
Structural and Multidisciplinary Optimization (2019) 59:1075–1104

https://doi.org/10.1007/s00158-019-02211-z

RESEARCH PAPER

OpenMDAO: an open-source framework
for multidisciplinary design, analysis, and optimization

Justin S. Gray1 · John T. Hwang2 · Joaquim R. R. A. Martins3 · Kenneth T. Moore4 · Bret A. Naylor4

Received: 24 October 2018 / Revised: 15 January 2019 / Accepted: 27 January 2019 / Published online: 1 March 2019

© The Author(s) 2019

Abstract

Multidisciplinary design optimization (MDO) is concerned with solving design problems involving coupled numerical

models of complex engineering systems. While various MDO software frameworks exist, none of them take full advantage

of state-of-the-art algorithms to solve coupled models efficiently. Furthermore, there is a need to facilitate the computation

of the derivatives of these coupled models for use with gradient-based optimization algorithms to enable design with

respect to large numbers of variables. In this paper, we present the theory and architecture of OpenMDAO, an open-source

MDO framework that uses Newton-type algorithms to solve coupled systems and exploits problem structure through new

hierarchical strategies to achieve high computational efficiency. OpenMDAO also provides a framework for computing

coupled derivatives efficiently and in a way that exploits problem sparsity. We demonstrate the framework’s efficiency by

benchmarking scalable test problems. We also summarize a number of OpenMDAO applications previously reported in the

literature, which include trajectory optimization, wing design, and structural topology optimization, demonstrating that the

framework is effective in both coupling existing models and developing new multidisciplinary models from the ground up.

Given the potential of the OpenMDAO framework, we expect the number of users and developers to continue growing,

enabling even more diverse applications in engineering analysis and design.

Keywords Multidisciplinary design optimization · Coupled systems · Complex systems · Sensitivity analysis ·

Derivative computation · Adjoint methods · Python

1 Introduction

Numerical simulations of engineering systems have been

widely developed and used in industry and academia.

Simulations are often used within an engineering design

cycle to inform design choices. Design optimization—the

use of numerical optimization techniques with engineering

simulation—has emerged as a way of incorporating

simulation into the design cycle.

Multidisciplinary design optimization (MDO) arose from

the need to simulate and design complex engineering

systems involving multiple disciplines. MDO serves this

Responsible Editor: Jose Herskovits

� Justin S. Gray

justin.s.gray@nasa.gov

Extended author information available on the last page of the article.

need in two ways. First, it performs the coupled simulation

of the engineering system, taking into account all the

interdisciplinary interactions. Second, it performs the

simultaneous optimization of all design variables, taking

into account the coupling and the interdisciplinary design

trade-offs. MDO is sometimes referred to as MDAO

(multidisciplinary analysis and optimization) to emphasize

that the coupled analysis is useful on its own. MDO was

first conceived to solve aircraft design problems, where

disciplines such as aerodynamics, structures, and controls

are tightly coupled and require design trade-offs (Haftka

1977). Since then, numerical simulations have advanced

in all disciplines, and the power of computer hardware

has increased dramatically. These developments make it

possible to advance the state-of-the-art in MDO, but other

more specific developments are needed.

There are two important factors when evaluating MDO

strategies: implementation effort and the computational

efficiency. The implementation effort is arguably the most

important because if the work required to implement a

multidisciplinary model is too large, the model will simply

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-019-02211-z&domain=pdf
http://orcid.org/0000-0003-2143-1478
mailto: justin.s.gray@nasa.gov

1076 J. S. Gray et al.

never be built. One of the main MDO implementation

challenges is that each analysis code consists of a

specialized solver that is typically not designed to be

coupled to other codes or to be used for numerical

optimization. Additionally, these solvers are often coded

in different programming languages and use different

interfaces. These difficulties motivated much of the early

development of MDO frameworks, which provided simpler

and more efficient ways to link discipline analyses together.

While these MDO frameworks introduce important inno-

vations in software design, modular model construction,

and user interface design, they treat each discipline analy-

sis as an explicit function evaluation; that is, they assume

that each discipline is an explicit mapping between inputs

and outputs. This limits the efficiency of the nonlinear solu-

tion algorithms that could be used to find a solution to

the coupled multidisciplinary system. Furthermore, these

MDO frameworks also present the combined multidisci-

plinary model as an explicit function to the optimizer,

which limits the efficiency when computing derivatives for

gradient-based optimization of higher-dimensional design

spaces. Therefore, while these first framework develop-

ments addressed the most pressing issue by significantly

lowering the implementation effort for multidisciplinary

analysis, they did not provide a means for applying the most

efficient MDO techniques.

The computational efficiency of an MDO implementa-

tion is governed by the efficiency of the coupled (multidis-

ciplinary) analysis and the efficiency of the optimization.

The coupled analysis method that is easiest to implement

is a fixed-point iteration (also known as nonlinear block

Gauss–Seidel iteration), but for strongly coupled models,

Newton-type methods are potentially more efficient (Haftka

et al. 1992; Heil et al. 2008; Keyes et al. 2013; Chauhan

et al. 2018). When it comes to numerical optimization,

gradient-based optimization algorithms scale much better

with the number of design variables than gradient-free

methods. The computational efficiency of both Newton-

type analysis methods and gradient-based optimization is,

in large part, dependent on the cost and accuracy with which

the necessary derivatives are computed.

One can always compute derivatives using finite differ-

ences, but analytic derivative methods are much more effi-

cient and accurate. Despite the extensive research into ana-

lytic derivatives and their demonstrated benefits, they have

not been widely supported in MDO frameworks because

their implementation is complex and requires deeper access

to the analysis code than can be achieved through an

approach that treats all analyses as explicit functions. There-

fore, users of MDO frameworks that follow this approach

are typically restricted to gradient-free optimization methods, or

gradient-based optimization with derivatives computed via

finite differences.

The difficulty of implementing MDO techniques with

analytic derivatives creates a significant barrier to their

adoption by the wider engineering community. The

OpenMDAO framework aims to lower this barrier and enable

the widespread use of analytic derivatives in MDO applications.

Like other frameworks, OpenMDAO provides a modular

environment to more easily integrate discipline analyses into

a larger multidisciplinary model. However, OpenMDAO V2

improves upon other MDO frameworks by integrating

discipline analyses as implicit functions, which enables it

to compute derivatives for the resulting coupled model via

the unified derivatives equation (Martins and Hwang 2013).

The computed derivatives are coupled in that they take

into account the full interaction between the disciplines

in the system. Furthermore, OpenMDAO is designed to

work efficiently in both serial and parallel computing

environments. Thus, OpenMDAO provides a means for

users to leverage the most efficient techniques, regardless

of problem size and computing architecture, without having

to incur the significant implementation difficulty typically

associated with gradient-based MDO.

This paper presents the design and algorithmic features

of OpenMDAO V2 and is structured to cater to different

types of readers. For readers wishing to just get a quick

overview of what OpenMDAO is and what it does, reading

this introduction, the overview of applications (Section 7,

especially Fig. 13), and the conclusions (Section 8) will

suffice. Potential OpenMDAO users should also read

Section 3, which explains the basic usage and features

through a simple example. The remainder of the paper

provides a background on MDO frameworks and the

history of OpenMDAO development (Section 2), the theory

behind OpenMDAO (Section 4), and the details of the

major new contributions in OpenMDAO V2 in terms of

multidisciplinary solvers (Section 5) and coupled derivative

computation (Section 6).

2 Background

The need for frameworks that facilitate the implementation

of MDO problems and their solution was identified soon

after MDO emerged as a field. Various requirements have

been identified over the years. Early on, Salas and Townsend

(1998) detailed a large number of requirements that they

categorized under software design, problem formulation,

problem execution, and data access. Later, Padula and

Gillian (2006) more succinctly cited modularity, data

handling, parallel processing, and user interface as the most

important requirements. While frameworks that fulfill these

requirements to various degrees have emerged, the issue

of computational efficiency and scalability has not been

sufficiently highlighted or addressed.

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1077

The development of commercial MDO frameworks dates

back to the late 1990s with iSIGHT (Golovidov et al. 1998),

which is now owned by Dassault Systèmes and renamed

Isight/SEE. Various other commercial frameworks have

been developed, such as Phoenix Integration’s ModelCen-

ter/CenterLink, Esteco’s modeFRONTIER, TechnoSoft’s

AML suite, Noesis Solutions’ Optimus, SORCER (Kolonay

and Sobolewski 2011), and Vanderplaats’ VisualDOC (Bal-

abanov et al. 2002). These frameworks have focused on

making it easy for users to couple multiple disciplines and

to use the optimization algorithms through graphical user

interfaces (GUIs). They have also been providing wrappers

to popular commercial engineering tools. While this focus

has made it convenient for users to implement and solve

MDO problems, the numerical methods used to converge

the multidisciplinary analysis (MDA) and the optimization

problem are usually not state-of-the-art. For example, these

frameworks often use fixed-point iteration to converge the

MDA. When derivatives are needed for a gradient-based

optimizer, finite-difference approximations are used rather

than more accurate analytic derivatives.

When solving MDO problems, we have to consider how

to organize the discipline analysis models, the problem

formulation, and the optimization algorithm in order to

obtain the optimum design with the lowest computational

cost possible. The combination of the problem formulation

and organizational strategy is called the MDO architecture.

MDO architectures can be either monolithic (where a

single optimization problem is solved) or distributed (where

the problem is partitioned into multiple optimization

subproblems). Martins and Lambe (2013) describe this

classification in more detail and present all known MDO

architectures.

To facilitate the exploration of the various MDO archi-

tectures, Tedford and Martins (2006) developed pyMDO.

This was the first object-oriented framework that focused

on automating the implementation of different MDO

architectures (Martins et al. 2009). In pyMDO, the user

defined the general MDO problem once, and the frame-

work would reformulate the problem in any architecture

with no further user effort. Tedford and Martins (2010)

used this framework to compare the performance of vari-

ous MDO architectures, concluding that monolithic archi-

tectures vastly outperform the distributed ones. Marriage

and Martins (2008) integrated a semi-analytic method for

computing derivatives based on a combination of finite-

differencing and analytic methods, showing that the semi-

analytic method outperformed the traditional black-box

finite-difference approach.

The origins of OpenMDAO began in 2008, when Moore

et al. (2008) identified the need for a new MDO framework

to address aircraft design challenges at NASA. Two years

later, Gray et al. (2010) implemented the first version of

OpenMDAO (V0.1). An early aircraft design application

using OpenMDAO to implement gradient-free efficient

global optimization was presented by Heath and Gray

(2012). Gray et al. (2013) later presented benchmarking

results for various MDO architectures using gradient-based

optimization with analytic derivatives in OpenMDAO.

As the pyMDO and OpenMDAO frameworks pro-

gressed, it became apparent that the computation of deriva-

tives for MDO presented a previously unforeseen implemen-

tation barrier.

The methods available for computing derivatives are

finite-differencing, complex-step, algorithmic differentia-

tion, and analytic methods. The finite-difference method is

popular because it is easy to implement and can always be

used, even without any access to source code, but it is sub-

ject to large inaccuracies. The complex-step method (Squire

and Trapp 1998; Martins et al. 2003) is not subject to these

inaccuracies, but it requires access to the source code to

implement. Both finite-difference and complex-step meth-

ods become prohibitively costly as the number of design

variables increases because they require rerunning the sim-

ulation for each additional design variable.

Algorithmic differentiation (AD) uses a software tool

to parse the code of an analysis tool to produce new

code that computes derivatives of that analysis (Griewank

2000; Naumann 2011). Although AD can be efficient, even

for large numbers of design variables, it does not handle

iterative simulations efficiently in general.

Analytic methods are the most desirable because

they are both accurate and efficient even for iterative

simulations (Martins and Hwang 2013). However, they

require significant implementation effort.

Analytic methods can be implemented in two different

forms: the direct method and the adjoint method. The choice

between these two methods depends on how the number

of functions that we want to differentiate compares to the

number of design variables. In practice, the adjoint method

tends to be the more commonly used method.

Early development of the adjoint derivative computation

was undertaken by the optimal control community in the

1960s and 1970s (Bryson and Ho 1975), and the struc-

tural optimization community adapted those developments

throughout the 1970s and 1980s (Arora and Haug 1979).

This was followed by the development of adjoint methods

for computational fluid dynamics (Jameson 1988), and aero-

dynamic shape optimization became a prime example of

an application where the adjoint method has been particu-

larly successful (Peter and Dwight 2010; Carrier et al. 2014;

Chen et al. 2016).

When computing the derivatives of coupled sys-

tems, the same methods that are used for single

disciplines apply. Sobieszczanski-Sobieski (1990) pre-

sented the first derivation of the direct method for

1078 J. S. Gray et al.

coupled systems, and Martins et al. (2005) derived the cou-

pled adjoint method. One of the first applications of the

coupled adjoint method was in high-fidelity aerostructural

optimization (Martins et al. 2004). The results from the

work on coupled derivatives highlighted the promise of dra-

matic computational cost reductions, but also showed that

existing frameworks were not able to handle these methods.

Their implementation required linear solvers and support

for distributed memory parallelism that no framework had

at the time.

In an effort to unify the theory for the various methods for

computing derivatives, Martins and Hwang (2013) derived

the unified derivatives equation. This new generalization

showed that all the methods for computing derivatives can

be derived from a common equation. It also showed that

when there are both implicitly and explicitly defined disci-

plines, the adjoint method and chain rule can be combined

in a hybrid approach. Hwang et al. (2014) then realized

that this theoretical insight provided a sound and convenient

mathematical basis for a new software design paradigm

and set of numerical solver algorithms for MDO frame-

works. Using a prototype implementation built around the

unified derivatives equation (Martins and Hwang 2016),

they solved a large-scale satellite optimization problem with

25,000 design variables and over 2 million state variables

(Hwang et al. 2014). Later, Gray et al. (2014) developed

OpenMDAO V1, a complete rewrite of the OpenMDAO

framework based on the prototype work of Hwang et al.

with the added ability to exploit sparsity in a coupled multi-

disciplinary model to further reduce computational cost.

Collectively, the work cited above represented a signif-

icant advancement of the state-of-the-art for MDO frame-

works. The unified derivatives equation, combined with

the new algorithms and framework design, enabled the

solution of significantly larger and more complex MDO

problems than had been previously attempted. In addition,

OpenMDAO had now integrated three different methods

for computing total derivatives into a single framework:

finite-difference, analytic, and semi-analytic. However, this

work was all done using serial discipline analyses and run

on a serial computing environment. The serial computing

environment presented a significant limitation, because it

precluded the integration of high-fidelity analyses into the

coupled models.

To overcome the serial computing limitation, Hwang and

Martins (2018) parallelized the data structures and solver

algorithms from their prototype framework, which led

to the modular analysis and unified derivatives (MAUD)

architecture. Hwang and Martins (2015) used the new

MAUD prototype to solve a coupled aircraft allocation-

mission-design optimization problem. OpenMDAO V1 was

then modified to incorporate the ideas from the MAUD

architecture. Gray et al. (2018a) presented an aeropropulsive

design optimization problem constructed in Open-

MDAO V1 that combined a high-fidelity aerodynamics

model with a low-fidelity propulsion model, executed in par-

allel. One of the central features of the MAUD architecture,

enabling the usage of parallel computing and high-fidelity

analyses, was the use of hierarchical, matrix-free linear solver

design. While advantageous for large parallel models, this

feature was inefficient for smaller serial models. The need

to support both serial and parallel computing architectures

led to the development of OpenMDAO V2, a second rewrite

of the framework, which is presented in this paper.

Recently, the value of analytic derivatives has also motivated

the development of another MDO framework, GEMS, which

is designed to implement bi-level distributed MDO architec-

tures that might be more useful in some industrial settings

(Gallard et al. 2017). This stands in contrast to OpenMDAO,

which is focused mostly on the monolithic MDO architec-

tures for best possible computational efficiency.

3 Overview of OpenMDAO V2

In this section, we introduce OpenMDAO V2, present

its overall approach, and discuss its most important

feature—efficient derivative computation. To help with the

explanations, we introduce a simple model and optimization

problem that we use throughout Sections 3 and 4.

