ℓi mentioned above. Related rank-two

Gram instabilities are avoided by permuting the propagators

of the resulting scalar boxes according to (2.38).

IR regions In order to mitigate numerical instabilities in

the context of NNLO calculations, OpenLoops implements

additional improvements targeted at phase-space regions

where one external parton becomes soft or collinear. Such

improvements include:

– global and numerically stable implementation of all kine-

matic quantities, including the basis momenta ℓ
μ
i used for

the reduction, in special regions;

– analytic expressions for renormalised self-energies to

avoid numerical cancellations between bare self-energies

and counterterms in the limit of small p2. This is rele-

vant for self-energy insertions into propagators that are

connected to two external partons via soft or collinear

branchings.

Such dedicated treatments for unresolved regions will be

documented in [66] and further extended in the future.

Hybrid precision system In order to cure residual instabilities

that cannot be avoided with the methods described above, the

on-the-fly reduction is equipped with a hybrid-precision (hp)

system [66] that monitors all potentially unstable types of

reduction identities and switches from dp to qp dynamically

when a numerical instability is encountered. This system is

fully automated and acts locally, at the level of individual

operations. This makes it possible to restrict the usage of

qp to a minimal part of the calculation, thereby obtaining a

speed-up of orders of magnitude as compared to brute-force

qp re-evaluations of the full amplitude. Typically, the extra

time spent in qp is only a modest fraction of the standard dp

evaluation time. The main features of the hp system are as

follows.

– Quad precision is triggered and used at the level of indi-

vidual reduction steps, based on the kinematics of the

actual phase-space point and the loop topology of the

individual open-loop object that is being processes at a

given stage of the recursion.

– Reduction steps that are identified as unstable and all

consecutive connected operations are carried out in quad

precision until spurious singularities are cancelled. Quad

precision is thus used for all subsequent operations

(dressing, merging, reduction, master integrals) that are

connected to an instability.

– For each type of reduction step, the magnitude of poten-

tial instabilities is estimated based on the actual kinemat-

ics and the analytical form of the reduction identity. This

information leads to an error estimate that is attributed

to each processed object and is propagated and updated

through all steps of the algorithm.

– Quad precision is triggered when the cumulative error

esimate for a certain object exceeds a global accu-

racy threshold, which can be adjusted by the user (see

Sect. 4.6) depending on the required numerical accuracy.

The hp system is based on two parallel dp/qp channels for

each generic operation (reduction, dressing, merging) and a

twofold dp/qp representation of each object that undergoes

such operations. By default the dp channel is used, and when

an instability is detected the object at hand is moved to the

qp channel, which is used for all its subsequent manipula-

tions. At the end, when spurious singularities are cancelled,

qp output is converted back to dp.

The efficiency of the hp system strongly benefits from

the above mentioned analytical treatments of Gram determi-

nants and soft regions, which avoid most of the instabilities

and delay the remaining ones to later stages of the recur-

sion, minimising the number of subsequent qp steps. As a

result, for one-loop calculations with hard kinematics qp is

typically needed only for a tiny fraction of the phase-space

points, and for a very small part of the calculation of an

amplitude. The usage of qp can become significantly more

important in NNLO calculations, especially when local sub-

traction methods are used. In this case, one-loop amplitudes

need to be evaluated in deep IR regions, where new types of

instabilities occur for which no analytic solution is available

at the moment. Such instabilities are automatically detected

and cured by the hp system. This may lead, depending on

the process and kinematic region, to a significant CPU over-

head. In such cases, the accuracy threshold parameter should

123

866 Page 12 of 56 Eur. Phys. J. C (2019) 79 :866

be tuned such as to achieve an optimal trade-off between

performance and numerical stability.

Technical details and usage of the on-the-fly stability sys-

tem are described in Sect. 4.6.

External libraries Finally, OpenLoops 2 benefits from

improvements in Collier 1.2.3 [19], which is used for dp

evaluations of scalar integrals and for tensor reduction in

loop-induced processes, as well as in OneLOop [65], which

is used to evaluate scalar integrals in qp.

3 Automation of tree- and one-loop amplitudes in the

full SM

3.1 Power counting

In the Standard Model, scattering amplitudes can be classi-

fied based on power counting in the strong and electroweak

coupling constants,12 gs =
√

4παs and e =
√

4πα. At LO

in QCD, tree amplitudes have the simple form

M0

∣∣∣
LO QCD

= gn
s emM

(0)
0 , (3.1)

where n and m are, respectively, the maximally allowed

power in gs and the minimally allowed power in e. The total

coupling power is fixed by the number of scattering parti-

cles, n + m = Np − 2, where Np is the number of scattering

particles.

In the SM, the general coupling structure of scattering

amplitudes depends on the number nqq̄ of external quark–

antiquark pairs. For processes with nqq̄ ≤ 1, the LO QCD

term (3.1) is the only tree contribution, while processes with

nqq̄ ≥ 2 involve also sub-leading EW contributions of order

g
p
s eq with p + q = Np − 2 and variable power q > m.

Such contributions reflect the freedom of connecting quark

lines either through EW or QCD interactions. As a result, tree

amplitudes consist of a tower of QCD–EW contributions,

M0 = gn
s em

ñqq̄∑

k=0

(
e

gs

)2k

M
(k)
0 , (3.2)

where

ñqq̄ =
{

nqq̄ − 1 for nqq̄ ≥ 1,

0 for nqq̄ = 0.
(3.3)

12 For simplicity, here we regard Yukawa and Higgs couplings as

parameters of order e, keeping in mind that a separate power count-

ing in λY and λH is possible.

For nqq̄ ≥ 2, the Born amplitude (3.2) involves nqq̄ terms,

while the squared Born amplitude consists of a tower of

2nqq̄ − 1 terms,

W00 = 〈M0|M0〉

= (4παs)
n(4πα)m

2ñqq̄∑

r=0

(
α

αs

)r

W
(r)
00 . (3.4)

Each term of fixed order in αs and α in (3.4) results from the

interference between Born amplitudes of variable order,

W
(r)
00 =

smax∑

s=smin

〈
M

(r−s)
0 |M(s)

0

〉
for 0 ≤ r ≤ 2ñqq̄ , (3.5)

where smin = max(0, r − ñqq̄) and smax = min(r, ñqq̄). Con-

tributions
〈
M

(k)
0 |M(k′)

0

〉
with k′ �= k and k′ = k are denoted,

respectively, as Born–Born interferences and squared Born

terms. The former are typically strongly suppressed with

respect to the latter. This is due to the fact that physi-

cal observables are typically dominated by contributions

involving propagators that are enhanced in certain kinematic

regions. Squared amplitudes that involve such propagators

are thus maximally enhanced. In contrast, since the propaga-

tors of Born amplitudes with k′ �= k are typically peaked in

different regions, Born–Born interferences tend to be much

less enhanced. In addition, the interference between diagrams

with gluon and photon propagators, which are enhanced in

the same regions, turn out to be suppressed as a result of

colour interference.

Based on these considerations, it is interesting to note that

each term (3.5), with fixed order in αs and α, contains at most

one squared-Born contribution with r − s = s. In fact this

is possible only for even values of r . Thus the tower (3.4)

consist of an alternating series of nqq̄ squared Born terms13

with r = 2R,

W
(2R)
00 ⊃

〈
M

(R)
0 |M(R)

0

〉
for 0 ≤ R ≤ ñqq̄ , (3.6)

and (nqq̄ − 1) pure interference terms with r = 2R + 1,

W
(2R+1)
00 ⊃ interference only for 0 ≤ R ≤ ñqq̄ − 1.

(3.7)

The tower of Born terms (3.4) is illustrated in the upper row

of Fig. 4. Squared Born terms are shown as large dark grey

blobs, while interference terms are depicted as smaller light

grey blobs.

13 In the following, for convenience, we refer to the the full amplitude

M
(2R)
0 as squared Born term.

123

Eur. Phys. J. C (2019) 79 :866 Page 13 of 56 866

αS α

αn
Sαm

αn−1
S αm+1 αn−2

S αm+2

αn+1
S αm αn

Sαm+1

LO

NLO

Fig. 4 Schematic representation of the towers of mixed QCD–EW

terms at LO and NLO. The first row represents the LO tower (3.4)–

(3.6), which consists of an alternating series of dominant squared Born

terms (dark grey blobs) and sub-leading pure interference terms (light

grey blobs). The second row corresponds to the NLO tower (3.14)–

(3.24). Each LO term is connected to two NLO terms via QCD (red) and

EW (blue) corrections, while each NLO term is connected to a unique

squared Born term either via QCD or EW corrections. Apart from the

outer most NLO terms of pure QCD and pure EW kind, QCD (EW)

corrections to squared Born terms mix with EW (QCD) corrections to

adjacent interference terms

At one loop, for processes that are not free from external

QCD partons,14 the leading QCD contributions have the form

M1

∣∣∣
NLO QCD

= gn+2
s emM

(0)
1 . (3.8)

Here NLO QCD should be understood as the O(αs) correc-

tion wrt the LO QCD term (3.1). For processes with nqq̄ ≥ 2,

the leading QCD terms are accompanied by a tower of sub-

leading EW contributions, and the general form of one-loop

SM amplitudes is

M1 = gn+2
s em

ñqq̄+1∑

k=0

(
e

gs

)2k

M
(k)
1 . (3.9)

Here and in the following, the inclusion of all counterterm

contributions of UV and R2 kind as in (2.11) is implicitly

understood. One-loop terms of fixed order in gs and e in

(3.9) can be regarded either as the result of O(g2
s) or O(e2)

insertions into corresponding Born amplitudes. In this per-

spective, denoting matrix elements of fixed order as

M
(P,Q)
L = ML

∣∣∣
gP

s eQ
, (3.10)

we can define

δQCDM
(p,q)
0 ≡ M

(p+2,q)
1 ,

δEWM
(p,q)
0 ≡ M

(p,q+2)
1 , (3.11)

where δQCD and δEW should be understood as operators that

transform an O(g
p
s eq) Born matrix element into the complete

14 In the absence of extenal quarks and gluons, tree and one-loop ampli-

tudes have a trivial purely EW coupling structure, M0 = emM
(0)
0 and

M1 = em+2M
(1)
1 .

one-loop matrix elements of O(g
p+2
s eq) and O(g

p
s eq+2),

respectively. For processes with nqq̄ ≤ 1, only one Born

term and two one-loop terms exist, and the latter can unam-

biguously be identified as NLO QCD and NLO EW correc-

tions,

M1 = M
(n+2,m)
1 + M

(n,m+2)
1

= δQCD M
(n,m)
0 + δEW M

(n,m)
0 for nqq̄ ≤ 1. (3.12)

In contrast, processes with nqq̄ ≥ 2 involve ñqq̄ + 1 = nqq̄

terms of variable order gP
s eQ , which can in general be

regarded either as QCD corrections to Born terms of rela-

tive order g−2
s or EW corrections to Born terms of relative

order e−2, i.e.

M
(P,Q)
1 = δQCD M

(P−2,Q)
0 = δEW M

(P,Q−2)
0 (3.13)

for nqq̄ ≥ 2. More precisely, one-loop terms with maximal

QCD order, Pmax = n + 2, represent pure QCD corrections,

since Born terms of relative order e−2 do not exist. Similarly,

one-loop terms of maximal EW order, Qmax = m+2+2ñqq̄ ,

are pure EW corrections, since Born terms of relative order

g−2
s do not exist. In contrast, the remaining nqq̄ −2 terms with

P < Pmax and Q < Qmax have a mixed QCD–EW charac-

ter, in the sense that they involve corrections of QCD and

EW type, which coexist at the level of individual Feynman

diagrams, such as in loop diagrams where two quark lines are

connected by a virtual gluon and a virtual EW boson. This

kind of one-loop terms cannot be split into contributions of

pure QCD or pure EW type. Thus, in general only the full set

of one-loop diagrams containing all mixed QCD–EW terms

of order gP
s eQ represents a well defined and gauge-invariant

perturbative contribution. Keeping this in mind, as far as the

terminology is concerned, it is often convenient to refer to

(3.13) either as QCD correction wrt to O(gP−2
s eQ) or EW

correction wrt O(gP
s eQ−2).

123

866 Page 14 of 56 Eur. Phys. J. C (2019) 79 :866

Squaring one-loop amplitudes with nqq̄ ≥ 2 results in

a similar tower of 2nqq̄ − 1 mixed QCD–EW terms as in

(3.4)–(3.5). In contrast, the interference of tree and one-loop

amplitudes yields a tower of 2nqq̄ terms,

W01 = 2Re 〈M0|M1〉

= (4παs)
n+1 (4πα)m

2ñqq̄+1∑

r=0

(
α

αs

)r

W
(r)
01 . (3.14)

Each term of fixed order in αs and α involves the interference

between Born and one-loop terms of variable order,

W
(r)
01 = 2Re

tmax∑

t=tmin

〈
M

(r−t)
0 |M(t)

1

〉
(3.15)

for 0 ≤ r ≤ 2ñqq̄ + 1, where tmin = max(0, r − ñqq̄) and

tmax = min(r, ñqq̄+1).15 In general, the one-loop amplitudes

that enter (3.15) consist of mixed QCD–EW corrections in

the sense of (3.13), i.e.

M
(k)
1 = δQCD M

(k)
0 = δEW M

(k−1)
0 for nqq̄ ≥ 2. (3.16)

In practice, as discussed above, the one-loop terms with max-

imal QCD or maximal EW order consist of pure QCD or pure

EW corrections. In (3.14)–(3.15) they correspond to r = 0

and r = 2ñqq̄ + 1, and they read

W
(0)
01 = 2Re

〈
M

(0)
0 |M(0)

1

〉
= 2Re

〈
M

(0)
0 |δQCD M

(0)
0

〉
,

(3.17)

and

W
(2ñqq̄+1)

01 = 2Re
〈
M

(ñqq̄)

0 |M(ñqq̄+1)

1

〉

= 2Re
〈
M

(ñqq̄)

0 |δEW M
(ñqq̄)

0

〉
. (3.18)

These contributions are shown as the outer most blobs in

the second row of Fig. 4. They emerge as pure O(αs) and

pure O(α) corrections as indicated by the red and blue

arrows respectively. The remaining (2nqq̄ − 2) terms can-

not be regarded as pure QCD or pure EW corrections. Nev-

ertheless, due to the fact that the squared Born tower is an

alternating series consisting of nqq̄ squared Born terms and

(nqq̄ − 1) pure interference terms, see (3.4)–(3.6), the tree–

loop interference (3.14) corresponds to an alternating series

of nqq̄ + nqq̄ terms that can be interpreted, respectively, as

QCD and EW corrections with respect to squared Born terms.

15 In [67] the contributions W
(r)
tree and W

(r)
01 are rsp. denoted as LOr+1

and NLOr+1.

Specifically, the terms (3.15) with even indices, r = 2R with

0 ≤ R ≤ nqq̄ − 1, can be written in the form

W
(2R)
01 = 2Re

tmax∑

t=tmin

〈
M

(2R−t)
0 |δQCD M

(t)
0

〉
, (3.19)

where the terms with t = R,

〈
M

(R)
0 |δQCD M

(R)
0

〉
⊂ W

(2R)
01 , (3.20)

represent QCD corrections to squared Born amplitudes. In

contrast, the alternative representation

W
(2R)
01 = 2Re

tmax∑

t=tmin

〈
M

(2R−t)
0 |δEW M

(t−1)
0

〉
, (3.21)

where 2R−t �= t−1 for all t , shows that EW corrections arise

only in connection with interference Born terms, which are

typically strongly sub-leading. Vice versa, for terms with odd

indices, r = 2R + 1 with 0 ≤ R ≤ ñqq̄ , the representation

W
(2R+1)
01 = 2Re

tmax∑

t=tmin

〈
M

(2R+1−t))
0 |δEW M

(t−1)
0

〉
(3.22)

involves terms with t = R + 1,

〈
M

(R)
0 |δEW M

(R)
0

〉
⊂ W

(2R+1)
01 , (3.23)

which represent EW corrections to squared Born amplitudes,

while writing

W
(2R+1)
01 = 2Re

tmax∑

t=tmin

〈
M

(2R+1−t))
0 |δQCD M

(t)
0

〉
, (3.24)

where 2R + 1 − t �= t for all t , shows that QCD correction

effects enter only through pure interference Born terms and

are typically suppressed.

In summary, apart from the leading QCD and EW terms,

NLO SM contributions at a given order αn+1−r
s αm+r cannot

be regarded as pure QCD or pure EW corrections. Neverthe-

less, the orders r = 2R and 2R + 1 are typically dominated,

respectively, by QCD and EW corrections to the squared Born

amplitude W2R
00 ∼

〈
MR

0 |MR
0

〉
. Thus, keeping in mind that

all relevant EW–QCD mixing and interference effects must

always be included, each NLO order can be labelled in a nat-

ural and unambiguous way either as QCD or EW correction

as illustrated in Fig. 4.

As detailed in Sect. 4.2, OpenLoops supports the calcu-

lation of tree and one-loop contributions of any desired order

in αs and α. In practice, scattering probability densities at

different orders in αs and α,

123

Eur. Phys. J. C (2019) 79 :866 Page 15 of 56 866

W
(P,Q)

L L ′ = WL L ′
∣∣∣
αP

s αQ
, (3.25)

are treated as separate subprocesses. Squared Born terms

W
(p,q)
00 and squared one-loop terms W

(p,q)
11 are selected by

specifying the QCD order p or the EW order q. Fixing q

selects also the related NLO QCD tree–loop interferences,

W
(p+1,q)
01 , while fixing p yields their NLO EW counter-

part,W
(p,q+1)
01 . Alternatively, tree-loop interferences of order

αP
s αQ can be selected directly through the corresponding

one-loop powers P or Q.

3.2 Input schemes and parameters

In this section we discuss the different input schemes and

the SM input parameters that are used for the calculation

of scattering amplitudes in OpenLoops. All parameters are

initialised with physical default values, and can be adapted by

the user by calling the Fortran routine set_parameter

or the related C/C ++ functions as detailed in Appendix A.2.

Table 10 in Appendix C summarises input parameters and

switchers that can be controlled through set_parameter.

Parameters with mass dimension should be entered in GeV

units. The values of specific parameters in OpenLoops can be

obtained by calling the routine get_parameter, and the

full list of parameter values can be printed to a file by calling

the function printparameter (see Appendix A.2).

Masses and widths The OpenLoops parametersmass(PID)

and width(PID) correspond, respectively, to the on-shell

mass Mi and the width Γi of the particle with PDG particle

number PID (see Table 6). Masses and widths are treated as

independent inputs. For unstable particles, when Γi > 0, the

complex-mass scheme [38] is used. In this approach, parti-

cle masses are replaced throughout by the complex-valued

parameters

μ2
i = M2

i − iΓi Mi . (3.26)

This guarantees a gauge-invariant description of resonances

and related off-shell effects. By default, Γi = 0 and μi =
Mi ∈ R for all SM particles, i.e. unstable particles are treated

as on-shell states, while setting Γi > 0 for one or more

unstable particles automatically activates the complex-mass

scheme for the particles at hand. By default, Mi > 0 only for

i = W, Z , H, t .

For performance reasons, the public OpenLoops libraries

are typically generated with me = mμ = mτ = 0 and

mu = md = ms = mc = 0, while generic mass parame-

ters mq are used for the heavy quarks q = b, t . By default,

heavy-quark masses are set to mb = 0 and mt = 172 GeV,

but their values can be changed by the user as desired. Dedi-

cated process libraries with additional fermion-mass effects

(any masses at NLO QCD and finite mτ at NLO EW) can be

easily generated upon request. For efficiency reasons, when

m Q is set to zero for a certain heavy quark, whenever possi-

ble amplitudes that involve Q as external particle are inter-

nally mapped to corresponding (faster) massless amplitudes.

To this end the desired fermion masses have to be specified

before any process is registered, see Sect. 4.2.

Strong coupling The values of αs(μ
2
R) and the renormali-

sation scale μR can be controlled through the parameters

alphas and muren, respectively. These parameters can be

set dynamically on an event-by-event basis,16 and Open-

Loops 2 implements a new automated scale-variation sys-

tem that makes it possible to evaluate the same scattering

amplitude at multiple values of μR and/or αs(μ
2
R) with high

efficiency (see Sect. 4.3).

Number of colours By default, in OpenLoops colour effects

and related interferences are included throughout, i.e. scat-

tering amplitudes are evaluated by retaining the exact depen-

dence on the number of colours Nc. In addition, dedicated

process libraries with large-Nc expansions can be generated

by the authors upon request. When available, leading-colour

amplitudes can be selected at the level of process registration

(see Sect. 4.2) via the parameter leading_colour = 1

(default=0).

EW gauge couplings The U(1) and SU(2) gauge couplings

g1, g2 are derived from

g1 = e

cos θw
, g2 = e

sin θw
, (3.27)

where e =
√

4πα and θw denotes the weak mixing angle.

The latter is always defined through the ratio of the weak-

boson masses [68],

cos2 θw =
μ2

W

μ2
Z

. (3.28)

If ΓW = ΓZ = 0, then cos θw = MW /MZ is real valued.

But in general the mixing angle is complex valued. For the

electromagnetic coupling three different definitions are sup-

ported:

(i) α(0)-scheme: as input for α the parameter alpha

_qed_0 is used, which corresponds to the QED cou-

pling in the Q2 → 0 limit. This scheme is appropriate

for pure QED interactions at scales Q2 ≪ M2
W , and

for the production of on-shell photons (see below).

16 For historical reasons their default values are μR = 100 GeV and

αs = 0.1258086856923967.

123

866 Page 16 of 56 Eur. Phys. J. C (2019) 79 :866

Table 1 Available EW input schemes and corresponding values of the

ew_scheme selector. For each scheme the default values of the corre-

sponding input parameter is indicated. Note that instead of α(M2
Z) =

1/127.94 [69] we use 1/128. Assuming the default weak-boson mass

values MW = 80.399 GeV, MZ = 91.1876 GeV and ΓW = ΓZ = 0.

For the weak mixing angle, sin2 θw = 0.22262651564387248 in all

three schemes, while the derived value of α|Gμ is reported in the table

ew_scheme Scheme Input parameter Default input Value of α

0 α(0) alpha_qed_0 1/137.035999074 Idem

1 (default) Gμ Gmu 1.16637 · 10−5 GeV−2 1/132.34890452162441

2 α(M2
Z) alpha_qed_mz 1/128 Idem

(ii) Gµ-scheme: the input value of α is derived from the

matching condition

∣∣∣ 8√
2

Gμ

∣∣∣
2

=
∣∣∣

g2
2

μ2
W

∣∣∣
2
, (3.29)

which relates squared matrix elements for the muon

decay in the Fermi theory to corresponding W -exchange

matrix elements in the low-energy limit. This results

into17

α|Gμ =
√

2

π
Gμ

∣∣∣μ2
W sin2 θw

∣∣∣. (3.30)

As input for α|Gμ the parameter Gmu is used, which

corresponds to the Fermi constant Gμ. The Gμ-scheme

resums large logarithms associated with α(M2
Z) as

well as universal M2
t /M2

W enhanced corrections asso-

ciated with the ρ parameter. This guarantees an optimal

description of the strength of the SU(2) coupling, i.e.

W -interactions, at the EW scale.

(iii) α(M
2
Z
)-scheme: as input for α the parameter alpha

_qed_mz is used, which corresponds to the QED cou-

pling at Q2 = M2
Z . This scheme is appropriate for hard

EW interactions around the EW scale, where it guar-

antees an optimal description of the strength of QED

interactions and a decent description of the strength of

weak interactions.

The choice of α-input scheme is controlled by the Open-

Loops parameter ew_scheme as detailed in Table 1, where

also the default input values are specified. Note that α(0)

and α(M2
Z) are described by means of two distinct parame-

ters in OpenLoops. Depending on the selected scheme, the

appropriate parameter should be set.

External photons The high-energy couplings α|Gμ and

α(M2
Z) are appropriate for the interactions of EW gauge

17 In the literature, the coupling α in the Gμ-scheme is often defined as

α|Gμ =
√

2/π GμRe
(
μ2

W sin θ2
w

)
, where the truncation of the imag-

inary part is an ad-hoc prescription aimed at keeping α ∈ R in the

complex-mass scheme. However, from the matching condition (3.29)

it should be clear that (3.30) is the natural way of defining α|Gμ as

real-valued parameter.

bosons with virtualities of the order of the EW scale. In con-

trast, the appropriate coupling for external high-energy pho-

tons is α(0) [70]. More precisely, for photons of virtuality

Q2
γ the coupling α(Q2

γ) should be used. For initial- or final-

state on-shell photons this corresponds to α(0). However,

in photon-induced hadronic collisions, initial-state photons

inside the hadrons effectively couple as off-shell partons with

virtuality Q2
γ = μ2

F , where μF is the factorisation scale of

the parton distribution functions (see Appendix A.3 of [36]),

Thus, at high μ2
F the high-energy couplings α|Gμ or α(M2

Z)

should be used.

Based on these considerations, for processes with n on-

shell and n∗ “off-shell” hard external photons plus a possible

unresolved photon,

A → B + nγ + n∗γ
∗ (+γ), (3.31)

the scattering probability densities W = W00,W01,W11 are

automatically rescaled as18

W →
[

R(on)
γ

]n [
R(off)

γ

]n∗
W, (3.32)

with LSZ-like coupling correction factors

R(on)
γ = α(0)

α
and R(off)

γ = αoff

α
. (3.33)

Here α should be understood as the QED coupling in the

input scheme selected by the user, while the value of α(0)

correspond to the parameter alpha_qed_0 and is indepen-

dent of the scheme choice. The coupling of off-shell external

photons and the resulting R
(off)
γ factor are set internally as

αoff =
{

α|Gμ if α = α(0),

α if α = α|Gμ or α = α(M2
Z),

(3.34)

which implies

R(off)
γ =

{
α|Gμ

α(0)
if α = α(0),

1 otherwise.
(3.35)

18 In the case of NLO EW contributions W01, the rescaling factors are

renormalised according to (3.91).

123

Eur. Phys. J. C (2019) 79 :866 Page 17 of 56 866

In this way αoff is guaranteed to be a high-energy coupling.

Note that unresolved photons, i.e. additional photons emit-

ted at NLO EW, need to be treated in a different way. In this

case, in order to guarantee the correct cancellation of IR sin-

gularities, real and EW corrections should be computed with

the same QED coupling. This implies that the coupling α of

unresolved photons should not receive any Rγ rescaling.

The relevant information to determine the number of on-

shell and off-shell external photons in (3.32) should be pro-

vided by the user on a process-by-process basis. To this

end, when registering a process with external photons (see

Sect. 4.2), unresolved photons should be labelled with the

standard PDG identifier PID = 22, while for on-shell and

off-shell hard photons, respectively, PID = 2002 and PID

= −2002 should be used. In order to guarantee an optimal

choice of α, external photons should be handled according

to the following classification.

– Unresolved photons (iPDG = 22): extra photons (absent

at LO) in NLO EW bremsstrahlung.

– Hard photons of on-shell type (iPDG = 2002): standard

hard final-state photons that do not undergo γ → f f̄

splittings at NLO EW, or initial-state photons at photon

colliders;

– Hard photons of off-shell type (iPDG= −2002): hard

final-state photons that undergo γ → f f̄ splittings at

NLO EW, or initial-state photons from QED PDFs in

high-energy hadronic collisions.

