
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

OpenMETA: A Model- and Component-Based Design

Tool Chain for Cyber-Physical Systems

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard

Institute for Software Integrated Systems (ISIS), Vanderbilt University

1025 16th Ave S, Suite 102, Nashville, TN 37212 USA

Ethan Jackson

Microsoft Research

One Microsoft Way, Redmond, WA 98052 USA

{sztipaj,sandeep,bapty,howardlp}@isis.vanderbilt.edu

ejackson@microsoft.com

Abstract. Model- and component-based design have yielded dramatic increase

in design productivity in several narrowly focused homogeneous domains, such

as signal processing, control and aspects of electronic design. However, signifi-

cant impact on the design and manufacturing of complex cyber-physical sys-

tems (CPS) such as vehicles has not yet been achieved. This paper describes

challenges of and solution approaches to building a comprehensive design tool

suite for complex CPS. The primary driver for the OpenMETA tool chain was

to push the boundaries of the “correct-by-construction” principle to decrease

significantly the costly design-build-test-redesign cycles in design flows. In the

discussions we will focus on the impact of heterogeneity in modeling CPS. This

challenge is compounded by the need for rapidly evolving the design flow by

changing/updating the selection of modeling languages, analysis and verifica-

tion tools and synthesis methods. Based on our experience with the develop-

ment of OpenMETA and with the evaluation of its performance in a complex

CPS design challenge we argue that the current vertically integrated, discipline-

specific tool chains for CPS design need to be complemented with horizontal

integration layers that support model integration, tool integration and design

process integration. This paper will examine the OpenMETA technical ap-

proach to construct the new integration layers, provides and overview of the

technical framework we established for their implementation and summarize

our experience with their application.

Keywords: Model-Based Design, Component-Based Design, Cyber Physical

Systems, Design Automation, Model-Integrated Computing, Domain-Specific

Modeling Language, Model Integration Language

1 Introduction

Model- and component-based design have been recognized as key technologies for

radically changing productivity of CPS design [1]. Model-based design uses formal

mailto:%7D@isis.vanderbilt.edu

and sufficiently complete models of physical and computational processes, their envi-

ronment and their interactions. These models are mathematically and physically accu-

rate for verifying and testing the behavior of the designed system against established

requirements. The main promise of model-based design is a significant decrease or

elimination of costly design-build-test-redesign iterations. The ultimate goal of mod-

el-based design is “correct-by-construction”, where properties of the synthesized

models of the designed system predict the properties of the implement-

ed/manufactured system with sufficient accuracy.

Component-based design constructs systems from reusable components. A compo-

nent is the superposition of two models: a behavior model and an interaction model

[2]. In a model-based design flow, models of components are used for constructing

valid system models. The promise of component-based design is the potentially mas-

sive productivity increase due to the reuse of design knowledge captured by the com-

ponent models.

While model- and component-based design methods and tools have demonstrated

significant success in several engineering domains, such as VLSI design, electronics

design and specific segments of software design [6], success has been elusive for

CPS. Among the reasons are the following technical barriers.

1. Heterogeneity of CPS models. Heterogeneity in CPS design has several dimen-

sions such as physical phenomena, levels of abstraction used in modeling physi-

cal and computational structures and processes, and engineering disciplines in-

volved in CPS design.

2. Heterogeneity of design tools. Tool chains that are used in traditional CPS design

flows are discipline oriented, vertically integrated and cover “islands” in the

overall design space. Integration across the tool suites is hard and usually not

supported.

3. Life-cycle heterogeneity. A unique aspect of CPS design is the significant impact

of manufacturing on system performance. In fact, design of the physical part of

the system needs to be integrated with the design of manufacturing processes that

will make those. Manufacturability constraints and properties of the system “as

manufactured” require tradeoffs with the design even in the early conceptual de-

sign phase.