3.1 Basic description

OpenMDAO is an open-source software framework for mul-

tidisciplinary design, analysis, and optimization (MDAO),

also known as MDO. It is primarily designed for gradient-

based optimization; its most useful and unique features

relate to the efficient and accurate computation of the

model derivatives. We chose the Python programming lan-

guage to develop OpenMDAO because it makes scripting

convenient, it provides many options for interfacing to com-

piled languages (e.g., SWIG and Cython for C and C++,

and F2PY for Fortran), and it is an open-source language.

OpenMDAO facilitates the solution of MDO problems using

distributed-memory parallelism and high-performance com-

puting (HPC) resources by leveraging MPI and the PETSc

library (Balay et al. 2018).

3.2 A simple example

This example consists of a model with one scalar input, x,

two “disciplines” that define state variables (y1, y2), and one

scalar output, f . The equations for the disciplines are

(Discipline 1) y1 = y2
2 (1)

(Discipline 2) exp(−y1y2) − xy2 = 0, (2)

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1079

where Discipline 1 computes y1 explicitly and Discipline 2

computes y2 implicitly. The equation for the model output

f is

f = y2
1 − y2 + 3. (3)

Figure 1 visualizes the variable dependencies in this model

using a design structure matrix. We show components that

compute variables on the diagonal and dependencies on the

off-diagonals. From Fig. 1, we can easily see the feedback

loop between the two disciplines, as well as the overall

sequential structure with the model input, the coupled

disciplines, and the model output. We will refer back to this

model and optimization problem periodically throughout

Sections 3 and 4.

To minimize f with respect to x using gradient-

based optimization, we need the total derivative df/dx.

In Section 3.4, we use this example to demonstrate how

OpenMDAO computes the derivative.

3.3 Approach and nomenclature

OpenMDAO uses an object-oriented programming

paradigm and an object composition design pattern. Spe-

cific functionalities via narrowly focused classes are

combined to achieve the desired functionality during

execution. In this section, we introduce the four most fun-

damental types of classes in OpenMDAO: Component,

Group, Driver, and Problem. Note that for the Compo-

nent class, the end user actually works with one of its two

derived classes, ExplicitComponent or ImplicitComponent,

which we describe later in this section.

MDO has traditionally considered multiple “disciplines”

as the units that need to be coupled through coupling

variables. In OpenMDAO, we consider more general

components, which can represent a whole discipline

analysis or can perform a smaller subset of calculations

representing only a portion of a whole discipline model.

Components share a common interface that allows them

to be integrated to form a larger model. This modular

approach allows OpenMDAO to automate tasks that

are performed repeatedly when building multidisciplinary

models. Instances of the Component class provide the

lowest-level functionality representing basic calculations.

Each component instance maps input values to output values

via some calculation. A component could be a simple

explicit function, such as y = sin(x); it could involve a long

sequence of code; or it could call an external code that is

potentially written in another language. In multidisciplinary

models, each component can encapsulate just a part of one

discipline, a whole discipline, or even multiple disciplines.

In our simple example, visualized in Fig. 1, there are

four components: Discipline 1 and the model output are

components that compute explicit functions, Discipline 2

is a component that computes an implicit function, and

the model input is a special type of component with only

outputs and no inputs.

Another fundamental class in OpenMDAO is Group,

which contains components, other groups, or a mix of

both. The containment relationships between groups and

components form a hierarchy tree, where a top-level group

contains other groups, which contain other groups, and so

on, until we reach the bottom of the tree, which is composed

only of components. Group instances serve three purposes:

(1) they help to package sets of components together,

e.g., the components for a given discipline; (2) they help

create better-organized namespaces (since all components

and variables are named based on their ancestors in the tree);

and (3) they facilitate the use of hierarchical nonlinear and

linear solvers. In our simple example, the obvious choice is

to create a group containing Discipline 1 and Discipline 2,

because these two form a coupled pair that needs to be

converged for any given value of the model input. The

hierarchy of groups and components collectively form the

model.

Children of the Driver base class define algorithms

that iteratively call the model. For example, a subclass

Fig. 1 Extended design structure matrix (XDSM) (Lambe and Mar-

tins 2012) for the simple model. Components that compute variables

are on the diagonal, and dependencies are shown on the off-diagonals,

where an entry above the diagonal indicates a forward dependence and

vice versa. Blue indicates an independent variable, green indicates an

explicit function, and red indicates an implicit function

1080 J. S. Gray et al.

of Driver might implement an optimization algorithm or

execute design of experiments (DOE). In the case of an

optimization algorithm, the design variables are a subset of

the model inputs, and the objective and constraint functions

are a subset of the model outputs.

Instances of the Problem class perform as a top-level

container, holding all other objects. A problem instance

contains both the groups and components that constitute the

model hierarchy and also contains a single driver instance.

In addition to serving as a container, a Problem also

provides the user interface for model setup and execution.

Figure 2 illustrates the relationships between instances of

the Component, Group, and Driver classes and introduces

the nomenclature for derivatives. The Driver repeatedly

calls model (i.e., the top-level instance of Group, which in

turn contains groups that contain other groups that contain

the component instances). The derivatives of the model

outputs with respect to the model inputs are considered to

be total derivatives, while the derivatives of the component

outputs with respect to the component inputs are considered

to be partial derivatives. This is not the only way to

define the difference between partial and total derivatives,

but this is a definition that suits the present context and

is consistent with previous work on the computation of

coupled derivatives (Martins et al. 2005). In the next

section, we provide a brief explanation of how OpenMDAO

computes derivatives.

3.4 Derivative computation

As previously mentioned, one of the major advantages

of OpenMDAO is that it has the ability to compute

total derivatives for complex multidisciplinary models very

efficiently via a number of different techniques. Total

derivatives are derivatives of model outputs with respect to

model inputs. In the example problem from Section 3.2, the

total derivative needed to minimize the objective function

is just the scalar df/dx. Here, we provide a high-level

overview of the process for total derivative computation

because the way it is done in OpenMDAO is unique among

computational modeling frameworks. The mathematical

and algorithmic details of total derivative computation are

described in Section 4.

Total derivatives are difficult and expensive to compute

directly, especially in the context of a framework that

must deal with user-defined models of various types. As

mentioned in the introduction, there are various options

for computing derivatives: finite-differencing, complex-

step, algorithmic differentiation, and analytic methods.

The finite-difference method can always be used because

it just requires rerunning the model with a perturbation

applied to the input. However, the accuracy of the result

depends heavily on the magnitude of the perturbation,

and the errors can be large. The complex-step method

yields accurate results, but it requires modifications to

the model source code to work with complex numbers.

The computational cost of these methods scales with the

number of input variables, since the model needs to be rerun

for a perturbation in each input. OpenMDAO provides an

option to use either of these methods, but their use is only

recommended when the ease of implementation justifies the

increase in computational cost and loss of accuracy.

As described in the introduction, analytic methods have

the advantage that they are both efficient and accurate.

OpenMDAO facilitates the derivative computation for

coupled systems using analytic methods, including the

direct and adjoint variants. To use analytic derivative

methods in OpenMDAO, the model must be built such

that any internal implicit calculations are exposed to

the framework. This means that the model must be

cast as an implicit function of design variables and

implicit variables with associated residuals that must be

converged. For explicit calculations, OpenMDAO performs

the implicit transformation automatically, as discussed in

Section 4.3. When integrating external analysis tools with

built-in solvers, this means exposing the residuals and

the corresponding state variable vector. Then, the total

derivatives are computed in a two-step process: (1) compute

Fig. 2 Relationship between Driver, Group, and Component classes.

An instance of Problem contains a Driver instance, and the Group

instance named “model.” The model instance holds a hierarchy of

Group and Component instances. The derivatives of a model are total

derivatives, and the derivatives of a component are partial derivatives

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1081

the partial derivatives of each component and (2) solve

a linear system of equations that computes the total

derivatives. The linear system in step 2 can be solved in a

forward (direct) or a reverse (adjoint) form. As mentioned

in the introduction, the cost of the forward method scales

linearly with the number of inputs, while the reverse method

scales linearly with the number of outputs. Therefore, the

choice of which form to use depends on the ratio of the

number of outputs to the number of inputs. The details of the

linear systems are derived and discussed in Section 4. For

the purposes of this section, it is sufficient to understand that

the total derivatives are computed by solving these linear

systems, and that the terms in these linear systems are partial

derivatives that need to be provided.

In the context of OpenMDAO, partial derivatives

are defined as the derivatives of the outputs of each

component with respect to the component inputs. For

an ExplicitComponent, which is used when outputs can

be computed as an analytic function of the inputs, the

partial derivatives are the derivatives of these outputs with

respect to the component inputs. For an ImplicitComponent,

which is used when a component provides OpenMDAO

with residual equations that need to be solved, the partial

derivatives are derivatives of these residuals with respect to

the component input and output variables. Partial derivatives

can be computed much more simply and with lower

computational cost than total derivatives. OpenMDAO

supports three techniques for computing partial derivatives:

full-analytic, semi-analytic, and mixed-analytic.

When using the full-analytic technique, OpenMDAO

expects each and every component in the model to

provide partial derivatives. These partial derivatives can be

computed either by hand differentiation or via algorithmic

differentiation. For the example model in Section 3.2, the

partial derivatives can easily be hand-derived. Discipline 1

is an ExplicitComponent defined as y1 = y2
2 (one input and

one output), so we only need the single partial derivative:

∂y1

∂y2
= 2y2. (4)

Discipline 2 is an ImplicitComponent, so it is defined as a

residual that needs to be driven to zero, R = exp(−y1y2) −

xy2 = 0. In this case, we need the partial derivatives of this

residual function with respect to all the variables:

∂R

∂y1
= −y2 exp(−y1y2), (5)

∂R

∂y2
= −y1 exp(−y1y2) − x, (6)

∂R

∂x
= −y2. (7)

Finally, we also need the partial derivatives of the objective

function component:

∂f

∂y1
= 2y1,

∂f

∂y2
= −1. (8)

When using the semi-analytic technique, OpenMDAO

automatically computes the partial derivatives for each

component using either the finite-difference or complex-

step methods. This is different from applying these methods

to the whole model because it is done component by

component, and therefore it does not require the re-

convergence of the coupled system. For instances of an

ImplicitComponent, only partial derivatives of the residual

functions are needed (e.g., (5), (6), and (7) in the example).

Since residual evaluations do not involve any nonlinear

solver iterations, approximating their partial derivatives is

much less expensive and more accurate. The technique is

called “semi-analytic” because while the partial derivatives

are computed numerically, the total derivatives are still

computed analytically by solving a linear system.

In the mixed-technique, some components provide

analytic partial derivatives, while others approximate the

partials with finite-difference or complex-step methods.

The mixed-technique offers great flexibility and is a good

option for building models that combine less costly analyses

without analytic derivatives and computationally expensive

analyses that do provide them. If the complex-step method

is used for some of the partial derivatives, the net result

is effectively identical to the fully-analytic method. If

finite differences are used to compute some of the partial

derivatives, then some accuracy is lost, but overall the net

result is still better than either the semi-analytic approach or

finite differencing the coupled model to compute the total

derivatives.

3.5 Implementation of the simple example

We now illustrate the use of the OpenMDAO basic classes

by showing the code implementation of the simple model

we presented in Section 3.2.

The run script is listed in Fig. 3. In Block 1, we import

several classes from the OpenMDAO API, as well as the

components for Discipline 1 and Discipline 2, which we

show later in this section. In Block 2, we instantiate the

four components shown in Fig. 1, as well as a group that

combines the two disciplines, called states group. In

this group, we connect the output of Discipline 1 to the

input of Discipline 2 and vice versa. Since there is coupling

within this group, we also assign a Newton solver to be used

when running the model and a direct (LU) solver to be used

for the linear solutions required for the Newton iterations

and the total derivative computation. For the model output,

we define a component “inline,” using a convenience class

1082 J. S. Gray et al.

Fig. 3 Run script for the simple

example. This script depends on

a disciplines file that

defines the components for

disciplines 1 and 2 (see Fig. 4)

provided by the OpenMDAO standard library. In Block 3,

we create the top-level group, which we appropriately name

as model, and we add the relevant subsystems to it and

make the necessary connections between inputs and outputs.

In Block 4, we specify the model inputs and model

outputs, which in this case correspond to the design variable

and objective function, respectively, since we are setting

up the model to solve an optimization problem. In Block

5, we create the problem, assign the model and driver,

and run setup to signal to OpenMDAO that the problem

construction is complete so it can perform the necessary

initialization. In Block 6, we illustrate how to set a model

input, run the model, and read the value of a model output,

and in Block 7, we run the optimization algorithm and print

the results.

In Fig. 4, we define the actual computations and partial

derivatives for the components for the two disciplines.

Both classes inherit from OpenMDAO base classes and

implement methods in the component API, but they are

different because Discipline 1 is explicit while Discipline 2

is implicit. For both, setup is where the component

declares its inputs and outputs, as well as information

about the partial derivatives (e.g., sparsity structure and

whether to use finite differences to compute them).

In Discipline 1, compute maps inputs to outputs,

and compute partials is responsible for providing

partial derivatives of the outputs with respect to inputs.

In Discipline 2, apply nonlinear maps inputs and

outputs to residuals, and linearize computes the partial

derivatives of the residuals with respect to inputs and

outputs. More details regarding the API can be found in the

documentation on the OpenMDAO website.1

The component that computes the objective func-

tion is built using the inline ExecComp. ExecComp

is a helper class in the OpenMDAO standard library

that provides a convenient shortcut for implementing an

ExplicitComponent for simple and inexpensive cal-

culations. This provides the user a quick mechanism for

adding basic calculations like summing values or subtract-

ing quantities. However, ExecComp uses the complex-step

method to compute the derivatives, so it should not be used

for expensive calculations or where there is a large input

array.

1http://www.openmdao.org/docs

http://www.openmdao.org/docs

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1083

Fig. 4 Definition of the

components for Discipline 1 and

Discipline 2 for the simple

example, including the

computation of the partial

derivatives

Figure 5 shows a visualization of the model generated

automatically by OpenMDAO. The hierarchy structure

of the groups and components is shown on the left,

and the dependency graph is shown on the right. This

diagram is useful for understanding how data is exchanged

between components in the model. Any connections above

the diagonal indicate feed-forward data relationships, and

connections below the diagonal show feedback relationships

that require a nonlinear solver.

4 Theory

As previously mentioned, one of the main goals in

OpenMDAO is to efficiently compute the total derivatives

of the model outputs (f) with respect to model inputs (x),

and we stated that we could do this using partial derivatives

computed with analytic methods. For models consisting

purely of explicit functions, the basic chain rule can be used

to achieve this goal. However, when implicit functions are

present in the model (i.e., any functions that require iterative

nonlinear solvers), the chain rule is not sufficient. In this

section, we start by deriving these methods and then explain

how they are implemented in OpenMDAO.

4.1 Analytic methods: direct and adjoint

Given a function F(x, y), where x is a vector n inputs, and y

is a vector of m variables that depends implicitly on x, then

df

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
, (9)

where we distinguish the quantity f from the function

F that computes it using lowercase and uppercase,

respectively. Using this notation, total derivatives account

for the implicit relation between variables, while the partial

derivatives are just explicit derivatives of a function (Hwang

and Martins 2018). The only derivative in the right-hand

side of (9) that is not partial is dy/dx, which captures the

change in the converged values for y with respect to x.

Noting the implicit dependence by R(x, y) = 0, we can

differentiate it with respect to x to obtain

dr

dx
=

∂R

∂x
+

∂R

∂y

dy

dx
= 0. (10)

Re-arranging this equation, we get the linear system

[
∂R

∂y

]

︸ ︷︷ ︸

m×m

dy

dx
︸︷︷︸

m×n

= −

[
∂R

∂x

]

︸ ︷︷ ︸

m×n

. (11)

Now dy/dx can be computed by solving this linear system,

which is constructed using only partial derivatives. This

linear system needs to be solved n times, once for each

component of x, with the column of ∂R/∂x that corresponds

to the element of x as the right-hand side. Then, dy/dx

can be used in (9) to compute the total derivatives. This

approach is known as the direct method.