Here “hard” should be understood as the opposite of “unre-

solved”, i.e. it refers to all photons that are present as external

particles starting from LO.

By default, the R
(on)
γ and R

(off)
γ rescaling factors in (3.32)–

(3.33) are applied to all on-shell and off-shell photons. They

can be deactivated independently of each other by setting,

respectively,onshell_photons_lsz=0 (default=1) and

offshell_photons_lsz=0 (default=1).

Yukawa and Higgs couplings The interactions of Higgs

bosons with massive fermions is described by the Yukawa

couplings

λ f =
√

2 μ f,Y

v
with v = 2μW sin θw

e
. (3.36)

Here v corresponds to the vacuum expectation value, while

μ f,Y is a Yukawa mass parameter. At LO and NLO QCD,

the complex-valued Yukawa masses can be freely adapted

through the parametersyuk(PID) andyukw(PID), which

play the role of real Yukawa masses Mi,Y and widths Γi,Y.

More explicitly, in analogy with (3.26),

μ2
f,Y = M2

f,Y − iΓ f,Y M f,Y. (3.37)

At NLO QCD, as discussed in Sect. 3.3.1, Yukawa couplings

can be renormalised in the MS scheme or, alternatively, as

on-shell fermion masses.

By default, according to the SM relation between Yukawa

couplings and masses, the Yukawa masses μ f,Y are set

equal to the complex masses μ f in (3.26). More precisely,

each time that mass(PID) and width(PID) are updated,

the corresponding Yukawa mass parameters yuk(PID)

and yukw(PID) are set to the same values. Thus, mod-

ified Yukawa masses should always be set after physi-

cal masses. This interplay, can be deactivated by setting

freeyuk_on = 1 (default = 0). In this case, yuk(PID)

and yukw(PID) are still initialised with the same default

values as mass parameters, but are otherwise independent.

This switcher acts in a similar way on the Yukawa renormal-

isation scale μ f,Y in (3.52). At NLO EW, modified Yukawa

masses are not allowed.19

The triple and quartic Higgs self-couplings are imple-

mented as

λ
(3)
H = κ

(3)
H

3μ2
H

v
, λ

(4)
H = κ

(4)
H

3μ2
H

v2
, (3.38)

where μH denotes the Higgs mass. By default κ
(3,4)
H = 1,

consistently with the SM. At NLO QCD, and also at NLO

EW for processes that are independent of λ
(3,4)
H at tree level,

the Higgs self-couplings can be modified through the naive

real-valued rescaling parameters lambda_hhh ≡ κ
(3)
H and

lambda_hhhh ≡ κ
(4)
H .

Wherever present, the imaginary parts of μ f , μH , μW and

sin θw are consistently included throughout in (3.36)–(3.38).

Higgs effective couplings Effective Higgs interactions in the

Mt → ∞ limit are parametrised in such a way that the Feyn-

man rule for the vertices with two gluons and n Higgs bosons

read

V
μν
ggHn = λggHn

(
gμν p1 · p2 − pν

1 p
μ
2

)
, (3.39)

where

λggHn = 1

n

g2
s

4π2

(−ie

6μW sin θw

)n

, (3.40)

and p1, p2 are the incoming momenta of the gluons. The

power counting in the coupling constants is done in e and gs

as in the SM. In the Higgs Effective Field Theory, only QCD

corrections are currently available.

19 More precisely, Yukawa masses are always renormalised like physi-

cal masses at O(α). Moreover, when μ f,Y �= μ f for any particle during

process registration NLO EW process libraries cannot be loaded and if

μ f,Y �= μ f is set at a later stage a warning is printed.

123

866 Page 18 of 56 Eur. Phys. J. C (2019) 79 :866

CKM matrix The OpenLoops program can generate scat-

tering amplitudes with a generic CKM matrix Vi j . However,

for efficiency reasons, most process libraries are generated

with a trivial CKM matrix, Vi j = δi j . Process libraries with

a generic CKM matrix are publicly available for selected

processes, such as charged-current Drell-Yan production in

association with jets, and further libraries of this kind can be

generated upon request. When available, such libraries can

be used by setting ckmorder=1 before the registration of

the process at hand (see Sect. 4.2). In this case the default

values of Vi j remain equal to δi j , but the real and imaginary

parts of the CKM matrix can be set to any desired value by

means of the input parameters VCKMdu, VCKMsu, VCKMbu,

VCKMdc, VCKMsc, VCKMbc, VCKMdt, VCKMst, VCKMbt

for Re(Vi j) and VCKMIdu, VCKMIsu, etc. for Im(Vi j).

3.3 Renormalisation

Divergences of UV and IR type are regularised in D = 4−2ε

dimensions and are expressed as poles of the form Cǫ μ2ε
D /εn ,

where μD is the scale of dimensional regularisation, and

Cǫ = (4π)ǫ

Γ (1 − ǫ)
= 1 + ε

[
ln (4π) − γE

]
+ O(ε2) (3.41)

is the conventional MS normalisation factor. For a systematic

bookkeeping of the different kinds of divergences, UV and

IR poles are parametrised in terms of independent dimen-

sional factors (εUV, εIR) and scales (μUV, μIR). Thus, one-

loop matrix elements involve three types of poles,

Cǫ

(
μ2

UV

)εUV

εUV
= Cǫ

[
1

εUV
+ ln(μ2

UV)

]
+ O(εUV),

Cǫ

(
μ2

IR

)εIR

εIR
= Cǫ

[
1

εIR
+ ln(μ2

IR)

]
+ O(εIR),

Cǫ

(
μ2

IR

)εIR

ε2
IR

= Cǫ

[
1

ε2
IR

+ 1

εIR
ln(μ2

IR) + 1

2
ln2(μ2

IR)

]

+ O(εIR). (3.42)

Renormalised one-loop amplitudes computed by Open-

Loops are free of UV divergences. Yet, bare amplitudes with

explicit UV poles can also be obtained (see Sect. 4.3). The

remaining IR divergences are universal and can be cancelled

through appropriate subtraction terms (see Sect. 3.4).

For the renormalisation of UV divergences we apply the

following generic transformations of masses, fields and cou-

pling parameters,

μ2
i,0 = μ2

i + δμ2
i , (3.43)

ϕi,0 =
(

1 + 1

2
δZϕi ϕ j

)
ϕ j , (3.44)

gi,0 = gi + δgi =
(
1 + δZgi

)
gi , (3.45)

where μ2
i,0, ϕi,0, gi,0 denote bare quantities, and δμ2

i , δZϕi ϕ j
,

δZgi
the respective counterterms.

For unstable particles, as discussed in Sect. 3.3.2, Open-

Loops implements a flexible combination of the on-shell

scheme [37] and the complex-mass scheme [38]. In this

approach, the width parameters Γi of the various unstable

particles can be set to non-zero or zero values independently

of each other. Depending on this choice, the correspond-

ing particles are consistently renormalised as resonances

with complex masses or as on-shell external states with real

masses.

In the following, we discuss the various counterterms

needed at NLO QCD and NLO EW. In general, as discussed

in Sect. 3.1, one-loop contributions of O(αP
s αQ) can require

O(αs) counterterm insertions in Born terms of O(αP−1
s αQ)

as well as O(α) counterterm insertions in Born terms of

O(αP
s αQ−1).

3.3.1 QCD renormalisation

The SM parameters that involve one-loop counterterms of

O(αs) are the strong coupling, the quark masses, and the

related Yukawa couplings.

Strong coupling The renormalisation of the strong coupling

constant is carried out in the MS scheme, and can be matched

in a flexible way to the different flavour-number schemes

that are commonly used in NLO QCD calculations. To this

end, the full set of light and heavy quarks that contribute to

one-loop amplitudes and counterterms is split into a sub-

set of active quarks (q ∈ Qactive) and a remaining sub-

set of decoupled quarks (q /∈ Qactive). Active quarks with

mass mq ≥ 0 are assumed to contribute to the evolution of

αs(μ
2
R) above threshold. Thus they are renormalised via MS

subtraction at the scale μ = max(μR, mq). The remaining

heavy quarks (q /∈ Qactive) are assumed to contribute only to

loop amplitudes and counterterms, but not to the running of

αs(μ
2
R). Thus, they are renormalised in the so-called decou-

pling scheme, which corresponds to a subtraction at zero

momentum transfer.

The explicit form of the gs counterterm reads

δgs

gs
= αs

4π

{
−11

6
CA

[
Cǫ

εUV
+ ln

(
μ2

UV

μ2
R

)]

+2

3
TF

∑

q

[
Cǫ

εUV
+ Lq(μD, μR, μq)

]}
, (3.46)

where CA = 3 and TF = 1/2, while μR and μUV are

the renormalisation and dimensional regularisation scales for

123

Eur. Phys. J. C (2019) 79 :866 Page 19 of 56 866

UV divergences, respectively. The logarithmic terms associ-

ated with quark loops read

Lq(μD, μR, μq) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln

(
μ2

D

μ2
R

)
if q ∈ Qactive and

μR > mq ,

Re ln

(
μ2

D

μ2
q

) if q ∈ Qactive and

μR < mq

or if q /∈ Qactive.

(3.47)

The number of active and decoupled quarks included in

(3.46) is determined as explained in the following.

Choice of flavour-number scheme In NLO QCD calcula-

tions, the logarithms of μR in the counterterm (3.46)–(3.47)

should cancel the leading-order μR dependence associated

with αs(μ
2
R). To this end, the number Nq,active of active quark

flavours in (3.46) should be set equal to the number NF cor-

responding to the flavour-number scheme of the calculation

at hand. More precisely, when using a running αs(μ
2
R) with

NF quark flavours, the user20 should set Nq,active = NF.

In variable-flavour number schemes, NF corresponds to the

maximum number of quark flavours in the evolution, and

typically NF = 4, 5 or 6.21

In practice, the number of active quarks in OpenLoops is

determined as

Nq,active = max(NF, Nq,m=0), (3.48)

where NF corresponds to the desired flavour-number scheme

and can be specified by the user through the parameter

nf_alphasrun, while Nq,m=0 is determined from the

number of quarks with mq = 0 at runtime. By default

nf_alphasrun=0, and all massless quarks are treated as

active, while massive quarks are decoupled. In contrast, if

nf_alphasrun is set to a value NF > Nq,m=0, the first

NF massless or massive quarks are treated as active above

threshold, and only the remaining heavy quarks are decou-

pled. For example, when mb = 0 the default value of Nq,active

is 5, and nf_alphasrun should be set to 6 in case a 6-

flavour αs is used. In contrast, for mb �= 0 the default value

of Nq,active is 4, and nf_alphasrun should be set to NF

in case a NF-flavour αs with NF > 4 is used.

Total number of quark flavours By default, most public

OpenLoops libraries involve quark-loop contributions with

20 Note that αs(μ
2
R) and μR are separate input parameters controlled

by the user, i.e. OpenLoops does not control the evolution of αs(μ
2
R)

but only the related counterterm. Thus it is the role of the user to set

Nq,active to the correct value NF.

21 In case the running of αs is obtained from LHAPDF the information

about the number of quark flavours contributing to the evolution of αs

is available in the PDF info file as the tag NumFlavors for LHAPDF

versions ≥ 6.0.

Nq,loop = 6 quark flavours. Such libraries can be used for

NLO calculations in any flavour-number scheme with NF =
Nq,loop or NF < Nq,loop. In the latter case, heavy-quark loop

contributions that do not contribute to the evolution of αs(μ
2
R)

are consistently accounted for by the Nq,loop − NF decoupled

quarks in the one-loop matrix elements.

Extra libraries without top-quark loops (Nq,loop = 5)

can be easily generated upon request and are publicly avail-

able for selected processes. When available, libraries with

Nq,loop < 6 can be used by setting the parameter nf

(default=6) to the desired value of Nq,loop at the moment

of the process registration.

Quark masses At NLO QCD, quark masses can be renor-

malised in the on-shell scheme (default) or in the MS scheme.

The general form of mass counterterms is

δμq

μq

= −3 αs

4π
CF

[
Cǫ

εUV
+ ln

(
μ2

UV

μ2
q

)
+ X (μq ,Λq)

]
,

(3.49)

where CF = 3/4, and logarithms of the complex mass μq

are complex valued when Γq > 0. The scheme- dependent

finite part reads

X (μq ,Λq) =

⎧
⎪⎪⎨
⎪⎪⎩

4
3

in the on-shell scheme

(Λq = 0),

ln

(
μ2

q

Λ2
q

)
in the MS scheme (Λq >
0).

(3.50)

Here Λq denotes the MS renormalisation scale for the mass

of the quark q. This scale is controlled by the (real-valued)

parameter LambdaM(PID), which plays also the role of

scheme setter for the mass counterterm of the quark at hand.

For Λq = 0 (default) the on-shell scheme is used, while

setting Λq > 0 activates the MS scheme.

Yukawa couplings According to (3.36), Yukawa couplings

are defined in terms of related Yukawa masses. Their ratio

μq,Y/λq = v/
√

2 depends only on the vacuum expectation

value, which does not receive O(αs) corrections. This implies

the trivial counterterm relation

δλq

λq

= δμq,Y

μq,Y
. (3.51)

Similarly as for the quark masses μq , also Yukawa masses

can be renormalised on-shell (default) or via MS subtraction.

The counterterms read

δμq,Y

μq,Y
= −3 αs

4π
CF

[
Cǫ

εUV
+ ln

(
μ2

UV

μ2
q,Y

)

+ X (μq,Y,Λq,Y)

]
, (3.52)

123

866 Page 20 of 56 Eur. Phys. J. C (2019) 79 :866

with X (μq,Y,Λq,Y) as defined in (3.50). The MS renormali-

sation scale Λq,Y for the Yukawa mass of the quark q is con-

trolled by the independent parameter LambdaY(PID). By

default Λq,Y = 0, and the on-shell counterterm is used, while

setting Λq,Y > 0 activates the MS renormalisation. Similarly

as for Yukawa masses (3.37), the values of Λq,Y are auto-

matically synchronised with Λq when the latter is changed,

but not vice versa. Thus the order in which LambdaM(PID)

andLambdaY(PID) are set matters. As for Yukawa masses,

this interplay can be deactivated by setting freeyuk_on=1

(default = 0).

Wave functions The QCD counterterms for gluon and quark

wave functions read

δZg = αs

4π

[
5

3
CA Δ(0) − 4

3
TF

∑

q

Δ(μq)

]
, (3.53)

and

δZq = − αs

4π
CF

{
Δ(μq) +

[
2

(
Cǫ

εIR
+ Re ln

(
μ2

IR

μ2
q

))

+ 4

]
Θ(Mq)

}
, (3.54)

where μIR is the dimensional regularisation scale for IR

divergences, Θ(M) is the step function with Θ(0) = 0, and

Δ(μq) =

⎧
⎪⎪⎨
⎪⎪⎩

Cǫ

εUV
− Cǫ

εIR
+ ln

(
μ2

UV

μ2
IR

)
for μq = 0,

Cǫ

εUV
+ Re ln

(
μ2

UV

μ2
q

)
otherwise.

(3.55)

Higgs effective couplings The QCD counterterm associated

with the Higgs effective vertex (3.39)–(3.40) reads

δgggHn

gggHn
= 2

δgs

gs
+ δZg + 11

4π
αs, (3.56)

where the last term originates from the two-loop matching of

the Higgs effective coupling [71,72]. For double- (and multi-)

Higgs production at the same order as the NLO QCD correc-

tions also double-operator insertions with the same total num-

ber of Higgs bosons contribute. In OpenLoops these contri-

butions are automatically included as pseudo-counterterms

together with the virtual amplitudes.

Renormalisation and regularisation scales At the level of the

user interface, the UV and IR regularisation scales are treated

as a common scale μD = μUV = μIR, and the logarithms of

μ2
UV/μ2

IR in (3.55) are set to zero. In the literature, also the

logarithms of μ2
UV/μ2

R in (3.46)–(3.47) are often omitted by

assuming μUV = μR in the MS scheme. On the contrary, in

OpenLoops the values of μD and μR are controlled by two

independent parameters, mureg and muren, respectively.

Their default values are μD = μR = 100 GeV. For conve-

nience it is possible to simultaneously set μR = μD = μ

by means of the auxiliary OpenLoops parameter mu. As

described in Sect. 4.3, variations of μR and αs(μ
2
R) can be

carried out in a very efficient way in OpenLoops2.

3.3.2 EW renormalisation

The renormalisation of UV divergences in the EW sector is

based on the scheme of [37] for on-shell particles, and on

the complex-mass scheme [38] for the treatment of off-shell

unstable particles. In OpenLoops 2 these two schemes are

combined into a flexible renormalisation scheme that makes

it possible to deal with processes such as pp → t t̄ℓ+ℓ−,

where some unstable particles (t, t̄) are treated as on-shell

external states, while other ones (Z) play the role of inter-

mediate resonances. This is achieved through a refined def-

inition of field-renormalisation constants, and by adapting

the mass-renormalisation prescriptions for unstable particles

on a particle-by-particle basis, depending on whether the

individual width parameters Γi are set to non-zero values

or not by the user. As explained in the following, the O(α)

renormalisation in OpenLoops involves also a non-standard

treatment of Δα(M2
Z) and special features related to external

photons.

Counterterms for complex masses The propagators of unsta-

ble particles with Γi �= 0 are renormalised in the complex-

mass scheme [38], where the renormalised self-energy is

defined as

Σ̂ i (p2) = Σ i (p2) − δμ2
i with δμ2

i = Σ i
(

p2
) ∣∣∣

p2=μ2
i

.

(3.57)

The counterterm δμ2
i associated with the complex mass

(3.26) corresponds to a subtraction of the full complex-valued

self-energy at p2 = μ2
i . In particular, the counterterm δμ2

i

includes also the imaginary part of the self-energy, which is

related to the width through

Im Σ i (M2
i) = Γi Mi , (3.58)

and is already included in the imaginary part of μ2
i . Thus the

subtraction of Im Σ in the complex-mass scheme is manda-

tory in order to avoid double counting. Since the renor-

malised self-energy (3.57) vanishes at p2 → μ2
i , the tree-

level and one-loop propagators have the same resonant form

1/(p2 − M2
i + iΓi Mi), where width effects are controlled by

the user-defined width parameter Γi .

123

Eur. Phys. J. C (2019) 79 :866 Page 21 of 56 866

For convenience, the relevant 2-point integrals with

complex-valued momenta p2 = μ2
i = M2 − iΓi Mi can

be obtained through a first-order expansion in Γi/Mi around

p2 = M2
i [38]. In this context, self-energy graphs involv-

ing massless photons require a special treatment due to the

presence of a threshold at p2 = μ2. In this case, the correct

expansion of the scalar two-point function reads

B0(p2, μ2, 0)

∣∣∣∣
p2=M2−iΓ M

= B0(M2, M2, 0)

− iΓ M B ′
0(M2, μ2, 0) − iΓ

M
+ O

(
Γ 2

M2

)
, (3.59)

where the additional −iΓ/M term accounts for the non-

analytic behaviour at p2 = μ2. The related expansion for-

mula for generic self-energies reads

Σ i
(
μ2

i

) ∣∣∣∣
p2=M2−iΓ M

= Σ i
(

M2
i

)

− iΓi Mi Σ ′i
(

M2
i

)
+ ici M2

i + O
(
Γ 2
)

, (3.60)

where the non-analytic expansion coefficient is given by

ci = α

π
Q2

i

Γi

Mi

, (3.61)

and depends only on the electromagnetic charge Qi of the

particle at hand. This is due to the fact that (3.61) originates

only from photon-exchange diagrams and is related to the

presence of an infrared singularity in B ′
0 at p2 → μ2

i .

The expanded mass counterterms for Higgs (i = H) and

vector bosons (i = V = W, Z) read

δμ2
H = Σ H

(
μ2

H

)

= Σ H
(

M2
H

)
− iΓH MH Σ ′H

(
M2

H

)
, (3.62)

and

δμ2
V = ΣV

T

(
μ2

V

)

= ΣV
T

(
M2

V

)
− iΓV MV Σ ′V

(
M2

V

)
+ icV M2

V ,

(3.63)

where ΣT denotes the transverse part of the gauge-boson

propagator. The renormalisation of fermion masses depends

on the following combination of left-handed (L), right-

handed (R) and scalar (S) self-energy contributions,

Σ
f

LRS

(
p2
)

= Σ
f

L

(
p2
)

+ Σ
f

R

(
p2
)

+ 2 Σ
f

S

(
p2
)

, (3.64)

and the expanded counterterm reads

δμ f = μ f

2
Σ

f
L RS

(
μ2

f

)

= μ f

2

[
Σ

f
LRS

(
M2

f

)
− iM f Γ f Σ

′ f
LRS

(
M2

f

)
+ ic f

]
.

(3.65)

Counterterms for real masses When Γi is set to zero, unsta-

ble and stable particles are described as on-shell states with

a real-valued mass parameter, μi = Mi . In this case a con-

ventional on-shell renormalisation is applied,

Σ̂ i (p2) = Σ i (p2) − δM2
i (3.66)

with

δμ2
i = δM2

i = R̃e Σ i
(

p2
) ∣∣∣

p2=M2
i

. (3.67)

Here the subtraction is restricted to the real part of the self-

energy, while the Im Σ contribution must be retained, since it

is not included in the renormalised parameter M2
i . More pre-

cisely, the R̃e operator in (3.66) truncates only the imaginary

parts associated with the UV-finite absorptive parts of two-

point integrals,22 while, in order to ensure a consistent can-

cellation of UV divergences, all other imaginary parts asso-

ciated with complex-valued couplings or complex masses

inside the loop are kept throughout. The explicit on-shell

mass counterterms for Higgs or vector bosons and fermions

read

δμ2
H = δM2

H = R̃e Σ H
(

M2
H

)
, (3.71)

δμ2
V = δM2

V = R̃e ΣV
T

(
M2

V

)
, (3.72)

22 In practice, the truncation of absorptive contributions is implemented

at the level of the scalar two-point integrals through

R̃e B0(p2, m1, m2) =
{

Re B0(p2, m1, m2), if p2 > m2
1 + m2

2,

B0(p2, m1, m2), otherwise,

(3.68)

and in the same way for B ′
0. For the derivative of self-energies also the

following formulas for B1 and B ′
1 functions are used

R̃e B1(p2, m1, m2) = m2
2 − m2

1

2p2

[
R̃e B0(p2, m1, m2) (3.69)

− B0(0, m1, m2)
]

− 1

2
R̃e B0(p2, m1, m2),

R̃e B ′
1(p2, m1, m2) = −m2

2 − m2
1

2p4

[
R̃e B0(p2, m1, m2) (3.70)

− B0(0, m1, m2)
]
+ m2

2−m2
1− p2

2p2
R̃e B ′

0(p2, m1, m2).

123

866 Page 22 of 56 Eur. Phys. J. C (2019) 79 :866

δμ f = δM f = M f

2
R̃e Σ

f
LRS

(
M2

f

)
. (3.73)

Yukawa couplings At NLO EW, Yukawa couplings (3.36)

are always related to fermion masses as predicted by the SM.

Thus Yukawa masses and physical fermion masses, as well

as the respective counterterms, are equal to each other. This

implies

δλ f

λ f

= δμ f,Y

μ f,Y
= δμ f

μ f

. (3.74)

For the renormalisation of the fermion masses μ f only the

on-shell scheme, or its complex-mass scheme variant, are

supported.

Wave functions The wave-function renormalisation con-

stants (WFRCs) δZi j are defined in a way that one-loop

propagators do not mix, and their residues are normalised

to one. Thus renormalised amplitudes correspond directly to

S-matrix elements and do not require additional LSZ factors.

On the one hand, due to the presence of absorptive contribu-

tions and complex parameters, in the complex-mass scheme

the δZi j constants can acquire complex values. On the other

hand, the WFRCS for on-shell particles are usually defined as

real parameters [37]. As explained in detail below, in Open-

Loops these two approaches are reconciled by implementing

WFRCs in a way that is consistent with [37] when the width

parameters Γi are set to zero for all particles, while imagi-

nary δZi j contributions are taken into account wherever they

are strictly needed for the consistency of the complex-mass

scheme at O(α).

At NLO, the renormalisation of the field ϕi associated

with a certain external leg yields

∣∣∣∣
(
δi j + 1

2

∑

j

δZi j

)
M

(j)
0

∣∣∣∣
2

=
(

1 + Re (δZi i)

)∣∣∣M(i)
0

∣∣∣
2

+
∑

j

Re
[(

M
(i)
0

)∗
δZi jM

(j)
0

]
+ O(α2). (3.75)

Since the imaginary parts of the diagonal WFRCs δZi i con-

tribute only at O(α2), in OpenLoops we omit them by defin-

ing

δZ AA = −Re Σ ′A
T (0) ,

δZ Z Z = −Re Σ ′Z Z
T

(
M2

Z

)
,

δZW W = −Re Σ ′W
T

(
M2

W

)
,

δZ H = −Re Σ ′H
(

M2
H

)
. (3.76)

In contrast, the non-diagonal WFRCs associated with γ –Z

mixing are defined as

δZ Z A = 2
R̃e Σ AZ

T (0)

μ2
Z

, (3.77)

δZ AZ = −2 R̃e
Σ AZ

T

(
μ2

Z

)

μ2
Z

= −2
R̃eΣ AZ

T

(
M2

Z

)

μ2
Z

+ 2i
ΓZ

MZ

Σ ′AZ
T

(
M2

Z

)
, (3.78)

where Σ AZ
T (Q2) denotes the transverse part of the γ –Z mix-

ing energy. Here the imaginary part of μZ in the denomi-

nator is retained in order to ensure UV cancellations in the

complex-mass scheme, while absorptive parts are truncated23

in order to match the conventional on-shell scheme when all

Γi are set to zero. For δZ AZ the mixing energy at p2 = μ2
Z is

expressed through an expansion around p2 = M2
Z neglecting

terms of O(Γ 2/M2). However, in practice this expansion is

irrelevant, since δZ AZ only contributes for processes with

external Z -bosons, where ΓZ = 0 is required.

At NLO EW, the independent renormalisation of left- and

right-chiral fields corresponds to a diagonal renormalisation

matrix in chiral space,

δZ f = δZ fRωR + δZ fLωL with ωR,L = 1

2
(1 ± γ5).

(3.79)

For massless fermions, the matrix (3.79) is diagonal also in

helicity space, and imaginary parts can be amputated simi-

larly as for the diagonal WFRCs (3.76). In contrast, for mas-

sive fermions the matrix (3.79) mixes left- and right-handed

helicity states. Thus, in this case imaginary parts are treated

in a similar way as for the non-diagonal WFRCs (3.77). Thus

the explicit form of the fermionic WFRCs δZ fR,L reads

δZ fλ

=
{

−Re Σ
′ f
λ (0) , for M f = 0,

−R̃e Σ
f

λ (M2
f) − M2

f R̃e Σ
′ f
LRS(M2

f) for M f > 0.

(3.80)

Variations of the complex-mass scheme Certain aspects of

the complex-mass scheme at O(α) can be changed using

the parameter complex_mass_scheme as detailed in the

following.