Separation of concerns is a widely used strategy to deal with heterogeneity in the

design process. Its goal is to decrease design complexity by decomposing the overall

design problem according to physical phenomena (electrical, mechanical, thermal,

structural, etc…), level of abstraction (static, lumped parameter dynamics, distributed

parameter dynamics, etc…) or engineering discipline (performance, systems engi-

neering, software engineering, manufacturing, etc…). Consequences of this design

strategy are quite significant both in terms of weakening the opportunity for correct-

by-construction design, as well as performing cross-domain optimizations in CPS

design flows. The chief reason is that discipline oriented design flows usually miss

modeling interactions/interdependences among the various design views. The ap-

proach would work if the design concerns were orthogonal, but in tightly coupled

CPS this is not the case. The price of the simplification is decreased predictability of

properties of the implemented CPS and costly re-design cycles.

In 2010, the Defense Advanced Research Project Agency (DARPA) initiated the

Adaptive Vehicle Make (AVM) program
1
 to construct a fully integrated model- and

component-based design flow for the “make” process of complex cyber-physical

systems (CPS) [1]. The resulting integrated tool suite, OpenMETA, provides a manu-

facturing-aware design flow, which covers both cyber and physical design aspects. In

order to test and demonstrate the capabilities of the new design flow and the integrat-

ed tool suite in a real-life system, the AVM program also includes the Fast, Adapta-

ble, Next-Generation Ground Vehicle (FANG) design challenge sequence
2
. FANG is

a combined design and manufacturing effort constructing and building a new amphib-

ious vehicle (IFV) in three competitions: (1) Drive-train design challenge – FANG 1,

(2) Hull design challenge – FANG 2, and (3) Full vehicle design challenge – FANG

3. While the target system for the AVM program is ground vehicle, the created infra-

structure for model- and component-based design is generic and targets radical

changes in the overall “make” process of large CPS systems. Through our work in

leading the research on the open-source design tool suite, OpenMETA, the open-

source model exchange and web-based collaborative design environment, Vehi-

cleForge, and the curation effort for the FANG component model library, we had the

opportunity to gain experience with the challenges of using model- and component-

based design methods in large-scale CPS.

In this paper we focus on the impact of heterogeneity on the OpenMETA tool ar-

chitecture. We argue that the primary barriers to apply model- and component-based

design flows for CPS are the lack of the following three integration frameworks:

1. Model Integration Framework. Model integration is required for expressing in-

teractions across modeling domains - creating the need for multi-modeling. Semantic

heterogeneity of domain specific modeling languages (DSMLs) used in different

modeling views and the fact that DSMLs in CPS subdomains evolve more or less

independently, further add to the modeling language and model integration challenge.

The overall semantic complexity of CPS modeling domains and the differences

among CPS product categories make the development and standardization of some

form of unified CPS multi-modeling languages impractical. Instead, a different solu-

tion is needed that enables the semantically sound integration of modeling domains.

2. Tool Integration Framework. End-to-end tooling for complex CPS product lines

such as automotive and aerospace systems is too heterogeneous and extends to too

many technical areas for a single tool vendors to fully cover. In addition, significant

part of the companies’ design flow is supported by in-house tools that are proprietary

and capture high value design IP. Integration of end-to-end tool chains for highly

automated execution of design flows is such a complex task that successful examples

are hard to find – even after massive investment by OEMs. Change demands robust

tool integration frameworks that go well beyond the semantically weak and necessari-

ly fragile ad-hoc connection among tools.

1 http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx
2http://www.darpa.mil/Our_Work/TTO/Programs/AVM/AVM_Design_Competitions_(FANG)

.aspx

3. Execution Integration Platform. The dominant approach in current tool suites is

desktop integration using platforms such as Microsoft’s Visual Studio
3
, or Eclipse

4
.

However, overall complexity and heterogeneity of CPS tool chains increasingly de-

mand the use of software as a service (SaaS) models, web-based tool integration plat-

forms, high performance cloud-based back-ends for model repositories and web-

based distributed collaboration services.

The rest of the paper has the following structure. First, we provide an overview of

the three layers and their relationships. Next, we analyze the challenges and lessons

learned in the design and implementation of the Model Integration Framework and

show the significance of Model Integration Languages in CPS design flows. Finally

we discuss application experience and summarize the ongoing research efforts.

2 OpenMETA Integration Layers

Achieving the goal of “correct-by-construction” design requires that models and

analysis methods in the design phase predict with the required accuracy the behavior

of the designed system. Our approach to improve the predictability of design has been

the explicit modeling of multi-physics, multi-abstraction and multi-fidelity interac-

tions and providing methods for composing heterogeneous component models.