There is another way to compute the total derivatives

based on these equations. If we substitute the linear

system (11) into the total derivative (9), we obtain

df

dx
=

∂F

∂x
−

1×m
︷︸︸︷

∂F

∂y

m×m
︷ ︸︸ ︷
[
∂R

∂y

]−1

︸ ︷︷ ︸

ψT

[
∂R

∂x

]

. (12)

By grouping the terms [∂R/∂y]−1 and ∂F/∂y, we get an

m-vector, ψ , which is the adjoint vector. Instead of solving

for dy/dx with (11) (the direct method), we can instead

1084 J. S. Gray et al.

Fig. 5 Visualization of the

simple model generated

automatically by OpenMDAO.

In the hierarchy tree on the left,

the darker blue blocks are

groups, the lighter blue blocks

are components, pink blocks are

component inputs, and gray

blocks are component outputs

solve a linear system with [∂F/∂y]T as the right-hand side

to compute ψ :

[
∂R

∂y

]T

︸ ︷︷ ︸

m×m

ψ
︸︷︷︸

m×1

=

[
∂F

∂y

]T

︸ ︷︷ ︸

m×1

. (13)

This linear system needs to be solved once for each function

of interest f . If f is a vector variable, then the right-hand

side for each solution is the corresponding row of ∂F/∂y.

The transpose of the adjoint vector, ψT , can then be used to

compute the total derivative,

df

dx
=

∂F

∂x
− ψT ∂R

∂x
. (14)

This is the adjoint method, and the derivation above shows

why the computational cost of this method is proportional

to the number of outputs and independent of the number

of inputs. Therefore, if the number of inputs exceeds the

number of outputs, the adjoint method is advantageous,

while if the opposite is true, then the direct method has the

advantage. The main idea of these analytic methods is to

compute total derivatives (which account for the solution

of the models) using only partial derivatives (which do not

require the solution of the models).

As mentioned in Section 2, these analytic methods

have been extended to MDO applications (Sobieszczanski-

Sobieski 1990; Martins et al. 2005; Martins and Hwang

2013). All of these methods have been used in MDO

applications, but as was discussed in Section 2, the

implementations tend to be highly application specific and

not easily integrated into an MDO framework.

To overcome the challenge of application-specific deriva-

tive computations, Hwang and Martins (2018) developed

the MAUD architecture, which provides the mathemati-

cal and algorithmic framework to combine the chain rule,

direct, and adjoint methods into a single implementation

that works even when using models that utilize distributed-

memory parallelism, such as computational fluid dynamics

(CFD) and finite element analysis (FEA) codes.

4.2 Nonlinear problem formulation

OpenMDAO V1 and V2 were designed based on the

algorithms and data structures of MAUD, but V2 includes

several additions to the theory and algorithms to enable

more efficient execution for serial models. In this section,

we summarize the key MAUD concepts and present the new

additions in OpenMDAO V2 that make the framework more

efficient for serial models. The core idea of MAUD is to

formulate any model (including multidisciplinary models)

as a single nonlinear system of equations. This means that

we concatenate all variables—model inputs and outputs,

and both explicit and implicit component variables—into a

single vector of unknowns, u. Thus, in all problems, we can

represent the model as R(u) = 0, where R is a residual

function defined in such a way that this system is equivalent

to the original model.

For the simple example from Section 3.2, our vector of

unknowns would be u = (x, y1, y2, f), and the correct

residual function is

R(u) =

⎡

⎢
⎢
⎣

rx
ry1

ry2

rf

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

x − x∗

y1 − y2
2

exp(−y1y2) − xy2

f − (y2
1 − y2 + 3)

⎤

⎥
⎥
⎦

= 0. (15)

Although the variable x is not an “unknown” (it has a value

that is set explicitly), we reformulate it into an implicit form

by treating it as an unknown and adding a residual that

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1085

forces it to the expected value of x∗. Using this approach,

any computational model can be written as a nonlinear

system of equations such that the solution of the system

yields the same outputs and intermediate values as running

the original computational model.

Users do not actually need to reformulate their problems

in this fully implicit form because OpenMDAO handles the

translation automatically via the ExplicitComponent class,

as shown in the code snippet in Fig. 4. However, the

framework does rely on the fully implicit formulation for its

internal representation.

The key benefit of representing the whole model as a

single monolithic nonlinear system is that we can use the

unified derivatives equation (Martins and Hwang 2013;

Hwang and Martins 2018), which generalizes all analytic

derivative methods. The unified derivatives equation can be

written as
[
∂R

∂u

] [
du

dr

]

= I =

[
∂R

∂u

]T [
du

dr

]T

, (16)

where u is a vector containing inputs, implicitly defined

variables, and outputs, and R represents the corresponding

residual functions. The matrix du/dr contains a block

with the total derivatives that we ultimately want (i.e.,

the derivatives of the model outputs with respect to the

inputs, df/dx). Again, we use lowercase and uppercase

to distinguish between quantities and functions, as well as

the convention for total and partial derivatives introduced

earlier. For the simple example in Section 3.2, the total

derivative matrix is

[
du

dr

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

dx
drx

dx
dry1

dx
dry2

dx
drf

dy1

drx

dy1

dry1

dy1

dry2

dy1

drf
dy2

drx

dy2

dry1

dy2

dry2

dy2

drf
df
drx

df
dry1

df
dry2

df
drf

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0
dy1

dx
dy1

dry1

dy1

dry2
0

dy2

dx
dy2

dry1

dy2

dry2
0

df
dx

df
dry1

df
dry2

1

⎤

⎥
⎥
⎥
⎥
⎦

,

(17)

where the middle term shows the expanded total derivative

matrix and the right-most term simplifies these deriva-

tives. The middle term is obtained by inserting u =

[x, y1, y2, f]T and r = [rx, ry1
, ry2

, rf]T . The simplifica-

tion in the right-most term is possible because from (15), we

know that for example,
[

dx

drx

]

= 1 ,

[
dx

dry

]

= 0 .

In this example, the left equality of the unified derivatives

(16) corresponds to the forward form, which is equivalent

to the direct method, while the right equality corresponds to

the reverse form, which is equivalent to the adjoint method.

Solving the forward form solves for one column of the total

derivative matrix at a time, while the reverse mode solves for

one row at a time. Thus, the forward mode requires a linear

solution for each input, while the the reverse mode requires

a linear solution for each output.

Although the full matrix du/dr is shown in (17), we

do not actually need to solve for the whole matrix; the

optimizer only needs the derivatives of the model outputs

with respect to model inputs. The needed derivatives

are computed by solving for the appropriate columns

(forward mode) or rows (reverse mode) one at a time using

OpenMDAO’s linear solver functionality.

4.3 API for group and component classes

To recast the entire model as a single nonlinear system, the

Component and Group classes both define the following

five API methods:

– apply nonlinear(p, u, r): Compute the residuals

(r) given the inputs (p) and outputs (u) of the

component or group.

– solve nonlinear(p, u): Compute the converged

values for the outputs given the inputs.

– linearize(p, u): Perform any one-time linearization

operations, e.g., computing partial derivatives of the

residuals or approximating them via finite differences.

– apply linear(du, dr): Compute a Jacobian-vector

product, and place the result in the storage vector. For

the forward mode, this product is

dr =

[
∂R

∂u

]

du , (18)

and for the reverse mode, it is

du =

[
∂R

∂u

]T

dr . (19)

– solve linear(du, dr): Multiply the inverse of the

Jacobian with the provided right-hand side vector (or

solve a linear system to compute the product without

explicitly computing the inverse), and place the result

in the storage vector. For the forward mode,

du =

[
∂R

∂u

]−1

dr , (20)

while for the reverse mode,

dr =

(
[
∂R

∂u

]T
)−1

du . (21)

Up to this point, we have commonly referred to the unknown

vector (u) and the residual vector (r), but the API methods

above introduce several new vectors that have not been

previously discussed. The input vector (p) contains values

for any variables that are constant relative to a given location

in the model hierarchy. For any given component, the set of

inputs is clear. For a group, the inputs are composed of the

set of any variables that do not have an associated output

1086 J. S. Gray et al.

owned by one of the children of that group. For example,

referring back to Fig. 5, the states group has the variable x

in its input vector, and the output group has the variables y1

and y2 in its input vector. At the top level of that model, the

input vector is empty, and all variables are contained within

the unknown vector. There are also the du and dr vectors,

which are used to contain the source and product for matrix-

vector-product methods. For a detailed description of the

relationship between the p and u vectors, and how the API

methods as well as the du and dr vectors enable efficient

solution of the unified derivatives equations, see the original

MAUD paper (Hwang and Martins 2018).

Both Group and Component classes must implement

these five methods, but default implementations are

provided in many cases. All five methods are implemented

in the Group class in OpenMDAO’s standard library,

which is used to construct the model hierarchy. For

subclasses of ExplicitComponent, such as Discipline1 in

Fig. 4, the user does not directly implement any of the

five basic API methods. Instead, the user implements

the compute and compute partials methods that

the ExplicitComponent base class uses to implement the

necessary lower level methods, as shown in Algorithm 1.

The negative sign in line 8 of Algorithm 1 indicates that

the partial derivatives for the implicit transformation are the

negative of the partial derivatives for the original explicit

function. As shown in (15), the implicit transformation for

the explicit output f is given by

rf = f − (y2
1 − y2 + 3) , (22)

which explains the negative sign.

Algorithm 1 ExplicitComponent API.

1: function apply nonlinear(, ,)

2: − compute

3: return r

4: function solve nonlinear()

5: compute

6: return

7: function linearize()

8: compute partials

9: return

For subclasses of ImplicitComponent, such as

Discipline2 in Fig. 4, only apply nonlinear is

strictly required, and solve nonlinear is optional.

(The base class implements a method that does not perform

any operations.) For many models, such as the example in

Fig. 3, it is sufficient to rely on one of the nonlinear solvers

in OpenMDAO’s standard library to converge the implicit

portions of a model. Alternatively, a component that wraps

a complex discipline analysis can use solve nonlinear

to call the specialized nonlinear solver built into that

analysis code.

In the following section, we discuss the practical matter

of using the API methods to accomplish the nonlinear and

linear solutions required to execute OpenMDAO models. In

both the nonlinear and linear cases, there are two strategies

employed, depending on the details of the underlying model

being worked with: monolithic and hierarchical. While

in our discussion we recommend using each strategy for

certain types of models, in actual models, the choice does

not need to be purely one or the other. Different strategies

can be employed at different levels of the model hierarchy

to match the particular needs of any specific model.

In addition, the usage of one strategy for the nonlinear

solution does not prescribe that same strategy for the

linear solution. In fact, it is often the case that a model

using the hierarchical nonlinear strategy would also use the

monolithic linear strategy. The converse is also true: Models

that use the monolithic nonlinear strategy will often use the

hierarchical linear strategy. This asymmetry of nonlinear

and linear solution strategies is one of the central features in

OpenMDAO that enables the framework to work efficiently

with a range or models that have vastly different structures

and computational needs.

5Monolithic and hierarchical solution
strategies

OpenMDAO uses a hierarchical arrangement of groups and

components to organize models, define execution order, and

control data passing. This hierarchical structure can also

be used to define nonlinear and linear solver hierarchies

for models. While in some cases it is better to match the

solver hierarchy closely to that of the model structure, in

most cases, better performance is achieved when the solver

structure is more monolithic than the associated model. The

framework provides options for both nonlinear and linear

solvers and allows the user to mix them at the various levels

of the model hierarchy to customize the solver strategy for

any given model.

The hierarchical model structure and solver structure

used in OpenMDAO were first proposed as part of

the MAUD architecture (Hwang and Martins 2018). In

addition, MAUD also included several algorithms that

implement monolithic and hierarchical solvers in the

model hierarchy that OpenMDAO also adopted: monolithic

Newton’s method, along with hierarchical versions of

nonlinear block Gauss–Seidel, nonlinear block Jacobi,

linear block Gauss–Seidel, and linear block Jacobi. In

addition to these solvers, OpenMDAO V2 implements a new

hierarchical nonlinear solver that improves performance for

very tightly coupled models (e.g., hierarchical Newton’s

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1087

method). It also includes a monolithic linear solver strategy

that enables much greater efficiency for serial models.

This section describes the new contributions in Open-

MDAO, along with a summary of the relevant strategies and

solver algorithms adopted from the MAUD architecture.

5.1 Nonlinear solution strategy

Although the user may still implement any explicit

analyses in the traditional form using ExplicitComponent,

OpenMDAO internally transforms all models into the

implicit form defined by MAUD, i.e., R(u) = 0.

For the simple example problem from Section 3.2, this

transformation is given by (15). While the transformation

is what makes it possible to leverage the unified derivatives

equation to compute total derivatives, it also yields a

much larger implicit system that now represents the

complete multidisciplinary model including all intermediate

variables. The larger system is more challenging to converge

and may not be solvable in monolithic form. OpenMDAO

provides a hierarchical nonlinear strategy that allows

individual subsystems in the model to be solved first, which

makes the overall problem more tractable. The hierarchical

nonlinear strategy represents a trade-off between solution

robustness and solution efficiency because it is typically

more robust and more expensive.

5.1.1 Monolithic nonlinear strategy

In some cases, treating the entire model as a single

monolithic block provides a simple and efficient solution

strategy. This is accomplished with a pure Newton’s method

that iteratively applies updates to the full u vector until the

residual vector is sufficiently close to zero, via

[
∂R

∂u

]

�u = −r . (23)

In practice, pure Newton’s method is usually used together

with a globalization technique, such as a line search,

to improve robustness for a range of initial guesses.

OpenMDAO’s Newton solver uses these methods in

its actual implementation. For simplicity, we omit the

globalization techniques from the following descriptions.

Since these techniques do not change the fundamentals of

Newton’s method, we can do this without loss of generality.

Algorithm 2 shows the pseudocode for a pure New-

ton’s method implemented using the OpenMDAO API. All

variables are treated as implicit and updated in line 4,

which uses solve linear to implement (23). Note that

solve nonlinear is never called anywhere in Algo-

rithm 2; only apply nonlinear is called to compute

the residual vector, r . This means that no variables—not

even outputs of an ExplicitComponent—have their values

directly set by their respective components. When the pure

Newton’s method works, as is the case for the states group

in the example model shown in Fig. 5, it is a highly efficient

algorithm for solving a nonlinear system. The challenge

with pure Newton’s method is that even with added global-

ization techniques, it still may not converge for especially

complex models with large numbers of states. Pure New-

ton’s method is particularly challenging to apply to large

multidisciplinary models built from components that wrap

disciplinary analyses with their own highly customized

nonlinear solver algorithms. This is because some special-

ized disciplinary solvers include customized globalization

schemes (e.g., pseudo time continuation) and linear solver

preconditioners that a pure Newton’s method applied at the

top level of the model cannot directly take advantage of.

Algorithm 2 Pure Newton’s method.

1: apply nonlinear

2: while do

3: linearize

4: solve linear

5:

6: apply nonlinear

5.1.2 Hierarchical nonlinear strategy

For some models, the monolithic nonlinear strategy may

be numerically unstable and fail to converge on a solution.

In those cases, the hierarchical strategy may provide more

robust solver behavior. Consider that each level of the

model hierarchy, from the top-level model group all the

way down to the individual components, contains a subset

of the unknowns vector, uchild, and the corresponding

residual equations, Rchild(uchild) = 0. For any level of the

hierarchy, a given subsystem (which can be a component

or group of components) is a self-contained nonlinear

system, where any variables from external components

or groups are inputs that are held constant for that

subsystem’s solve nonlinear. Therefore, we can apply

a nonlinear solver to any subsystem in the hierarchy

to converge that specific subset of the nonlinear model.

The hierarchical nonlinear strategy takes advantage of this

subsystem property to enable more robust top-level solvers.