(i) complex_mass_scheme=1 (default) corresponds

to the implementation described above: the complex-

mass counterterms (3.62)–(3.65) are used when Γi > 0,

and the on-shell mass counterterms (3.71)–(3.73) are

23 Note that R̃e Σ AZ
T (0) = Σ AZ

T (0) since Σ AZ
T (0) is free from absorp-

tive parts.

123

Eur. Phys. J. C (2019) 79 :866 Page 23 of 56 866

used when Γi = 0, while for WFRCs the generic for-

mulas (3.76)–(3.80) are applied. As discussed above,

this flexible approach guarantees a consistent one-loop

description of processes like pp → t t̄ℓ+ℓ−, where

unstable particles occur both as internal resonances and

as on-shell external states.

(ii) complex_mass_scheme=0 keeps the complex

masses (3.26) unchanged but deactivates the complex-

mass scheme at the level of all O(α) counterterms: for

mass counterterms the on-shell formulas (3.71)–(3.73)

are used throughout; moreover, the R̃e operations in

(3.71)–(3.73) and (3.76)–(3.80) are replaced by a com-

plete truncation of the imaginary parts at the level of

the full counterterms. This option is implemented for

validation purposes. Depending on the process, it can

result in incomplete pole cancellations or other inconsis-

tencies, in particular when internal or external particles

with Γi > 0 are present.

(iii) complex_mass_scheme=2 corresponds to the

implementation of the complex-mass scheme in Recola

[20]. In this case all mass counterterms are evaluated

with the complex-mass scheme formulas (3.62)–(3.65),

while all Re and R̃e operators are removed from (3.76)–

(3.80), i.e. all imaginary parts of WFRCs are kept exact.

Light-fermion contributions to Δα(M2
Z) The O(α) correc-

tions to processes with on-shell external photons involve

the renormalisation constant δZ AA defined in (3.76), which

is related to the photon vacuum polarisation Πγ γ (Q2) at

Q2 → 0 via

δZ AA = −Re Σ ′AA
T (0) = −Πγ γ (0). (3.81)

Terms involving Πγ γ (0) occur also in the α(0) counterterm

(3.87), which contributes to any process that is parametrised

in terms ofα(0) at tree level. In the presence of Πγ γ (0) terms,

high-energy cross sections become sensitive to large loga-

rithms of the light-fermion masses, m f = {me, mμ, mτ , mu ,

md , ms , mc, mb}. In OpenLoops such a dependence is sys-

tematically avoided by replacing Πγ γ (0) through Δα(M2
Z)

via

Πγ γ (0) = Π
γ γ

heavy(0) + Π
γ γ

light

(
M2

Z

)

+
[
Π

γ γ

light(0) − Π
γ γ

light

(
M2

Z

)]

= Π
γ γ

heavy(0) + Π
γ γ

light

(
M2

Z

)
+ Δα(M2

Z). (3.82)

Here Πγ γ (Q2) is split into a “heavy” contribution due to

W -boson and top-quark loops, plus a remnant “light” contri-

bution. The latter is subtracted at Q2 = M2
Z . In this way the

sensitivity to light-fermion masses is isolated in Δα(M2
Z),

which describes the running of α from Q2 = 0 to M2
Z .

The explicit light-fermion mass dependence is avoided by

expressing Δα(M2
Z) as

Δα(M2
Z) = 1 − α(0)

α(M2
Z)

, (3.83)

where α(0) and α(M2
Z) are evaluated using the numerical val-

ues of the parametersalpha_qed_0 andalpha_qed_mz

introduced in Sect. 3.2. By default, (3.83) is used throughout

apart for the Δα(M2
Z) terms associated with external off-

shell photons. In that case, as discussed in the context of

eq. (3.94), the following explicit expression with dimension-

ally regularised mass singularities is used,

Δα(reg)(M2
Z) = Π

γ γ

light(0) − Π
γ γ

light(M2
Z)

= α

2π
γγ

[
Cǫ

εIR
+ ln

(
μ2

IR

M2
Z

)
+ 5

3

]

− α

3π

∑

f ∈Fm

NC, f Q2
f

[
ln

(
m2

f

M2
Z

)
+ 5

3

]
. (3.84)

Here γγ = γ
QED
γ is the anomalous dimension defined in

Table 3, and Fm is the set of light fermions with 0 < m f <

MZ. For later convenience, we also define the Δα conversion

term

Dα(reg)(M2
Z) = Δα(reg)(M2

Z) − Δα(M2
Z). (3.85)

Concerning Δα(M2
Z) contributions to processes that do

not involve external off-shell photons, if the α-input scheme

is chosen as recommended in Sect. 3.2, all Δα(M2
Z) terms

drop out in renormalised matrix elements, and the treatment

of Δα(M2
Z) is irrelevant. Instead, for alternative choices

of the α-input scheme that yield Δα(M2
Z) corrections, the

prescription (3.83) becomes relevant and guarantees sound

physical results irrespectively of the m f input values, i.e. also

in the case of vanishing light-fermion masses, where Πγ γ (0)

is formally divergent.

EW coupling counterterms The renormalisation of the EW

gauge couplings (3.27) is implemented through counterterms

for the photon coupling e and the weak mixing angle θw. The

latter is defined in terms of the weak-boson masses by impos-

ing the relation (3.28) to all orders. The resulting counterterm

reads

δ cos2 θw

cos2 θw
= − δ sin2 θw

cos2 θw
=

δμ2
W

μ2
W

−
δμ2

Z

μ2
Z

. (3.86)

Here, for ΓW,Z > 0 and ΓW,Z = 0, the mass countert-

erms δμ2
W,Z are computed according to (3.63) and (3.72),

respectively. As discussed in Sect. 3.2, in OpenLoops the

123

866 Page 24 of 56 Eur. Phys. J. C (2019) 79 :866

photon coupling e can be defined according to three differ-

ent schemes, which correspond to different renormalisation

conditions. The form of the related counterterm δZe in the

various schemes is as follows.

(i) α(0) -scheme: the parameter α is identified with the

strength of the photon coupling at Q2 → 0. The result-

ing counterterm reads

δZe|α(0) = −1

2
Re

(
δZ AA + sW

cW

δZ Z A

)

= 1

2
Re

[
Π

γ γ

heavy(0) + Π
γ γ

light

(
M2

Z

)

+ Δα(M2
Z) − 2sW

cW

Σ AZ
T (0)

μ2
Z

]
. (3.87)

(ii) Gµ-scheme: the QED coupling is related to the Fermi

constant through (3.30). This relation can be connected

to the α(0)-scheme via

α|Gμ∣∣s2
W μ2

W

∣∣ =
√

2Gμ

π
= α(0)

∣∣∣∣∣
1 + Δr

s2
W μ2

W

∣∣∣∣∣ , (3.88)

where Δr represents the radiative corrections to the

muon decay, i.e. to the Fermi constant, in the α(0)-

scheme [37]. This leads to the Gμ-scheme counterterm

δZe|Gμ = δZe|α(0) − 1

2
Re (Δr)

= 1

2
Re

{
δs2

W

s2
W

+
δμ2

W − ΣW
T (0)

μ2
W

− α

πs2
W

[
Cǫ

εUV
+ ln

(
μ2

UV

μ2
Z

)
+ 3

2

+
7 − 12s2

W

8s2
W

ln

(
μ2

W

μ2
Z

)]}
. (3.89)

Note that, since α|Gμ is effectively defined at the

EW scale, its counterterm (3.89) does not depend on

Πγ γ (0).

(iii) α(M
2
Z
)-scheme: the photon coupling is defined as the

strength of the pure QED interaction at Q2 = M2
Z . This

corresponds to the counterterm

δZe|α(M2
Z)

= δZe|α(0) −
Δα(M2

Z)

2
= 1

2
Re

[
Π

γ γ

heavy(0)

+ Π
γ γ

light(M2
Z) − 2sW

cW

Σ AZ
T (0)

μ2
Z

]
. (3.90)

Also in this case Πγ γ (0) drops out.

In OpenLoops the appropriate counterterm δZe is selected

automatically based on the choice of the α-input scheme. The

latter is controlled by the parameter ew_scheme as detailed

in Table 1.

External photons In processes with external photons, the

renormalisation of e is automatically adapted to the cou-

pling rescaling factors (3.32)–(3.33) for on-shell and off-shell

external photons. To this end, the coupling e is renormalised

in two steps. First, each factor e that is present at tree level is

renormalised with a standard δZe counterterm corresponding

to the α-scheme selected by the user. Then, a finite renormal-

isation of the rescaling factors (3.32)–(3.33) is applied,

R
(on/off)
0,γ = R(on/off)

γ

(
1 + δZ (on/off)

γ

)
, (3.91)

which yields an extra counterterm δZ
(on/off)
γ for each cou-

pling α associated with external photons. Combined with

the standard photon-coupling and wave-function countert-

erms 2δZe + δZ AA, this results in a renormalisation factor

δK (on/off)
γ = 2 δZe + δZ (on/off)

γ + δZ AA, (3.92)

for each external photon.

(i) For on- shell photons the coupling α(0) is used. Thus,

δZ (on)
γ = 2

[
δZe|α(0) − δZe

]
, (3.93)

and δK
(on)
γ = 2 δZe|α(0) + δZ AA yields the correct cou-

pling counterterm δZe|α(0). Note that, as a result of the

choice of a low-energy coupling, the Δα(M2
Z) contribu-

tions to δZ AA and δZe|α(0) cancel out in δK
(on)
γ .

(ii) For off- shell photons the high-energy coupling αoff

defined in (3.34) is used. As a result, the Δα(M2
Z) con-

tribution to δZ AA remains uncancelled, and the renor-

malised scattering amplitude depends on large loga-

rithms of the light-fermion masses. In photon-induced

hadronic collisions, such logarithmic mass singularities

are cancelled by collinear singularities associated with

virtual γ → f f̄ splitting contributions to the photon-

PDF counterterm [36] (see Sect. 3.4). The latter are typ-

ically handled in dimensional regularisation with mass-

less light fermions, which results in collinear singulari-

ties of the form 1/εIR. For consistency, the same regu-

larisation must be used also for the related light-fermion

contributions from Δα(M2
Z). To this end, the finite

renormalisation factor for off-shell photons is defined as

δZ (off)
γ = 2

[
δZe|αoff − δZe

]
− Dα(reg)(M2

Z), (3.94)

where the counterterm δZe|αoff corresponds to the renor-

malisation scheme associated with αoff according to

123

Eur. Phys. J. C (2019) 79 :866 Page 25 of 56 866

Table 2 PDG identifiers for photons and switchers that control the

coupling factors and renormalisation constants for the different types

of external photons introduced in Sect. 3.2. The high-energy coupling

αoff is defined in (3.34). If the switchers are set to zero (default = 1)

the standard user-defined coupling α is used, and the related δZ (on/off)

factors are deactivated. As indicated in the last column, contributions

from collinear γ → f f̄ splittings are included in Catani–Seymour’s

I-operator (see Sect. 3.4) only for off-shell photons

Photon type iPDG Switcher (1 = on, 0 = off) Coupling Δα γ → f f̄

Unresolved 22 α Δα(M2
Z) Off

On-shell 2002 onshell_photons_lsz α(0) Δα(M2
Z) off

Off-shell −2002 offshell_photons_lsz αoff Δαreg(M2
Z) on

(3.34)–(3.35), while Dα(reg)(M2
Z), defined in (3.85),

converts Δα(M2
Z) into its dimensionally regularised

variant (3.84). The resulting overall renormalisation fac-

tor for off-shell photons reads

δK (off)
γ = 2δZe|αoff + δZ

(reg)

AA , (3.95)

with

δZ
(reg)

AA = δZ AA − Dα(reg)(M2
Z)

= −
[
Π

γ γ

heavy(0)+Π
γ γ

light

(
M2

Z

)
+Δ(reg)α(M2

Z)
]
.

(3.96)

In OpenLoops, the counterterms δZ
(on/off)
γ are automat-

ically adapted to the settings that control the type of exter-

nal photons and their tree-level couplings as summarised in

Table 2.

For the various Δα(M2
Z) terms that enter the factors

δZe, δZ AA and δZ
(on/off)
γ associated with external photons,

depending on the type of photon, either the numerical expres-

sion (3.83) or the dimensionally regularised form (3.84)

are used as explained above. Alternatively, it is possible to

enforce the usage of α(reg)(M2
Z) in all terms associated with

external photons by setting all_photons_dimreg=1

(default=0).

3.4 Infrared subtraction

One-loop matrix elements with on-shell external legs involve

divergences of IR (soft and collinear) origin, which take the

form of double and single 1/εIR poles in D = 4−2εIR dimen-

sions. In OpenLoops such divergences can be subtracted

through an automated implementation of Catani–Seymour’s

I-operator that accounts for QCD singularities [39,40] as

well as for singularities of QED origin [36,41–44]. The sin-

gular part of the I–operator is universal and can be used to

check the cancellation of IR poles in any one-loop calcula-

tion. Moreover, the full I–operator provides a useful build-

ing block for NLO calculations based on Catani–Seymour’s

dipole subtraction.

In addition to the I-operator, as documented in Sect. 4.3

and Appendix A.5, OpenLoops provides also routines for

more general building blocks of IR divergences, namely

colour- and gluon-helicity correlated Born matrix elements

for QCD singularities, and corresponding charge- and photon-

helicity correlations for QED singularities.

In OpenLoops it is possible to calculate the I-operator

contributions that are required for the NLO corrections

to conventional processes with M0 �= 0 and for loop-

induced processes. The relevant OpenLoops functions are

evaluate_iop and evaluate_iop2 (see Appendix

A.5). At a certain order αP
s αQ , their output corresponds to

W
(P,Q)
00,I-op

= 〈M0|I({p}; εIR)|M0

〉∣∣∣∣
αP

s αQ

,

W
(P,Q)
11,I-op

= 〈M1|I({p}; εIR)|M1

〉∣∣∣∣
αP

s αQ

, (3.97)

where the I-operator consists of the following IR insertions

of order αs and α into LO contributions of order αP−1
s αQ

and αP
s αQ−1,

〈Mi |I({p}; εIR)|Mi

〉∣∣∣∣
αP

s αQ

= − αs

2π
Cǫ

∑

j,k∈S
k �= j

V
QCD
jk (εIR) 〈Mi | T QCD

jk |Mi

〉∣∣∣∣
αP−1

s αQ

− α

2π
Cǫ

∑

j,k∈Sk �= j

V
QED
jk (εIR) 〈Mi | T QED

jk |Mi

〉∣∣∣∣
αP

s αQ−1

.

(3.98)

Here, helicity/colour sums and symmetry factors are as

in (2.1)–(2.3). The indices j and k represent so-called emitter

and spectator partons, respectively. They are summed over

the full set S = Sin ∪Sout of initial (Sin) and final-state (Sout)

partons. By default both αs and α insertions are activated,

but for processes with less than two external qq̄ pairs only

one of them contributes. Via the switch ioperator_mode

(default = 0) either only αs (ioperator_mode=1) or only

α insertions (ioperator_mode=2) can be selected. The

O(αs) contribution involves the colour correlator

123

866 Page 26 of 56 Eur. Phys. J. C (2019) 79 :866

T
QCD
jk =

⎧
⎪⎨
⎪⎩

T a
j T a

k

T 2
j

if j and k are gluons or (anti-)

quarks,

0 otherwise,

(3.99)

where T a
i denotes the SU(3) generator24 acting on the exter-

nal leg i , and T 2
j = T a

j T a
j . The corresponding charge corre-

lator at O(α) is defined as

T
QED
jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q j Qk

Q2
j

if j and k are charged (anti-)fermions
or W ± bosons,

− 1
nI, j

if j is an off-shell photon and k ∈
Sin\{ j},

0 if j is an on-shell photon or any other

neutral parton.

(3.100)

Here Qi denotes the electromagnetic charge of parton i ,

while nI, j is the number of initial-state partons in Sin\{ j}.
By definition, on-shell photons do not undergo collinear split-

tings at NLO. Thus, T
QED
jk vanishes when the emitter j is an

on-shell photon. Vice versa, off-shell photons are subject to

final-state γ → f f̄ and initial-state f → f γ splittings at

NLO. The related −1/nI, j term in (3.100) is such that the

recoil of the collinear radiation is shared by all initial-state

partons that belong to Sin\{ j} [36].

The functions V jk(εIR) in (3.98) contain single and double

poles in εIR. They depend on the kinematic quantities s jk =
|2p j pk | and

v jk =

√√√√1 − 4
M2

j M2
k

s2
jk

, q2
jk = s jk + M2

j + M2
k ,

Ω
(i)
jk =

(1 − v jk)s jk + 2M2
i

(1 + v jk)s jk + 2M2
i

. (3.101)

Using the constants defined in Table 3, they can be written

as [40]

V
QCD/QED
i j (εIR)

= Q
2,QCD/QED
j

{
1

2v jk

[∑

i= j,k

V
(i)
S, jk(εIR, Mi)

]

+ V
QCD/QED
NS, jk − π2

3

}
+ γ

QCD/QED
j

[
U j (εIR, M j)

+ ln

(
μ2

IR

s jk

)]
+ K

QCD/QED
j . (3.102)

24 Here all SU(3) generators as well as electromagnetic charges should

be understood in terms of incoming charge flow.

The singularities are contained in the functions

U j (εIR, M j) =

⎧
⎨
⎩

1
εIR

+ 1 if M j = 0,

2
3

1
εIR

− 1
3

ln

(
μ2

IR

M2
j

)
− 1

3
if M j > 0,

(3.103)

and

V
(i)
S, jk(εIR, Mi) = ln

(
Ω

(i)
jk

) [1

εIR
+ ln

(
μ2

IRq2
jk

s2
jk

)

− 1

2
ln
(
Ω

(i)
jk

)]
− π2

6
(3.104)

for Mi > 0, while for Mi = 0 we have

V
(i)
S, jk(εIR, 0)

= 1

ε2
IR

+ 1

εIR
ln

(
μ2

IRq2
jk

s2
jk

)
+ 1

2
ln2

(
μ2

IRq2
jk

s2
jk

)
.

(3.105)

The functions VNS, jk are free from poles and vanish for M j =
Mk = 0. For gluon and photon emitters

V
QCD/QED
NS, jk

∣∣∣∣
j=g,γ

= γ̂
QCD/QED
j

[
ln

(
s jk

q2
jk

)

− 2 ln

(
q jk − Mk

q jk

)
− 2Mk

q jk + Mk

]
− Li2

(
s jk

q2
jk

)

+ π2

6
, (3.106)

with γ̂
QCD
g = γ

QCD
g

CA
and25 γ̂

QED
γ = γ

QED
γ . For quarks,

charged leptons and W ± emitters we have

V
QCD/QED
NS, jk

∣∣∣∣
j=q,ℓ,W

=
γ

QCD/QED
j

Q
2,QCD/QED
j

ln

(
s jk

q2
jk

)

+ 1

v jk

[
ln(Ω jk) ln(1 + Ω jk) + 2Li2(Ω jk) − π2

6

− Li2(1 − Ω
(j)
jk) − Li2(1 − Ω

(k)
jk)

]

+ ln

(
q jk − Mk

q jk

)
− 2 ln

⎛
⎝
(
q jk − Mk

)2 − M2
j

q2
jk

⎞
⎠

25 Due to our recoil conventions for (off-shell) photon emitters

in (3.100), γ̂
QED
γ contributions are only relevant for massive initial-state

spectators.

123

Eur. Phys. J. C (2019) 79 :866 Page 27 of 56 866

Table 3 Here N f,u , N f,d , N f,l are the numbers of massless up-type

quarks, down-type quarks and leptons, respectively, while N f =
N f,u + N f,d . Since massive external legs induce only soft singularities,

external W ±-bosons are treated in the same way as massive fermions

with mass MW and charge ±1

Interaction j Q
2,QCD/QED
j γ

QCD/QED
j K

QCD/QED
j

QCD Quark CF
3
2

CF (7
2

− π2

6
)CF

QCD Gluon CA
11
6

CA − 2
3

TR N f (67
18

− π2

6
)CA − 10

9
TR N f

QED Fermion or W ± Q2
j

3
2

Q2
j (7

2
− π2

6
)Q2

j

QED γ 0 − 2
3

[
NC

(
N f,u Q2

u + N f,d Q2
d

)
+ N f,l Q2

l

]
5
3
γ

QED
γ

−
2M2

j

s jk

ln

(
M j

q jk − Mk

)
− Mk

q jk − Mk

+
2Mk

(
2Mk − q jk

)

s jk

+ π2

2
, (3.107)

where Ω jk = (1−v jk)

(1+v jk)
.

4 Overview of the program

This section describes various aspects that are relevant for the

usage of OpenLoops in the context of external programs.

Once installed and linked to an external program, Open-

Loops can be controlled through its native interfaces for

Fortran and C/C ++ codes, or using the standard BLHA inter-

face [45,46]. In the following, we introduce various function-

alities of the OpenLoops interfaces, such as the registration

of processes, the setting of parameters, and the evaluation

of different types of matrix elements. In doing so we will

always refer to the names of the relevant Fortran interface

functions. The corresponding C functions are named in the

same way with an extra ol_ prefix.

Further technical aspects, such as the signatures of the

interfaces, can be found in Appendix A and Appendix B.

As discussed there, the multi-purpose Monte Carlo pro-

grams Munich/Matrix [50], Sherpa [26,47], Herwig ++

[32], Powheg- Box [27], Whizard [49] and Geneva [48]

dispose of built-in interfaces that control all relevant Open-

Loops functionalities in a largely automated way requiring

only little user intervention. Besides the Fortran and C/C ++

interfaces the OpenLoops package also contains a Python

wrapper and a command line tool. Further details and exam-

ples of the Python interface are given in Appendix B.4.

The OpenLoops program itself is written in Fortran

and consists of process-independent main code and process-

dependent code provided in the form of process libraries,

which can be downloaded and automatically installed within

the OpenLoops program for a wide range of processes in the

Standard Model (SM) and Higgs effective theory (HEFT),

as detailed in the following. The process libraries are auto-

matically generated based on a (private) process generator

implemented in Mathematica.

4.1 Download and installation

4.1.1 Installation of the main program

This section describes the installation of the process-

independent part of the OpenLoops program, which is

denoted as base code. The calculation of specific scatter-

ing amplitudes requires additional process-specific libraries,

denoted as process code. Their installation is discussed in

Sect. 4.1.2.

Prerequisites To install OpenLoops a Fortran compiler

(gfortran 4.6 or later, or ifort) and Python2.7 or 3.5

or later are needed.

Download The process-independent part of the OpenLoops

program is available on the Git repository https://gitlab.

com/openloops/OpenLoops. The latest release version can

be found in the master branch and downloaded via

git clone https://gitlab.com/openloops/OpenLoops.git

Older and newer versions are available as git tags. The

latest beta version available in the branch “public_beta” that

can be downloaded via

git clone -b public_beta \

https://gitlab.com/openloops/OpenLoops.git

Current and older OpenLoops versions can be also be

downloaded from the hepforge webpage

http://openloops.hepforge.org

where the user can also find a detailed list of the available

process libraries and extra documentation, as well as an up-

to-date version of this paper.

Installation The compilation of the process-independent

OpenLoops library is managed by the SCons build sys-

tem26 and is easily carried out by running

26 A version of SCons (“scons-local”) is shipped with Open-

Loops, but a system-wide installation may be used as well.

123

https://gitlab.com/openloops/OpenLoops
https://gitlab.com/openloops/OpenLoops
http://openloops.hepforge.org

866 Page 28 of 56 Eur. Phys. J. C (2019) 79 :866

./scons

in the OpenLoops directory. By default, Scons utilises

all available CPU cores, while running ./scons -j<n>

restricts the number of employed cores to <n>. The com-

piled library is placed in the lib subdirectory.27

The default compiler is gfortran, alternatively ifort

can be used. To change the compiler and set various other

options, rename the sample configuration file

openloops.cfg.tmpl in the OpenLoops directory to

openloops.cfg and set the options in there. The sample

configuration file lists various available options and describes

their usage.

4.1.2 Installation of process libraries

The calculation of scattering amplitudes for specific pro-

cesses requires the installation of corresponding process

libraries. The available collection of OpenLoops process

libraries supports the calculation of QCD and EW correc-

tions for a few hundred different partonic reactions, which

cover essentially all interesting processes at the LHC, as well

as several lepton-collider processes. This includes pp → jets,

t t̄+jets, V +jets, V V +jets, H V +jets, H+jets and various other

classes of processes with a variable number of extra jets.

Process libraries for a large variety of loop-induced pro-

cesses such as gg → ℓℓℓℓ+jets, gg → H V +jets, gg →
H H(H)+jets, etc. are also available.

New processes libraries, especially with EW corrections,

are continuously added to the collection by the authors. More-

over, extra processes libraries can be easily made available

upon request, either through an online form on the Open-

Loops webpage or by contacting the authors. In particular

this allows for the generation of dedicated process libraries

tailored to specific user requirements. For example, it is possi-

ble to generate dedicated process libraries with special filters

for the selection of certain classes of diagrams/topologies

or various approximations related to the treatment of heavy-

quark flavours, the expansion in the number of colours, the

selection of resonances, non-diagonal CKM matrix elements,

and so on.

Download and installation The web page

https://openloops.hepforge.org/process_library.php

provides a complete list of process libraries available in the

public process repository, with a description of their content

and the relevant process-library names to be used for down-

load. The needed process libraries can be downloaded and

compiled via

./openloops libinstall <processes> <options>

27 An installation routine to move the library to a different location is

currently not available.

where <processes> is either a predefined process col-

lection (see below) or a list of white-space or comma sep-

arated names of process libraries. A single process library

typically contains the full set of parton-level scattering ampli-

tudes that is needed for the calculation of a certain family of

hadron-collider processes, either at NLO QCD or including

EW corrections. For instance, the libraries named ppllll

and ppllll_ew include, respectively, the NLO QCD and

NLO EW matrix elements for the production of four leptons,

i.e. the processes pp → ℓ+
i ℓ−

i ℓ+
k ℓ−

k , ℓ+
i ℓ−

i ℓ+
k νk , ℓ+

i ℓ−
i ν̄kℓ

−
k ,

ℓ+
i ℓ−

i ν̄kνk , ℓ+
i νiℓ

+
k νk , ℓ+

i νi ν̄kℓ
−
k , ν̄iℓ

−
i ν̄kℓ

−
k , ℓ+

i νi ν̄kνk , and

ν̄iℓ
−
i ν̄kνk , with lepton flavours i �= k or i = k.

Each process library includes all relevant LO and NLO

ingredients for the partonic processes at hand, i.e. all Born,

one-loop and real-emission amplitudes at the specified order.

More precisely, NLO QCD libraries contain LO contribu-

tions of a given order α
p
s αq and corrections of order α

p+1
s αq ,

while NLO EW libraries contain the full tower of LO and

NLO contributions apart from the NLO terms with the high-

est possible order in αs. Real-emission matrix elements are

available throughout, but are not installed by default. This

can be changed by using the option compile_extra=1

(default = 0) when installing the process. This option can

also be set in the openloops.cfg file in order to enable

real corrections for every process installation.