The OpenMETA design flow is implemented as a multi-model composi-

tion/synthesis process that incrementally shapes and refines the design space using

formal, manipulable models [3][19]. The model composition and refinement process

3 http://www.visualstudio.com/
4 http://www.eclipse.org/

1/13/2014

Master Interpreter

Components Designs
Design
Spaces

Test
Benches

Parametric
Explorations

PET/PCC
Generator

Modelica
CAD
CFD
FEA

Blast
Ballistics

Formal
Verif.

. . .

.py files
.mo

.cmd
.xml
.cmd

.xml
.cmd

.mo
.json
.cmd

. . .

Execution Integration
Platform

Job Manager
(client application)

Local VehicleForge Jenkins

Project Analyzer – Dashboard
(offline or online; runs in a web browser)

Remote

used used used used

File system and/or on VehicleForge .mat
.json

.stp
.asm
.xml
.json

.stp
.asm
.xml
.json

.xml
.json

. . .
.csv
.json

Dymola

Open
Modelica

Creo
OpenFO

AM
Nastran

SwRI
tools

QR
HybridSa

l
. . . OpenMDAO

Perform
analysis

Tool Integration Framework

Component
Generator

Design
Generator

.ACM files .ADM files

Model Integration Framework
Modeling &

Model- Synthesis

Results storage

Visualization
of results

Figure 1: OpenMETA integration frameworks

is intertwined with testing and analysis steps to validate and verify requirements and

to guide the design process toward the least complex, therefore the least risky and

least expensive solutions. The design flow follows a progressive refinement strategy,

starting with early design-space exploration covering very large design spaces using

abstract, lower fidelity models and progressing toward increasingly complex, higher

fidelity models and focusing on rapidly decreasing number of candidate designs.

The META design flow proceeds in the following main phases:

1. Combinatorial design space exploration using static finite domain constraints and

architecture evaluation.

2. Behavioral design space exploration by progressively deepening from qualitative

discrete behaviors to precisely formulated relational abstractions and to quantita-

tive multi-physics, lumped parameter hybrid dynamic models using both deter-

ministic and probabilistic approaches.

3. Geometric/Structural Design Space Exploration coupled with physics-based non-

linear finite element analysis of thermal, mechanical and mobility properties.

4. Cyber design space exploration (both HW and SW) integrated with system dy-

namics.

As discussed before, automation of the design flow leads to complex integration

challenges that we decomposed into three integration layers shown in Figure 1. Ele-

ments of the framework reflect primarily the FANG 1 drive-train challenge, but the

basic structure of the integration architecture remains the same for the FANG 2 hull

design challenge as well, with larger emphasis on 3-D/CAD tools and a range of finite

element analysis for verifying blast protection and hydrodynamic requirements.

In the following sections we describe each integration framework with more em-

phasis on model integration.

3 Model Integration Framework – Semantic Integration

The modeling and model-synthesis functions of the OpenMETA design flow is

built on the introduction of the following model types:

1. AVM Component Models (ACM) with standard, composable interfaces

2. Design Models (DM) that describe component architectures and related con-

straints

3. Design Space Models (DSM) that define structural and architectural variabilities

4. Test Bench Models (TBM) representing environment inputs, composed system

models connected to a range of testing and verification tools for key performance

parameters, and

5. Parametric Exploration Models (PEM) for specifying regions in the design space

to be used for optimization and models for complex analysis flows producing re-

sults such as Probabilistic Certification of Correctness (PCC).

In META, as well as in all other approaches to model-based design, modeling lan-

guages and their underlying semantics play a fundamental role in achieving composi-

tionality. Heterogeneity of the multi-physics, multi-abstraction and multi-fidelity

design space, and the need for rapidly evolving/updating design flows require the use

of a rich set of modeling languages usually influenced/determined by existing and

emerging model-based design, verification and simulation technologies and tools.

Consequently, the language suite and the related infrastructure cannot be static; it will

continuously evolve. To address both heterogeneity and evolvability simultaneously,

we departed from the most frequently used approach to address heterogeneity: the

development or adoption of a very broad and necessarily hugely complex language

standard designed for covering all relevant views of a multi-physics and cyber do-

mains. Instead, we placed emphasis on the development of a model integration lan-

guage – CyPhyML – with constructs limited to modeling the interactions among dif-

ferent modeling views (see Figure 2).