OpenMDAO implements a number of nonlinear solution

algorithms that employ a hierarchical strategy. The most

basic two algorithms are the nonlinear block Gauss–Seidel

and nonlinear block Jacobi algorithms used by Hwang and

Martins (2018). Both of these algorithms use simple itera-

tive strategies that repetitively call solve nonlinear for

all the child subsystems in sequence, until the residuals are

sufficiently converged.

1088 J. S. Gray et al.

OpenMDAO V2 introduces a new hierarchical Newton’s

method solver that extends the use of this strategy to multi-

disciplinary models composed of a set of more tightly cou-

pled subsystems. Compared to the pure Newton’s method

of Algorithm 2, the hierarchical Newton algorithm adds an

additional step that recursively calls solve nonlinear

on all child subsystems of the parent system, as shown in

Algorithm 3.

Algorithm 3 Hierarchical Newton’s methods.

1: for all child in subsystems do

2: child child.solve nonlinear child child

3: apply nonlinear

4: while do

5: linearize

6: solve linear

7:

8: for all child in subsystems do

9: child child.solve nonlinear child child

10: apply nonlinear

We refer to Algorithm 3 as the hierarchical Newton’s

method, because although each child subsystem solves for

its own unknowns (uchild), the parent groups are responsible

for those same unknowns as well. Since each level of the

hierarchy sees the set of residuals from all of its children,

the size of the Newton system (the number of state variables

it is converging) increases as one moves higher up the

hierarchy, making it increasingly challenging to converge.

The recursive solution of subsystems acts as a form of

nonlinear preconditioning or globalization to help stabilize

the solver, but fundamentally, the top-level Newton solver is

dealing with the complete set of all residual equations from

the entire model.

There is another, arguably more common, formulation

for applying Newton’s method to nested models where the

solver at any level of the model hierarchy sees only the

subset of the implicit variables that it alone is responsible

for. In this formulation, the Newton system at any level

is much smaller because it does not inherit the states

and residuals from any child systems. Instead, it treats

any child calculations as if they were purely explicit. We

refer to this formulation as the “reduced-space Newton’s

method.” In Appendix 2, we prove that the application of

the hierarchical Newton’s method yields the exact same

solution path as that of a reduced-space Newton’s method.

The proof demonstrates that exact recursive solutions for

uchild (i.e., Rchild(uchild) = 0) (lines 1, 2, 8, and 9 in

Algorithm 3) reduce the search space for the parent solver

to only the subset of the u vector that is owned exclusively

by the current system and not by any of the solvers from its

children.

While perfect sub-convergence is necessary to satisfy

the conditions of the proof, in practice, it is not necessary

to fully converge the child subsystems for every top-level

hierarchical Newton iteration. Once the nonlinear system

has reached a sufficient level of convergence, the recursion

can be turned off, reverting the solver to the more efficient

monolithic strategy.

A hybrid strategy that switches between monolithic and

hierarchical strategies was investigated by Chauhan et al.

(2018) in a study where they found that the best performing

nonlinear solver algorithm changes with the strength of

the multidisciplinary coupling. Their results underscore

the need for OpenMDAO to support both hierarchical

and monolithic nonlinear solver architectures, because they

show that different problems require different treatments.

The mixture of the two often yields the best compromise

between stability and performance.

In addition to the hierarchical Newton’s method solver,

OpenMDAO also provides a gradient-free hierarchical

Broyden solver that may offer faster convergence than

the nonlinear Gauss–Seidel or nonlinear Jacobi solvers.

In Appendix 3, we also prove that the Broyden solver

exhibits the same equivalence between the hierarchical and

reduced-space formulations.

5.2 Linear solution strategy

As discussed above, some nonlinear solvers require their

own linear solvers to compute updates for each iteration.

OpenMDAO also uses a linear solver to compute total

derivatives via (16). The inclusion of linear solvers in the

framework, and the manner in which they can be combined,

is one of the unique features of OpenMDAO.

There are two API methods that are useful for

implementing linear solvers: apply linear and

solve linear. In an analogous fashion to the nonlinear

solvers, the linear solvers can employ either a monolithic or

hierarchical strategy. In this context, a monolithic strategy

is one that works with the entire partial derivatives Jacobian

(∂R/∂u) as a single block in-memory. A hierarchical linear

strategy is one that leverages a matrix-free approach.

5.2.1 Hierarchical linear strategy

The hierarchical linear solver strategy is an approach

that relies on the use of the apply linear and

solve linear methods in the OpenMDAO API. As

such, it is a matrix-free strategy. This strategy was originally

proposed by Hwang and Martins (2018), and we refer the

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1089

reader to that work for a more detailed presentation of

these concepts, including an extensive treatment of how

parallel data passing is integrated into this linear strategy.

OpenMDAO implements the hierarchical linear solver

strategy proposed by MAUD to support integration with

computationally expensive analyses, i.e., parallel distributed

memory analyses such as CFD and FEA. Models that

benefit from this strategy tend to have fewer than ten

components that are computationally expensive, with at

least one component having on the order of a hundred

thousand unknowns. The linear block Gauss–Seidel and

linear block Jacobi solvers are the two solvers in the

OpenMDAO standard library that use the hierarchical

strategy. Algorithms 4 and 5 detail the forward (direct)

formulation of the two hierarchical linear solvers. There

are also separate reverse (adjoint) formulations for these

solvers, which are explained in more detail by Hwang

and Martins (2018). For integration with PDE solvers,

the forward and reverse forms of these algorithms allow

OpenMDAO to leverage existing, highly specialized linear

solvers used by discipline analyses as part of a recursive

preconditioner for a top-level OpenMDAO Krylov subspace

solver in a coupled multidisciplinary model (Hwang and

Martins 2018).

Algorithm 4 Linear block Gauss–Seidel (forward mode).

1: while do

2: for all child in subsystems do

3: for all child in subsystems : do

4: d d child .apply linear child j

5: d child child .solve linear

Algorithm 5 Linear block Jacobi (forward mode).

1: while do

2: for all child in subsystems do

3: d child child .solve linear d

4: for all child in subsystems do

5: for all child in subsystems : do

6: d d − child .apply linear d child

5.2.2 Monolithic linear strategy

Although the hierarchical linear solver strategy is an

efficient approach for models composed of computationally

expensive analyses, it can introduce significant overhead

for models composed of hundreds or thousands of

computationally simple components. The hierarchical linear

solver strategy relies on the use of the apply linear

and solve linear methods, which only provide linear

operators that must be recursively called on the entire model

hierarchy. While recursion is generally expensive in and

of itself, the cost is exacerbated because OpenMDAO is

written in Python, an interpreted language where loops

are especially costly. For many models, it is feasible to

assemble the entire partial derivative Jacobian matrix in

memory, which then allows the use of a direct factorization

to solve the linear system more efficiently. As long as

the cost of computing the factorization is reasonable, this

approach is by far the simplest and most efficient way to

implement the solve linear method. This represents

a significant extension from the previously developed

hierarchical formulation (Hwang and Martins 2018), and

as we will show in Section 5.3, this approach is crucial

for good computational performance on models with many

components.

The matrix assembly can be done using either a dense

matrix or a sparse matrix. In the sparse case, OpenMDAO

relies on the components to declare the nonzero partial

derivatives, as shown in Fig. 4. Broadly speaking, at the

model level, the partial derivative Jacobian is almost always

very sparse, even for simple models. Figure 5, which

includes a visualization of [∂R/∂u]T , shows that even a

small model has a very sparse partial derivative Jacobian. In

the vast majority of cases, the factorization is more efficient

when using a sparse matrix assembly.

The monolithic linear solver strategy is primarily

designed to be used with a direct linear solver. A direct

factorization is often the fastest, and certainly the simplest

type of linear solver to apply. However, this strategy can

also be used with a Krylov subspace solver, assuming

we either do not need to use a preconditioner or want

to use a preconditioner that is also compatible with the

monolithic strategy (e.g., incomplete LU factorization).

Krylov subspace solvers are unique because they can be

used with both the hierarchical and monolithic linear solver

strategies, depending on what type of preconditioner is

applied.

Monolithic and hierarchical linear solver strategies can

be used in conjunction with each other as part of a larger

model. At any level of the model hierarchy, a monolithic

strategy can be used, which causes all components

below that level to store their partial derivatives in the

assembled Jacobian matrix. Above that level, however, a

hierarchical linear solver strategy can still be used. This

mixed linear solver strategy is crucial for achieving good

computational efficiency for larger models. Aeropropulsive

design optimization is a good example where this is

necessary. Gray et al. (2018a) coupled a RANS CFD

analysis to a 1-D propulsion model using OpenMDAO with

a hierarchical linear solver strategy to combine the matrix-

free Krylov subspace from the CFD with the monolithic

direct solver used for the propulsion analysis.

1090 J. S. Gray et al.

5.3 Performance study for mixed linear solver
strategy

The specific combination of hierarchical and monolithic

linear solvers that will give the best performance is very

model-specific, which is why OpenMDAO’s flexibility to

allow different combinations is valuable.

This sensitivity of computational performance to solver

strategy can be easily demonstrated using an example model

built using the OpenAeroStruct (Jasa et al. 2018b) library.

OpenAeroStruct is a modular, lower-fidelity, coupled

aerostructural modeling tool which is built on top of

OpenMDAO V2. Consider a notional model that computes

the average drag coefficient for a set of aerostructural wing

models at different angles of attack, as shown in Fig. 6.

The derivatives of average drag with respect to the shape

design variables can be computed via a single reverse model

linear solution. This reverse mode solution was tested with

two separate solver strategies: (1) pure monolithic with a

direct solver at the top of the model hierarchy and (2) mixed

hierarchical/monolithic with a linear block Gauss–Seidel

solver at the top and direct solver angle of attack case.

Figure 7 compares the computational costs of these two

linear solver strategies and examines how the computational

cost scales with increasing number of components. For this

problem, the scaling is achieved by increasing the number

of angle of attack conditions included in the average.

As the number of angle of attack cases increases, the

number of components and number of variables goes up

as well, since each case requires its own aerostructural

analysis group. The data in Fig. 7 shows that both linear

solver strategies scale nearly linearly with an increasing

number of variables, which indicates very good scaling

for the direct solver. This solver relies on the sparse

LU factorization in SciPy (Oliphant 2007). However, the

difference between the purely monolithic and the mixed

hierarchical/monolithic linear solver strategies is 1.5 to

2 orders of magnitude in total computation time. This

difference in computational cost is roughly independent of

problem size, which demonstrates that the mixed strategy is

fundamentally more efficient than the pure monolithic one.

6 Efficient methods for computing total
derivatives of sparse models

As discussed in Section 4, when using the unified derivative

equation to analytically compute the total derivative

Jacobian, one linear solution is required for each model

input in forward mode; alternatively, in reverse mode, one

linear solution is required for each model output. However,

when the model exhibits certain types of sparsity patterns, it

is possible to compute the complete total derivative Jacobian

0

Average

Drag

M
u

lt
i-
c
a

s
e

G
ro

u
p

M
o
d
e
l

Wing

Geometry

Design

Vars

0

0

0

Direct

0

Average

Drag

M
u

lt
i-
c
a

s
e

G
ro

u
p

M
o
d
e
l

Wing

Geometry

Design

Vars

0

0

0

Linear Block Gauss-Seidel

Direct Direct Direct Direct

Fig. 6 Model hierarchy, data connectivity, and linear solver strategy

for an OpenAeroStruct model with four flight conditions

matrix using fewer linear solutions than the number of

model inputs or model outputs. Furthermore, when properly

exploited, these sparsity structures can also change the

preferred solution mode (forward or reverse) from what

would normally be expected. In this section, we present

two specific types of sparsity structure and discuss how

OpenMDAO exploits them to reduce the computational cost

of computing derivatives for models where they are present.

The first sparsity pattern arises from separable model

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1091

Fig. 7 Scaling of computational cost for a single linear solution

versus number of components in the model. Two solver strategies are

compared: pure monolithic (orange) and mixed (blue). The average

slope of the two data sets indicates nearly linear scaling for both, but

there is a two-order-of-magnitude difference in actual cost

variables and allows for the multiple linear solutions to

be computed simultaneously using a single right-hand-side

vector; thus, it requires only one linear solution. The second

sparsity pattern arises from models where one component

output provides the input to many downstream components

that do not depend on each other. This enables multiple

linear solutions to be computed in parallel via multiple

parallel linear solutions on multiple right-hand sides.

6.1 Combiningmultiple linear solutions using graph
coloring

Typically, a single linear solution corresponds to a single

model input (forward/direct mode) or a single model out-

put (reverse/adjoint mode). When a portion of the total

derivative Jacobian has a block-diagonal structure, a color-

ing technique can be applied to combine linear solutions for

multiple model inputs or multiple model outputs into a sin-

gle linear solution. This reduces the cost for computing the

total derivative Jacobian. Consider a notional problem with

seven model inputs (a, b, c0, c1, c2, c3, c4) and six model

outputs (g0, g1, g2, g3, g4, f) with the total derivative Jaco-

bian structure illustrated in Fig. 8. Since there are more

model inputs than outputs, the reverse mode would normally

be faster.

However, as we can infer from Fig. 8, the five ci

inputs affect the six outputs (g0,...,g4, f) independently.

Therefore, these inputs can share a single color, and the

linear system only requires a single forward solution.

Combining multiple linear solutions is accomplished by

combining multiple columns of the identity matrix from

(16) into a single right-hand side, as shown in Fig. 9.

Normally, a combined right-hand side would yield sums

of total derivatives, but if we know that certain terms are

guaranteed to be zero (e.g., dg0/dc1 = 0, dg1/dc2 = 0), we

can safely combine the right-hand side vectors.

In this case, using forward mode would require two

separate linear solutions for a and b, and then a single

additional combined linear solution for the set (c0, . . . , c4),

as illustrated in Figs. 8a and 9b. Since this case is colored

in forward mode, the subscripts (i, j, k) in Fig. 9b are

associated with the denominator of the total derivatives,

indicating that each solution yields derivatives of all the

outputs with respect to a single input. In Fig. 9a,
[

du/dri|j |k

]

indicates the need to use three separate linear solutions. In

Fig. 9b,
[

du/dri+j+k

]

indicates that the three right-hand

sides can be added as
[

du

dri+j+k

]

=

[
du

dri

]

+

[
du

drj

]

+

[
du

drk

]

, (24)

to form a single linear system that can compute all three sets

of total derivatives.

Using coloring, the complete total derivative Jacobian

can be constructed using only three linear solutions in

a colored forward mode. The original uncolored solution

Fig. 8 Total derivative Jacobian

structure for a notional model

where the model outputs are all

separable with respect to the ci

inputs. a The full Jacobian

structure with coloring to

indicate the potential for

simultaneous solutions. b The

collapsed Jacobian structure that

takes advantage of the coloring

(a) Seven individual solutions (b) Two individual solutions and

one simultaneous solution

1092 J. S. Gray et al.

Fig. 9 Combining multiple linear solutions

method would require six linear solutions in reverse mode.

Therefore, the colored forward mode is faster than using the

uncolored reverse mode.

There is a well-known class of optimal control problems

that is specifically formulated to create total derivative

Jacobians that can be efficiently colored. Betts and Huffman

(1991) describe their “sparse finite-differencing” method,

where multiple model inputs are perturbed simultaneously

to approximate total derivatives with respect to more than

one input at the same time. Sparse finite-differencing

is applicable only to forward separable problems, but

OpenMDAO can leverage coloring in both forward and

reverse directions because analytic derivatives are computed

with linear solutions rather than a numerical approximations

of the nonlinear analysis. The ability to leverage both

forward and reverse modes for coloring gives the analytic

derivatives approach greater flexibility than the traditional

sparse finite-differencing and makes it applicable to a wider

range of problems.

Although the notional example used in this section

provides a very obvious coloring pattern, in general coloring

a total derivative Jacobian is extremely challenging.

Fig. 10 Comparison of total derivatives computation time computed

with (blue) and without (orange) the combined linear solution feature

OpenMDAO uses an algorithm developed by Coleman and

Verma (1998) to perform coloring, and it uses a novel

approach to computing the total derivative sparsity. More

details are included in Appendix 1.