With the libinstall command it is also possible to

install pre-defined or user-defined process collections. The

pre-defined collection lhc.coll covers the most relevant

LHC processes. 28 In particular, it includes matrix elements

for V + jets, V V + jets, t t̄ + jets, H V + jets and H + jets

(for finite and infinite mt), where V stands for photons as

well as for the various leptonic decay products of off-shell

Z and W ± bosons. Additional user-defined collections can

be created as plain text files with the file extension .coll,

listing the desired process-library names, one per line.

Updates When a new version of OpenLoops is available, it

is recommended to update both the base code and the process

code.29 If OpenLoops was installed from Git, this is easily

achieved by running

28 The collection all.collmakes it possible to download the full set

of available processes libraries at once. However, due to the large overall

number of processes and the presence of several complex processes,

this is requires a very large amount of disk space and very long CPU

time for compilation. Thus all.coll should not be used for standard

applications.

29 In general, base code and process code can be combined in a rather

flexible way, but care must be taken that they remain mutually con-

sistent. The API compatibility between base code and process code is

typically guaranteed across many sub-versions, both in the forward and

backward directions. To this end, all mutually consistent versions are

labelled with the same (internal) API version number, and OpenLoops

accepts to use only combinations of process code and base code that

belong to the same API version.

123

https://openloops.hepforge.org/process_library.php

Eur. Phys. J. C (2019) 79 :866 Page 29 of 56 866

./openloops update

while git pull && ./scons would update only the

base code. Instead, if OpenLoops was not installed from

Git, the installed processes can be updated by running

./openloops update --processes

while the base code should be updated manually.

4.2 Selection of processes and perturbative orders

The OpenLoops program supports the calculation of scatter-

ing probability densities for a variety of processes at different

orders in αs and α. Before starting the calculations, the user

should register all needed scattering amplitudes, which are

automatically labelled with integer identifiers for the book-

keeping of the various partonic channels and perturbative

orders. As described in detail below, each desired matrix ele-

ment should be registered in two steps. First, the user should

select the desired order in the QCD and EW couplings, model

parameters and specify possible approximations. In the sec-

ond step, called process registration, the user should spec-

ify the list of external scattering particles, and select one of

the available types of perturbative contributions. The three

possible types, denoted in the following as amplitude types

(amptype), are specified in Table 4 together with the list

of corresponding objects of LO and NLO kind that can be

evaluated in OpenLoops. As explained in the following, the

classification into LO and NLO kinds is relevant for the selec-

tion of the desired order in αs and α. Note that squared-loop

objects are classified as LO quantities, since they are assumed

to describe loop-induced processes.

Selection of QCD and EW power As discussed in Sect. 3.1,

the general form of scattering probability densities in the

SM is a tower of terms of order α
p
s αq with fixed perturbative

order p+q but variable powers p, q in the QCD and EW cou-

plings. In OpenLoops, contributions with different orders in

αs and α should be registered as separate (sub)processes.

Under each amptype, the various objects that can be cal-

culated are classified into output of LO and NLO kind as

indicated in Table 4. All objects of LO type are evaluated at a

certain power α
p
s αq , while all NLO objects are evaluated at

a related power αP
s αQ . The desired powers p, q, P, Q, and

the relation between (p, q) and (P, Q), can be controlled in

four alternative ways by setting one of the power selectors

listed in Table 5.

(a) Setting order_ew = q selects contributions of fixed

EW order, i.e. LO terms of O(α
p
s αq) and NLO QCD

corrections of O(α
p+1
s αq). In this case, the QCD order

p is automatically fixed according to p + q = Np − 2.

(b) Similarly, order_qcd = p selects a fixed QCD

order, i.e. LO terms of O(α
p
s αq) and NLO EW cor-

rections of O(α
p
s αq+1). In this case, q is automatically

derived from p + q = Np − 2.

(c) Alternatively, NLO terms of O(αP
s αQ) can be selected

by setting loop_order_qcd = P or loop

_order_ew = Q. This option is supported only for

the evaluation of tree-loop interferences (amptype=

11). In that case, the output includes also the domi-

nant underlying Born contribution of O(α
p
s αq), which

is chosen between O(αP
s αQ−1) and O(αP

s αQ−1) as

indicated in Fig. 4. When the loop order P or Q is

specified, the complementary order Q or P is fixed

internally according to P + Q = Np − 1.

The desired order parameter should be set through the

set_parameter routine before the registration of the pro-

cess at hand. As explained above, it is sufficient to specify

the QCD or the EW order, and only one of the order selectors

in Table 5 should be used. If more than one order parameter

is set by the user only the last setting before registration is

considered.

Before registering a process, also various approximations

can be specified by setting OpenLoops parameters such as

nf, to control the number of active quarks, ckmorder, to

activate non-diagonal CKM matrix elements, etc. A list of

such parameters can be found in Table 9 (see Appendix C).

Process registration Each (sub)process should be registered

by means of the native interface function30 register

_process, which automatically assigns a unique process

identifier, as detailed in Appendix A.3. The syntax to specify

the external particles of a generic n → m scattering process

with n ≥ 1 is

PIDi,1 . . . PIDi,n -> PID f,1 . . . PID f,m (4.1)

The particle identifier (PID) can be specified either using the

PDG numbering scheme [69] or the string identifiers listed

in Table 6

Together with the external particles, also a specific type

of perturbative output (amptype) should be selected. As

summarised in Table 4, the available options correspond to

the various scattering probability densities defined in (2.1)–

(2.3), i.e. squared tree amplitude (W00) tree–loop interfer-

ence (W01), and squared one-loop amplitude (W11), but each

amptype supports also the calculation of various related

objects.

30 The registration procedure through the BLHA is explained

in Appendix B.1.

123

866 Page 30 of 56 Eur. Phys. J. C (2019) 79 :866

Table 4 Values of amptype to register different types of perturba-

tive contributions and corresponding probability densities that can be

computed by OpenLoops. Objects of LO and NLO kind are evalu-

ated at order α
p
s αq and αP

s αQ , respectively, according to the values

p, q, P, Q of the LO and NLO power selectors in Table 5. The sym-

bols B and C stand for the various spin and colour/charge correlators

defined in Sect. 4.4

amptype Amplitude type LO output NLO output

1 Tree–tree W
(p,q)
00 , C

(p,q)
00,LO

, B
(p,q)
00,LO

,

11 Tree–loop W
(p,q)
00 W

(P,Q)
01 , W

(P,Q)

00,I-op, C
(P,Q)
01,NLO

, B
(P,Q)
01,NLO

12 Loop–loop W
(p,q)
11 , C

(p,q)
11,LO

, B
(p,q)
11,LO

, W
(P,Q)

11,I-op

Table 5 Selection of the orders α
p
s αq and αP

s αQ for the LO and

NLO objects defined in Table 4. Each selector takes one of the powers

p, q, P, Q as input and derives all other powers as indicated in columns

2–5. The QCD and EW coupling powers at LO and NLO are related

through p +q = Np −2 and P + Q = Np −1, where Np is the number

of external particles. The loop_order selectors are supported only

for amptype=11. They return the desired loop–tree interference of

O(αP
s αQ) together with the dominant underlying squared Born term

of O(α
p
s αq) whose powers, (p, q) = (pBorn, qBorn) = (P − 1, Q) or

(P, Q − 1), are selected in a unique way as indicated in Fig. 4

Power selection\derived powers LO power α
p
s αq NLO power αP

s αQ

order_qcd = p p Np − p − 2 p q + 1

order_ew = q Np − q − 2 q p + 1 q

loop_order_qcd = P pBorn qBorn P Np − P − 1

loop_order_ew = Q pBorn qBorn Np − P − 1 Q

Table 6 Particle identifiers

(PID) for process specification

in OpenLoops. The numerical

and string PID representations

can be mixed. As explained in

Sect. 3.2, for an optimal

treatment of the coupling of

on-shell and off-shell hard

external photons the special

PIDs ±2002 should be used

Particle qd/q̃d qu/q̃u qs/q̃s qc/q̃c qb/q̃b qt/q̃t

PID 1/-1 2/-2 3/-3 4/-4 5/-5 6/-6

String-PID d/d ∼ u/u ∼ s/s ∼ c/c ∼ b/b ∼ t/t ∼

Particle le/l̃e νe/ν̃e lμ/l̃μ νμ/ν̃μ lτ /l̃τ ντ /ν̃τ

PID 11/-11 12/-12 13/-13 14/-14 15/-15 16/-16

String-PID e-/e+ ve/ve ∼ mu-/mu+ vm/vm ∼ ta-/ta+ vt/vt ∼

Particle g γ On-/off-γ Z W ± Higgs

PID 21 22 2002/-2002 23 24/-24 25

String-PID g a aon/aoff z w+/w- h

4.3 Evaluation of scattering amplitudes

In this section we introduce various OpenLoops interface

functions for the evaluation of the scattering probability den-

sities (2.1)–(2.3), the I-operators (3.97), and some of their

building blocks.

The input required by the various interface functions con-

sists of a phase-space point together with the integer identifier

for the desired (sub)process. The output is always returned

according to the normalisation conventions of Eqs. (2.1)–

(2.3), i.e. symmetry factors, external colour and helicity

sums, and average factors are included throughout. This

holds also for the interface functions discussed in Sects. 4.4–

4.5. The syntax of the various interfaces is detailed in

Appendix A.

In general, the output depends on the values of all relevant

physical and technical input parameters (see Sects. 3.2–3.3)

at the moment of calling the actual OpenLoops interface rou-

tine. All parameters and settings are initialised with physi-

cally meaningful default values, which can be updated at any

moment by means of set_parameter. In principle, all

parameters can be changed before any new amplitude evalu-

ation. As explained below, thanks to a new automated scale-

variation system, scattering amplitudes can be re-evaluated

multiple times with different values of μR and αs in a very

efficient way.

The calculation of the probability densities (2.1)–(2.3) is

supported by the following interfaces.

Squared born amplitudes W00 = 〈M0|M0

〉
are evaluated

by the function evaluate_tree.

123

Eur. Phys. J. C (2019) 79 :866 Page 31 of 56 866

Tree–loop interferences W01 = 2 Re 〈M0|M1

〉
are eval-

uated by evaluate_loop, which yields a UV renor-

malised result. The output is returned in the form of an array

{W(0)
01 ,W

(1)
01 ,W

(2)
01 } consisting of the coefficients of the Lau-

rent expansion,

W01 = Cǫ

(
W

(2)
01

ǫ2
+ W

(1)
01

ǫ
+ W

(0)
01

)
+ O(ǫ), (4.2)

where ε = εUV = εIR. In general, the W(1) residues

receive contributions from IR and UV divergences, but UV-

renormalised results contain only IR poles. By default, the

normalisation factor Cǫ is defined as in (3.41), which corre-

sponds to the BLHA convention [45]. Alternatively, by set-

ting polenorm=1 (default = 0) it can be changed into31

C̃ǫ = (4π)ǫΓ (1 + ǫ) = Cǫ + π2

6
ε2 + O(ε3), (4.3)

which results in a modified Laurent series, W̃01 = W01 −
W

(2)
01

π2

6
. The output of evaluate_loop consists of the

sum of a bare contribution with four-dimensional loop

numerator, a standard UV counterterm, a counterterm of type

R2 and, optionally, also the contribution of the related I-

operator (3.97),

W01 = W01,4D + W01,CT + W01,R2

(
+W00,I-op

)
. (4.4)

The I-operator can be activated by setting iop_on=1

(default = 0). The counterterm and the R2 contributions can

be deactivated by setting, respectively, ct_on=0 (default =
1) and r2_on=0 (default = 1). The various divergent build-

ing blocks of (4.4) are Laurent series of the form (4.2). For

efficiency reasons, in OpenLoops they are constructed as

single-valued objects

W01,k(Δ2,Δ1) = W
(2)
01,k Δ2 + W

(1,IR)
01,k Δ1,IR

+ W
(1,UV)
01,k Δ1,UV + W

(0)
01,k, (4.5)

where the IR and UV poles are replaced by numerical con-

stants32 (Cǫ/ε
2
IR → Δ2, Cǫ/εIR → ΔIR,1, Cǫ/εUV →

ΔUV,1) and W
(1,IR)
01,k + W

(1,UV)
01,k = W

(1)
01,k . A posteriori, the

three coefficients W
(i)
01 can be reconstructed through three

evaluations of (4.5) with different Δi values. However, the

most efficient approach it to restrict the calculation of the

31 This corresponds to the normalisation convention used by the Col-

lier [19] library.

32 The values of Δ2, ΔIR,1 and ΔUV,1 are controlled internally by

OpenLoops. For validation purposes they can be changed using the

parameters pole_IR2, pole_IR1 and pole_UV1, respectively.

However such modifications may jeopardise the calculation of UV and

IR divergent quantities.

most CPU expensive objects to their finite parts by setting all

Δi = 0 (default), and to reconstruct the poles by exploiting

the fact that UV and IR subtracted results are finite. In prac-

tice, when the I-operator is active, all poles are simply set to

zero in (4.4), and only finite parts are computed. Also when

the I-operator is switched off in (4.4), only the finite part of

the right-hand-side of (4.4) is explicitly computed, while IR

poles are reconstructed from the I-operator, i.e.

W
(i)
01

∣∣∣
i=1,2

=
{

−W
(i)
00,I-op

for iop_on=0 (default),

0 for iop_on=1.
(4.6)

The explicit calculation of all poles in W01 through multiple

evaluations of (4.5) can be enforced by settingtruepoles_

on=1 (default = 0). Thus, the correct cancellation of

UV and IR poles can be explicitly checked by calling

evaluate_loopwith truepoles_on=1 and iop_on

=1.

The individual building blocks of W01 can be evaluated

by various dedicated interfaces:

(i) The bare loop amplitudes W01,4D, with four- dimen-

sional numerator, are evaluated by evaluate_

loopbare, which returns a Laurent series similar

to (4.2). As for evaluate_loop, pole residues are

derived from the related UV and IR counterterms

(default) or explicitly reconstructed, depending on the

value of truepoles_on.

(ii) The UV counterterms W01,CT are evaluated by

evaluate_loopct, which returns a Laurent series

similar to (4.2). In this case, UV pole coefficients are

always obtained via two-fold evaluation. The more effi-

cient function evaluate_ct restricts the calculation

of the counterterm to its finite part W
(0)
01,CT.

(iii) The R2 rational part W01,R2 is free from UV and IR

divergences. It is evaluated by evaluate_r2, which

returns a single-valued output.

(iv) Tree–tree I -operator insertions, W00,I-op = = 〈M0|
I({p}; εIR)|M0

〉
, are evaluated by the function

evaluate_iop. The output is a Laurent series simi-

lar to (4.2).

(v) The poles of all divergent building blocks of (4.4) can

be accessed with a single call of evaluate_poles,

which returns the residues of the 1/εUV, 1/εIR and 1/ε2
IR

poles for each building block. In this case, irrespec-

tively of the value of truepoles_on, all residues

are always computed explicitly.

Note that, for efficiency reasons, the combination (4.4)

should always be computed via a call of evaluate_loop

rather than separate calls for its building blocks.

123

866 Page 32 of 56 Eur. Phys. J. C (2019) 79 :866

Squared loop amplitudes W11 = 〈M1|M1

〉
are evalu-

ated by the function evaluate_loop2. Since we assume

that it is used for loop-squared processes, which are free

from UV and IR divergences at LO, evaluate_loop2

returns a single-valued finite output. The calculation of I-

operator insertions in loop-squared amplitudes, W11,I-op =
〈M1|I({p}; εIR)|M1

〉
, is supported by evaluate_

loop2iop. Since we assume loop-induced processes, the

output is a Laurent series of type (4.2) with poles up to order

1/ε2. In general, W11 and W11,I-op are evaluated using only

the finite part of M1, and possible UV and IR poles are sim-

ply amputated at the level of M1.

Efficient QCD scale variations OpenLoops2 implements a

new automated system for the efficient assessment of QCD

scale uncertainties. This system is designed for the case

where scattering amplitudes are re-evaluated multiple times

with different values of μR and αs, while all other input and

kinematic parameters are kept fixed. This type of variations

are automatically detected by keeping track, on a process-

by process basis, of the pre-evaluated phase-space points,

and possible variations of parameters. For each new phase-

space point, matrix elements are computed from scratch and

stored in a cache, which is used for (μR, αs) variations. In

that case, the previously computed bare amplitude is reused

upon appropriate rescaling of αs, and only the μR-dependent

QCD counterterms are explicitly recomputed. This mech-

anism is implemented for both types of loop contributions

(2.2)–(2.3).

4.4 Colour- and spin-correlators

This section presents interface functions for the evaluation

of colour- and helicity-correlated quantities that are needed

in the context of NLO and NNLO subtraction methods, both

for tree- and loop-induced processes. For efficiency reasons,

colour/spin correlations are always computed in combina-

tion with the related squared tree or loop matrix elements, in

such a way that the former are obtained with a minimal CPU

overhead.

Colour and charge correlators The exchange of soft gluon-

s/photons between two external legs, j and k, gives rise to

colour/charge correlations of the form

C
(p,q| jk)

L L ,LO QCD
= 〈ML |T a

j T a
k |ML

〉∣∣∣∣
α

p
s αq

, (4.7)

C
(p,q| jk)

L L ,LO QED
= 〈ML |Q j Qk |ML

〉∣∣∣∣
α

p
s αq

, (4.8)

where T a
i and Qi denote SU(3) and charge operators act-

ing on the i-th external particle.33 Tree–tree correlators

correspond to L L = 00 in (4.7)–(4.8) and can be eval-

uated by the interface functions evaluate_ccmatrix

andevaluate_ccewmatrix, which return the full matri-

ces C
(p,q| jk)
00 as two-dimensional arrays. Alternatively, the

N (N − 1)/2 independent colour correlators in (4.7) can

be obtained in the form of one-dimensional arrays using

evaluate_cc. Loop–loop correlators (L L = 11) can be

evaluated in a similar way using the functions

evaluate_ccmatrix2, evaluate_ccewmatrix2

and evaluate_cc2.

In amptype = 11 mode, also the tree–loop colour cor-

relators

C
(P,Q| jk)
01,NLO QCD

= 2Re 〈M0|T a
j T a

k |M1

〉∣∣∣∣
αP

s αQ ,finite

(4.9)

are available. They are evaluated by the functionsevaluate

_loopccmatrix andevaluate_loopcc, which return

only the finite part, i.e. a term corresponding to W
(0)
01 in the

Laurent series (4.2).

Spin-colour correlators The emission of soft-collinear radi-

ation off external gluons/photons generates also spin-correla-

tion effects. For their description we use the notation

〈λ, j |M〉 = ε
μ
λ (p j) 〈μ, j |M〉, (4.10)

where M is a generic helicity amplitude, and j is a gluon

or photon emitter with helicity λ. The helicity states of all

other external particles are kept implicit. With this notation,

unpolarised squared matrix elements can be expressed as

〈M|M〉 =
∑

λ

〈M|λ, j〉 〈λ, j |M〉

= −〈M|μ, j〉 〈μ, j |M〉, (4.11)

where the normalisation conventions of Eqs. (2.1)–(2.3) are

implicitly understood. Spin-correlation effects arise as terms

of type 〈M|Pj |M〉 with spin correlators of the form

Pj = P
μν
j |μ, j〉〈ν, j |. (4.12)

They can be evaluated in a convenient way in terms of the

spin-correlation tensor

B
μν
j = 〈M|μ, j〉 〈ν, j |M〉

=
∑

λ,λ′
〈M|λ, j〉 ε

μ
λ (p j) ε∗ ν

λ′ (p j) 〈λ′, j |M〉, (4.13)

33 As usual, the corresponding SU(3)×U(1) quantum numbers should

be understood in terms of incoming charge flow, in such a way that∑
k T a

k |M
〉
=
∑

k Qk |M
〉
= 0.

123

Eur. Phys. J. C (2019) 79 :866 Page 33 of 56 866

which allows one to write

〈M|Pj |M〉 = 〈M|μ, j〉 P
μν
j 〈ν, j |M〉 = P

μν
j B j,μν .

(4.14)

Alternatively, spin correlations can be implemented in a

more efficient way by exploiting the fact that, in NLO calcu-

lations, they arise only through operators of the form

G j = gμν |μ, j〉〈ν, j | (4.15)

and

Pj (k⊥) = −
(

k
μ
⊥kν

⊥
k2
⊥

)
|μ, j〉〈ν, j |

= − 1

k2
⊥

|k⊥, j〉〈k⊥, j |, (4.16)

where k
μ
⊥ is a certain vector34 with k⊥ · p j = 0. Since

〈M|G j |M〉 = −〈M|M〉, all non-trivial spin-correlation

effects can be encoded into the scalar quantity

B j (k⊥) = 〈M|Pj (k⊥)|M〉 = −k
μ
⊥kν

⊥
k2
⊥

B j,μν

= − 1

k2
⊥

〈M|k⊥, j〉 〈k⊥, j |M〉, (4.17)

where 〈k⊥, j |M〉 corresponds to the helicity amplitude

(4.10) with ε
μ
λ (p j) replaced by k

μ
⊥.

In NLO calculations, spin correlations arise in combina-

tion with colour correlations through operators of the type

T a
j T a

k |k⊥, j
〉〈

k⊥, j |, where j and k are called emitter and

spectator. In OpenLoops, such spin-colour correlators are

implemented in the form

B
(p,q| jk)

L L ,LO
(k⊥) = − 1

k2
⊥

〈ML |T SC
jk |k⊥, j

〉〈
k⊥, j |ML

〉∣∣∣∣
α

p
s αq

,

(4.18)

with

T SC
jk =

⎧
⎪⎨
⎪⎩

T a
j T a

k if j is a gluon,

1 if j is a photon,

0 otherwise,

(4.19)

which corresponds to the scalar representation (4.17). Tree–

tree (L L = 00) and loop–loop (L L = 11) correlators of

this kind are evaluated by the functions evaluate_sc

34 Explicit expression for k
μ
⊥ in the dipole subtraction formalism are

for example listed in Tab. 1 of [73] for all relevant splittings.

and evaluate_sc2, respectively. An alternative imple-

mentation with the form of the spin-colour-correlation tensor

(4.13),

B
(p,q| jk|μν)

L L ,LO
= 〈ML |T SC

jk |μ, j
〉〈
ν, j |ML

〉∣∣∣∣
α

p
s αq

, (4.20)

is available through the functions evaluate_sctensor

(for L L = 00) and evaluate_sctensor2 (for L L =
11). Furthermore the spin-correlation tensor according to the

Powheg- Box [27] convention, i.e. without colour insertions

B
(p,q| j |μν)

L L ,LO
= 〈ML |μ, j

〉〈
ν, j |ML

〉∣∣∣∣
α

p
s αq

, (4.21)

is available via the functions evaluate_stensor (for

L L = 00) and evaluate_stensor2 (for L L = 11). All

implementations (4.18)–(4.21) are well suited for the sub-

traction of IR singularities with the Catani–Seymour [39,40]

and FKS [74] methods. The tensor representations (4.20)–

(4.21) are more general, while the scalar form (4.18) is more

efficient, but should be used only if k⊥ · p j = 0 is fulfilled.35

In amptype = 11 mode, also the tree–loop spin correla-

tors

B
(P,Q| jk)
01,NLO

(k⊥)

= − 2

k2
⊥

Re 〈M0|T SC
jk |k⊥, j

〉〈
k⊥, j |M1

〉∣∣∣∣
αP

s αQ ,finite

,

(4.22)

B
(P,Q| jk|μν)
01,NLO

= 2 Re 〈M0|T SC
jk |μ, j

〉〈
ν, j |M1

〉∣∣∣∣
αP

s αQ ,finite

(4.23)

and

B
(P,Q| j |μν)
01,NLO

= 2 Re 〈M0|μ, j
〉〈
ν, j |M1

〉∣∣∣∣
αP

s αQ ,finite

(4.24)

are available. They are evaluated by the functionsevaluate

_loopsc, evaluate_loopsctensor and evaluate

_loopsctensor respectively, which return only the finite

part, similarly as for (4.9).

4.5 Tree-level amplitudes in colour space

Besides calculating squared matrix elements, OpenLoops

also provides full tree-level colour information at the ampli-

tude level. Such information is relevant in the context of

parton-shower matching in order to determine the probabil-

ities with which a parton shower should start from a specific

35
OpenLoops automatically amputates possible non-orthogonal parts

of k⊥ by projecting k
μ
⊥ onto ε

μ
±(p j).

123

866 Page 34 of 56 Eur. Phys. J. C (2019) 79 :866

colour configuration. Moreover it can be used to determine

colour correlations with more than two colour insertions, as

needed within NNLO subtraction schemes.

Colour vector As indicated in (2.7), any tree-level ampli-

tude is represented as a vector {A(i)
0 (h)} in the colour space

spanned by the colour basis elements {Ci },

M0 =
∑

i

A
(i)
0 (h) Ci . (4.25)

For a process with n external gluons and m external qq̄ pairs,

each element of the basis has the general colour structure

Ci ≡
(
C

aσ1
...aσn

i

) j̄β1
... j̄βm

iα1
...iαm

, (4.26)

where the particle labels αk , βk , σk , and the corresponding

colour indices iαk
, j̄βk

, aσk
, are attributed according to the

labelling scheme defined in Table 7.

Trace basis In OpenLoops the colour basis is chosen as a so-

called trace basis, where each basis element (4.26) is a prod-

uct of chains of fundamental generators and traces thereof.

More precisely, each basis element is a product of building

blocks of type

L(β, α) = δ
j̄β
iα

, (4.27)

L(k, . . . , l, β, α) =
(
T ak · · · T al

) j̄β
iα

, (4.28)

L(k, . . . , l) = Tr
(
T ak · · · T al

)
. (4.29)

As indicated on the lhs of the above equations, each build-

ing block is uniquely identified through a sequence of

integer particle labels. Sequences terminating with gluon

labels and antiquark–quark labels correspond, respectively,

to traces (4.29) and chains (4.27)–(4.28). Products of chains

and traces are represented as

L(x1, . . . xk, 0, y1, . . .) = L(x1, . . . xk)L(y1, . . .), (4.30)

i.e. the individual sequences are concatenated using zeros

as separators. With this notation each element of the colour

basis can be encoded as an array of integers. For instance,

for qq̄ → γ qq̄ Zggg (see Table 7) we have

L (8, 2, 5, 0, 7, 9, 0, 4, 1) =
(
T a8
) j̄2

i5
Tr(T a7 T a9) δ

j̄4
i1

.

(4.31)

The explicit colour basis for a given scattering process

can be accessed through the interface functions tree_

colbasis_dim and tree_colbasis. The former

yields the number of elements of the basis, as well as the

number of helicity configurations, while tree_colbasis

returns the basis vectors in a format corresponding to (4.27)–

(4.30). The complex-valued colour vector {A(i)
0 (h)} in (4.25)

can be obtained through the function evaluate_tree_

colvect. Using {A(i)
0 (h)} it is possible to calculate the LO

probability density (2.1) as

W00 = 1

Nhcs

∑

h

∑

i, j

[
A

(i)
0 (h)

]∗
Ki j A

(j)
0 (h), (4.32)

where Ki j is the colour-interference matrix defined in (2.8).