3.1 Model Integration Language and Semantic Interfaces

CyPhyML targets multi-modeling – it advances multi-modeling from a mere “en-

semble” of models to a formally and precisely integrated, mathematically sound suite

of models. Integration of the modeling language suite by CyPhyML is minimal in a

sense that only those abstractions that are imported from the individual languages to

CyPhyML are those required those for modeling cross-domain interactions. Since the

suite of engineering tools is changing and the modeling languages of the individual

tools (such e.g. Modelica) evolve independently from the model integration frame-

work, CyPhyML is constructed as a light-weight, evolvable, composable integration

language that is frequently updated and morphed. While these DSMLs may be indi-

vidually quite complex (Modelica, Simulink, SystemC, etc.) ChyPhyML is relatively

simple and easily evolvable. This “semantic interface” between CyPhyML and the

domain specific modeling languages (DSML) (Figure 2) is formally defined, evolved

as needed, and verified for essential properties (such as well-formedness and con-

sistency) using the methods and tools of formal metamodeling [4][7]. By design, Cy-

PhyML is moving in the opposite direction to unified system design languages, such

CyPhy
MetaModels

SL/SF Int.
MetaModel

CAD Integration
MetaModel

CAD Integration
MetaModel

Semantic
Interface

Domain Specific Tools and Frameworks

Pro-E
Dymola

Integration
MetaModels

CyPhy
SL/SF

CyPhy
 SEER

CyPhy
 CAD

Semantic
Backplane

A

V

M

O

P

E

N

M

E

T

A

Model Integration Language - CyPhyML
Hierarchical Ported Models /Interconnects
Structured Design Spaces
Model Composition Operators

Structural
Semantics

Transformation
Semantics

Behavioral
Semantics

Figure 2: Model Integration Framework

as SySML or AADL. Its goal is specificity as opposed to generality, and heavy

weight standardization is replaced by layered language architecture and specification

of explicit semantics.

3.2 Semantic Backplane of Open META

The “cost” of introducing a dynamic model integration language is that a mathe-

matically precise formal semantics for model integration had to be developed. The

OpenMETA Semantic Backplane [4][22][23] is at the center of our semantic integra-

tion concept. The key idea is to define the structural [5] and behavioral semantics [8]

of the CyPhy model integration language using formal metamodeling, and use a tool

supported formal framework for updating the CyPhy metamodels and verifying its

overall consistency and completeness as the modeling languages are evolving. The

selected tool for formal metamodeling is FORMULA
5
 from Microsoft Research [10].

FORMULA’s algebraic data types (ADTs) and constraint logic programming (CLP)

based semantics is rich enough for defining mathematically modeling domains, trans-

formations across domains, as well as constraints over domains and transformations.

In the followings we provide a brief summary of the basic elements of the mathemati-

cal framework used in the Semantic Backplane.

Structural semantics of modeling languages represents the domain of well-formed

models [5]. Domains are modeled as a term algebra whose function symbols charac-

terize the key sets and relations through uninterpreted functions. A syntactic instance

of some structural semantics is a finite set of terms over its term algebra TΥ(Σ), where

Σ is an infinite alphabet of constants, Υ is a finite set of n-ary function symbols (sig-

nature) standing for uninterpreted functions, and the algebra is inductively defined as

the set of all terms that can be constructed from Σ and Υ. A syntactic instance of some

structural semantics is a finite set of terms over its term algebra TΥ(Σ).The set of all

syntactic instances is then the power set of its term algebra: P(TΥ(Σ)).

To avoid the many unintended instances of the syntax of a modeling language,

FORMULA enriches term algebra semantics with types by reconstructing Σ as the

union of smaller alphabets and alphabets are ordered by set inclusion. Structural se-

mantics often contain complex conformance rules; these rules cannot be captured by

simple-type systems. One common solution to this problem is to provide an addition-

al constraint language for expressing syntactic rules such as the Object Constraint

Language (OCL). Unlike other approaches, FORMULA choose Constraint Logic

Programming (CLP) to represent syntactic constraints because it can extend term

algebra semantics while supporting declarative rules and unlike purely algebraic spec-

ifications it provides a clear execution semantics for logic programs making it possi-

ble to specify model transformations in the same framework. FORMULA supports a

class of logic programs with the following properties: (1) expressions may contain

uninterpreted function symbols, (2) the semantics for negation is negation as finite

failure, (3) all logic programs must be stratified and (4) supports fixpoint logic over

theories [13][14].