6.1.1 Computational savings from combined linear

solutions

The combined linear solution feature is leveraged by

the Dymos optimal control library, which is built using

OpenMDAO. To date, Dymos has been used to solve a

range of optimal control problems (Falck et al. 2019),

including canonical problems such as Bryson’s minimum

time to climb problem (Bryson 1999), as well as the classic

brachistochrone problem posed by Bernoulli (1696). It has

also been used to solve more complex optimal trajectory

problems for electric aircraft (Falck et al. 2017; Schnulo

et al. 2018).

To demonstrate the computational improvement, we

present results showing how the cost of solving for the total

derivatives Jacobian scales with and without the combined

linear solutions feature for Bryson’s minimum time to

climb problem implemented in the Dymos example problem

library. Figure 10 shows the variation of the total derivatives

computation time as a function of the number of time steps

used in the model. The greater the number of time steps,

the greater the number of constraints in the optimization

problem for which we need total derivatives. We can see that

the combined linear solution offers significant reductions in

the total derivative computation time, and more importantly,

shows superior computational scaling.

6.2 Sparsity from quasi-decoupled parallel models

Combining multiple linear solutions offers significant

computational savings with no requirement for additional

memory allocation; thus, it is a highly efficient technique

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1093

Fig. 11 Parallel derivative computation for a reverse mode solu-

tion (Hwang and Martins 2015). Group 1 contains components 2, 3,

and 4, and group 2 contains components 5, 6, and 7. We assume

groups 1 and 2 are allocated on different processors. Without the

ability to solve multiple right-hand sides simultaneously, processor 2

would be idling in a, and processor 1 would be idling in b. In c, each

processor can solve for the derivatives of its own group simultaneously

for reducing the computational cost of solving for total

derivatives, even when running in serial. However, it is not

possible to use that approach for all models. In particular,

a common model structure that relies on parallel execution

for computational efficiency, which we refer to as “quasi-

decoupled,” prevents the use of combined linear solutions

and demands a different approach to exploit its sparsity. In

this section, we present a method for performing efficient

linear solutions for derivatives of quasi-decoupled systems

that enables the efficient use of parallel computing resources

for reverse mode linear solutions.

A quasi-decoupled model is one with an inexpensive

serial calculation bottleneck at the beginning, followed by

a more computationally costly set of parallel calculations

for independent model outputs. The data passing in this

model is such that one set of outputs gets passed to

multiple downstream components that can run in parallel. A

typical example of this structure can be found in multipoint

models, where the same analysis is run at several different

points, e.g., multiple CFD analyses that are run for the

same geometry, but at different flow conditions (Reuther

et al. 1999; Kenway and Martins 2016; Gallard et al.

2013). In these cases, the geometric calculations that

translate the model inputs to the computational grid are the

serial bottleneck, and the multiple CFD analyses are the

decoupled parallel computations, which can be solved in

an embarrassingly parallel fashion. This model can be run

efficiently in the forward direction for nonlinear solutions—

making it practically forward decoupled—but the linear

reverse mode solutions to compute total derivatives can no

longer be run in parallel.

One possible solution to address this challenge is to

employ a constraint aggregation approach (Kreisselmeier

and Steinhauser 1979; Lambe et al. 2017). This approach

allows the adjoint method to work efficiently because it

collapses many constraint values into a single scalar, hence

recovering the adjoint method efficiency. Though this may

work in some cases, constraint aggregation is not well-

suited to problems where the majority of the constraints

being aggregated are active at the optimal solution, as

is the case for equality constraints. In these situations,

the conservative nature of the aggregations function is

problematic because it prevents the optimizer from tightly

satisfying all the equalities. Kennedy and Hicken (2015)

developed improved aggregation methods that offer a less

conservative and more numerically stable formulation,

but despite the improvements, aggregation is still not

appropriate for all applications. In these cases, an alternate

approach is needed to maintain efficient parallel reverse

mode (adjoint) linear solutions.

When aggregation cannot be used, OpenMDAO uses a

solution technique that retains the parallel efficiency at the

cost of a slight increase in required memory. First, the mem-

ory allocated for the serial bottleneck calculations in the

right-hand side and solution vectors is duplicated across

all processors. Only the variables associated with the bot-

tleneck calculation are duplicated, and the variables in the

computationally expensive parallel calculations remain the

same. This duplication is acceptable because the bottleneck

calculation requires an insignificant amount of memory

compared to the parallel calculations. The duplication of

the memory effectively decouples the portions of the model

that require more memory and computational effort, so

OpenMDAO can then perform multiple linear solutions

1094 J. S. Gray et al.

in parallel across multiple processors. This approach for

parallel reverse derivative solutions was first proposed by

Hwang and Martins (2015) and has been adapted into the

OpenMDAO framework. It is described below for com-

pleteness and to provide context for the performance results

presented.

Figure 11 compares the reverse mode linear solution

between a basic reverse mode solution and a parallel reverse

mode solution. Note that the left-hand side matrices in

Fig. 11 are upper triangular because the reverse mode

solutions use [∂R/∂u]T . In this notional model, the first

component on the diagonal is the inexpensive serial

bottleneck that all following calculations depend on. Then,

there are two parallel expensive computational groups

represented by components (2,3,4) and (5,6,7), each of

which computes a model output. We assume that group 1

is allocated in processor 1, and group 2 is allocated in

processor 2.

Using the basic reverse mode requires two sequential

linear solutions. During the first solution, illustrated in

Fig. 11a, processor 1 solves for the derivative of the output

of group 1, while processor 2 idles. Similarly, during the

second solution, illustrated in Fig. 11b, processor 2 solves

for the derivatives of the outputs of group 2, while processor

1 idles.

Using the parallel reverse mode, both processors

independently loop over the two right-hand sides to compute

two linear solutions, as shown in Fig. 11c. For processor 1,

the first right-hand side computes derivatives of the group 1

model output, while the second performs no operations.

For processor 2, the first right-hand side does not require

any operations, and the second computes derivatives of

the group 2 model output. Therefore, the parallel reverse

mode of Fig. 11c takes advantage of embarrassingly parallel

execution. Note that in Fig. 11c, there are grayed out

Fig. 12 Comparison of total derivatives computation time calculated

with and without parallel reverse mode

portions of the vectors, indicating that memory is not

allocated for those variables on that particular processor.

6.2.1 Computational savings from parallel reverse mode

We now demonstrate the performance of parallel reverse

mode derivatives computation using the combined

allocation-mission-design (AMD) problem developed by

Hwang and Martins (2015). In this problem, an airline with

four existing aircraft and one new aircraft design allocates

these aircraft for 128 individual routes to maximize opera-

tional profit. This model was executed on a parallel cluster

with 140 cores, ensuring that the mission constraints are

handled in parallel. A number of the constraints exhibit the

quasi-decoupled structure because there are separate sets

related to each of the 128 missions which can all be com-

puted in parallel, but they all depend on a single upstream

calculation that creates the reverse mode bottleneck.

In Fig. 12, we show the total derivatives computation

time with and without parallel reverse mode for a range

of different model sizes. The models were scaled up by

refining the time discretization of the mission integration,

which also created more physical constraints for each

mission. The calculation is significantly faster with parallel

reverse mode, but more importantly, the parallel reverse

mode makes the cost to compute total derivatives nearly

independent of the size of the problem.

7 Applications

The usefulness and efficiency of OpenMDAO has already

been demonstrated in a variety of applications. All of these

applications have been the subject of previous publications

and will not be detailed here. Instead, we present an

overview of these applications to illustrate the wide range

of model fidelities, problem structures, and disciplines that

can be handled by OpenMDAO. For each application, we

highlight the computational performance and OpenMDAO

features that were used. The applications are listed in

Fig. 13, where we show the extended design structure matrix

(XDSM) (Lambe and Martins 2012) for each problem

and list the design variables, objective functions, and

constraints.

One of the first practical engineering problems, and

the first example of an optimal control problem, solved

with OpenMDAO V2 was a satellite MDO problem that

maximized the data downloaded by varying satellite design

parameters (related to solar panels, antenna, and radiators)

as well as time dependent variables (power distribution,

trajectory, and solar panel controls) (Gray et al. 2014).

This problem was originally implemented using a bare-

bones implementation of MAUD (Hwang et al. 2014). The

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1095

Fig. 13 Summary of applications of OpenMDAO to engineering design optimization problems

modeled disciplines consisted of orbit dynamics, attitude

dynamics, cell illumination, temperature, solar power,

energy storage, and communication. The optimization

involved over 25,000 design variables and 2.2 million

state variables and required 100 CPU-h to converge to

the optimum result in a serial computation (Hwang et al.

1096 J. S. Gray et al.

2014). The satellite model is broken down into around

100 different components, which greatly simplified the task

of deriving the analytic partial derivatives by hand. This

problem exhibits the quasi-decoupled structure discussed in

Section 6.2, and in OpenMDAO V2, the model was able to

run in around 6 h of wall time, running in on 6 CPUs using

parallel derivative computation.

The first integration of a specialized high-fidelity

solver in OpenMDAO was done to perform the design

optimization of an aircraft considering allocation, trajectory

optimization, and aerodynamic performance with the

objective of maximizing airline profit (Hwang et al.

2019). The aerodynamics were modeled using the ADflow

CFD solver (Lyu et al. 2013), which has an adjoint

implementation to efficiently compute derivatives of the

aerodynamic force coefficients with respect to hundreds

of wing shape variables. In this work, the ADflow

solver was integrated into the overall model in an

explicit form, which greatly simplified the integration

and reduced the number of variables that OpenMDAO

needed to track. The optimization problem consisted of

over 6000 design variables and 23,000 constraints, and

it was solved in about 10 h using 128 processors. This

work relied heavily on OpenMDAO’s support for parallel

computing to efficiently evaluate multiple aerodynamic

points simultaneously. Related work on this problem by

Roy et al. (2018a) expanded the problem to a mixed integer

optimization that considered the airline allocation portion

of the problem in a more correct discrete form, which

demonstrated the flexibility of the framework to expand

beyond purely gradient-based optimization.

The OpenMDAO interface to ADflow, first developed

in the work mentioned above, was later reworked into an

implicit form that exposed the full state vector of the flow

solution to the framework. The new wrapper was then used

in a series of propulsion-airframe integration optimization

studies that were the first to demonstrate the framework’s

ability to compute high-fidelity coupled derivatives. A CFD

model of a tightly integrated fuselage and propulsor was

coupled to a one-dimensional engine cycle model to build

an aeropropulsive model, which enabled the detailed study

of boundary layer ingestion (BLI) effects (Gray et al.

2018a) and the simultaneous design of aerodynamic shape

and propulsor sizing for BLI configurations (Gray and

Martins 2018; Gray et al. 2018b). The thermodynamic

cycle analysis tool was developed using OpenMDAO

as a standalone propulsion modeling library based on

a chemical-equilibrium analysis technique (Gray et al.

2017). This new modeling library was the first engine

cycle analysis capability that included analytic derivative

computation (Hearn et al. 2016). The development of

the cycle analysis tool in OpenMDAO was ultimately

what motivated the addition of the new monolithic linear

solver strategy to the framework, and coupling that

model to the high-fidelity aerodynamic solver required the

implementation of a mixed hierarchical-monolithic linear

solver strategy in the coupled model.

Jasa et al. (2018b) developed OpenAeroStruct, a low-

order wing aerostructural library whose development was

motivated by the absence of a tool for fast wing design

optimization. OpenAeroStruct implements a vortex lat-

tice model for the aerodynamic analysis and a beam

finite-element model for structural analysis. These anal-

yses are coupled, enabling the aerostructural analysis of

lifting surfaces. Each of the models was implemented

in OpenMDAO from the ground up, making use of

the hierarchical representation and solvers for the best

possible coupled solution efficiency, as demonstrated in

Fig. 7. As a result, OpenAeroStruct efficiently com-

putes aerostructural derivatives through the coupled-adjoint

method, enabling fast aerostructural analysis (solutions

in seconds) and optimizations (converged results in min-

utes). OpenAeroStruct has already been used in a number of

applications (Friedman et al. 2017; Chaudhuri et al.

2017; Palar and Shimoyama 2017; Cook et al. 2017a, b;

Bons et al. 2019; Lam et al. 2018; Tracey and Wolpert

2018; Cook 2018; Baptista and Poloczek 2018; Peherstor-

fer et al. 2018; Chauhan and Martins 2018). Significant

computational efficiency was achieved for OpenAeroStruct

by using the sparse-assembled Jacobian matrix feature with

a monolithic linear solver strategy, thanks to the highly

sparse nature of many of the underlying calculations.

Chung et al. (2018) developed a framework for

setting up structural topology optimization problems and

formulations. Using this platform, they implemented

three popular topology optimization approaches. Even

though structural topology optimization involves only one

discipline, they found that the framework benefited from the

modularity and the more automated derivative computation.

The increased modularity made it easier to restructure and

extend the code, allowing the authors to quickly change

the order of operations in the process to demonstrate the

importance of correct sequencing. This structural topology

optimization framework is expected to facilitate future

developments in multiscale and multidisciplinary topology

optimization. This work, in addition to OpenAeroStruct,

provides an excellent example of using OpenMDAO as

a low-level software layer to develop new disciplinary

analysis solvers.

Hwang and Ning (2018) developed and integrated low-

fidelity propeller, aerodynamic, structural, and mission

analysis models using OpenMDAO for NASA’s X-57

Maxwell research aircraft, which features distributed

electric propulsion. They solved MDO problems with up to

101 design variables and 74 constraints that converged in

a few hundred model evaluations. Numerical experiments

showed the scaling of the optimization time with the number

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1097

of mission points was, at worst, linear. The inclusion of

a fully transient mission analysis model of the aircraft

performance was shown to offer significantly different

results from a basic multipoint optimization formulation.

The need to include the transient analysis is an example

of why analytic derivatives are needed for these types of

problems: They offer the required computational efficiency

and accuracy that could not be achieved using monolithic

finite differencing.

Other work that used OpenMDAO V2 includes a

framework for the solution of ordinary differential equa-

tions (Hwang and Munster 2018), a conceptual design

model for aircraft electric propulsion (Brelje and Mar-

tins 2018), and a mission planning tool for the X-57

aircraft (Schnulo et al. 2018).

Application-focused work has included the design

of a next-generation airliner considering operations and

economics (Roy et al. 2018b), design and trajectory

optimization of a morphing wing aircraft (Jasa et al. 2018a),

and trajectory optimization of an aircraft with a fuel thermal

management system (Jasa et al. 2018c). OpenMDAO is

also being used extensively by the wind energy community

for wind turbine design (Ning and Petch 2016; Barrett

and Ning 2018; Zahle et al. 2016, 2018; McWilliam et al.

2018; Graf et al. 2018; Dykes et al. 2018) and wind farm

layouts (Thomas et al. 2017; Stanley and Ning 2018).

8 Conclusions

The OpenMDAO framework was developed to facilitate

the multidisciplinary analysis and design optimization of

complex engineering systems. While other frameworks

exist for the same purpose, OpenMDAO has evolved in the

last few years to incorporate state-of-the-art algorithms that

enable it to address optimization problems of unprecedented

scale and complexity.

Two main areas of development made this possible:

algorithms for the solution of coupled systems and methods

for the computation of derivatives. The development of

efficient derivative computation was motivated by the fact

that gradient-based optimization is our only hope for

solving large-scale problems that involve computationally

expensive models; thus, efficient gradient computations that

are scalable are required. Because most models and coupled

systems exhibit some degree of sparsity in their problem

structure, OpenMDAO takes advantage of the sparsity for

both storage and computation.

To achieve the efficient solution of coupled systems,

OpenMDAO implements known state-of-the-art monolithic

methods and has developed a flexible hierarchical approach

that enables users to group models according to the problem

structure so that computations can be nested, parallelized,

or both.

To compute total coupled derivatives efficiently in

a scalable way, OpenMDAO uses analytic methods in

two modes: forward and reverse. The forward mode is

equivalent to the coupled direct method, and its cost scales

linearly with the number of design variables. The reverse

mode is equivalent to the coupled-adjoint method, and

its cost scales linearly with the number of functions of

interest—but it is independent of the number of design

variables. This last characteristic is particularly desirable

because many problems have a number of design variables

that is larger than the number of functions of interest

(objective and constraints). Furthermore, in cases with large

numbers of constraints, these can often be aggregated.