Colour-flow basis For the purpose of parton shower match-

ing in leading-colour approximation, it is more convenient

to use the colour-flow representation [75,76], where gluon

fields are handled as 3 × 3 matrices
(
Aμ

) j̄

i
= 1√

2
Aa

μ (T a)
j̄
i ,

and the colour structures of tree amplitudes with m external

quark–antiquark pairs and n external gluons take the form

C ≡ C
j̄β1

... j̄βN

iα1
...iαN

, (4.33)

with N = m +n. The elements of the colour-flow basis have

the form

Cflow
i = δ

j̄β1

iα̃1
. . . δ

j̄βN

iα̃N
, (4.34)

where αk → α̃k = π(αk) is a permutation of the quark par-

ticle labels, which encodes the colour connections between

antiquarks (βk) and quarks (α̃k) in (4.34).

A basis element of the form (4.34) is represented by an

array of Np integer pairs defined as

(αk, 0) for an incoming quark (outgoing anti-quark)

with particle label αk,

(0, α̃k) for an incoming anti-quark (outgoing quark)

with particle label βk,

(αk, α̃k) for a gluon with particle label αk,

(0, 0) for an uncoloured particle. (4.35)

The pairs are ordered according to the sequence of scatter-

ing particles as registered by the user. Each non-zero index

will appear twice, indicating which particles are colour con-

nected.

In leading-colour approximation, the trace and colour-

flow bases are related through the identities

(
T a1 T a2 · · · T aM−1 T aM

) j̄β
iα

123

Eur. Phys. J. C (2019) 79 :866 Page 35 of 56 866

Table 7 Particle and colour numbering scheme. The external particles

are labelled through consecutive integers 1, 2, . . . , Np according to the

ordering (4.1) specified through the process registration. The symbols

σk are used in (4.26)–(4.29) to represent the integer labels of exter-

nal gluons, while aσk
are the corresponding colour indices. Similarly,

αk (βl) represent the integer labels of incoming quarks (antiquarks)

or outgoing antiquarks (quarks), and their colour indices are iαk
(j̄βl

).

For the process considered in the table, qq̄ → γ qq̄ Zggg, we have

(α1, α2) = (1, 5), (β1, β2) = (2, 4), (σ1, σ2, σ3) = (α3, α4, α5) =
(7, 8, 9). The last row illustrates the notation of the colour-flow basis. In

this case, as explained in the text, the antiquark indices βk are replaced

by a permutation α̃k = π(αk) of the quark indices according to the

actual colour flow. Moreover, gluons are represented by a pair of indices

(αk , α̃k) corresponding to a quark–antiquark pair

External particles q q̄ → γ q q̄ Z g g g

Integer labels 1 2 3 4 5 6 7 8 9

α1 β1 β2 α2 σ1 σ2 σ3

α3 α4 α5

SU(3) indices i1 j̄2 j̄4 i5 a7 a8 a9

Colour flow (α1,0) (0,α̃1) (0,0) (0,α̃2) (α2,0) (0,0) (α3,α̃3) (α4,α̃4) (α5,α̃5)

= 2−M/2 δ
j̄β
ia1

δ
j̄a1

ia2
. . . δ

j̄aM−1

iaM
δ

j̄aM

iα
+ sublead. colour,

Tr
(
T a1 T a2 · · · T aM−1 T aM

)

= 2−M/2 δ
j̄aM

ia1
δ

j̄a1

ia2
. . . δ

j̄aM−1

iaM
+ sublead. colour, (4.36)

which imply a one-to-one correspondence between the ele-

ments of the two bases, i.e.

Ci = Cflow
i + sublead. colour. (4.37)

Squared colour vector In leading-colour approximation, the

colour-correlation matrices in the trace and colour-flow basis

are equivalent to each other and proportional to the identity

matrix,

Ki j =
∑

col

C
†
i C j =

∑

col

(
Cflow

i

)†
Cflow

j + sublead. colour

= δi j 2−n N n+m
c + sub-leading colour, (4.38)

where n and m are defined as above. Thus the LO probability

density (4.32) can be written as

W00 = N n+m
c

2n Nhcs

∑

i

∣∣A(i)
0

∣∣2 + sublead. colour, (4.39)

with36

∣∣A(i)
0

∣∣2 =
∑

h

[
A

(i)
0 (h)

]∗
A

(i)
0 (h). (4.40)

This squared colour vector can be evaluated through the inter-

face function evaluate_tree_colvect2. Since each

36 Note that (4.40) is computed in the trace basis excluding off-diagonal

Ki j terms but including any other sub-leading-colour contributions.

component of (4.40) is associated with a given colour flow

according to (4.37), in the context of parton-shower matching

the ratio

p(i) =
∣∣A(i)

0

∣∣2
∑

i

∣∣A(i)
0

∣∣2 (4.41)

can be used as the probability with which the shower starts

from the colour-flow configuration Cflow
i .

The explicit form of the colour-flow basis for a given

process can be accessed through the interface function

tree_colourflow, which returns an array of basis ele-

ments {Cflow
i } in a format corresponding to (4.35).

The interface functions described in this section are sup-

ported under amptype=1,11. So far they are implemented

in a way that guarantees consistent results only for leading-

QCD Born quantities, i.e. terms of order α
p
s αq with maximal

power p, which involve a single Born term of order g
p
s eq .

4.6 Reduction methods and stability system

As discussed in Sect. 2.7, tree–loop interferences and squared

loop amplitudes are computed using different methods for

the reduction to scalar integrals and the treatment of related

instabilities.

For all types of amplitudes, OpenLoops chooses default

settings for the stability system that require adjustments only

in very rare cases.

On-the-fly stability system For tree–loop interferences, with

the only exception of the Higgs Effective Field Theory, the

reduction to scalar integrals is based on the on-the-fly method

and the stability system described in Sect. 2.7.2. Each pro-

cessed object carries a cumulative instability estimator37 that

37 This estimate is based on the analytic form of all presently known

spurious singularities. So far it was found to be quite reliable. However,

it may have to be improved if new types of instabilities are encountered.

123

866 Page 36 of 56 Eur. Phys. J. C (2019) 79 :866

is propagated through the algorithm and updated when nec-

essary. If the estimated instability exceeds a threshold value,

the object at hand and all subsequent operations connected to

it are processed through the qp channel. The stability thresh-

old is controlled by the interface parameter hp_loopacc,

which plays the role of target numerical accuracy for the

whole Born–loop interference W01. Its default value is 8 and

corresponds to δW01/W01 ∼ 10−8.

In order to find an optimal balance between CPU perfor-

mance and numerical accuracy, certain aspects of the stability

system can be activated or deactivated using the parameter

hp_mode. Setting hp_mode=1 (default) enables all sta-

bility improvements described in Sect. 2.7.2 and is recom-

mended for NLO calculations with hard kinematics. Setting

hp_mode=2 activates qp also for additional types of rank-

two Gram-determinant instabilities that occur exclusively in

IR regions. This mode is supported only for QCD corrections

and is recommended for real–virtual NNLO calculations.

Finally,hp_mode=0 deactivates the usage of qp through the

hybrid-precision system, while keeping all stability improve-

ments of analytic type in dp.

Stability rescue system For tree–loop interferences in the

Higgs Effective Field Theory, the reduction to scalar integrals

is based on external libraries. The primary reduction library

redlib1 (default: Coli-Collier) is used to evaluate all

points in dp. The fraction stability_triggerratio

(default: 0.2, meaning 20 %) of the points with the largest K -

factor is re-evaluated with the secondary reduction library

redlib2 (default: DD-Collier). If the relative devia-

tion of the two results exceeds stability_unstable

(default: 0.01, meaning 1 %), the point is re-evaluated in

qp with CutTools including a qp scaling test to estimate

the resulting accuracy. If the estimated relative accuracy

δW01/W01 in qp is less than stability_kill (default:

1, meaning 100 %), the result is set to zero, otherwise the

smaller of the scaled and unscaled qp results is returned.

The accuracy argument of the matrix element routines (e.g.

evaluate_loop) returns the relative deviation of the

Coli-Collier and DD-Collier results or, if qp was trig-

gered, of the scaled and unscaled qp result. In case of a single

dp evaluation, the accuracy argument is set to −1.

Also squared loop amplitudes are reduced to scalar inte-

grals using external libraries. To asses related instabili-

ties, for all phase-space points the reduction is carried

out twice, using redlib1 and redlib2. The option

stability_kill2 (default: 10) sets the relative devi-

ation of the two results beyond which the result is set to

zero. Due to the double evaluation of all points, an accuracy

estimate is always returned by the matrix element routine

evaluate_loop2.

Setting redlib1 and redlib2, as well as various other

options to control the stability system, is only possible in the

so-called “expert mode”. Further details can be obtained from

the authors upon request.

5 Technical benchmarks

In this section we present speed and stability benchmarks

obtained with OpenLoops2 and compare them with the per-

formance of OpenLoops1.

5.1 CPU performance

The speed at which one-loop matrix elements are evaluated

plays a key role for the feasibility and efficiency of non-trivial

NLO Monte Carlo simulations. In Table 8 we present CPU

timings for the calculation of one-loop QCD and EW correc-

tions for several processes of interest at the LHC. Specifically,

we consider the production of single W bosons, W +W −

pairs and t t̄ pairs in association with a variable number of

additional gluons and quarks. For W production we consider

final states with on-shell bosons and, alternatively, off-shell

ℓν decay products.

The observed timings are roughly proportional to the

number of one-loop Feynman diagrams, which ranges from

O(10) for the simplest 2 → 2 processes to O(105) for the

most complex 2 → 5 processes. Absolute timings corre-

spond to OpenLoops 2 with default settings, i.e. with all

stability improvements in dp plus the hybrid-precision sys-

tem with a target accuracy of 8 digits. Augmenting the tar-

get accuracy to 11 digits causes a CPU overhead of 1% to

50%, depending on the process, while we have checked that

switching off hybrid precision (hp_mode=0) yields only a

speed-up of order one percent.

Comparing QCD to EW corrections, for processes with-

out leptonic weak-boson decays we observe timings of the

same order. More precisely, the QCD (EW) corrections tend

to be comparatively more expensive in the presence of more

external gluons (weak bosons). In contrast, in processes with

off-shell weak bosons decaying into leptons EW corrections

are drastically more expensive than QCD corrections. This

is due to the fact that, for each off-shell W/Z decay to lep-

tons, at NLO EW the maximum number of loop propagators

increases by one, while at NLO QCD it remains unchanged.

Due to Yukawa interactions, also the presence of massive

quarks tends to increase the CPU cost of EW corrections.

Timings of OpenLoops 2 are compared against Open-

Loops1 with recommended stability settings (preset = 2,

preset is deprecated in OpenLoops 2) and, alternatively,

with the stability rescue system switched off (“no stab”) in

OpenLoops 1. The difference reflects the cost of stability

checks in OpenLoops1, which is significantly higher than in

123

Eur. Phys. J. C (2019) 79 :866 Page 37 of 56 866

Table 8 Runtimes for the calculation of the NLO QCD and NLO EW

virtual corrections (with respect to the leading QCD Born order) for

various partonic processes at the LHC. Timings are given per phase-

space point, including colour and helicity sums, and averaged over a

sample of random points generated with Rambo [77] at
√

s = 1 TeV

without cuts. The measurements have been carried out on a single Intel

i7-4790K @ 4.00GHz core using gfortran 7.4.0. The reference Open-

Loops 2 timings (tdef
OL2) correspond to the on-the-fly approach with

default stability settings, while t
11 digits
OL2 illustrates the CPU overhead

caused by augmenting the hybrid-precision target accuracy from 8 to

11 digits. Default OpenLoops 1 timings (t
preset2
OL1) correspond to the

recommended stability setting (preset=2), where tensor reduction is

done with Coli-Collier and compared against DD-Collier for 20%

of the points with the largest K -factor; differences beyond one percent

between Coli-Collier and DD-Collier trigger qp re-evaluations with

CutTools +OneLOop and a further stability test via qp-rescaling. For

comparison, also OpenLoops1 timings with disabled stability system

(tno stab
OL1) are shown within parentheses

Process tdef
OL2 [ms] t

11digits
OL2 /tdef

OL2 t
preset2
OL1 (tno stab

OL1)/tdef
OL2

QCD EW EW
QCD

QCD EW QCD EW

gg → t t̄ 0.80 1.17 1.46 1.01 1.01 1.82 (1.67) 2.22 (2.02)

gg → t t̄ g 21.4 24.0 1.12 1.04 1.07 1.68 (1.56) 2.16 (2.10)

gg → t t̄ gg 600 582 0.97 1.15 1.22 2.18 (2.17) 2.64 (2.59)

gg → t t̄ ggg 21,145 16,928 0.80 1.09 1.14 2.59 (2.55) 3.06 (3.06)

uū → t t̄ 0.23 0.43 1.87 1.0 1.02 1.22 (0.93) 1.65 (1.37)

uū → t t̄ g 3.1 8.0 2.58 1.06 1.08 1.28 (1.19) 1.36 (1.28)

uū → t t̄ gg 73 176 2.41 1.16 1.19 1.45 (1.45) 1.64 (1.63)

uū → t t̄ ggg 2085 4862 2.33 1.26 1.28 1.88 (1.88) 2.05 (2.04)

bb̄ → t t̄ 0.22 0.92 4.18 1.01 1.01 1.78 (1.53) 2.01 (1.73)

bb̄ → t t̄ g 3.53 18.1 5.13 1.04 1.07 2.04 (1.90) 1.92 (1.84)

bb̄ → t t̄ gg 95 415 4.37 1.18 1.23 2.15 (2.05) 2.49 (2.40)

dū → W −g 0.33 0.71 2.15 1.03 1.03 0.96 (0.79) 1.45 (1.17)

dū → W −gg 5.6 12.9 2.30 1.05 1.10 0.99 (0.92) 1.14 (1.05)

dū → W −ggg 134 269 2.01 1.16 1.22 1.33 (1.28) 1.44 (1.44)

dū → W −gggg 3760 7442 1.98 1.14 1.18 1.41 (1.41) 1.69 (1.68)

dū → e−ν̄e 0.024 0.23 9.58 1.02 1.02 1.60 (0.92) 1.98 (1.37)

dū → e−ν̄eg 0.29 1.40 4.83 1.04 1.11 1.00 (0.81) 1.31 (1.09)

dū → e−ν̄egg 4.0 13.3 3.33 1.13 1.27 0.80 (0.75) 1.11 (1.11)

uū → W +W − 0.19 3.34 17.6 1.00 1.00 1.47 (1.19) 1.42 (1.36)

uū → W +W −g 6.7 25.7 3.84 1.16 1.06 1.31 (1.24) 1.46 (1.40)

uū → W +W −gg 154 379 2.46 1.19 1.15 1.63 (1.60) 2.03 (2.01)

uū → W +W −ggg 3660 8606 2.35 1.17 1.15 2.18 (2.18) 2.44 (2.44)

dd̄ → e−ν̄eμ
+νμ 0.19 9.02 47.5 1.02 1.68 0.80 (0.58) 1.67 (1.34)

dd̄ → e−ν̄eμ
+νμg 5.6 42.2 7.54 1.23 1.85 0.57 (0.51) 1.36 (1.15)

OpenLoops 2. Note that this cost depends very strongly on

the kinematics of the considered phase-space sample, and the

values reported in Table 8 should be understood as a lower

bound.

Apart from few exceptions, OpenLoops2 is similarly fast

or significantly faster than OpenLoops1. In particular, for the

most complex and time consuming processes the new on-the-

fly approach yields speed-up factors between two and three.

5.2 Numerical stability

As discussed in Sect. 2.7, the stability of one-loop amplitudes

in exceptional phase-space regions is of crucial importance

for challenging multi-particle and multi-scale NLO calcula-

tions, as well as for NNLO applications. In the following we

present OpenLoops 2 stability benchmarks for NLO QCD

and NLO EW virtual corrections. The level of numerical sta-

bility is quantified by comparing output in double (dp) or

hybrid (hp) precision (W
dp/hp

01) against quadruple-precision

(qp) benchmarks (W
qp

01). The latter are obtained using Open-

Loops2 in combination with the OneLOop library for scalar

integrals. More precisely, we define the numerical instability

of a certain result W X
01 as

AX = log10

∣∣∣∣∣
W X

01 − W
qp

01

W
qp

01

∣∣∣∣∣ , (5.1)

which corresponds, up to a minus sign, to the number of

stable digits. For the case of qp benchmark results (X = qp)

123

866 Page 38 of 56 Eur. Phys. J. C (2019) 79 :866

Fig. 5 Probability of finding an

instability A > Amin as a

function of Amin in a sample of

106 events for gg → t t̄ gg at

NLO QCD (upper plot) and

ūu → e+e−μ+μ− at NLO EW

(lower plot). The stability of

quad-precision benchmarks

(blue) is compared to different

variants of the OpenLoops2

on-the-fly reduction (green,

black, red) and to the

OpenLoops1 algorithm

interfaced with Collier

(yellow) or CutTools

(turquoise). For OpenLoops2,

besides default stability settings

(black) we show the effect of

increasing the hybrid-precision

target from 8 to 11 digits

(hp_loopacc=11, red), or

disabling the hybrid precision

system (hp_mode=0, green).

The OpenLoops1 curves

correspond to the level of

stability that is obtained in dp

without full re-evaluations of

unstable points in qp

−32 −28 −24 −20 −16 −12 −8 −4 0

accuracy Amin

10−6

10−5

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

of
ev

en
ts

gg → tt̄gg at O(α5
s)

OL1+CutTools dp

OL1+Collier dp

OL2 dp

OL2 hp default

OL2 hp 11 digits

OL2 qp

−32 −28 −24 −20 −16 −12 −8 −4 0

accuracy Amin

10−6

10−5

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

of
ev

en
ts

uū → e+e−µ+µ− at O(α5)

OL1+CutTools dp

OL1+Collier dp

OL2 dp

OL2 hp default

OL2 hp 11 digits

OL2 qp

the accuracy estimate (5.1) corresponds to the result of a

so-called rescaling test, see Sect. 2.7.1(iii).

The numerical stability of OpenLoops 2 in the hard

regions is illustrated in Fig. 5 for two non-trivial 2 → 4

processes at NLO QCD and NLO EW. The plots corre-

spond to 106 homogeneously distributed Rambo points at√
s = 1 TeV with pi,T > 50 GeV and ΔRi j > 0.5 for all

massless final-state particles. As demonstrated by the refer-

ence qp curve, running OpenLoops2 in pure qp makes it pos-

sible to produce one-loop results with up to 32 stable digits.

Such high-precision qp benchmarks can be obtained as a by-

product of the hybrid-precision system and allow one to quan-

tify the level of stability with better than 16-digit resolution in

the full phase space. The results of OpenLoops1 with Cut-

Tools in dp illustrate the impact of Gram-determinant insta-

bilities, which result in a probability of one percent of finding

less than two stable digits in gg → t t̄ gg.38 Using Collier

38 In the tail of the CutTools curve (not shown) numerical instabilities

can reach and largely exceed O(1010).

reduces this probability by 3–4 orders of magnitudes, while

OpenLoops2 with one-the-fly reduction and hp-system leads

to a further dramatic suppression of instabilities by four

orders of magnitude, which corresponds to five extra stable

digits. The effect of hybrid-precision alone corresponds to

about two digits or, equivalently, a factor 100 suppression of

the tail. The EW corrections to ūu → e+e−μ+μ− feature a

qualitatively similar behaviour but a generally lower level of

instability, which is most likely a consequence of the lower

tensor rank.

Example stability benchmarks relevant for 2 → 2 cal-

culations at NNLO are shown in Fig. 6 for the case of the

real-virtual QCD corrections to t t̄ and W +W − hadron pro-

duction. The instability A is estimated using a sequence of

gg → t t̄ g and uū → W +W −g samples with increasing

degree of softness and collinearity, defined as

ξsoft = E j

Q
, ξcoll = θ2

i j . (5.2)

123

Eur. Phys. J. C (2019) 79 :866 Page 39 of 56 866

Fig. 6 Relative numerical

accuracy A for gg → t t̄ g (upper

plot) and uū → W +W −g

(lower plot) at NLO QCD versus

the degree of collinear (ξcoll) or

soft singularity (ξsoft) as defined

in (5.2). For each value of

ξcoll/soft the numerical accuracy

is estimated with a sample of

104 randomly distributed

underlying 2 → 2 hard events.

The plotted central points and

variation bands correspond,

respectively, to the average and

99.9% confidence interval of A.

Quad-precision benchmarks

(blue) are compared to

OpenLoops2 with additional

hybrid-precision improvements

for IR regions (hp_mode=2,

red) and also to OpenLoops1

with Collier (yellow) or

CutTools (turquoise) in dp

840−4−8−12−16−20−24−28−32−36

accuracy A

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9
ξ c

o
ll

intial-state collinear radiation in gg → tt̄g at O(α4
s)

OL1+CutTools dp

OL1+Collier dp

OL2 hp mode 2

OL2 qp

840−4−8−12−16−20−24−28−32−36

accuracy A

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

ξ s
o
ft

ūuninoitaidartfos → W+W−g at O(α2α2
s)

OL1+CutTools dp

OL1+Collier dp

OL2 hp mode 2

OL2 qp

Here Q denotes the center-of-mass energy, E j is the energy

of the soft particle, and θi j is the angle of a certain collinear

branching. The parameters ξsoft/coll are defined in such a way

that the denominators of soft and collinear enhanced propaga-

tors scale like (pi + p j)
2 ∝ ξsoft/coll Q2. In practice, starting

from a sample of 104 hard 2 → 2 events with Q = 1 TeV,

we have supplemented each event by an additional soft or

collinear emission with ξsoft/coll = 10−1, 10−2, . . . , 10−9.

In Fig. 6 the average level of instability and its spread are

plotted versus ξcoll in gg → t t̄ and ξsoft in uū → W +W −g.

The stability of qp benchmarks is again very high in the

whole phase space. In the deep IR regions numerical insta-

bilities grow at a speed that depends on the process, the

type of region (soft/collinear), and the employed method.

For initial-state collinear radiation in gg → t t̄ g, CutTools

loses three digits per order of magnitude in ξcoll, resulting in

huge average instabilities of O(1010) in the deep unresolved

regime. Using the Collier library in dp we observe a more

favourable scaling, with losses of only one digit per order

of magnitude in ξcoll, and an average of three stable digits

in the tail. Thanks to the hybrid-precision system, the level

of stability of OpenLoops 2 is even much higher. It stays

always above 10 digits and is roughly independent of ξcoll.

For soft radiation in uū → W +W −g, apart from the fact that

numerical instabilities are generally milder, the various tools

behave in a qualitatively similar way.

Similar tests of the OpenLoops 2 stability system as

the ones presented here have been carried out for various

2 → 3, 4, 5 hard processes and 2 → 3 processes with an

unresolved parton, finding similar stability curves as shown

here, and not a single fully unstable result, i.e. one with zero

correct digits. A more comprehensive study on numerical

instabilities will be presented in a follow-up paper [66].

6 Summary and conclusions

We have presented OpenLoops 2, the latest version of the

OpenLoops tree and one-loop amplitude provider based on

the open-loop recursion. This new version introduces two

significant novelties highly relevant for state-of-the art pre-

cision simulations at high-energy colliders. First, the original

123

866 Page 40 of 56 Eur. Phys. J. C (2019) 79 :866

algorithm has been extended to provide one-loop amplitudes

in the full SM, i.e. including, besides QCD corrections, also

EW corrections from gauge, Higgs and Yukawa interactions.

The inclusion of EW corrections becomes mandatory for

the control of cross sections at the percent level, and even

more importantly in the tails of distributions at energies well

above the EW scale. Second, the original algorithm has been

extended to include the recently proposed on-the-fly reduc-

tion method, which supersedes the usage of external reduc-

tion libraries for the calculation of tree–loop interferences.

In this approach, loop amplitudes are constructed in a way

that avoids high tensorial rank at all stages of the calcula-

tion, thereby preserving and often ameliorating (by up to a

factor of three) the excellent CPU performance of Open-

Loops1. The on-the-fly reduction algorithm has opened the

door to a series of new techniques that have reduced the level

of numerical instabilities in exceptional phase-space regions

by up to four orders of magnitude. These speed and stabil-

ity improvements are especially significant for challenging

multi-leg NLO calculations and for real-virtual contributions

in NNLO computations.

In this paper we have presented the algorithms imple-

mented in OpenLoops 2 for the calculation of squared

tree, tree–loop interference and squared loop amplitudes.

This entails a summary of the on-the-fly reduction method

[33] and its stability system, which automatically identifies

and cures numerical instabilities in exceptional phase-space

regions. This is achieved by means of Gram-determinant

expansions and other analytic methods in combination with a

hybrid double-quadruple precision system. The latter ensures

an unprecedented level of numerical stability, while making

use of quadruple precision only for very small parts of the

amplitude construction. Details of these stability improve-

ments and hybrid precision system will be presented in an

upcoming publication [66].

In the context of the extension to calculations in the full

SM, we presented a systematic discussion of the bookkeeping

of QCD–EW interferences and sub-leading one-loop contri-

butions, which are relevant for processes with multiple final-

state jets. We also detailed the input parameter schemes and

one-loop O(αs) and O(α) renormalisation as implemented

in OpenLoops 2. Here we emphasised crucial details in the

implementation of the complex-mass scheme for the descrip-

tion of off-shell unstable particles. The flexible implementa-

tion of the complex-mass scheme in OpenLoops 2 is appli-

cable to processes with both on-shell and off-shell unstable

particles at NLO. We also introduced a special treatment of

processes with external photons, handling photons of on-

shell and off-shell type in different ways, which is inherently

required by the cancellation of fermion-mass singularities

associated with the photon propagator and with collinear

splitting processes.

While this manuscript as a whole provides detailed docu-

mentation of the algorithms implemented in OpenLoops 2,

Sect. 4 together with Appendix A can be used as a manual,

both in order to use OpenLoops2 as a standalone program or

to interface it to any Monte Carlo framework. Calculations at

NLO and beyond require, besides squared amplitude infor-

mation, also spin and colour correlators for the construction

of infrared subtraction terms. To this end we documented

the available correlators and conventions available in Open-

Loops 2, which comprise tree-tree and loop-loop correla-

tors as well as tree-loop correlators. The former are neces-

sary for the construction of NLO subtraction terms for stan-

dard and loop-induced processes. The latter are necessary in

NNLO subtraction schemes. Furthermore, conventions and

interfaces for the extraction of full tree amplitude vectors in

colour space are given. These are necessary ingredients for

parton shower matching at NLO.

The new functionalities of OpenLoops2 and their future

improvement will open the door to a wide range of new pre-

cision calculations in the High-Luminosity era of the LHC.

Acknowledgements We are thankful to Andreas van Hameren for

supporting OneLOop, and to Ansgar Denner and Stefan Dittmaier for

supporting Collier. We are indebted to Stefan Kallweit for numer-

ous bug reports and pre-release tests. Also we would like to thank the

Sherpa and Matrix collaborations for continuous collaboration and

discussions. We thank the ATLAS and CMS Monte Carlo groups for

valuable feedback. J.M.L. would like to thank the Theoretical Particle

Physics group at Sussex University for the hospitality during the com-

pletion of this work. F.B., J.-N.L., S.P., H.Z., M.Z. acknowledge sup-

port from the Swiss National Science Foundation (SNF) under contract

BSCGI0-157722. M.Z. acknowledges support by the Swiss National

Science Foundation (Ambizione grant PZ00P2-179877).