5 http://research.microsoft.com/formula

Expressiveness of the formal framework discussed up to this point is sufficient for

formalizing structural semantics, but does not support yet the specification of behav-

ioral semantics. Since multi-physical modeling of systems requires modeling lan-

guages for continuous (DAE, PDE), discrete and hybrid dynamics, semantics need to

be defined both denotationally and operationally [4]. Fortunately, the key to formali-

zation in both cases is the development of precise specification of model transfor-

mations. In addition, formal modeling of model transformation are fundamental in all

design automation frameworks, because they are used pervasively in integrating tool

chains. In the OpenMETA Semantic Backplane, model transformations are encoded

as logic programs where data types distinguish the inputs and outputs of the transfor-

mation [10]. For example:

Filter = out.MetaNode(x) :- in.MetaNode(x).

The constructor in.MetaNode() stands for primitives at the input of the transfor-

mation. Similarly, out.MetaNode() stands for primitives on the output of the trans-

formation. A transformation is executed by providing an interpretation for the input

primitives, and then computing the output primitives according to the CLP semantics.

Specifying model transformations in the same CLP framework has fundamental ad-

vantages in allowing reasoning over the fully integrated representation of the input

and output domains (e.g. proving that selected invariants will hold before and after the

transformation).

While ADTs and CLP are sufficient for defining complex modeling domains and

transformations, consistency checking and constructive modeling (model finding)

[10] require the generation of automatic proofs from formal specifications by solving

CLP satisability problems. Satisfiability is different from checking satisfaction of

goals that be solved by simply running a logic program. It is to determine if a CLP

program can be extended by a finite set of facts so that a goal is satisfied [9][16]. It

requires searching through (infinitely) many possible extensions, which we achieve

by efficient forward symbolic execution. FORMULA achieves this by efficient for-

ward symbolic execution of logic program into the state-of-the-art satisfiability modu-

lo theories (SMT) solver Z3 [15]. As a result, specifications can include variables

ranging over infinite domains and rich data types (partial models). The method is

constructive; it returns extensions of the CLP program witnessing goal satisfaction.

An interesting application of this capability is design-space exploration [12].

The Model Integration Framework of OpenMETA (Figure 1) currently includes a

large suite of modeling languages and tools for multi-physics, multi-abstraction and

multi-fidelity modeling such as OpenModelica, Dymola, Bond Graphs, Sim-

ulink/Stateflow, STEP, ESMOL and many others. The CyPhyML model integration

language provides the integration across this heterogeneous modeling space and the

FORMULA - based Semantic Backplane provides the semantic integration for all

OpenMETA composition tools.

4 Tool Integration Framework

The OpenMETA Tool Integration Framework (see Figure 1) comprises a network

of model transformations that compose models for individual tools (e.g. Modelica

models from ChyPhyML design models and component models) and integrate model-

based design flows. Model-transformations are used in the following roles:

1. Packaging. Models are translated into a different syntactic form without chang-

ing their semantics. For example, AVM Component Models and AVM Design

Models are translated into standard Design Data Packages (Figure 1, .ACM and

.ADM files) for consumption by a variety of design analysis, manufacturability

analysis and repository tools.

2. Composition. Model- and component-based technologies are based on composing

different design artifacts (such as DAE-s for representing lumped parameter dy-

namics as Modelica equations [23], input models for verification tools [25], CAD

models of component assemblies [19], design space models [25], and many oth-

ers) from appropriate models of components and component architectures.

3. Virtual prototyping. Several test and verification methods (such as Probabilistic

Certificate of Correctness – PCC) require test benches that embed a virtual proto-

type of the designed system executing a mission scenario in some environment

(as defined in the requirement documents). We found distributed, multi-model

simulation platforms the most scalable solution for these tests. We selected the

High Level Architecture (HLA) as the distributed simulation platform and inte-

grated FMI Co-Simulation components with HLA [26].