Problem sparsity was also exploited in the coupled

derivative computation by a new approach we developed

that uses graph coloring. We also discussed a few

other techniques to increase the efficiency of derivative

computations using the hierarchical problem representation.

The algorithms in OpenMDAO work best if the residuals

of the systems involved are available, but when they are not

available, it is possible to formulate the models solely in

terms of their inputs and outputs.

The efficiency and scalability of OpenMDAO were

demonstrated in several examples. We also presented an

overview of various previously published applications of

OpenMDAO to engineering design problems, including

satellite, wing, and aircraft design. Some of these problems

involved tens of thousands of design variables and similar

number of constraints. Other problems involved costly high-

fidelity models, such as CFD and finite element structural

analysis with millions of degrees of freedom. While the

solution of the problems in these applications would

have been possible with single purpose implementations,

OpenMDAO made it possible to use state-of-the-art

methods with a much lower development effort.

Based on the experience of these applications, we

conclude that while OpenMDAO can handle traditional

disciplinary analysis models effectively, it is most efficient

when these models are developed from the ground up using

OpenMDAO with a fine-grained modularity to take full

advantage of the problem sparsity, lower implementation

effort, and built-in derivative computation.

9 Replication of results

Most of the codes required to replicate the results in this

paper are available under open-source licenses and are

maintained in version control repositories. The Open-

MDAO framework is available from GitHub (github.com/

OpenMDAO). The OpenMDAO website (openmdao.org)

provides installation instructions and a number of examples.

The code for the simple example of Section 3 is listed in

http://github.com/OpenMDAO
http://github.com/OpenMDAO
http://openmdao.org

1098 J. S. Gray et al.

Figs. 3 and 4 and can be run once OpenMDAO is installed

as is. The scripts used to produce the scaling plots in

Figs. 7 and 10 are available as supplemental material in this

paper. In addition to requiring OpenMDAO to be installed,

these scripts require OpenAeroStruct (github.com/mdolab/

OpenAeroStruct) and Dymos (github.com/OpenMDAO/

dymos). The scaling plots for the AMD problem (Fig. 12)

involve a complex framework that includes code that is not

open source, and therefore, we are not able to provide scripts

for these results. Finally, although no results are shown in

the applications mentioned in Section 7, the code for two of

these applications—OpenAeroStruct (github.com/mdolab/

OpenAeroStruct) and the satellite MDO (github.com/Open

MDAO/CADRE)—is also available.

Acknowledgements The authors would like to thank the NASA

ARMD Transformational Tools and Technologies project for their

support of the OpenMDAO development effort. Joaquim Martins was

partially supported by the National Science Foundation (award number

1435188). We would like to acknowledge the invaluable advice from

Gaetan Kenway and Charles Mader on efficient implementation of

OpenMDAO for high-fidelity work. Also invaluable was the extensive

feedback provided by Eric Hendricks, Rob Falck, and Andrew Ning.

Finally, we would also like to thank Nicolas Bons, Benjamin Brelje,

Anil Yildirim, and Shamsheer Chauhan for their review of this

manuscript and their helpful suggestions.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to

the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix 1: Coloring of total derivative
Jacobians

1.1 Determining total derivative coloring

In the simple problem illustrated in Fig. 8, the forward

coloring of the model inputs is obvious. However, for a

large problem with an unordered total Jacobian matrix, it is

not easy to identify coloring. There are a wide variety of

serial coloring algorithms (Welsh and Powell 1967; Karp

and Wigderson 1985; Jones and Plassmann 1993; Coleman

and Verma 1998; Gebremedhin et al. 2005), originally

developed for coloring partial derivative Jacobians. There

are also a set of parallel coloring algorithms that have been

developed for parallel distributed-memory applications,

such as CFD (Jones and Plassmann 1993; Nielsen and Kleb

2006; Mader et al. 2008; Lyu et al. 2013; He et al. 2018).

What we propose here is that these coloring algorithms are

now also applicable for coloring total derivative Jacobian

calculations based on the unified derivatives (16).

To apply a coloring algorithm, we need to know the

total derivative Jacobian sparsity pattern a priori, but this

information is not easily available. However, the sparsity

pattern of the partial derivative Jacobian matrix, ∂R/∂u,

is known to OpenMDAO a priori from the combination

of user-declared partial derivatives and the connections

made during model construction. Therefore, we developed

a method in OpenMDAO that computes the total derivative

sparsity given the partial derivative Jacobian sparsity.

To determine the total Jacobian sparsity pattern for a

given state, OpenMDAO computes a randomized partial

derivative matrix using linear solutions of (16) with ran-

domized values for ∂R/∂u. Intuitively, one can understand

how using randomized partial derivatives would yield a

relatively robust estimate of the total derivative sparsity pat-

tern, but we provide a more detailed logical argument for

why this approach is appropriate here. A single random-

ized total derivative Jacobian is likely to give the correct

sparsity pattern, but we can reduce the likelihood of errors

in the sparsity by summing the absolute value of multiple

randomly generated total derivative Jacobians.

Once we have the total derivative sparsity pattern,

OpenMDAO applies a coloring algorithm based on the work

of Coleman and Verma (1998) to identify the reduced set

of linear solutions needed to compute the total derivative

Jacobian. As we demonstrate in Section 5.3, coloring can

offer significant performance improvements for problems

that have sparse total derivative Jacobians.

1.2 Justification for coloring with randomized total
derivative Jacobians

In theory, it would be possible to color the total derivative

Jacobian based on the actual Jacobian computed around the

initial condition of the model. There is a risk, however, that

the initial condition of the model will happen to be at a point

where some of the total derivatives in the model are incidentally

zero, although they will take nonzero values elsewhere in the

design space. The incidental zero would potentially result in

an incorrect coloring, and so it is to be avoided if possible.

Instead of using the actual Jacobian values, we generate

a randomized total derivative Jacobian that is statistically

highly unlikely to create any incidental zero values.

From (16), we know that the total derivative Jacobian

matrix, du/dr , is equal to the inverse of the partial derivative

Jacobian matrix, ∂R/∂u. Our task reduces to the general

mathematical problem of determining the sparsity structure

of a matrix inverse given the sparsity structure of the matrix

itself, assuming that the matrix is large. First, we note that

we do not need the sparsity structure of all of du/dr; we

only need the rows and columns corresponding to df/dx,

http://github.com/mdolab/OpenAeroStruct
http://github.com/mdolab/OpenAeroStruct
http://github.com/OpenMDAO/dymos
http://github.com/OpenMDAO/dymos
http://github.com/mdolab/OpenAeroStruct
http://github.com/mdolab/OpenAeroStruct
http://github.com/OpenMDAO/CADRE
http://github.com/OpenMDAO/CADRE
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1099

which is almost always a much smaller matrix because

du/dr contains all the intermediate model variables as well

as the model inputs and model outputs. From Cramer’s rule,

we know that
[

∂R

∂u

−1
]

ij

=
adj(∂R/∂u)ij

det(∂R/∂u)
, (25)

which is to say that the (i, j)th entry of the inverse of the

Jacobian is the quotient of the (i, j)th entry of the adjugate

of the Jacobian and the determinant of the Jacobian.

The Jacobian is invertible for well-posed models, so the

determinant is always nonzero. Thus, only the numerator in

(25) determines if a particular term is nonzero. If the matrix

is n × n, where n is large, each term in the adjugate and,

thus, the inverse is the sum of a large number of terms that

are products of n − 1 partial derivatives.

If we produce a partial derivative Jacobian matrix with

random values for all nonzero terms, it would be highly

improbable that this sum of a large number of terms would

be incidentally zero. Therefore, we assume that each entry

of the inverse of the random partial derivative Jacobian that

is zero is actually a zero in the sparsity structure of the true

total derivative Jacobian.

Appendix 2: Equivalence between
hierarchical and reduced-space Newton’s
methods

OpenMDAO introduces a new hierarchical Newton’s

method formulation for the sake of improved numerical

flexibility; however, this proof shows that the new full-space

method can be made mathematically identical to the more

traditional reduced-space Newton’s method if one always

fully converges the internal nonlinear system associated

with Ry . Consider the residual of an arbitrary implicit

function, Rx(x) = rx , at some non-converged value of x. If

rx is actually a function of the nonlinear system Ry(x, y) =

0, converged for a specific value of x:

Rx(x) = C(x, y) = rx (26)

Ry(y) = D(x, y) = 0, (27)

then we call Rx the reduced-space residual function, with

the full space composed of the vectors x and y of lengths n

and m, respectively.

Our ultimate goal is to solve for x such that Rx(x) = 0,

using Newton’s method. The traditional Newton’s method

iteration consists in computing �x by solving a linear

system of size n:

[
∂Rx

∂x

]

�x = −rx . (28)

Expanding ∂Rx/∂x to account for the intermediate calcula-

tion of y gives

[
∂C

∂x
+

∂C

∂y

dy

dx

]

�x = −rx . (29)

By differentiating (27) with respect to x, we find that

dRy

dx
=

∂Ry

∂x
+

∂Ry

∂y

dy

dx
= 0, (30)

dy

dx
= −

[
∂D

∂y

]−1
∂D

∂x
. (31)

Combining (29) and (31) gives a formula for the Newton

update of the reduced-space function as

[

∂C

∂x
−

∂C

∂y

[
∂D

∂y

]−1
∂D

∂x

]

�x = −rx . (32)

Now, instead of the reduced-space form of (26), consider a

full-space form that deals with both x and y simultaneously

as one vector:

Ru(u) = R(x, y) =

[

C(x, y)

D(x, y)

]

= ru =

[

rx
ry

]

. (33)

This full-space form is the mathematical representation

used by OpenMDAO for any system—or subsystem, as

demonstrated in (15). The Newton update for the flattened

system must be solved for via a linear system of size (n+m):

[
∂Ru

∂u

]

�u = −ru. (34)

If we apply the hierarchical Newton algorithm to the full-

space formulation, then we can assume that any time (34)

is solved, y has first been found such that that ry = 0.

Expanding ∂Ru/∂u and setting ry = 0 in (34) yields

[
∂C
∂x

∂C
∂y

∂D
∂x

∂D
∂y

]
[

�x

�y

]

= −

[

rx
0

]

. (35)

Solving (35) for �y and back substituting yields

[

∂C

∂x
−

∂C

∂y

[
∂D

∂y

]−1
∂D

∂x

]

�x = −rx . (36)

Now note that (32) and (36) are identical, and therefore

applying the hierarchical Newton algorithm to the full-

space model (size n + m) gives the exact same �x as

the reduced-space Newton algorithm applied to the smaller,

reduced-space model (size n). Since the updates to �x are

the same, then assuming complete convergence of all child

subsystems, the path that the hierarchical Newton’s method

takes on the size (n + m) formulation will be identical to

the path the reduced-space Newton’s method takes on the

smaller size n formulation.

1100 J. S. Gray et al.

Appendix 3: Equivalence between recursive
and hierarchical Broyden’s methods

Broyden’s second method computes an approximate update

of the inverse Jacobian via

[
∂Rx

∂x

]−1

n

= J−1
n

∼= J−1
n−1 +

�xn − J−1
n−1�rn

‖�rn‖2
�rT

n . (37)

Then, the Newton update is applied using the approximate

inverse Jacobian via

�x = −J−1
n rx . (38)

3.1 Reduced-space Broyden

Consider the same composite model structure given in (26)

and (27). From (32), we know that

[
∂Rx

∂x

]

n

=

[

∂C

∂x
−

∂C

∂y

∂D

∂y

−1 ∂D

∂x

]

n

. (39)

To simplify the algebra, we now define a new variable, β, as

β =

[
∂Rx

∂x

]−1

n−1

=

[

∂C

∂x
−

∂C

∂y

∂D

∂y

−1 ∂D

∂x

]−1

n−1

. (40)

Now we can substitute this into (37) to calculate the

Broyden update to the inverse Jacobian as

J−1
n = β +

�x − β�rx

‖�rx‖2
�rT

x . (41)

Finally, if we substitute this into (38), we get the update to

the state value:

�xn = −

(

β +
�x − β�rx

‖�rx‖2
�rT

x

)

rx . (42)

3.2 Full-space Broyden

To apply Broyden’s method to the full-space formulation,

we start from (35) for the Newton update of the full-space

system, but now instead of an exact inverse Jacobian, we use

the approximate inverse Jacobian, J−1
n , i.e.,

[�u] =

[

�x

�y

]

= −J−1
n

[

rx
0

]

= −J−1
n [ru] . (43)

The full-space Broyden’s method gives

[
∂Ru

∂u

]−1

n

= J−1
n

∼= J−1
n−1 +

�un − J−1
n−1�rn

‖�rn‖2
�rT

n . (44)

We use the closed form solution for the block inverse of a

2 × 2 matrix to obtain

J−1
n−1 =

[
∂C
∂x

∂C
∂y

∂D
∂x

∂D
∂y

]−1

=

⎡

⎢
⎣

[
∂C
∂x

− ∂C
∂y

∂D
∂y

−1 ∂D
∂x

]−1
− ∂C

∂x

−1 ∂C
∂y

[
∂D
∂y

− ∂D
∂x

∂C
∂x

−1 ∂C
∂y

]−1

− ∂D
∂y

−1 ∂D
∂x

[
∂C
∂x

− ∂C
∂y

∂D
∂y

−1 ∂D
∂x

]−1 [
∂D
∂y

− ∂D
∂x

∂C
∂x

−1 ∂C
∂y

]−1
.

⎤

⎥
⎦(45)

We can simplify this by substituting (40) into (45), which

yields

J−1
n−1 =

⎡

⎢
⎣

β − ∂C
∂x

−1 ∂C
∂y

[
∂D
∂y

− ∂D
∂x

∂C
∂x

−1 ∂C
∂y

]−1

− ∂D
∂y

−1 ∂D
∂x

β
[

∂D
∂y

− ∂D
∂x

∂C
∂x

−1 ∂C
∂y

]−1
.

⎤

⎥
⎦

(46)

To further simplify, we define one more new variable, γ :

γ =

[

∂D

∂y
−

∂D

∂x

∂C

∂x

−1 ∂C

∂y

]−1

(47)

and then,

J−1
n−1 =

[

β − ∂C
∂x

−1 ∂C
∂y

γ

− ∂D
∂y

−1 ∂D
∂x

β γ

]

. (48)

Now, returning to (44), we can compute each of the

terms:

J−1
n−1�rn = J−1

n−1

[

�rx
0

]

n

=

[

β�rx

− ∂D
∂y

−1 ∂D
∂x

β�rx .

]

(49)

Since the residual ry is zero,

‖�ru‖ = ‖�rx‖. (50)

Putting it all together, we get

J−1
n =

[

β − ∂C
∂x

−1 ∂C
∂y

γ

− ∂D
∂y

−1 ∂D
∂x

β γ

]

+

[

�x

�y

]

−

[

β�rx

− ∂D
∂y

−1 ∂D
∂x

β‖�rx‖
2

]

‖�rx‖2

[

�rT
x 0

]

. (51)

Performing the outer product and reducing yields

�J−1
n =

⎡

⎣

β +
�x−β�r1

‖�rx‖2 �rT
x

∂C
∂x

−1 ∂C
∂y

γ

∂D
∂y

−1 ∂D
∂x

β
�x− ∂D

∂y

−1 ∂D
∂x

β�rx

‖�rx‖2 �rT
x γ

⎤

⎦ .

(52)

Now we substitute this into (23) to get the update to the state

value:

[

�x
�y

]

n

= −

⎡

⎣

β +
�x−β�rx

�r2
x

�rT
x

∂C
∂x

−1 ∂C
∂y

γ

∂D
∂y

−1 ∂D
∂x

β +
�y− ∂D

∂y

−1 ∂D
∂x

β�rx

‖�rx‖2 �rT
x γ

⎤

⎦

[

rx
0

]

n

(53)

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1101

[

�x

�y

]

n

=−

⎡

⎢
⎢
⎣

(

β +
�x−β�rx
‖�rx‖2 �rT

x

)

rx
(

∂D
∂y

−1 ∂D
∂x

β +
�y− ∂D

∂y

−1 ∂D
∂x

β�rx

‖�rx‖2 �rT
x

)

rx

⎤

⎥
⎥
⎦

.