Data Availability Statement This manuscript has associated data in a

data repository. [Authors’ comment: Software package is available on

https://gitlab.com/openloops/OpenLoops.]

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Funded by SCOAP3.

Appendix A: Native FORTRAN and C/C++ interfaces

OpenLoops can easily be integrated into Monte Carlo tools

via its native interfaces in Fortran and C or via the BLHA

interface [45,46]. The C interface can of course be used

from C ++ as well. We recommend to use the native inter-

face, because it is easier to use, provides more functional-

ity and does not require exchanging files between the tools.

In this Appendix we present the various functionalities of

the native OpenLoops interface. In doing so we will always

123

https://gitlab.com/openloops/OpenLoops
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2019) 79 :866 Page 41 of 56 866

refer to the names of the relevant Fortran interface func-

tions. The corresponding C functions are named in the same

way with an extra ol_ prefix. In Appendix A.1 we detail

necessary modules to be loaded (Fortran) and required

header files (C/C ++) together with conventions for the for-

mat of phase-space points for the evaluation of scattering

amplitudes. In Appendix A.2 the setting of parameters is

discussed and in Appendix A.3 the registration of processes.

In Appendix A.4-Appendix A.8 we detail the various inter-

faces for the evaluation of squared scattering amplitudes,

amplitude correlators and amplitude colour vectors. Finally,

in Appendix A.9 we give a basic example for the usage of

the native OpenLoops interface in Fortran and C.

The implementation of the BLHA interface and the usage

of OpenLoops together with Sherpa and Powheg- Box are

discussed in Appendix B.

Appendix A.1: Generalities

Fortran interface In order to use the native Fortran inter-

face, the module openloops must be included with

use openloops

The module files are located in the directory lib_src/

openloops/mod, which should be added to the include

path of the Fortran compiler.

Floating point numbers used in the interface are in double

precision, denoted here by the kind type dp which can be

obtained as follows:

integer , parameter : : dp = selected_real_kind(15)

Phase space points p_ex are passed as two-dimensional

arrays declared as

real (dp) : : p_ex(0:3 ,N)

Here and in the following N stands for the number of incom-

ing plus outgoing external particles of the considered process.

External particles are numbered from 1 to N and are inter-

preted as incoming or outgoing according to the process reg-

istration. See (4.1) and below. The entries p_ex(i,K) cor-

respond to the energy (i=0) and the three physical momen-

tum components (i=1, 2, 3) of particle K in GeV units.

C interface The C interface is declared in the the header

file include/openloops.h and can be included in C

and C ++ code. Phase space points pp are passed as one-

dimensional arrays with 5N components, where every fifth

component is the mass of the corresponding external particle

(BLHA convention), i.e. phase-space points in the C interface

are declared as

double pp[5∗N];

The fifth component is currently not used within OpenLoops.

Appendix A.2: Parameter setting

In order to set the OpenLoops parameter with name key to

the value val, call

Fortran

subroutine set_parameter(key, val , err)

character(∗) , intent (in) : : key

TYPE, intent (in) : : val

integer , intent (out) , optional : : err

where TYPE isinteger,real(dp) or character(*)

depending on the type of the parameter. It is possible to set

parameters of integer or real(dp) type by passing the

value in string representation. The error code err will be

zero on success.

In C, the function to set a parameter depends on the param-

eter type:

C/C ++

void ol_setparameter_int (const char ∗key, int val) ;

void ol_setparameter_double(const char ∗key, double val) ;

void ol_setparameter_string (const char ∗key, const char ∗val) ;

ol_setparameter_string() may be used to set

integer or double precision values given in string represen-

tation. The functions do not return an error code, but it may

be retrieved by calling

C/C ++

int ol_get_error () ;

right after setting a parameter. A return value of 0 means that

no error occured in the preceeding call.

With the default settings, the program will terminate in

case of an error. This can be changed by adjusting the warning

level using the function

Fortran

subroutine set_init_error_fatal (level)

integer , intent (in) : : level

C/C ++

void ol_set_init_error_fatal (int level)

where level=0 means that errors are silently ignored,

level=1 means that a warning message is printed, and

level=2 (default) means that the program will be termi-

nated on error.

123

866 Page 42 of 56 Eur. Phys. J. C (2019) 79 :866

The current value of a parameter can be retrieved by calling

Fortran

subroutine get_parameter(key, val , err)

character(∗) , intent (in) : : key

TYPE, intent (out) : : val

integer , intent (out) , optional : : err

C/C ++

void ol_getparameter_int(const char ∗key, int ∗val) ;

void ol_getparameter_double(const char ∗key, double ∗val) ;

Retrieving parameter values is only supported for integer

and double precision parameter types.

A list of all parameters can be written to a file

Fortran

subroutine printparameter (f i le)

character(∗) , intent (in) : : f i le

C/C ++

void ol_printparameter(const char ∗f i le) ;

For an empty file name, i.e. file=””, the output is written

to stdout.

Appendix A.3: Process registration

As detailed in Sect. 4.2 before evaluation a process has to be

registered. This proceeds via

Fortran

function register_process (process , amptype)

integer : : register_process

TYPE, intent (in) : : process

integer , intent (in) : : amptype

which takes theprocess as a string in the format “PIDi,1 . . .

PIDi,n -> PID f,1 . . . PID f,m” for a n → m process, where

the various particle identifiers (PID) are enetered in either of

the two particle labelling schemes specified in Table 6. Alter-

natively, 2 → N − 2 processes can be registered by entering

process as an array of integers of length N , where the first

two entries are interpreted as initial-state particles. Addition-

ally the amplitude type amptype has to be passed as argu-

ment. For the possible values of amptype see Table 4. The

function register_process returns the process ID to

be used in the routines to evaluate matrix elements, where it

is denoted as id.

In the corresponding C interface for process registration

C/C ++

int ol_register_process (const char ∗process , int amptype) ;

the process can only be passed as a string. Again, the

process ID is returned.

When all processes are registered the following function

must be called before calculating matrix elements.

Fortran

subroutine s tar t ()

C/C ++

void ol_start () ;

When the calculation is finished, i.e. no more matrix elements

will be calculated, the following function should be called.

Fortran

subroutine finish ()

C/C ++

void ol_finish () ;

While these calls are not strictly necessary, if log files are

used, the files may not be updated at the end of the run and

therefore lack information. Additionally, dynamically allo-

cated memory will be deallocated upon the finish call.

Appendix A.4: Scattering amplitudes

The following interface functions evaluate the scattering

probability densities (2.1)–(2.3) and their building blocks

described in Sect. 4.3. The required inputs are the integer

identifier id of the desired process and the phase-space point

p_ex (Fortran) / pp (C ++), as defined in Appendix A.1.

Tree-level amplitudes The functionevaluate_tree eval-

uates the tree–tree probability density (2.1) returning as out-

put m2l0 = W00.

Fortran

subroutine evaluate_tree (id , p_ex, m2l0)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

C/C ++

void ol_evaluate_tree (int id , const double ∗pp,

double ∗m2l0) ;

One-loop NLO amplitudes The functionevaluate_loop

evaluates the UV renormalised Born–one-loop interference

(2.2) returning m2l0 = W00 and m2l1 = {W(0)
01 ,W

(1)
01 ,

W
(2)
01 } as output. The three values in m2l1 represent the finite

part, and the coefficients of the IR single and double poles39

39 For performance reasons, by default the (negative) IR poles of the

I-operator, Eq. (3.98), are returned as IR poles in m2l1. The true poles

of the virtual amplitudes can be obtained by setting the parameter

truepoles=1. Alternatively setting truepoles=2 sums the vir-

tual amplitude including its true poles and the I-operator including its

finite part and poles, which allows for easy pole cancellation checks.

See more details in Sect. 4.3.

123

Eur. Phys. J. C (2019) 79 :866 Page 43 of 56 866

of the Born–one-loop interference, as defined in Eq. (4.2).

Together with the one-loop amplitude an accuracy estimate

is returned (depending on the employed stability system) as

acc with acc = −1 in case no stability estimate is avail-

able. When available, acc quantifies the relative accuracy

δW
(0)
01 /W

(0)
01 , and acc = 10−a corresponds to an estimated

accuracy of a decimal digits.

Fortran

subroutine evaluate_loop(id , p_ex, m2l0, m2l1, acc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2l1(0:2)

real (dp) , intent (out) : : acc

C/C ++

void ol_evaluate_loop(int id , const double ∗pp,

double ∗m2l0, double ∗m2l1,

double ∗acc) ;

As documented in Sect. 4.3, various technical parame-

ters permit to activate and deactivated the different building

blocks of one-loop amplitudes and to change the normalisa-

tion convention for UV and IR poles.

Bare d=4 amplitudes The functionevaluate_loopbare

evaluates the unrenormalised Born–one-loop interference

without UV and R2 counterterm contributions (i.e. with

d = 4 loop numerator) as defined in (4.4), returning

m2l0 = W00, m2l1bare = {W(0)
01,4D,W

(1)
01,4D,W

(2)
01,4D}

and an accuracy estimate (see above) acc as output. The

three values in m2l1bare represent the finite part and the

coefficients of the (UV and IR) single and the double poles.40

Fortran

subroutine evaluate_loopbare(id , p_ex, m2l0, m2l1bare , acc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2l1bare(0:2)

real (dp) , intent (out) : : acc

C/C ++

void ol_evaluate_loopbare(int id , const double ∗pp,

double ∗m2l0, double ∗m2l1bare ,

double ∗acc) ;

40 For performance reasons, by default the (negative) IR poles of the

I-operator and UV counterterm are returned as poles in m2l1bare.

The true poles of the bare virtual amplitudes can be obtained by setting

the parameter truepoles=1.

UV counterterms The function evaluate_loopct eval-

uates the UV counterterm matrix element, as defined in (4.4)

returning m2l0 = W00 and m2ct = {W(0)
01,CT,W

(1)
01,CT,

W
(2)
01,CT} as output. The three values in m2ct represent the

finite part and the coefficients of the (UV) single and double

poles, where the latter is always zero.

Fortran

subroutine evaluate_loopct (id , p_ex, m2l0, m2ct)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2ct(0:2)

C/C ++

void ol_evaluate_loopct(int id, const double *pp,

double *m2l0 , double *m2ct);

For performance reasons we also provide the function

evaluate_ct, which evaluates only the finite part of

the UV counterterm, defined in (4.4), returning m2ct0 =
W

(0)
01,CT and m2l0 = W00 as output.

Fortran

subroutine evaluate_ct (id , p_ex, m2l0, m2ct0)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2ct0

C/C ++

void ol_evaluate_ct (int id , const double ∗pp,

double ∗m2l0, double ∗m2ct0) ;

R2 counterterms The function evaluate_r2 evaluates the

R2 counterterm matrix element defined in (4.4), returning

m2r2 = W01,R2 and m2l0 = W00.

Fortran

subroutine evaluate_r2(id , p_ex, m2l0, m2r2)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2r2

C/C ++

void ol_evaluate_r2(int id , const double ∗pp,

double ∗m2l0, double ∗m2ct) ;

Pole residues The function evaluate_poles evaluates

the residues of the UV and IR poles of all ingredients

to a Born–one-loop interference defined in (4.4) includ-

ing also the I-operator. As output it returns m2l0 =

123

866 Page 44 of 56 Eur. Phys. J. C (2019) 79 :866

W00, m2bare = {W(1,UV)
01,4D ,W

(1,IR)
01,4D ,W

(2,IR)
01,4D }, m2ct =

{W(1,UV)
01,CT ,W

(1,IR)
01,CT ,W

(2,IR)
01,CT }, m2ir = {W(1,UV)

00,I-op
,W

(1,IR)
00,I-op

,

W
(2,IR)
00,I-op

} andm2sum = m2bare+m2ct+m2ir. The three

values inm2bare,m2ct,m2ir,m2sum correspond respec-

tively to the residues of the 1/εUV, 1/εIR and 1/ε2
IR poles. For

automated pole cancellation checks the output of this routine

can automatically be printed to the screen upon amplitude

registration when the parameter check_poles = 1 is set.

Fortran

subroutine evaluate_poles (id , psp , m2l0, m2bare,

m2ct, m2ir , m2sum)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2bare(0:2)

real (dp) , intent (out) : : m2ct(0:2)

real (dp) , intent (out) : : m2ir(0:2)

real (dp) , intent (out) : : m2sum(0:2)

C/C ++

void ol_evaluate_poles (int id , const double ∗pp,

double ∗m2l0, double ∗m2bare,

double ∗m2ct, double ∗m2ir ,

double ∗m2sum);

Squared one-loop amplitudes The function evaluate_

loop2 evaluates the squared one-loop matrix element (2.3)

returning m2l2 = W11 and a relative accuracy estimate

acc = δW11/W11 (depending on the stability settings) as

output.

Fortran

subroutine evaluate_loop2(id , p_ex, m2l2, acc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l2

real (dp) , intent (out) : : acc

C/C ++

void ol_evaluate_loop2(int id , const double ∗pp,

double ∗m2l2, double ∗acc) ;

Appendix A.5: I-operator

Tree–tree I-operator insertions The function evaluate_

iop evaluates the I-operator insertion into a squared Born

amplitude, as defined in (3.97), returning m2l0 = W00 and

m2ir = {W(0)
00,I-op

,W
(1)
00,I-op

,W
(2)
00,I-op

}. The three values in

m2ir represent the finite part and the coefficients of the (IR)

single and double poles.

Fortran

subroutine evaluate_iop(id , p_ex, m2l0, m2ir)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2ir(0:2)

C/C ++

void ol_evaluate_iop(int id , const double ∗pp,

double ∗m2l0, double ∗m2ir) ;

Loop-loop I-operator insertions The function evaluate_

loop2iop evaluates the I-operator insertion into a squared

one-loop amplitude as defined in (3.97), returning m2l2 =
W11 and m2l2ir = {W(0)

11,I-op
,W

(1)
11,I-op

,W
(2)
11,I-op

}. The

three values in m2l2ir represent the finite part and the coef-

ficients of the (IR) single and double poles in a Laurent series

similar to (4.2).

Fortran

subroutine evaluate_loop2iop(id , p_ex, m2l2, m2l2ir)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l2

real (dp) , intent (out) : : m2l2ir(0:2)

C/C ++

void ol_evaluate_loop2iop(int id , const double ∗pp,

double ∗m2l2, double ∗m2l2ir) ;

Appendix A.6: Colour and charge correlators

Tree–tree colour correlators The function evaluate_

ccmatrix returns the full matrix of colour-correlated

squared tree amplitudes as defined in (4.7), returning

m2l0 = W00 and a two-dimensional array m2cc

matrix(i,j) = C
(p,q|i j)
00,LO QCD

(Fortran) or a one-dimensi-

onal array m2ccmatrix[(i − 1) ∗ N + j − 1] = C
(p,q|i j)
00,LO QCD

(C).m2ewcc is reserved for the associated charge-correlated

born amplitude, but is currently not in use.

Fortran

subroutine evaluate_ccmatrix(id , p_ex, m2l0,

m2ccmatrix, m2ewcc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2ccmatrix(N,N)

real (dp) , intent (out) : : m2ewcc

C/C ++

void ol_evaluate_ccmatrix(int id , const double ∗pp,

double ∗m2l0, double ∗m2ccmatrix,

double ∗m2ewcc) ;

123

Eur. Phys. J. C (2019) 79 :866 Page 45 of 56 866

Alternatively the function evaluate_cc evaluates only

the N (N − 1)/2 independent colour-correlated squared tree

amplitudes (4.7) in the BLHA convention, returningm2l0 =
W00 and m2cc(i+(j-1)(j-2)/2) = C

(p,q|i j)
00,LO QCD

(For-

tran) rsp. m2cc[i+(j-1)(j-2)/2-1] = C
(p,q|i j)
00,LO QCD

(C) with 1 ≤ i < j ≤ N .

Fortran

subroutine evaluate_cc(id , p_ex, m2l0, m2cc, m2ewcc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2cc(N∗(N−1)/2)

real (dp) , intent (out) : : m2ewcc

C/C ++

void ol_evaluate_cc(int id , const double ∗pp,

double ∗m2l0, double ∗m2cc,

double ∗m2ewcc) ;

Tree–tree charge correlators The function evaluate_

ccewmatrix returns the full matrix of charge-correlated

squared tree amplitudes, as defined in (4.8), returning

m2l0 = W00 and a two-dimensional arraym2ccewmatrix

(i,j) = C
(p,q|i j)
00,LO QED

(Fortran) or a one-dimensional array

m2ccewmatrix[(i − 1) ∗ N + j − 1] = C
(p,q|i j)
00,LO QED

(C).

Fortran

subroutine evaluate_ccewmatrix(id , p_ex, m2l0,

m2ccewmatrix)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2ccewmatrix(N,N)

C/C ++

void ol_evaluate_ccewmatrix(int id , const double ∗pp,

double ∗m2l0,

double ∗m2ccewmatrix) ;

Loop–loop colour correlators The function evaluate_

ccmatrix2 returns the full matrix of colour-correlated

squared loop amplitudes as defined in (4.7), returning

m2l2 = W11 as a two-dimensional array m2ccmatrix

(i,j) = C
(p,q|i j)
11,LO QCD

(Fortran) or as a one-dimensional

array m2ccmatrix[(i − 1) ∗ N + j − 1] = C
(p,q|i j)
11,LO QCD

(C).m2ewcc is reserved for the associated charge-correlated

loop-squared amplitude, but is currently not in use.

Fortran

subroutine evaluate_ccmatrix2(id , p_ex, m2l2,

m2ccmatrix, m2ewcc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l2

real (dp) , intent (out) : : m2ccmatrix(N,N)

real (dp) , intent (out) : : m2ewcc

C/C ++

void ol_evaluate_ccmatrix2(int id , const double ∗pp,

double ∗m2l2,

double ∗m2ccmatrix,

double ∗m2ewcc) ;

Similarly as for the colour-correlated Born correlators

(see above), the function evaluate_cc2 evaluates only

the independent colour-correlated loop-squared amplitudes

in the BLHA convention returning m2l2 = W11 and

m2cc(i+(j-1)(j-2)/2) = C
(p,q|i j)
11,LO QCD

(Fortran) rsp.

m2cc[i+(j-1)(j-2)/2-1] = C
(p,q|i j)
11,LO QCD

(C) with 1 ≤
i < j ≤ N .

Fortran

subroutine evaluate_cc2(id , p_ex, m2l2, m2cc, m2ewcc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2cc(N∗(N−1)/2)

real (dp) , intent (out) : : m2ewcc

C/C ++

void ol_evaluate_cc2(int id , const double ∗pp,

double ∗m2l2, double ∗m2cc,

double ∗m2ewcc) ;

Loop–Loop charge correlators The function evaluate_

ccewmatrix2 computes the full matrix of charge-

correlated squared loop amplitudes as defined in (4.8). As

output it returns m2l2 = W11 and a two-dimensional array

m2ccewmatrix(i,j) = C
(p,q|i j)
11,LO QED

(Fortran) or a one-

dimensional array m2ccewmatrix[(i − 1) ∗ N + j − 1] =
C

(p,q|i j)
11,LO QED

(C).

Fortran

subroutine evaluate_ccewmatrix2(id , p_ex, m2l2,

m2ccewmatrix)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l2

real (dp) , intent (out) : : m2ccewmatrix(N,N)

C/C ++

void ol_evaluate_ccewmatrix2(int id , const double ∗pp,

double ∗m2l2,

double ∗m2ccewmatrix) ;

123

866 Page 46 of 56 Eur. Phys. J. C (2019) 79 :866

Tree–loop colour correlators The function evaluate_

loopccmatrix2 returns the full matrix of the finite

parts of the colour-correlated Born–loop interferences, as

defined in (4.9), returning m2l0 = W00, m2l1 =
{W(0)

01 ,W
(1)
01 ,W

(2)
01 } and a two-dimensional array m2cc

matrix(i,j) = C
(P,Q|i j)
01,NLO QCD

(Fortran) or as a one-

dimensional array m2ccmatrix[(i − 1) ∗ N + j − 1] =
C

(P,Q|i j)
01,01,NLO QCD

(C). m2ewcc is reserved for the associated

charge-correlated Born–loop interference, but is currently

not in use.

Fortran

subroutine evaluate_loopccmatrix(id , p_ex, m2l0,

m2l1, m2ccmatrix, m2ewcc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l2

real (dp) , intent (out) : : m2l1(0:2)

real (dp) , intent (out) : : m2ccmatrix(N,N)

real (dp) , intent (out) : : m2ewcc

C/C ++

void ol_evaluate_loopccmatrix2(int id , const double ∗pp,

double ∗m2l0, double ∗m2l1,

double ∗m2ccmatrix,

double ∗m2ewcc) ;

Similarly as for the colour-correlated Born correlators

(see above), the function evaluate_loopcc evaluates

only the independent colour-correlated Born–loop interfer-

ence amplitudes (finite parts only) in the BLHA conven-

tion returning m2l0 = W00, m2l1 = {W(0)
01 ,W

(1)
01 ,W

(2)
01 }

and m2cc(i+(j-1)(j-2)/2) = C
(i j)
01,NLO QCD

(Fortran)

rsp. m2cc[i+(j-1)(j-2)/2-1] = C
(i j)
01,NLO QCD

(C) with

1 ≤ i < j ≤ N .

Fortran

subroutine evaluate_loopcc(id , p_ex, m2l2, m2cc,

m2ewcc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex(4 ,N)

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2l1(0:2)

real (dp) , intent (out) : : m2cc(N∗(N−1)/2)

real (dp) , intent (out) : : m2ewcc

C/C ++

void ol_evaluate_loopcc2(int id , const double ∗pp,

double ∗m2l0, double ∗m2l1,

double ∗m2cc, double ∗m2ewcc) ;

Appendix A.7: Spin correlators

Tree–tree spin correlators The function evaluate_sc

evaluates the colour-spin-correlated squared tree amplitudes

(4.18) for a given gluon/photon emitter j and polarisa-

tion vector polvect = k⊥ fulfilling k⊥ · p j = 0. It returns

m2sc(k) = B
(p,q| jk)

L L ,LO
(k⊥) (Fortran), rsp. m2sc[k-1] =

B
(p,q| jk)

L L ,LO
(k⊥) (C) with 1 ≤ k ≤ N .

Fortran

subroutine evaluate_sc(id , p_ex, emitter , polvect ,

m2sc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (in) : : polvect(4)

real (dp) , intent (out) : : m2sc(N)

C/C ++

void ol_evaluate_sc(int id , const double ∗pp,

int emitter , double ∗polvect ,

double ∗m2sc) ;

The function evaluate_sctensor evaluates the

colour-spin-correlated squared tree tensor (4.20) for an

emitter j returning m2l0 = W00 and as a N×4×4 array

m2munu(k,mu,nu) = B
(p,q| jk|μν)
00,LO

(Fortran), rsp. a

vector of length (16N), m2munu[(k-1)*N+(mu-1)*4+

(nu-1)] = B
(p,q| jk|μν)
00,LO

(C), with 1 ≤ k ≤ N and

1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_sctensor (id , p_ex, emitter ,

m2l0, m2munu)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2munu(N,4 ,4)

C/C ++

void ol_evaluate_sctensor(int id , const double ∗pp,

int emitter , double ∗m2l0,

double ∗m2munu) ;

The function evaluate_stensor evaluates the spin-

correlated squared tree tensor (4.21) (Powheg- Box conven-

tion) for anemitter j returningm2l0 = W00 and as a 4×4

array m2munu(mu,nu) = B
(p,q| j |μν)
00,LO

(Fortran), rsp. a

vector of length 16, m2munu[(mu-1)*4+(nu-1)] =
B

(p,q| j |μν)
00,LO

(C), with 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_stensor (id , p_ex, emitter , m2l0,

m2munu)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2munu(4 ,4)

123

Eur. Phys. J. C (2019) 79 :866 Page 47 of 56 866

C/C ++

void ol_evaluate_stensor (int id , const double ∗pp,

int emitter , double ∗m2l0,

double ∗m2munu) ;

Loop–loop spin correlators The function evaluate_sc2

evaluates the colour-spin-correlated loop-squared ampli-

tudes (4.18) for a given gluon/photonemitter j and polari-

sation vectorpolvect = k⊥ fulfilling k⊥·p j = 0. It returns

an array of length N , m2sc(k) = B
(p,q| jk)
11,LO

(k⊥) (Fortran),

rsp. m2sc[k-1] = B
(p,q| jk)
11,LO

(k⊥) (C) with 1 ≤ k ≤ N .

Fortran

subroutine evaluate_sc2(id , p_ex, emitter , polvect ,

m2sc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (in) : : polvect(4)

real (dp) , intent (out) : : m2sc(N)

C/C ++

void ol_evaluate_sc2(int id , const double ∗pp,

int emitter , double ∗polvect ,

double ∗m2sc) ;

The function evaluate_sctensor2 evaluates the

colour-spin-correlated loop-squared tensor (4.21) (Powheg-

Box convention) for an emitter j returning m2l2 = W11

and as a N×4×4 arraym2munu(k,mu,nu) = B
(p,q| jk|μν)
11,LO

(Fortran), rsp. a vector of length 16N , m2munu[(k-1)

*N+(mu-1)*4+(nu-1)] = B
(p,q| jk|μν)
11,LO

(C) with 1 ≤
k ≤ N and 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_sctensor2(id , p_ex, emitter ,

m2l2, m2munu)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (out) : : m2l2

real (dp) , intent (out) : : m2munu(N,4 ,4)

C/C ++

void ol_evaluate_sctensor2(int id , const double ∗pp,

int emitter , double ∗m2l2,

double ∗m2munu) ;

Alternativelyevaluate_stensor2 evaluates the spin-

correlated loop-squared tensor (4.20) (Powheg- Box con-

vention) for an emitter j returning m2l2 = W11 and as

a 4 × 4 array m2munu(mu,nu) = B
(p,q| j |μν)
11,LO

(Fortran),

rsp. a vector of length 16, m2munu[(mu-1)*4+(nu-1)]

= B
(p,q| j |μν)
11,LO

(C) with 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_stensor2(id , p_ex, emitter ,

m2l2, m2munu)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (out) : : m2l2

real (dp) , intent (out) : : m2munu(4 ,4)

C/C ++

void ol_evaluate_stensor2(int id , const double ∗pp,

int emitter , double ∗m2l2,

double ∗m2munu) ;

Tree–loop spin correlators The function evaluate_

loopsc evaluates the colour-spin-correlated Born–loop

interference (finite part) (4.22) for a given gluon/photon

emitter j and polarisation vector polvect = k⊥ fulfill-

ing k⊥ · p j = 0. It returns an array of length N , m2sc(k) =
B

(P,Q| jk)
01,NLO

(k⊥) (Fortran), rsp. m2sc[k-1] = B
(P,Q| jk)
01,NLO

(k⊥)

(C) with 1 ≤ k ≤ N .