4. Analysis flow. Parametric explorations of designs (PET), such as analyzing ef-

fects of structural parameters (e.g. length of vehicle) on vehicle performance, or

deriving PCC for performance properties frequently require complex analysis

flows that include a number of intermediate stages. Automating design space ex-

plorations require that Python files controlling the execution of these flows on the

Multidisciplinary Design Analysis and Optimization (OpenMDAO
6
) platform

(that we currently use in OpenMETA) are autogenerated from the test bench and

parametric exploration models (Figure 1).

Continuous evolution of the OpenMETA design flow makes it essential that the

modeling tool suite for ChyPhyML is metaprogramable [4][17][20][18] and all model

transformations used in the Composition Framework are formally specified as part of

the Semantic Backplane. We believe that the lack of these capabilities are significant

contributors to the failure of numerous large-scale model and tool integration efforts,

due to the fact that semantic errors are all but impossible to detect without formal

models.

Advantages of the Semantic Backplane and the logic-based formal framework is

particularly important in the specification of composition semantics for mixed, multi-

physical and computation modeling. For physical interactions, we chose acausal,

power flow oriented modeling (e.g. Modelica, Simscape or Bond Graph modeling

languages). In this approach, safe modeling of multi-physics interactions require rich

6 http://openmdao.org/

typing for expressing and enforcing connectivity constraints. Beyond these static con-

straints, the semantics of acausal physical interconnections are expressed using alge-

braic constraints over the effort and flow variables [3]. This leads to a formal compo-

sition semantics that is simply the merging of the DAE equations representing com-

ponent behaviors with the interconnection constraints [4]. Since our logic-based for-

mal framework is expressive enough for describing typing and variables ranging over

infinite domains and rich data types), description of composition semantics denota-

tionally is quite straightforward in FORMULA.

5 Execution Integration Platform

The OpenMETA model and tool integration technology needs an infrastructure for

creating and executing complex analysis flows including heterogeneous tool compo-

nents. Our Analysis and Execution Framework (Figure 1) includes a wide range of

cloud-deployed services such as component model repositories, ontology driven

search engine, collaboration mechanisms, and cloud-deployed tools for design space

exploration and data analytics. Our VehicleForge platform developed for DARPA’s

AVM program is essentially a gateway to shared resources and integrated services,

not all of which are collocated. A central aim was to provide users secure and central-

ly managed access to these resources without the responsibility to individually re-

spond to their evolution. An essential aspect of VehicleForge is its “software-as-a-

service” delivery model. It allows the low-cost access of end users (individuals, re-

search groups, and larger companies) to repositories, analytic services and design

tools, without the very high cost of acquiring and maintaining desktop engineering

tools.

Figure 3: VehicleForge Execution Integration Platform

Two key aspects of sustainability are addressed by this platform. The first is re-

source elasticity and service staging to address scalability and system-wide optimiza-

tion. This is a fundamental cloud computing rationale, which is predicated on the

dynamism of demand for various forms of infrastructure over time. The second, per-

haps more vital aspect, is managing the evolution of data, data representations, and

their use by services and service integrations over time.

6 Lessons Learned

The first release of the OpenMETA tool suite capable of model-based composi-

tional design, design-space exploration, multi-physics analysis and virtual perfor-

mance testing was used during the FANG 1 Mobility/Drivetrain Challenge from Jan-

uary15 to April 15, 2013. During this competitive design event, over 1000 competi-

tors organized into over 250 teams worked to design the drivetrain, suspension, pro-

pulsion elements and associated subsystems for FANG 1. The FANG component of

the AVM program is currently building the winning design using the capabilities of

the AVM program foundry, iFAB. Our team is currently expanding the OpenMETA

tool suite with modeling and analysis capabilities required for hull design with strong

focus on blast protection, structure, and fluid dynamics. This is preparation for the

upcoming FANG 2 design challenge in February 2014.

Our work in the AVM program yields to two different kinds of results. First, we

have created an end-to-end integrated tool suite, OpenMETA, that is now slated for

transitioning to both the industry and the academic research communities. To ease

transitioning and enable continued community-based development of OpenMETA,

most of the tools integrated into the tool suite are open source with liberal BSD or

MIT licensing. The second result is the insight we gained regarding promising direc-

tions and open problems in model- and component-based design. Below we list three

essential points we have identified.