(54)

Finally, we can solve for the Broyden updated �x to obtain:

�xn = −

(

β +
�x − β�rx

‖�rx‖2
�rT

x

)

rx . (55)

This matches the result from recursive Broyden in (42). We

also end up with an update to y, but since we have assumed

that a sub-solver will always drive Ry to zero, this update to

y does not affect the path taken by the top-level full-space

solver.

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

References

Arora J, Haug EJ (1979) Methods of design sensitivity anal-

ysis in structural optimization. AIAA J 17(9):970–974.

https://doi.org/10.2514/3.61260

Balabanov V, Charpentier C, Ghosh DK, Quinn G, Vanderplaats G,

Venter G (2002) Visualdoc: a software system for general purpose

integration and design optimization. In: 9th AIAA/ISSMO

symposium on multidisciplinary analysis and optimization.

Atlanta

Balay S, Abhyankar S, Adams M, Brown J, Buschelman K, Dalcin L,

Dener A, Eijkhout V, Gropp W, Karpeyev D, Kaushik D, Knepley

M, May D, McInnes LC, Mills R, Munson T, Rupp K, Sanan P,

Smith B, Zampini S, Zhang H (2018) PETSc users manual. Tech.

Rep. ANL-95/11 - Revision 3.10, Argonne National Laboratory

Baptista R, Poloczek M (2018) Bayesian optimization of combi-

natorial structures. In: Dy J, Krause A (eds) Proceedings of

the 35th international conference on machine learning, PMLR,

Stockholmsmässan, Stockholm Sweden, Proceedings of Machine

Learning Research, vol 80. pp 462–471. http://proceedings.mlr.

press/v80/baptista18a.html

Barrett R, Ning A (2018) Integrated free-form method for aerostruc-

tural optimization of wind turbine blades. Wind Energy

21(8):663–675. https://doi.org/10.1002/we.2186

Bernoulli J (1696) A new problem to whose solution mathematicians

are invited. Acta Eruditorum 18:269

Betts JT, Huffman WP (1991) Trajectory optimization on a

parallel processor. J Guid Control Dyn 14(2):431–439.

https://doi.org/10.2514/3.20656

Bons N, He X, Mader CA, Martins JRRA (2019) Multimodal-

ity in aerodynamic wing design optimization. AIAA Journal

https://doi.org/10.2514/1.J057294, (In press)

Brelje BJ, Martins JRRA (2018) Development of a conceptual design

model for aircraft electric propulsion with efficient gradients.

In: Proceedings of the AIAA/IEEE electric aircraft technologies

symposium. Cincinnati. https://doi.org/10.2514/6.2018-4979

Bryson AE (1999) Dynamic optimization. Addison Wesley Longman,

Menlo Park

Bryson AE, Ho YC (1975) Applied optimal control: optimization,

estimation, and control. Wiley, Hoboken

Carrier G, Destarac D, Dumont A, Méheut M, Din ISE, Peter J, Khelil

SB, Brezillon J, Pestana M (2014) Gradient-based aerodynamic

optimization with the elsA software. In: 52nd aerospace sciences

meeting. https://doi.org/10.2514/6.2014-0568

Chaudhuri A, Lam R, Willcox K (2017) Multifidelity uncertainty

propagation via adaptive surrogates in coupled multidisciplinary

systems. AIAA J, 235–249. https://doi.org/10.2514/1.J055678

Chauhan SS, Martins JRRA (2018) Low-fidelity aerostructural opti-

mization of aircraft wings with a simplified wingbox model using

OpenAeroStruct. In: Proceedings of the 6th international confer-

ence on engineering optimization, EngOpt 2018. Springer, Lisbon,

pp 418–431. https://doi.org/10.1007/978-3-319-97773-7 38

Chauhan SS, Hwang JT, Martins JRRA (2018) An automated selection

algorithm for nonlinear solvers in MDO. Struct Multidiscip Optim

58(2):349–377. https://doi.org/10.1007/s00158-018-2004-5

Chen S, Lyu Z, Kenway GKW, Martins JRRA (2016) Aerodynamic

shape optimization of the Common Research Model wing-body-

tail configuration. J Aircr 53(1):276–293. https://doi.org/10.2514

/1.C033328

Chung H, Hwang JT, Gray JS, Kim HA (2018) Implementa-

tion of topology optimization using OpenMDAO. In: 2018

AIAA/ASCE/AHS/ASC structures, structural dynamics, and

materials conference. AIAA AIAA, Kissimmee. https://doi.org/

10.2514/6.2018-0653

Coleman TF, Verma A (1998) The efficient computation of sparse

Jacobian matrices using automatic differentiation. SIAM J Sci

Comput 19(4):1210–1233

Cook LW (2018) Effective formulations of optimization under

uncertainty for aerospace design. PhD thesis, University of

Cambridge. https://doi.org/10.17863/CAM.23427

Cook LW, Jarrett JP, Willcox KE (2017a) Extending horsetail match-

ing for optimization under probabilistic, interval, and mixed uncer-

tainties. AIAA J 56(2):849–861. https://doi.org/10.2514/1.J05

6371

Cook LW, Jarrett JP, Willcox KE (2017b) Horsetail matching for

optimization under probabilistic, interval and mixed uncertainties.

In: 19th AIAA non-deterministic approaches conference, p 0590.

https://doi.org/10.2514/6.2017-0590

Dykes K, Damiani R, Roberts O, Lantz E (2018) Analysis Of

ideal towers for tall wind applications. In: 2018 wind energy

symposium. AIAA. https://doi.org/10.2514/6.2018-0999

Falck RD, Chin JC, Schnulo SL, Burt JM, Gray JS (2017) Trajectory

optimization of electric aircraft subject to subsystem thermal

constraints. In: 18th AIAA/ISSMO multidisciplinary analysis and

optimization conference. Denver

Falck RD, Gray JS, Naylor B (2019) Optimal control within the

context of multidisciplinary design, analysis, and optimization.

In: AIAA SciTech forum, AIAA. https://doi.org/10.2514/6.2019-

0976
Friedman S, Ghoreishi SF, Allaire DL (2017) Quantifying the impact

of different model discrepancy formulations in coupled multidis-

ciplinary systems. In: 19th AIAA non-deterministic approaches

conference, p 1950. https://doi.org/10.2514/6.2017-1950
Gallard F, Meaux M, Montagnac M, Mohammadi B (2013) Aero-

dynamic aircraft design for mission performance by multipoint

optimization. In: 21st AIAA computational fluid dynamics con-

ference. American Institute of Aeronautics and Astronautics.

https://doi.org/10.2514/6.2013-2582

Gallard F, Lafage R, Vanaret C, Pauwels B, Guénot D, Barjhoux

PJ, Gachelin V, Gazaix A (2017) GEMS: a Python library

for automation of multidisciplinary design optimization process

generation. In: 18th AIAA/ISSMO multidisciplinary analysis and

optimization conference
Gebremedhin AH, Manne F, Pothen A (2005) What color is your

Jacobian? Graph coloring for computing derivatives. SIAM Rev

47(4):629–705
Golovidov O, Kodiyalam S, Marineau P, Wang L, Rohl P

(1998) Flexible implementation of approximation concepts

https://doi.org/10.2514/3.61260
http://proceedings.mlr.press/v80/baptista18a.html
http://proceedings.mlr.press/v80/baptista18a.html
https://doi.org/10.1002/we.2186
https://doi.org/10.2514/3.20656
https://doi.org/10.2514/1.J057294
https://doi.org/10.2514/6.2018-4979
https://doi.org/10.2514/6.2014-0568
https://doi.org/10.2514/1.J055678
https://doi.org/10.1007/978-3-319-97773-7_38
https://doi.org/10.1007/s00158-018-2004-5
https://doi.org/10.2514/1.C033328
https://doi.org/10.2514/1.C033328
https://doi.org/10.2514/6.2018-0653
https://doi.org/10.2514/6.2018-0653
https://doi.org/10.17863/CAM.23427
https://doi.org/10.2514/1.J056371
https://doi.org/10.2514/1.J056371
https://doi.org/10.2514/6.2017-0590
https://doi.org/10.2514/6.2018-0999
https://doi.org/10.2514/6.2019-0976
https://doi.org/10.2514/6.2019-0976
https://doi.org/10.2514/6.2017-1950
https://doi.org/10.2514/6.2013-2582

1102 J. S. Gray et al.

in an MDO framework. In: 7th AIAA/USAF/NASA/ISSMO

symposium on multidisciplinary analysis and optimiza-

tion. American Institute of Aeronautics and Astronautics.

https://doi.org/10.2514/6.1998-4959

Graf P, Dykes K, Damiani R, Jonkman J, Veers P (2018) Adaptive

stratified importance sampling: hybridization of extrapolation and

importance sampling Monte Carlo methods for estimation of

wind turbine extreme loads. Wind Energy Science (Online) 3(2).

https://doi.org/10.5194/wes-3-475-2018

Gray J, Moore KT, Naylor BA (2010) OpenMDAO: an open

source framework for multidisciplinary analysis and optimization.

In: Proceedings of the 13th AIAA/ISSMO multidisciplinary

analysis optimization conference, Fort Worth, TX, AIAA, 2010-

9101

Gray J, Moore KT, Hearn TA, Naylor BA (2013) Standard

platform for benchmarking multidisciplinary design analysis

and optimization architectures. AIAA J 51(10):2380–2394.

https://doi.org/10.2514/1.J052160

Gray J, Hearn T, Moore K, Hwang JT, Martins JRRA, Ning

A (2014) Automatic evaluation of multidisciplinary derivatives

using a graph-based problem formulation in OpenMDAO. In:

Proceedings of the 15th AIAA/ISSMO multidisciplinary analysis

and optimization conference, Atlanta. https://doi.org/10.2514/

6.2014-2042

Gray J, Mader CA, Kenway GKW, Martins JRRA (2018a) Modeling

boundary layer ingestion using a coupled aeropropulsive analysis.

J Aircr 55(3):1191–1199. https://doi.org/10.2514/1.C034601

Gray JS, Martins JRRA (2018) Coupled aeropropulsive design

optimization of a boundary layer ingestion propulsor. The

Aeronautical Journal. https://doi.org/10.1017/aer.2018.120, (In

press)

Gray JS, Chin J, Hearn T, Hendricks E, Lavelle T, Martins JRRA

(2017) Chemical equilibrium analysis with adjoint derivatives

for propulsion cycle analysis. J Propuls Power 33(5):1041–1052.

https://doi.org/10.2514/1.B36215

Gray JS, Kenway GKW, Mader CA, Martins JRRA (2018b) Aero-

propulsive design optimization of a turboelectric boundary layer

ingestion propulsion. In: AIAA aviation technology, integra-

tion and operations conference. Atlanta. https://doi.org/10.25

14/6.2018-3976

Griewank A (2000) Evaluating derivatives. SIAM, Philadelphia

Haftka RT (1977) Optimization of flexible wing structures subject to

strength and induced drag constraints. AIAA J 15(8):1101–1106.

https://doi.org/10.2514/3.7400

Haftka RT, Sobieszczanski-Sobieski J, Padula SL (1992) On options

for interdisciplinary analysis and design optimization. Struct

Optim 4:65–74. https://doi.org/10.1007/BF01759919

He P, Mader CA, Martins JRRA, Maki KJ (2018) An aero-

dynamic design optimization framework using a discrete

adjoint approach with OpenFOAM. Comput Fluids 168:285–303.

https://doi.org/10.1016/j.compfluid.2018.04.012

Hearn DT, Hendricks E, Chin J, Gray JS, Moore DKT (2016)

Optimization of turbine engine cycle analysis with analytic

derivatives. In: 17th AIAA/ISSMO multidisciplinary analysis

and optimization conference, part of AIAA Aviation 2016

(Washington, DC). https://doi.org/10.2514/6.2016-4297

Heath C, Gray J (2012) OpenMDAO: framework for flexible

multidisciplinary design, analysis and optimization methods. In:

Proceedings of the 53rd AIAA structures, structural dynamics and

materials conference, Honolulu, HI, AIAA-2012-1673

Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement

fluid–structure interaction problems: segregated versus monolithic

approaches. Comput Mech 43(1):91–101. https://doi.org/10.1007

/s00466-008-0270-6

Hwang JT, Martins JRRA (2015) Parallel allocation-mission opti-

mization of a 128-route network. In: Proceedings of the 16th

AIAA/ISSMO multidisciplinary analysis and optimization confer-

ence. Dallas. https://doi.org/10.2514/6.2015-2321

Hwang JT, Martins JRRA (2018) A computational architecture

for coupling heterogeneous numerical models and comput-

ing coupled derivatives. ACM Trans Math Softw 44(4):37.

https://doi.org/10.1145/3182393

Hwang JT, Munster DW (2018) Solution of ordinary differen-

tial equations in gradient-based multidisciplinary design opti-

mization. In: 2018 AIAA/ASCE/AHS/ASC structures, struc-

tural dynamics, and materials conference. Kissimmee, FL.

https://doi.org/10.2514/6.2018-1646

Hwang JT, Ning A (2018) Large-scale multidisciplinary opti-

mization of an electric aircraft for on-demand mobility.

In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynam-

ics, and materials conference. AIAA AIAA, Kissimmee.

https://doi.org/10.2514/6.2018-1384

Hwang JT, Lee DY, Cutler JW, Martins JRRA (2014) Large-

scale multidisciplinary optimization of a small satellite’s

design and operation. J Spacecr Rocket 51(5):1648–1663.

https://doi.org/10.2514/1.A32751

Hwang JT, Jasa J, Martins JRRA (2019) High-fidelity design-

allocation optimization of a commercial aircraft maximizing air-

line profit. Journal of Aircraft. https://doi.org/10.2514/1.C035082,

(In press)

Jameson A (1988) Aerodynamic design via control theory. J Sci

Comput 3(3):233–260

Jasa JP, Hwang JT, Martins JRRA (2018a) Design and trajectory

optimization of a morphing wing aircraft. In: 2018 AIAA/

ASCE/AHS/ASC structures, structural dynamics, and materials

conference. AIAA SciTech Forum, Orlando. https://doi.org/10.

2514/6.2018-1382

Jasa JP, Hwang JT, Martins JRRA (2018b) Open-source coupled

aerostructural optimization using Python. Struct Multidiscip

Optim 57:1815–1827. https://doi.org/10.1007/s00158-018-1912-8

Jasa JP, Mader CA, Martins JRRA (2018c) Trajectory optimization

of supersonic air vehicle with thermal fuel management system.

In: AIAA/ISSMO multidisciplinary analysis and optimization

conference. Atlanta. https://doi.org/10.2514/6.2018-3884

Jones M, Plassmann P (1993) A parallel graph coloring heuristic.

SIAM J Sci Comput 14(3):654–669. https://doi.org/10.1137/

0914041

Karp RM, Wigderson A (1985) A fast parallel algorithm for

the maximal independent set problem. J Assoc Comput Mach

32(4):762–773

Kenway GKW, Martins JRRA (2016) Multipoint aerodynamic shape

optimization investigations of the Common Research Model wing.