Fortran

subroutine evaluate_loopsc(id , p_ex, emitter ,

polvect , m2sc)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (in) : : polvect(4)

real (dp) , intent (out) : : m2sc(N)

C/C ++

void ol_evaluate_loopsc(int id , const double ∗pp,

int emitter , double ∗polvect ,

double ∗m2sc) ;

The function evaluate_loopsctensor evaluates

the colour-spin-correlated Born–loop interference tensor

(finite part) (4.23) (Powheg- Box convention) for an

emitter j returning as output m2l0 = W00, m2l1 =
{W(0)

01 ,W
(1)
01 ,W

(2)
01 } and a N×4×4 array m2munu(k,mu,

nu) = B
(P,Q| jk|μν)
01,NLO

(Fortran), rsp. a vector of length 16N ,

m2munu[(k-1)*N+(mu-1)*4+(nu-1)]=B
(P,Q| j |μν)
11,NLO

(C) with 1 ≤ k ≤ N and 1 ≤ mu,nu ≤ 4.

123

866 Page 48 of 56 Eur. Phys. J. C (2019) 79 :866

Fortran

subroutine evaluate_loopsctensor(id , p_ex, emitter ,

m2l0, m2l1, m2munu)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2l1(0:2)

real (dp) , intent (out) : : m2munu(N,4 ,4)

C/C ++

void ol_evaluate_loopsctensor(int id ,

const double ∗pp, int emitter ,

double ∗m2l0, double ∗m2l1,

double ∗m2munu) ;

Alternatively the function evaluate_loopstensor

evaluates the spin-correlated Born–loop interference ten-

sor (finite part) (4.24) (Powheg- Box convention) for an

emitter j returningm2l0 = W00,m2l1 = {W(0)
01 ,W

(1)
01 ,

W
(2)
01 } and a 4×4 array m2munu(mu,nu) = B

(P,Q| j |μν)
01,NLO

(Fortran), rsp. a vector of length 16,m2munu[(mu-1)*4

+(nu-1)] == B
(P,Q| j |μν)
11,NLO

(C) with 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_loopstensor (id , p_ex, emitter ,

m2l0, m2l1, m2munu)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

integer , intent (in) : : emitter

real (dp) , intent (out) : : m2l0

real (dp) , intent (out) : : m2l1(0:2)

real (dp) , intent (out) : : m2munu(4 ,4)

C/C ++

void ol_evaluate_loopstensor (int id ,

const double ∗pp, int emitter ,

double ∗m2l0, double ∗m2l1,

double ∗m2munu) ;

Appendix A.8: Colour basis and tree amplitudes in colour

space

Besides calculating squared and colour-summed matrix ele-

ments, OpenLoops also provides tree-level amplitudes with

full colour information, see Sect. 4.5, required for the match-

ing of parton showers to matrix elements. In the following we

describes how to retrieve the colour basis used for a process

and the amplitude as a vector in the colour space which is

spanned by these basis elements.

Dimension of colour basis and number of helicities The

colour basis elements are encoded as integer arrays and must

be retrieved once for each process. First one must obtain the

following information:

– ncolb: the number of basis elements,

– colelemsz: the size of the longest basis element,

– nheltot: the total number of helicity configurations

(including vanishing configurations).

These are returned by the function tree_colbasis_dim

for a given process.

Fortran

subroutine tree_colbasis_dim(id , ncolb , colelemsz ,

nheltot)

integer , intent (in) : : id

integer , intent (out) : : ncolb , colelemsz , nheltot

C/C ++

void ol_tree_colbasis_dim(int id , int ∗ncolb ,

int ∗colelemsz ,

int ∗nheltot) ;

Trace basis The function tree_colbasis returns the

actual colour basis as a trace basis in a format correspond-

ing to (4.27)–(4.30), encoded as a two-dimensional integer

array of the size basis(colelemsz,ncolb) (Fortran)

rsp. basis[ncolb][colelemsz] (C). Trailing zeros

should be ignored. The two-dimensional arrayneeded indi-

cates if a certain colour interference contributes to the squared

amplitude or not. If needed[i][j]=1, the interference of

basis elements i and j contributes, if needed[i][j]=0

it does not.

Fortran

subroutine tree_colbasis (id , basis , needed)

integer , intent (in) : : id

integer , intent (out) : : basis (colelemsz , ncolb) ,

needed(ncolb , ncolb)

C/C ++

void ol_tree_colbasis (int id , int ∗basis ,

int ∗needed) ;

Colour-flow basis Alternatively the function tree_

colourflow returns the basis in colour flow representa-

tion, as defined in Eq. (4.35). The format of the basis is

flowbasis

(2,N,ncolb) (Fortran) rsp. flowbasis[ncolb][N]

[2] (C), defining ncolb colour flows.

Fortran

subroutine tree_colourflow(id , flowbasis)

integer , intent (in) : : id

integer , intent (out) : : flowbasis(2 ,N, ncolb)

123

Eur. Phys. J. C (2019) 79 :866 Page 49 of 56 866

C/C ++

void ol_tree_colourflow(int id , int ∗flowbasis) ;

Tree amplitudes in colour space Now, the function

evaluate_tree_colvect returns the (complex) tree-

level amplitude amp = {A(i)
0 (h)}, defined in (4.25), as

a vector in the colour space spanned by the colour basis

elements for each of the nhelnonv non-vanishing helic-

ity configurations, which may be smaller than the total

number of helicity configurations nheltot returned by

tree_colbasis_dim(). In Fortran amp(:,h) for

h=1..nhelnonv is an array of ncolb complex num-

bers such that the element amp(i,h) corresponds to the

colour basis element basis(:,i). In C amp[h] for

h=0..nhelnonv-1 is an array of 2*ncolb real num-

bers such that the elements amp[h][2*i] and amp[h]

[2*i+1] are the real and imaginary parts of the amplitude

which corresponds to the colour basis element basis[i].

Note that colour and helicity average factors and symmetry

factors must still be applied when the squared amplitude is

built from these results. See (4.32) and (4.39)–(4.40).

Fortran

subroutine evaluate_tree_colvect (id , p_ex, amp,

nhelnonv)

integer , intent (in) : : id

real (dp) , intent (in) : : p_ex

complex(dp) , intent (out) : : amp(ncolb , nheltot)

integer , intent (out) : : nhelnonv

C/C ++

void ol_evaluate_tree_colvect (int id , const

double ∗pp,

double ∗amp,

int ∗nhelnonv) ;

Squared tree amplitudes in colour space Finally, the func-

tion evaluate_tree_colvect2 evaluates the squared

amplitudes for the colour basis elements, i.e. the diagonal

elements of the colour interference matrix (4.40), returning

a vector of ncolb elements as m2arr(i) =
∣∣A(i)

0

∣∣2 (For-

tran), rsp. m2arr[i − 1] =
∣∣A(i)

0

∣∣2 (C). This is meant to

calculate the probability with which a matched parton shower

should start from the corresponding colour flow. Note that the

results are only correct to leading colour approximation and

may contain (or even be purely) sub-leading colour contri-

butions.

Fortran

subroutine evaluate_tree_colvect2 (id , psp , m2arr)

integer , intent (in) : : id

real (dp) , intent (in) : : psp

real (dp) , intent (out) : : m2arr(ncolb)

C/C ++

void ol_evaluate_tree_colvect2 (int id , const

double ∗pp, double ∗m2arr) ;

Appendix A.9: Basic examples

Here we give a basic example, both for Fortran and

C, which illustrates the usage of the native OpenLoops

interface. In these examples the process dd̄ → Zuū is

registered via order_ew=1, i.e. the leading tree-level

order corresponds to O(α2
s α) and the one-loop order cor-

responds to the O(α3
s α) NLO QCD corrections. Similar

examples are shipped with the OpenLoops installation as

./examples/OL_fortran.f90 and ./examples/

OL_cpp.cpp respectively.

Fortran

program main

use openloops

implicit none

integer : : id

real (selected_real_kind(15)) : : muren = 100, alpha_s = 0.1 ,

sqrts=1000

real (selected_real_kind(15)) : : p_ex(0:3 ,5) , m2_tree ,

m2_loop(0:2) , acc

call setparameter_int ("order_ew" , 1)

id = register_process ("1 −1 −> 23 2 −2" , 11);

! or id = register_process([1,−1,23,2,−2], 11)

! register more processes as needed

call s tar t () ;

! calculate matrix elements , e .g.

i f (id > 0) then

! generate a random phase−space point with Rambo

call phase_space_point(id , sqrts , p_ex)

! set strong coupling

call set_parameter ("alpha_s" , alpha_s)

! set renormalisation scale

call set_parameter ("muren" , muren)

! evaluate tree matrix element and print result

call evaluate_tree (id , p_ex, m2_tree)

print ∗ , "evaluate_tree"

print ∗ , "Tree: " , m2_tree

! evaluate loop matrix element and print result

call evaluate_loop(id , p_ex, m2_tree , m2_loop(0:2) , acc)

print ∗ , "evaluate_loop"

print ∗ , "Tree: " , m2_tree

print ∗ , "Loop ep^0: " , m2_loop(0)

print ∗ , "Loop ep^−1: " , m2_loop(1)

print ∗ , "Loop ep^−2: " , m2_loop(2)

print ∗ , "accuracy : " , acc

end if

call finish () ;

end program main

123

866 Page 50 of 56 Eur. Phys. J. C (2019) 79 :866

C/C ++

include "openloops .h"

int main() {

double sqrts = 1000., muren = 100. , mZ = 91.2, alphas = 0.1;

double m2_tree , m2_loop[3] , acc ;

ol_setparameter_int ("order_ew" , 1);

int id = ol_register_process ("1 −1 −> 23 2 −2" , 11);

/∗ register more processes as needed ∗/

ol_start () ;

/∗ calculate matrix elements , e .g. ∗/

i f (id > 0) {

/∗ Set parameter: strong coupling ∗/

ol_setparameter_double("alpha_s" , alphas) ;

/∗ Set parameter: renormalisation scale ∗/

ol_setparameter_double("muren" , muren) ;

/∗ generate a random phase−space point with Rambo ∗/

double pp[5∗ol_n_external (id)] ;

ol_phase_space_point(id , sqrts , pp) ;

/∗ evaluate tree matrix element and print result ∗/

ol_evaluate_tree (id , pp, &m2_tree) ;

std : : cout << "ol_evaluate_tree" << std : : endl ;

std : : cout << "Tree: " << m2_tree << std : : endl ;

/∗ evaluate loop matrix element and print result ∗/

ol_evaluate_loop(id , pp, &m2_tree , m2_loop, &acc) ;

std : : cout << "ol_evaluate_loop" << std : : endl ;

std : : cout << "Tree: " << m2_tree << std : : endl ;

std : : cout << "Loop ep^0: " << m2_loop[0] << std : : endl ;

std : : cout << "Loop ep^−1: " << m2_loop[1] << std : : endl ;

std : : cout << "Loop ep^−2: " << m2_loop[2] << std : : endl ;

std : : cout << "Accuracy: " << acc << std : : endl ;

}

ol_finish () ;

return 0;

}

Appendix B: Other interfaces

OpenLoops has been integrated in a number of Monte

Carlo frameworks. In particular OpenLoops can be used in

conjunction with Sherpa [26,47], Munich/Matrix [50],

Herwig ++ [32], Powheg- Box [27], Whizard [49] and

Geneva [48]. In Appendix B.1 we detail the BLHA interface

within OpenLoops, and in Appendix B.2 and Appendix B.3

the usage of OpenLoops within Sherpa and Powheg- Box

respectively. Finally in Appendix B.4 we briefly introduce

the OpenLoops Python command line tool.

Appendix B.1: BLHA interface

OpenLoops offers an interface in the Binoth-Les-Houches-

Accord in both versions BLHA1 [45] and BLHA2 [46].

In order to use the Fortran BLHA interface, the module

openloops_blha must be included with

Fortran

use openloops_blha

The module files are located in the directory lib_src/

openloops/mod, which should be added to the include

path of the Fortran compiler. In a C/C ++ program the

openloops.h header has to be included. In the following

we list the scope of the BLHA interface within a C ++ program.

Usage within a Fortran program proceeds analogous.

Within a C ++ program an BLHA contract file is read by

OpenLoops via

C/C ++

OLP_Start(char ∗contract_file_name , int ∗error) ;

The answer file is either written to the same file or in a file

specified in the contract file via

Extra AnswerFile ole_answer_file_name

Parameters are either set via the contract file or directly

via the procedure

C/C ++

OLP_SetParameter(char ∗name,

double ∗real_value ,

double ∗imag_value ,

int ∗error) ;

Furthermore a list of the actual parameter settings can be

written to a file filename via

C/C ++

OLP_PrintParameter(char ∗filename) ;

At runtime the tree and loop amplitudes for a phase-space

point of N external particles with momenta pp, as specified

in the BLHA1/BLHA2 standards, are obtained via

C/C ++

OLP_EvalSubProcess(int ∗id , const double ∗pp,

double ∗muren, double ∗alphaS ,

double ∗result) ;

Here,id is the ID of the corresponding subprocess (speci-

fied in the answer file), muren the renormalisation scale and

alphaS the strong coupling constant. The result is written

into the array result, where result[3] gives the tree

amplitude and result[2] the finite part, result[1] the

single pole and result[0] the double pole of the one-loop

amplitude W01.

123

Eur. Phys. J. C (2019) 79 :866 Page 51 of 56 866

A corresponding routine of the BLHA2 standard is also

implemented:

C/C ++

OLP_EvalSubProcess2(int ∗id , double ∗pp,

double ∗mu, double ∗result , double ∗acc) ;

Here, additionally an accuracy measure of the correspond-

ing amplitude is returned as acc. When not available acc=-

1 is returned. For further details see the specification of the

BLHA1 [45] and BLHA2 [46] standards. An example illus-

trating the usage of the BLHA interface with OpenLoops is

shipped as ./examples/OL_blha.cpp.

Appendix B.2: Sherpa

OpenLoops can be used as a plug-in of Sherpa 2.1.0 or

later. Within upcoming releases of Sherpa also the EW sub-

traction [44] will become publicly available. For the installa-

tion of Sherpa and the usage of Sherpa+OpenLoops please

also refer to the Sherpa documentation available at https://

sherpa.hepforge.org.

In order to use OpenLoops together with Sherpa the

Sherpa+OpenLoops interface has to be compiled together

with Sherpa passing the --enable-openloops option

together with the OpenLoops installation path to the Sherpa

configure script. The OpenLoops installation path can be

modified at runtime by setting (in the Sherpa run card or

command line):

OL_PREFIX=PATH_TO_OPENLOOPS

In order to run Sherpa in combination with OpenLoops

it is sufficient to add to the Sherpa run card the statement

ME_SIGNAL_GENERATOR Comix Amegic OpenLoops;

which includes OpenLoops in the list of available matrix

element generators, and to set in the processes section of the

Sherpa run card the flag

Loop_Generator OpenLoops;

Sherpa will now automatically use the one-loop matrix

elements from OpenLoops when for example a parton-

shower matched simulation is requested via (in the processes

section of the run card)

NLO_QCD_Mode MC@NLO;

For details on these modes and many other options we

refer to the Sherpa documentation.

An example run card illustrating the use of

Sherpa+OpenLoops can be found within the installation

of Sherpa in the file

PATH_TO_SHERPA/AddOns/OpenLoops/example/Run.dat

Additional examples of Sherpa+OpenLoops run cards

can be found in the Sherpa manual.

In general Sherpa automatically handles all the neces-

sary parameter initialisation of OpenLoops. However, user-

defined parameters can be passed from the Sherpa run card

(or command line) to OpenLoops via

OL_PARAMETERS FIRST_PARAM_NAME FIRST_PARAM_VAL

SECOND_PARAM_NAME SECOND_PARAM_VAL ...;

Appendix B.3: POWHEG-BOX

Internally the Powheg- Box+OpenLoops framework auto-

matically compiles, loads and manages all required Open-

Loops amplitude libraries. The interface provides the sub-

routines openloops_born, openloops_real, and

openloops_virtualwith interfaces identical to the cor-

responding Powheg- Box routines setborn, setreal,

and setvirtual including colour- and spin-correlated

tree-level amplitudes in the format required by the Powheg-

Box. Additionally, the interface provides the routines open

loops_init, openloops_borncolour and open

loops_realcolour. The former synchronises all param-

eters between OpenLoops and the Powheg- Box and should

be called at the end of the init processes subroutine of

the Powheg- Box. The latter two provide colour informa-

tion required for parton-shower matching, i.e. they return a

colour-flow of the squared Born and real matrix elements in

leading-colour approximation, on a probabilistic basis. Fur-

ther details are given in Appendix A.3 of [78].

Appendix B.4: Python

OpenLoops provides a Python module openloops.py

in the directory pyol/tools that wraps a subset of the

functionality of the native interface. Its main application is

to provide a simple command line tool to evaluate matrix

elements. The documentation of the command line tool can

be obtained via

./openloops run --help

For example the following command evaluates the tree

and one-loop amplitudes for n = 10 random phase-space

points with a center-of-mass energy
√

ŝ = 500 GeV for the

process uū → Zgg using MZ = 91 GeV and prints the

result to the screen:

./openloops run "u u˜ > Z g g" order_ew

=1 mass\(23\)=91 -e 500 -n 10

The random phase-space points are generated with Rambo

[77].

123

https://sherpa.hepforge.org
https://sherpa.hepforge.org

866 Page 52 of 56 Eur. Phys. J. C (2019) 79 :866

Appendix C: List of input parameters

In Tables 9, 10, 11 we list all input parameters and switches

available in OpenLoops. Within the general purpose Monte

Carlo frameworks (e.g. Sherpa, Powheg- Box and Her-

wig ++) these parameters are synchronised automatically.

In Table 9 input parameters relevant for the process reg-

istration are listed, in Table 10 model input parameters are

listed and in Table 9 input parameters relevant for the stability

system are summarised.

Table 9 Available input parameters and switches in OpenLoops relevant for the process registration. Possible input types include int: integer or

str: string. For details see Sect. 4.2

Parameter Type/options Description

Process registration

order_ew int, defaul t = −1 Requested fixed (Born & one-loop) power of the

Electromagnetic coupling at the squared-amplitude level

order_qcd int, default = −1 Requested fixed (Born & one-loop) power of the

Strong coupling at the squared-amplitude level

loop_order_ew int, default = −1 Requested one-loop power of the electromagnetic coupling

Constant at the squared-amplitude level (any Born)

loop_order_qcd int, default = −1 Requested one-loop power of the strong coupling

Constant at the squared-amplitude level (any Born)

int, default = 6 Number of active quark flavours

ckmorder 0 (default) Diagonal CKM matrix

1 Non-diagonal CKM matrix

model str, default = ”sm” Model selection. Available models: “sm”, “heft”

install_path str, default =”” Set installation path of process libraries if different from

OpenLoops default installation

approx str, default = ”” Approximation

allowed_libs str, default = ”” Whitespace separated list of allowed libraries

check_poles int, default = 0 1: print pole cancellation checks upon amplitude registration

Table 10 Available model input parameters and switches in OpenLoops. Possible input types include dp: double, dp+: positive double, int: integer,

and b: integer 0 or 1. For details see Sects. 3.2–3.3

Parameter Type/options Description

Model input parameters

muren dp+ Renormalisation scale μR

mureg dp+ Dimensional regularisation scale μD

alphas dp+ Strong coupling constant αs

nf_alphasrun int, default = 0 Minimum number of quark flavours that contribute to the running of αs

ew_scheme int, default = 1 0: α(0)-scheme for electromagnetic couplings,

1: Gμ-scheme for electromagnetic coupling,

2: α(M2
Z)-scheme for electromagnetic coupling

alpha_qed_0 dp+ α(0): electromagnetic coupling constant in the Thomson limit

alpha_qed_mz dp+ α(M2
Z): electromagnetic coupling constant at MZ

gmu dp+ Gμ: Fermi constant as input for electromagnetic coupling constant in Gμ-scheme

mass(PID) dp+ Mass of particle with given PID

width(PID) dp+ Width of particle with given PID

lambdam(PID) dp+ MS renormalisation scale for mass of particle PID

yuk(PID) dp+ Yukawa mass of particle with given PID (only NLO QCD)

123

Eur. Phys. J. C (2019) 79 :866 Page 53 of 56 866

Table 10 continued

Parameter Type/options Description

yukw(PID) dp+ Imaginary part of Yukawa mass of particle with given PID (only NLO QCD)

lambday(PID) dp+ MS renormalisation scale for Yukawa mass of particle PID

freeyuk_on int, default = 0 Switch to allow for Yukawa masses (yuk/yukw/lambday) independent of masses

VCKMXY dp CKM matrix elements (real part),

dp XY={du, su, bu, dc, sc, bc, dt, st, bt}

VCKMIXY dp CKM matrix elements (imaginary part),

dp XY={du, su, bu, dc, sc, bc, dt, st, bt}

kappa_hhh dp Coupling multiplier for trilinear Higgs coupling λ
(3)
H

kappa_hhhh dp Coupling multiplier for quartic Higgs coupling λ
(4)
H

complex_mass_scheme int, default = 1 0: on-shell scheme, 1: mixed on-shell–complex-mass-scheme,

2: pure complex-mass-scheme

onshell_photons_lsz b, default = 1 Switch for rescaling/shift of external on-shell photons to α(0)-scheme

offshell_photons_lsz b, default = 1 Switch for rescaling/shift of external off-shell photons including regularisation prescription

all_photons_dimreg b, default = 0 Switch to treat all photons in dimensional (1) instead of numerical (0) regularisation

Table 11 Available input parameters and switches in OpenLoops relevant for the stability system. Possible inputs include dp+: positive double,

int: integer, str: string. For details see Sect. 4.6

Parameter Options Description

Stability system: general

psp_tolerance dp+, default = 10−9 Tolerance for warnings triggered by phase-space consistency

checks (momentum conservation and on-shell conditions)

Stability system: born–loop interferences

hp_mode 1 (default) Hybrid precision mode for hard regions

2 Hybrid precision mode for IR regions (restricted to NLO QCD)

0 Hybrid precision mode turned off

hp_loopacc dp+, default = 8. Target precision in number of correct digits

Stability system: HEFT and loop–loop

interferences

stability_triggerratio dp+, default = 0.2 The fraction of points with the largest K -factor

to be re-evaluated with the secondary reduction

library

stability_unstable dp+, default = 0.01 Relative deviation of two Born-loop interference

results for the same point above which the

qp evaluation is triggered

stability_kill dp+, default = 1 Accuracy below which an unstable point is discarded

after qp evaluation for Born-loop interferences

stability_kill2 dp+, default = 10 Accuracy below which an unstable point is

discarded in loop-loop interferences

stability_log 0 (default) No stability logs are written

1 Stability logs written on finish() call

2 Stability logs written adaptively

3 Stability logs written for every phase-space point

stability_logdir str Set the (relative) path for the stability log files

123

866 Page 54 of 56 Eur. Phys. J. C (2019) 79 :866

References

1. R. Britto, F. Cachazo, B. Feng, Generalized unitarity and one-

loop amplitudes in N = 4 super-Yang–Mills. Nucl. Phys. B

725, 275–305 (2005). https://doi.org/10.1016/j.nuclphysb.2005.

07.014. arXiv:hep-th/0412103

2. F. del Aguila, R. Pittau, Recursive numerical calculus of one-loop

tensor integrals. JHEP 07, 017 (2004). https://doi.org/10.1088/

1126-6708/2004/07/017. arXiv:hep-ph/0404120

3. Z. Bern, L.J. Dixon, D.A. Kosower, Bootstrapping multi-parton

loop amplitudes in QCD. Phys. Rev. D 73, 065013 (2006). https://

doi.org/10.1103/PhysRevD.73.065013. arXiv:hep-ph/0507005

4. A. Denner, S. Dittmaier, Reduction schemes for one-loop tensor

integrals. Nucl. Phys. B 734, 62–115 (2006). https://doi.org/10.

1016/j.nuclphysb.2005.11.007. arXiv:hep-ph/0509141

5. G. Ossola, C.G. Papadopoulos, R. Pittau, Reducing full one-loop

amplitudes to scalar integrals at the integrand level. Nucl. Phys.

B 763, 147–169 (2007). https://doi.org/10.1016/j.nuclphysb.2006.

11.012. arXiv:hep-ph/0609007

6. D. Forde, Direct extraction of one-loop integral coefficients. Phys.

Rev. D 75, 125019 (2007). https://doi.org/10.1103/PhysRevD.75.

125019. arXiv:0704.1835

7. W.T. Giele, Z. Kunszt, K. Melnikov, Full one-loop amplitudes from

tree amplitudes. JHEP 04, 049 (2008). https://doi.org/10.1088/

1126-6708/2008/04/049. arXiv:0801.2237

8. A. van Hameren, Multi-gluon one-loop amplitudes using ten-

sor integrals. JHEP 07, 088 (2009). https://doi.org/10.1088/

1126-6708/2009/07/088. arXiv:0905.1005

9. F. Cascioli, P. Maierhöfer, S. Pozzorini, Scattering amplitudes with

open loops. Phys. Rev. Lett. 108, 111601 (2012). https://doi.org/

10.1103/PhysRevLett. arXiv:1111.5206

10. G. Ossola, C.G. Papadopoulos, R. Pittau, CutTools: a pro-

gram implementing the OPP reduction method to compute one-

loop amplitudes. JHEP 03, 042 (2008). https://doi.org/10.1088/

1126-6708/2008/03/042. arXiv:0711.3596

11. C.F. Berger, Z. Bern, L.J. Dixon, F.Febres Cordero, D. Forde,

H. Ita, D.A. Kosower, D. Maitre, An automated implementa-

tion of on-shell methods for one-loop amplitudes. Phys. Rev. D

78, 036003 (2008). https://doi.org/10.1103/PhysRevD.78.036003.

arXiv:0803.4180

12. A. van Hameren, C.G. Papadopoulos, R. Pittau, Automated one-

loop calculations: a proof of concept. JHEP 09, 106 (2009). https://

doi.org/10.1088/1126-6708/2009/09/106. arXiv:0903.4665

13. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni, R.

Pittau, Automation of one-loop QCD corrections. JHEP 05, 044

(2011). https://doi.org/10.1007/JHEP05(2011). arXiv:1103.0621

14. P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, Scatter-

ing amplitudes from unitarity-based reduction algorithm at the

integrand-level. JHEP 08, 080 (2010). https://doi.org/10.1007/

JHEP08(2010). arXiv:1006.0710

15. S. Badger, B. Biedermann, P. Uwer, V. Yundin, Numerical evalua-

tion of virtual corrections to multi-jet production in massless QCD.

Comput. Phys. Commun. 184, 1981–1998 (2013). https://doi.org/

10.1016/j.cpc.2013.03.018. arXiv:1209.0100

16. F. Cascioli, J. M. Lindert, P. Maierhöfer, S. Pozzorini, The Open-

Loops one-loop generator, Publicly. http://openloops.hepforge.org

17. G. Cullen et al., GOSAM-2.0: a tool for automated one-

loop calculations within the Standard Model and beyond. Eur.

Phys. J. C 74(8), 3001 (2014). https://doi.org/10.1140/epjc/

s10052-014-3001-5. arXiv:1404.7096

18. T. Peraro, Ninja: automated integrand reduction via laurent

expansion for one-loop amplitudes. Comput. Phys. Commun.

185, 2771–2797 (2014). https://doi.org/10.1016/j.cpc.2014.06.

017. arXiv:1403.1229

19. A. Denner, S. Dittmaier, L. Hofer, Collier: a fortran-based complex

one-loop library in extended regularizations. Comput. Phys. Com-

mun. 212, 220–238 (2017). https://doi.org/10.1016/j.cpc.2016.10.

013. arXiv:1604.06792

20. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf, S. Uccirati,

RECOLA: recursive computation of one-loop amplitudes. Comput.

Phys. Commun. 214, 140–173 (2017). https://doi.org/10.1016/j.

cpc.2017.01.004. arXiv:1605.01090

21. Z. Bern, L.J. Dixon, F.Febres Cordero, S. Höche, H. Ita, D.A.

Kosower, D. Mal̂tre, K.J. Ozeren, Next-to-leading order W + 5-

jet production at the LHC. Phys. Rev. D 88(1), 014025 (2013).

https://doi.org/10.1103/PhysRevD.88.014025. arXiv:1304.1253

22. S. Badger, B. Biedermann, P. Uwer, V. Yundin, Next-to-leading

order QCD corrections to five jet production at the LHC. Phys.

Rev. D 89(3), 034019 (2014). https://doi.org/10.1103/PhysRevD.

89.034019. arXiv:1309.6585

23. G. Bevilacqua, H.B. Hartanto, M. Kraus, M. Worek, Top quark

pair production in association with a jet with next-to-leading-order

QCD off-shell effects at the large hadron collider. Phys. Rev. Lett.

116(5), 052003 (2016). https://doi.org/10.1103/PhysRevLett.116.

052003. arXiv:1509.09242

24. S. Höche, P. Maierhöfer, N. Moretti, S. Pozzorini, F. Siegert, Next-

to-leading order QCD predictions for top-quark pair production

with up to three jets. Eur. Phys. J. C 77(3), 145 (2017). https://doi.

org/10.1140/epjc/s10052-017-4715-y. arXiv:1607.06934

25. A. Denner, J.-N. Lang, M. Pellen, S. Uccirati, Higgs production

in association with off-shell top-antitop pairs at NLO EW and

QCD at the LHC. JHEP 02, 053 (2017). https://doi.org/10.1007/

JHEP02(2017). arXiv:1612.07138

26. T. Gleisberg, S. Hoeche, F. Krauss, M. Schönherr, S. Schumann,

F. Siegert, J. Winter, Event generation with SHERPA 1.1. JHEP

02, 007 (2009). https://doi.org/10.1088/1126-6708/2009/02/007.

arXiv:0811.4622

27. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for imple-

menting NLO calculations in shower Monte Carlo programs: the

POWHEG BOX. JHEP 06, 043 (2010). https://doi.org/10.1007/

JHEP06(2010). arXiv:1002.2581

28. G. Bevilacqua, M. Czakon, M.V. Garzelli, A. van Hameren, A.

Kardos, C.G. Papadopoulos, R. Pittau, M. Worek, HELAC-NLO.

Comput. Phys. Commun. 184, 986–997 (2013). https://doi.org/10.

1016/j.cpc.2012.10.033. arXiv:1110.1499

29. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mat-

telaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated

computation of tree-level and next-to-leading order differential

cross sections, and their matching to parton shower simulations.

JHEP 07, 079 (2014). https://doi.org/10.1007/JHEP07(2014).

arXiv:1405.0301

30. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai,

P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands,

An Introduction to PYTHIA 8.2. Comput. Phys. Commun.

191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024.

arXiv:1410.3012

31. C. Weiss, B.Chokoufe Nejad, W. Kilian, J. Reuter, Automated

NLO QCD Corrections with WHIZARD. PoS EPS-HEP 2015,

466 (2015). arXiv:1510.02666

32. J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note. Eur.

Phys. J. C 76(4), 196 (2016). https://doi.org/10.1140/epjc/

s10052-016-4018-8. arXiv:1512.01178

33. F. Buccioni, S. Pozzorini, M. Zoller, On-the-fly reduction of open

loops. Eur. Phys. J. C 78(1), 70 (2018). https://doi.org/10.1140/

epjc/s10052-018-5562-1. arXiv:1710.11452

34. A. Denner, S. Dittmaier, Reduction of one-loop tensor 5-point inte-

grals. Nucl. Phys. B 658, 175–202 (2003). https://doi.org/10.1016/

S0550-3213(03)00184-6

35. S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini, M. Schön-

herr, NLO electroweak automation and precise predictions for

123

https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1016/j.nuclphysb.2005.07.014
http://arxiv.org/abs/hep-th/0412103
https://doi.org/10.1088/1126-6708/2004/07/017
https://doi.org/10.1088/1126-6708/2004/07/017
http://arxiv.org/abs/hep-ph/0404120
https://doi.org/10.1103/PhysRevD.73.065013
https://doi.org/10.1103/PhysRevD.73.065013
http://arxiv.org/abs/hep-ph/0507005
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://doi.org/10.1016/j.nuclphysb.2005.11.007
http://arxiv.org/abs/hep-ph/0509141
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://doi.org/10.1016/j.nuclphysb.2006.11.012
http://arxiv.org/abs/hep-ph/0609007
https://doi.org/10.1103/PhysRevD.75.125019
https://doi.org/10.1103/PhysRevD.75.125019
http://arxiv.org/abs/0704.1835
https://doi.org/10.1088/1126-6708/2008/04/049
https://doi.org/10.1088/1126-6708/2008/04/049
http://arxiv.org/abs/0801.2237
https://doi.org/10.1088/1126-6708/2009/07/088
https://doi.org/10.1088/1126-6708/2009/07/088
http://arxiv.org/abs/0905.1005
https://doi.org/10.1103/PhysRevLett
https://doi.org/10.1103/PhysRevLett
http://arxiv.org/abs/1111.5206
https://doi.org/10.1088/1126-6708/2008/03/042
https://doi.org/10.1088/1126-6708/2008/03/042
http://arxiv.org/abs/0711.3596
https://doi.org/10.1103/PhysRevD.78.036003
http://arxiv.org/abs/0803.4180
https://doi.org/10.1088/1126-6708/2009/09/106
https://doi.org/10.1088/1126-6708/2009/09/106
http://arxiv.org/abs/0903.4665
https://doi.org/10.1007/JHEP05(2011)
http://arxiv.org/abs/1103.0621
https://doi.org/10.1007/JHEP08(2010)
https://doi.org/10.1007/JHEP08(2010)
http://arxiv.org/abs/1006.0710
https://doi.org/10.1016/j.cpc.2013.03.018
https://doi.org/10.1016/j.cpc.2013.03.018
http://arxiv.org/abs/1209.0100
http://openloops.hepforge.org
https://doi.org/10.1140/epjc/s10052-014-3001-5
https://doi.org/10.1140/epjc/s10052-014-3001-5
http://arxiv.org/abs/1404.7096
https://doi.org/10.1016/j.cpc.2014.06.017
https://doi.org/10.1016/j.cpc.2014.06.017
http://arxiv.org/abs/1403.1229
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/j.cpc.2016.10.013
http://arxiv.org/abs/1604.06792
https://doi.org/10.1016/j.cpc.2017.01.004
https://doi.org/10.1016/j.cpc.2017.01.004
http://arxiv.org/abs/1605.01090
https://doi.org/10.1103/PhysRevD.88.014025
http://arxiv.org/abs/1304.1253
https://doi.org/10.1103/PhysRevD.89.034019
https://doi.org/10.1103/PhysRevD.89.034019
http://arxiv.org/abs/1309.6585
https://doi.org/10.1103/PhysRevLett.116.052003
https://doi.org/10.1103/PhysRevLett.116.052003
http://arxiv.org/abs/1509.09242
https://doi.org/10.1140/epjc/s10052-017-4715-y
https://doi.org/10.1140/epjc/s10052-017-4715-y
http://arxiv.org/abs/1607.06934
https://doi.org/10.1007/JHEP02(2017)
https://doi.org/10.1007/JHEP02(2017)
http://arxiv.org/abs/1612.07138
https://doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
https://doi.org/10.1007/JHEP06(2010)
https://doi.org/10.1007/JHEP06(2010)
http://arxiv.org/abs/1002.2581
https://doi.org/10.1016/j.cpc.2012.10.033
https://doi.org/10.1016/j.cpc.2012.10.033
http://arxiv.org/abs/1110.1499
https://doi.org/10.1007/JHEP07(2014)
http://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012
http://arxiv.org/abs/1510.02666
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1140/epjc/s10052-016-4018-8
http://arxiv.org/abs/1512.01178
https://doi.org/10.1140/epjc/s10052-018-5562-1
https://doi.org/10.1140/epjc/s10052-018-5562-1
http://arxiv.org/abs/1710.11452
https://doi.org/10.1016/S0550-3213(03)00184-6
https://doi.org/10.1016/S0550-3213(03)00184-6

Eur. Phys. J. C (2019) 79 :866 Page 55 of 56 866

W+multijet production at the LHC. JHEP 04, 012 (2015). https://

doi.org/10.1007/JHEP04(2015). arXiv:1412.5157

36. S. Kallweit, J.M. Lindert, S. Pozzorini, M. Schönherr, NLO

QCD+EW predictions for 2ℓ2ν diboson signatures at the LHC.

JHEP 11, 120 (2017). https://doi.org/10.1007/JHEP11(2017).

arXiv:1705.00598

37. A. Denner, Techniques for calculation of electroweak radiative cor-

rections at the one loop level and results for W physics at LEP-200.

Fortsch. Phys. 41, 307–420 (1993). https://doi.org/10.1002/prop.

2190410402. arXiv:0709.1075

38. A. Denner, S. Dittmaier, M. Roth, L. H. Wieders, Electroweak cor-

rections to charged-current e+ e- —> 4 fermion processes: techni-

cal details and further results, Nucl. Phys. B724, 247–294 (2005).

[Erratum: Nucl. Phys.B854,504(2012)]. arXiv:hep-ph/0505042,

https://doi.org/10.1016/j.nuclphysb.2011.09.001, https://doi.org/

10.1016/j.nuclphysb.2005.06.033

39. S. Catani, M. H. Seymour, A general algorithm for calculating jet

cross-sections in NLO QCD, Nucl. Phys. B485, 291–419 (1997)

[Erratum: Nucl. Phys.B510,503(1998)]. arXiv:hep-ph/9605323,

https://doi.org/10.1016/S0550-3213(96)00589-5, https://doi.org/

10.1016/S0550-3213(98)81022-5

40. S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, The dipole

formalism for next-to-leading order QCD calculations with mas-

sive partons. Nucl. Phys. B 627, 189–265 (2002). https://doi.org/

10.1016/S0550-3213(02)00098-6. arXiv:hep-ph/0201036

41. S. Dittmaier, A general approach to photon radiation off fermions.

Nucl. Phys. B 565, 69–122 (2000). https://doi.org/10.1016/

S0550-3213(99)00563-5. arXiv:hep-ph/9904440

42. S. Dittmaier, A. Kabelschacht, T. Kasprzik, Polarized QED split-

tings of massive fermions and dipole subtraction for non-collinear-

safe observables. Nucl. Phys. B 800, 146–189 (2008). https://doi.

org/10.1016/j.nuclphysb.2008.03.010. arXiv:0802.1405

43. T. Gehrmann, N. Greiner, Photon radiation with maddipole.

JHEP 12, 050 (2010). https://doi.org/10.1007/JHEP12(2010).

arXiv:1011.0321

44. M. Schönherr, An automated subtraction of NLO EW infrared

divergences. Eur. Phys. J. C 78(2), 119 (2018). https://doi.org/

10.1140/epjc/s10052-018-5600-z. arXiv:1712.07975

45. T. Binoth, et al., A Proposal for a standard interface between Monte

Carlo tools and one-loop programs, Comput. Phys. Commun. 181,

1612–1622 (2010). [,1(2010)]. arXiv:1001.1307, https://doi.org/

10.1016/j.cpc.2010.05.016

46. S. Alioli et al., Update of the Binoth Les Houches Accord for a

standard interface between Monte Carlo tools and one-loop pro-

grams. Comput. Phys. Commun. 185, 560–571 (2014). https://

doi.org/10.1016/j.cpc.2013.10.020. arXiv:1308.3462

47. E. Bothmann, et al., Event generation with SHERPA 2.2.

arXiv:1905.09127

48. S. Alioli, C.W. Bauer, C.J. Berggren, A. Hornig, F.J. Tackmann,

C.K. Vermilion, J.R. Walsh, S. Zuberi, Combining higher-order

resummation with multiple NLO calculations and parton show-

ers in GENEVA. JHEP 09, 120 (2013). https://doi.org/10.1007/

JHEP09(2013). arXiv:1211.7049

49. W. Kilian, T. Ohl, J. Reuter, WHIZARD: simulating multi-particle

processes at LHC and ILC. Eur. Phys. J. C 71, 1742 (2011). https://

doi.org/10.1140/epjc/s10052-011-1742-y. arXiv:0708.4233

50. M. Grazzini, S. Kallweit, M. Wiesemann, Fully differential

NNLO computations with MATRIX. Eur. Phys. J. C 78(7),

537 (2018). https://doi.org/10.1140/epjc/s10052-018-5771-7.

arXiv:1711.06631

51. S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini, M. Schön-

herr, NLO QCD+EW predictions for V + jets including off-shell

vector-boson decays and multijet merging. JHEP 04, 021 (2016).

https://doi.org/10.1007/JHEP04(2016). arXiv:1511.08692

52. C. Gütschow, J.M. Lindert, M. Schönherr, Multi-jet merged

top-pair production including electroweak corrections. Eur.

Phys. J. C 78(4), 317 (2018). https://doi.org/10.1140/epjc/

s10052-018-5804-2. arXiv:1803.00950

53. M. Grazzini, S. Kallweit, J. M. Lindert, S. Pozzorini, M. Wiese-

mann, Giant QCD K-factors and large EW corrections: NNLO

QCD+EW for vector-boson pair production (in preparation)

54. T. Hahn, Generating Feynman diagrams and amplitudes with Fey-

nArts 3. Comput. Phys. Commun. 140, 418–431 (2001). https://

doi.org/10.1016/S0010-4655(01)00290-9. arXiv:hep-ph/0012260

55. J.A.M. Vermaseren, Axodraw. Comput. Phys. Commun. 83, 45–58

(1994)

56. G. Ossola, C.G. Papadopoulos, R. Pittau, On the rational terms of

the one-loop amplitudes. JHEP 05, 004 (2008). https://doi.org/10.

1088/1126-6708/2008/05/004. arXiv:0802.1876

57. P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos, R. Pittau, Feyn-

man rules for the rational part of the QCD 1-loop amplitudes. JHEP

04, 072 (2009). https://doi.org/10.1088/1126-6708/2009/04/072.

arXiv:0903.0356

58. M. V. Garzelli, I. Malamos, R. Pittau, Feynman rules for the

rational part of the Electroweak 1-loop amplitudes. JHEP 01,

040 (2010), [Erratum: JHEP10,097(2010)]. arXiv:0910.3130,

https://doi.org/10.1007/JHEP10(2010)097, https://doi.org/10.

1007/JHEP01(2010)040

59. M.V. Garzelli, I. Malamos, R. Pittau, Feynman rules for the rational

part of the electroweak 1-loop amplitudes in the Rx i gauge and in

the unitary gauge. JHEP 01, 029 (2011). https://doi.org/10.1007/

JHEP01(2011). arXiv:1009.4302

60. M.V. Garzelli, I. Malamos, R2SM: a package for the analytic com-

putation of the R2 rational terms in the standard model of the elec-

troweak interactions. Eur. Phys. J. C 71, 1605 (2011). https://doi.

org/10.1140/epjc/s10052-011-1605-6. arXiv:1010.1248

61. H.-S. Shao, Y.-J. Zhang, K.-T. Chao, Feynman rules for the rational

part of the standard model one-loop amplitudes in the ’t Hooft-

Veltman γ5 scheme. JHEP 09, 048 (2011). https://doi.org/10.1007/

JHEP09(2011). arXiv:1106.5030

62. R. Pittau, Primary Feynman rules to calculate the epsilon-

dimensional integrand of any 1-loop amplitude. JHEP 02, 029

(2012). https://doi.org/10.1007/JHEP02(2012). arXiv:1111.4965

63. B. Page, R. Pittau, R2 vertices for the effective ggH theory.

JHEP 09, 078 (2013). https://doi.org/10.1007/JHEP09(2013).

arXiv:1307.6142

64. A. Denner, S. Dittmaier, Scalar one-loop 4-point integrals. Nucl.

Phys. B 844, 199–242 (2011). https://doi.org/10.1016/j.nuclphysb.

2010.11.002

65. A. van Hameren, OneLOop: For the evaluation of one-loop scalar

functions. Comput. Phys. Commun. 182, 2427–2438 (2011).

https://doi.org/10.1016/j.cpc.2011.06.011. arXiv:1007.4716

66. F. Buccioni, J.-N. Lang, S. Pozzorini, H. Zhang, M. Zoller, Numer-

ical stability of the on-the-fly method in OpenLoops 2 (in prepa-

ration)

67. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao, M. Zaro,

The automation of next-to-leading order electroweak calculations.

JHEP 07, 185 (2018). https://doi.org/10.1007/JHEP07(2018).

arXiv:1804.10017

68. A. Sirlin, Radiative corrections in the SU(2)-L x U(1) theory: a

simple renormalization framework. Phys. Rev. D 22, 971–981

(1980). https://doi.org/10.1103/PhysRevD.22.971

69. M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3),

030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

70. J. R. Andersen, et al., Les Houches 2013: physics at TeV colliders:

standard model working Group Report arXiv:1405.1067

71. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson

production at the LHC. Nucl. Phys. B 453, 17–82 (1995). https://

doi.org/10.1016/0550-3213(95)00379-7. arXiv:hep-ph/9504378

72. S. Dawson, S. Dittmaier, M. Spira, Neutral Higgs boson pair

production at hadron colliders: QCD corrections. Phys. Rev. D

123

https://doi.org/10.1007/JHEP04(2015)
https://doi.org/10.1007/JHEP04(2015)
http://arxiv.org/abs/1412.5157
https://doi.org/10.1007/JHEP11(2017)
http://arxiv.org/abs/1705.00598
https://doi.org/10.1002/prop.2190410402
https://doi.org/10.1002/prop.2190410402
http://arxiv.org/abs/0709.1075
http://arxiv.org/abs/hep-ph/0505042
https://doi.org/10.1016/j.nuclphysb.2011.09.001
https://doi.org/10.1016/j.nuclphysb.2005.06.033
https://doi.org/10.1016/j.nuclphysb.2005.06.033
http://arxiv.org/abs/hep-ph/9605323
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/S0550-3213(98)81022-5
https://doi.org/10.1016/S0550-3213(98)81022-5
https://doi.org/10.1016/S0550-3213(02)00098-6
https://doi.org/10.1016/S0550-3213(02)00098-6
http://arxiv.org/abs/hep-ph/0201036
https://doi.org/10.1016/S0550-3213(99)00563-5
https://doi.org/10.1016/S0550-3213(99)00563-5
http://arxiv.org/abs/hep-ph/9904440
https://doi.org/10.1016/j.nuclphysb.2008.03.010
https://doi.org/10.1016/j.nuclphysb.2008.03.010
http://arxiv.org/abs/0802.1405
https://doi.org/10.1007/JHEP12(2010)
http://arxiv.org/abs/1011.0321
https://doi.org/10.1140/epjc/s10052-018-5600-z
https://doi.org/10.1140/epjc/s10052-018-5600-z
http://arxiv.org/abs/1712.07975
http://arxiv.org/abs/1001.1307
https://doi.org/10.1016/j.cpc.2010.05.016
https://doi.org/10.1016/j.cpc.2010.05.016
https://doi.org/10.1016/j.cpc.2013.10.020
https://doi.org/10.1016/j.cpc.2013.10.020
http://arxiv.org/abs/1308.3462
http://arxiv.org/abs/1905.09127
https://doi.org/10.1007/JHEP09(2013)
https://doi.org/10.1007/JHEP09(2013)
http://arxiv.org/abs/1211.7049
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/0708.4233
https://doi.org/10.1140/epjc/s10052-018-5771-7
http://arxiv.org/abs/1711.06631
https://doi.org/10.1007/JHEP04(2016)
http://arxiv.org/abs/1511.08692
https://doi.org/10.1140/epjc/s10052-018-5804-2
https://doi.org/10.1140/epjc/s10052-018-5804-2
http://arxiv.org/abs/1803.00950
https://doi.org/10.1016/S0010-4655(01)00290-9
https://doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
https://doi.org/10.1088/1126-6708/2008/05/004
https://doi.org/10.1088/1126-6708/2008/05/004
http://arxiv.org/abs/0802.1876
https://doi.org/10.1088/1126-6708/2009/04/072
http://arxiv.org/abs/0903.0356
http://arxiv.org/abs/0910.3130
https://doi.org/10.1007/JHEP10(2010)097
https://doi.org/10.1007/JHEP01(2010)040
https://doi.org/10.1007/JHEP01(2010)040
https://doi.org/10.1007/JHEP01(2011)
https://doi.org/10.1007/JHEP01(2011)
http://arxiv.org/abs/1009.4302
https://doi.org/10.1140/epjc/s10052-011-1605-6
https://doi.org/10.1140/epjc/s10052-011-1605-6
http://arxiv.org/abs/1010.1248
https://doi.org/10.1007/JHEP09(2011)
https://doi.org/10.1007/JHEP09(2011)
http://arxiv.org/abs/1106.5030
https://doi.org/10.1007/JHEP02(2012)
http://arxiv.org/abs/1111.4965
https://doi.org/10.1007/JHEP09(2013)
http://arxiv.org/abs/1307.6142
https://doi.org/10.1016/j.nuclphysb.2010.11.002
https://doi.org/10.1016/j.nuclphysb.2010.11.002
https://doi.org/10.1016/j.cpc.2011.06.011
http://arxiv.org/abs/1007.4716
https://doi.org/10.1007/JHEP07(2018)
http://arxiv.org/abs/1804.10017
https://doi.org/10.1103/PhysRevD.22.971
https://doi.org/10.1103/PhysRevD.98.030001
http://arxiv.org/abs/1405.1067
https://doi.org/10.1016/0550-3213(95)00379-7
https://doi.org/10.1016/0550-3213(95)00379-7
http://arxiv.org/abs/hep-ph/9504378

866 Page 56 of 56 Eur. Phys. J. C (2019) 79 :866

58, 115012 (1998). https://doi.org/10.1103/PhysRevD.58.115012.

arXiv:hep-ph/9805244

73. T. Gleisberg, F. Krauss, Automating dipole subtraction for QCD

NLO calculations. Eur. Phys. J. C 53, 501–523 (2008). https://doi.

org/10.1140/epjc/s10052-007-0495-0. arXiv:0709.2881

74. S. Frixione, Z. Kunszt, A. Signer, Three jet cross-sections to next-

to-leading order. Nucl. Phys. B 467, 399–442 (1996). https://doi.

org/10.1016/0550-3213(96)00110-1. arXiv:hep-ph/9512328

75. A. Kanaki, C.G. Papadopoulos, HELAC: a package to

compute electroweak helicity amplitudes. Comput. Phys.

Commun. 132, 306–315 (2000). https://doi.org/10.1016/

S0010-4655(00)00151-X. arXiv:hep-ph/0002082

76. F. Maltoni, K. Paul, T. Stelzer, S. Willenbrock, Color flow

decomposition of QCD amplitudes. Phys. Rev. D 67,

014026 (2003). https://doi.org/10.1103/PhysRevD.67.014026.

arXiv:hep-ph/0209271

77. R. Kleiss, W.J. Stirling, S.D. Ellis, A new Monte Carlo

treatment of multiparticle phase space at high-energies. Com-

put. Phys. Commun. 40, 359 (1986). https://doi.org/10.1016/

0010-4655(86)90119-0

78. T. Ježo, J.M. Lindert, P. Nason, C. Oleari, S. Pozzorini,

An NLO+PS generator for t t̄ and W t production and

decay including non-resonant and interference effects. Eur.

Phys. J. C 76(12), 691 (2016). https://doi.org/10.1140/epjc/

s10052-016-4538-2. arXiv:1607.04538

123

https://doi.org/10.1103/PhysRevD.58.115012
http://arxiv.org/abs/hep-ph/9805244
https://doi.org/10.1140/epjc/s10052-007-0495-0
https://doi.org/10.1140/epjc/s10052-007-0495-0
http://arxiv.org/abs/0709.2881
https://doi.org/10.1016/0550-3213(96)00110-1
https://doi.org/10.1016/0550-3213(96)00110-1
http://arxiv.org/abs/hep-ph/9512328
https://doi.org/10.1016/S0010-4655(00)00151-X
https://doi.org/10.1016/S0010-4655(00)00151-X
http://arxiv.org/abs/hep-ph/0002082
https://doi.org/10.1103/PhysRevD.67.014026
http://arxiv.org/abs/hep-ph/0209271
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1140/epjc/s10052-016-4538-2
https://doi.org/10.1140/epjc/s10052-016-4538-2
http://arxiv.org/abs/1607.04538

	OpenLoops 2
	Abstract
	1 Introduction
	2 The OpenLoops algorithm
	2.1 Scattering amplitudes and probability densities
	2.2 Tree amplitudes
	2.3 One-loop amplitudes
	2.4 Reduction to master integrals
	2.4.1 A posteriori reduction
	2.4.2 On-the-fly reduction

	2.5 Tree–loop interference
	2.5.1 Parent-child algorithm
	2.5.2 On-the-fly algorithm

	2.6 Squared loop amplitudes
	2.7 Numerical stability
	2.7.1 Stability rescue system
	2.7.2 On-the-fly stability system

	3 Automation of tree- and one-loop amplitudes in the full SM
	3.1 Power counting
	3.2 Input schemes and parameters
	3.3 Renormalisation
	3.3.1 QCD renormalisation
	3.3.2 EW renormalisation

	3.4 Infrared subtraction

	4 Overview of the program
	4.1 Download and installation
	4.1.1 Installation of the main program
	4.1.2 Installation of process libraries

	4.2 Selection of processes and perturbative orders
	4.3 Evaluation of scattering amplitudes
	4.4 Colour- and spin-correlators
	4.5 Tree-level amplitudes in colour space
	4.6 Reduction methods and stability system

	5 Technical benchmarks
	5.1 CPU performance
	5.2 Numerical stability

	6 Summary and conclusions
	Acknowledgements
	Appendix A: Native Fortran and C/C++ interfaces
	Appendix A.1: Generalities
	Appendix A.2: Parameter setting
	Appendix A.3: Process registration
	Appendix A.4: Scattering amplitudes
	Appendix A.5: I-operator
	Appendix A.6: Colour and charge correlators
	Appendix A.7: Spin correlators
	Appendix A.8: Colour basis and tree amplitudes in colour space
	Appendix A.9: Basic examples

	Appendix B: Other interfaces
	Appendix B.1: BLHA interface
	Appendix B.2: Sherpa
	Appendix B.3: POWHEG-BOX
	Appendix B.4: Python

	Appendix C: List of input parameters
	References