AIAA J 54(1):113–128. https://doi.org/10.2514/1.J054154

Kennedy GJ, Hicken JE (2015) Improved constraint-aggregation

methods. Comput Methods Appl Mech Eng 289:332–354.

https://doi.org/10.1016/j.cma.2015.02.017

Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice

M, Bell J, Brown J, Clo A, Connors J, Constantinescu E, Estep

D, Evans K, Farhat C, Hakim A, Hammond G, Hansen G, Hill

J, Isaac T, Jiao X, Jordan K, Kaushik D, Kaxiras E, Koniges A,

Lee K, Lott A, Lu Q, Magerlein J, Maxwell R, McCourt M, Mehl

M, Pawlowski R, Randles AP, Reynolds D, Riviere B, Rude U,

Scheibe T, Shadid J, Sheehan B, Shephard M, Siegel A, Smith B,

Tang X, Wilson C, Wohlmuth B (2013) Multiphysics simulations:

challenges and opportunities. Int J High Perform Comput Appl

27(1):4–83. https://doi.org/10.1177/1094342012468181

Kolonay RM, Sobolewski M (2011) Service oriented computing

environment (SORCER) for large scale, distributed, dynamic

https://doi.org/10.2514/6.1998-4959
https://doi.org/10.5194/wes-3-475-2018
https://doi.org/10.2514/1.J052160
https://doi.org/10.2514/6.2014-2042
https://doi.org/10.2514/6.2014-2042
https://doi.org/10.2514/1.C034601
https://doi.org/10.1017/aer.2018.120
https://doi.org/10.2514/1.B36215
https://doi.org/10.2514/6.2018-3976
https://doi.org/10.2514/6.2018-3976
https://doi.org/10.2514/3.7400
https://doi.org/10.1007/BF01759919
https://doi.org/10.1016/j.compfluid.2018.04.012
https://doi.org/10.2514/6.2016-4297
https://doi.org/10.1007/s00466-008-0270-6
https://doi.org/10.1007/s00466-008-0270-6
https://doi.org/10.2514/6.2015-2321
https://doi.org/10.1145/3182393
https://doi.org/10.2514/6.2018-1646
https://doi.org/10.2514/6.2018-1384
https://doi.org/10.2514/1.A32751
https://doi.org/10.2514/1.C035082
https://doi.org/10.2514/6.2018-1382
https://doi.org/10.2514/6.2018-1382
https://doi.org/10.1007/s00158-018-1912-8
https://doi.org/10.2514/6.2018-3884
https://doi.org/10.1137/0914041
https://doi.org/10.1137/0914041
https://doi.org/10.2514/1.J054154
https://doi.org/10.1016/j.cma.2015.02.017
https://doi.org/10.1177/1094342012468181

OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization 1103

fidelity aeroelastic analysis. In: Optimization, international

forum on aeroelasticity and structural dynamics, IFASD 2011,

26-30

Kreisselmeier G, Steinhauser R (1979) Systematic control design

by optimizing a vector performance index. In: International

federation of active controls symposium on computer-aided

design of control systems. Zurich. https://doi.org/10.1016/S14

74-6670(17)65584-8

Lam R, Poloczek M, Frazier P, Willcox KE (2018) Advances in

Bayesian optimization with applications in aerospace engineering.

In: 2018 AIAA non-deterministic approaches conference, p 1656.

https://doi.org/10.2514/6.2018-1656

Lambe AB, Martins JRRA (2012) Extensions to the design structure

matrix for the description of multidisciplinary design, analysis,

and optimization processes. Struct Multidiscip Optim 46:273–284.

https://doi.org/10.1007/s00158-012-0763-y
Lambe AB, Martins JRRA, Kennedy GJ (2017) An evaluation of

constraint aggregation strategies for wing box mass minimization.

Struct Multidiscip Optim 55(1):257–277. https://doi.org/10.1007

/s00158-016-1495-1
Lyu Z, Kenway GK, Paige C, Martins JRRA (2013) Auto-

matic differentiation adjoint of the Reynolds-averaged

Navier–Stokes equations with a turbulence model. In: 21st

AIAA computational fluid dynamics conference. San Diego.

https://doi.org/10.2514/6.2013-2581
Mader CA, Martins JRRA, Alonso JJ, van der Weide E (2008)

ADJoint: an approach for the rapid development of discrete

adjoint solvers. AIAA J 46(4):863–873. https://doi.org/10.2514/

1.29123
Marriage CJ, Martins JRRA (2008) Reconfigurable semi-analytic

sensitivity methods and MDO architectures within the πMDO

framework. In: Proceedings of the 12th AIAA/ISSMO multidis-

ciplinary analysis and optimizaton conference Victoria. British

Columbia. https://doi.org/10.2514/6.2008-5956
Martins JRRA, Hwang JT (2013) Review and unification of meth-

ods for computing derivatives of multidisciplinary computa-

tional models. AIAA J 51(11):2582–2599. https://doi.org/10.25

14/1.J052184
Martins JRRA, Hwang JT (2016) Multidisciplinary design optimiza-

tion of aircraft configurations—part 1: a modular coupled adjoint

approach. Lecture series, Von Karman Institute for Fluid Dynam-

ics, Rode Saint Genèse, Belgium, ISSN0377-8312
Martins JRRA, Lambe AB (2013) Multidisciplinary design opti-

mization: a survey of architectures. AIAA J 51(9):2049–2075.

https://doi.org/10.2514/1.J051895
Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-step

derivative approximation. ACM Trans Math Softw 29(3):245–262.

https://doi.org/10.1145/838250.838251
Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostruc-

tural design optimization of a supersonic business jet. J Aircr

41(3):523–530. https://doi.org/10.2514/1.11478
Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled-adjoint

sensitivity analysis method for high-fidelity aero-structural

design. Optim Eng 6(1):33–62. https://doi.org/10.1023/B:OPTE.

0000048536.47956.62
Martins JRRA, Marriage C, Tedford NP (2009) pyMDO: an object-

oriented framework for multidisciplinary design optimization.

ACM Trans Math Softw 36(4):20:1–20:25. https://doi.org/10.11

45/1555386.1555389
McWilliam MK, Zahle F, Dicholkar A, Verelst D, Kim T (2018)

Optimal aero-elastic design of a rotor with bend-twist coupling.

J Phys Conf Ser 1037(4):042009. http://stacks.iop.org/1742-6596/

1037/i=4/a=042009
Moore K, Naylor B, Gray J (2008) The development of an open-source

framework for multidisciplinary analysis and optimization. In:

Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis

and optimization conference. Victoria, BC, Canada, AIAA 2008-

6069

Naumann U (2011) The art of differentiating computer programs—an

introduction to algorithmic differentiation. SIAM

Nielsen EJ, Kleb WL (2006) Efficient construction of discrete adjoint

operators on unstructured grids using complex variables. AIAA J

44(4):827–836. https://doi.org/10.2514/1.15830

Ning A, Petch D (2016) Integrated design of downwind land-based

wind turbines using analytic gradients. Wing Energy 19(12):2137–

2152. https://doi.org/10.1002/we.1972

Oliphant TE (2007) Python for scientific computing. Comput Sci Eng

9(3):10. https://doi.org/10.1109/MCSE.2007.58

Padula SL, Gillian RE (2006) Multidisciplinary environments: a his-

tory of engineering framework development. In: Proceedings

of the 11th AIAA/ISSMO multidisciplinary analysis and opti-

mization conference, AIAA 2006-7083. https://doi.org/10.2514/6.

2006-7083

Palar PS, Shimoyama K (2017) Polynomial-chaos-kriging-assisted

efficient global optimization. In: 2017 IEEE symposium series on

computational intelligence (SSCI). IEEE, pp 1–8. https://doi.org/

10.1109/SSCI.2017.8280831

Peherstorfer B, Beran PS, Willcox KE (2018) Multifidelity Monte

Carlo estimation for large-scale uncertainty propagation. In:

2018 AIAA non-deterministic approaches conference, p 1660.

https://doi.org/10.2514/6.2018-1660

Peter JEV, Dwight RP (2010) Numerical sensitivity analysis for

aerodynamic optimization: a survey of approaches. Comput Fluids

39(3):373–391. https://doi.org/10.1016/j.compfluid.2009.09.013

Reuther JJ, Jameson A, Alonso JJ, Rimlinger MJ, Saunders D (1999)

Constrained multipoint aerodynamic shape optimization using

an adjoint formulation and parallel computers, part 1. J Aircr

36(1):51–60. https://doi.org/10.2514/2.2413

Roy S, Crossley WA, Moore KT, Gray JS, Martins JRRA (2018a)

Next generation aircraft design considering airline operations

and economics. In: 2018 AIAA/ASCE/AHS/ASC structures,

structural dynamics, and materials conference. Kissimmee, FL.

https://doi.org/10.2514/6.2018-1647

Roy S, Crossley WA, Moore KT, Gray JS, Martins JRRA

(2018b) Next generation aircraft design considering airline

operations and economics. In: AIAA/ASCE/AHS/ASC struc-

tures, structural dynamics and materials conference. Kissimmee.

https://doi.org/10.2514/6.2018-1647

Salas AO, Townsend JC (1998) Framework requirements for MDO

application development. In: 7th AIAA/USAF/NASA/ISSMO

symposium on multidisciplinary analysis and optimization, pp

98–4740

Schnulo SL, Jeff Chin RDF, Gray JS, Papathakis KV, Clarke

SC, Reid N, Borer NK (2018) Development of a multi-

segment mission planning tool for SCEPTOR X-57. In: 2018

multidisciplinary analysis and optimization conference AIAA.

Atlanta. https://doi.org/10.2514/6.2018-3738

Sobieszczanski-Sobieski J (1990) Sensitivity of complex, internally

coupled systems. AIAA J 28(1):153–160. https://doi.org/10.251

4/3.10366

Squire W, Trapp G (1998) Using complex variables to estimate

derivatives of real functions. SIAM Rev 40(1):110–112

Stanley APJ, Ning A (2018) Coupled wind turbine design and layout

optimization with non-homogeneous wind turbines. Wind Energy

Science. https://doi.org/10.5194/wes-2018-54

Tedford NP, Martins JRRA (2006) On the common structure of MDO

problems: a comparison of architectures. In: Proceedings of the

11th AIAA/ISSMO multidisciplinary analysis and optimization

conference. Portsmouth, VA, AIAA 2006-7080

https://doi.org/10.1016/S1474-6670(17)65584-8
https://doi.org/10.1016/S1474-6670(17)65584-8
https://doi.org/10.2514/6.2018-1656
https://doi.org/10.1007/s00158-012-0763-y
https://doi.org/10.1007/s00158-016-1495-1
https://doi.org/10.1007/s00158-016-1495-1
https://doi.org/10.2514/6.2013-2581
https://doi.org/10.2514/1.29123
https://doi.org/10.2514/1.29123
https://doi.org/10.2514/6.2008-5956
https://doi.org/10.2514/1.J052184
https://doi.org/10.2514/1.J052184
https://doi.org/10.2514/1.J051895
https://doi.org/10.1145/838250.838251
https://doi.org/10.2514/1.11478
https://doi.org/10.1023/B:OPTE.0000048536.47956.62
https://doi.org/10.1023/B:OPTE.0000048536.47956.62
https://doi.org/10.1145/1555386.1555389
https://doi.org/10.1145/1555386.1555389
http://stacks.iop.org/1742-6596/1037/i=4/a=042009
http://stacks.iop.org/1742-6596/1037/i=4/a=042009
https://doi.org/10.2514/1.15830
https://doi.org/10.1002/we.1972
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.2514/6.2006-7083
https://doi.org/10.2514/6.2006-7083
https://doi.org/10.1109/SSCI.2017.8280831
https://doi.org/10.1109/SSCI.2017.8280831
https://doi.org/10.2514/6.2018-1660
https://doi.org/10.1016/j.compfluid.2009.09.013
https://doi.org/10.2514/2.2413
https://doi.org/10.2514/6.2018-1647
https://doi.org/10.2514/6.2018-1647
https://doi.org/10.2514/6.2018-3738
https://doi.org/10.2514/3.10366
https://doi.org/10.2514/3.10366
https://doi.org/10.5194/wes-2018-54

1104 J. S. Gray et al.

Tedford NP, Martins JRRA (2010) Benchmarking multidisciplinary

design optimization algorithms. Optim Eng 11(1):159–183.

https://doi.org/10.1007/s11081-009-9082-6

Thomas J, Gebraad P, Ning A (2017) Improving the FLORIS

wind plant model for compatibility with gradient-based opti-

mization. Wind Eng 41(5):313–329. https://doi.org/10.1177/030

9524X17722000

Tracey BD, Wolpert D (2018) Upgrading from Gaussian processes

to student’s-T processes. In: 2018 AIAA non-deterministic

approaches conference, p 1659. https://doi.org/10.2514/6.20

18-1659

Welsh DJA, Powell MB (1967) An upper bound for the chro-

matic number of a graph and its application to timetabling

problems. Comput J 10(1):85–86. https://doi.org/10.1093/comjnl/

10.1.85

Zahle F, Tibaldi C, Pavese C, McWilliam MK, Blasques JPAA, Hansen

MH (2016) Design of an aeroelastically tailored 10 MW wind

turbine rotor. J Phys Conf Ser 753(6):062008. http://stacks.iop.

org/1742-6596/753/i=6/a=062008

Zahle F, Sørensen NN, McWilliam MK, Barlas A (2018) Com-

putational fluid dynamics-based surrogate optimization of a

wind turbine blade tip extension for maximising energy pro-

duction. In: Journal of Physics: Conference Series, The Sci-

ence of Making Torque from Wind, vol 1037. Milano.

https://doi.org/10.1088/1742-6596/1037/4/042013

Affiliations

Justin S. Gray1
· John T. Hwang2

· Joaquim R. R. A. Martins3
· Kenneth T. Moore4

· Bret A. Naylor4

John T. Hwang

jhwang@eng.ucsd.edu

Joaquim R. R. A. Martins

jrram@umich.edu

Kenneth T. Moore

kenneth.t.moore-1@nasa.gov

Bret A. Naylor

bret.a.naylor@nasa.gov

1 NASA Glenn Research Center, Cleveland, OH, USA
2 University of California, San Diego, San Diego, CA, USA
3 Department of Aerospace Engineering, University of Michigan,

Ann Arbor, MI, USA
4 DB Consulting Group (NASA Glenn Research Center), Cleveland,

OH, USA

https://doi.org/10.1007/s11081-009-9082-6
https://doi.org/10.1177/0309524X17722000
https://doi.org/10.1177/0309524X17722000
https://doi.org/10.2514/6.2018-1659
https://doi.org/10.2514/6.2018-1659
https://doi.org/10.1093/comjnl/10.1.85
https://doi.org/10.1093/comjnl/10.1.85
http://stacks.iop.org/1742-6596/753/i=6/a=062008
http://stacks.iop.org/1742-6596/753/i=6/a=062008
https://doi.org/10.1088/1742-6596/1037/4/042013
http://orcid.org/0000-0003-2143-1478
mailto: jhwang@eng.ucsd.edu
mailto: jrram@umich.edu
mailto: kenneth.t.moore-1@nasa.gov
mailto: bret.a.naylor@nasa.gov

	OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization
	Abstract
	Introduction
	Background
	Overview of OpenMDAO V2
	Basic description
	A simple example
	Approach and nomenclature
	Derivative computation
	Implementation of the simple example

	Theory
	Analytic methods: direct and adjoint
	Nonlinear problem formulation
	API for group and component classes

	Monolithic and hierarchical solution strategies
	Nonlinear solution strategy
	Monolithic nonlinear strategy
	Hierarchical nonlinear strategy

	Linear solution strategy
	Hierarchical linear strategy
	Monolithic linear strategy

	Performance study for mixed linear solver strategy

	Efficient methods for computing total derivatives of sparse models
	Combining multiple linear solutions using graph coloring
	Computational savings from combined linear solutions

	Sparsity from quasi-decoupled parallel models
	Computational savings from parallel reverse mode

	Applications
	Conclusions
	Replication of results
	Acknowledgements
	Compliance with ethical standards
	Conflict of interest
	Open Access
	Appendix A 1: Coloring of total derivative Jacobians
	1.1 Determining total derivative coloring
	1.2 Justification for coloring with randomized total derivative Jacobians
	 2: Equivalence between hierarchical and reduced-space Newton's methods*-3pt
	Appendix B 2: Equivalence between hierarchical and reduced-space Newton's methods*-3pt
	 3: Equivalence between recursive and hierarchical Broyden's methods
	Appendix C 3: Equivalence between recursive and hierarchical Broyden's methods
	3.1 Reduced-space Broyden
	3.2 Full-space Broyden
	Publisher's note
	References
	Affiliations