1. Horizontal integration layers. CPS companies face immense pressures to deliver

safe and complex systems at low cost. End-to-end tooling for CPS industries is

too heterogeneous and spans too many technical areas for any single tool vendor

to fully support. In addition, CPS companies must develop, maintain and inte-

grate in-house, proprietary tools to remain competitive. Consequently, integration

of models and modeling languages in design flows, integration of tools into tool

chains capable for the highly automated execution of design processes have

emerged as a major challenge. Ad-hoc integration of models, tools and automated

analysis threads is fragile, intractable, error prone and extremely costly. An es-

sential insight of OpenMETA is that horizontal integration layers are fundamen-

tally important in end-to-end CPS design flows. Their complexity requires the

establishment of integration frameworks that provide the foundations and reusa-

ble, high-complexity components for rapid integration and evolution of CPS de-

sign tool chains.

2. Component model repositories. Component models capture reusable design

knowledge, therefore model repositories play crucial role in improving design

productivity. AVM components contain a suite of modeling views and their in-

teractions: static properties, structural, behavioral, geometric, cyber on multiple

levels of fidelity. Selected abstractions of these modeling views are exposed via

the components’ semantic interfaces for composition. Building reusable, com-

posable model libraries requires deep domain understanding and semantic rigor.

Open research topics include hard problems such as formal relationship among

modeling abstractions, establishing multiple fidelity levels, and understanding

methods for representing and managing uncertainties.

3. Goal-driven model composition. In real-life CPS, model composition methods

frequently lead to extremely large models. For example, composition of lumped

parameter physical dynamics easily produces models including tens of thousands

of equations with algebraic loops and non-linearities. A common problem is that

simulation and verification tools do not scale to this complexity. The most prom-

ising research direction we identified is goal directed composition, that composes

models according to the system property under study.

7 Acknowledgements

Authors are grateful for the advice and directions they received from Prof. Joseph

Sifakis and Prof. Alberto Sangiovanni-Vincentelli, members of the Senior Strategy

Group of the program. The OpenMETA and VehicleForge projects involve a large

group at ISIS/Vanderbilt. Authors recognize the exceptional contributions of Zsolt

Lattman, Adam Nagel, Jason Scott to OpenMETA. This research is supported by the

Defense Advanced Research Project Agency (DARPA) under award # HR0011-12-C-

0008 and the National Science Foundation under award # CNS-1035655.

References

1. Eremenko, Paul: “Philosophical Underpinnings of Adaptive Vehicle Make,” DARPA-

BAA-12-15. Appendix 1, December 5, 2011

2. Gossler, G., Sifakis, J.: “Composition for component-based modeling,” Science of Com-

puter Programming - Formal methods for components and objects pragmatic aspects and

applications, Pages 161 – 183, Volume 55 Issue 1-3, March 2005

3. Lattmann, Zs., Nagel, A., Scott, J., Smyth, K., vanBuskirk, C., Porter, J., Neema, S., Bap-

ty, T., Sztipanovits, J.: “Towards Automated Evaluation of Vehicle Dynamics in System-

Level Design,” Proceedings of the ASME 2012 International Design Engineering Tech-

nical Conferences & Computers and Information in Engineering Conference IDETC/CIE

2012 August 12-15, 2012, Chicago, IL

4. Simko, G., Levendovszky, T., Neema, S., Jackson, E., Bapty, T., Porter, J., Sztipanovits,

J.: “Foundation for Model Integration: Semantic Backplane” Proceedings of the ASME

2012 International Design Engineering Technical Conferences & Computers and Infor-

mation in Engineering Conference IDETC/CIE 2012 August 12-15, 2012, Chicago, IL-

Sztipanovits J., Karsai G.: Model-Integrated Computing. In: IEEE Computer 30, 1997, pp.

110-112.

5. Jackson, E., Sztipanovits, J.: ‘Formalizing the Structural Semantics of Domain-Specific

Modeling Languages,” Journal of Software and Systems Modeling pp. 451-478, Septem-

ber 2009

6. Sangiovanni-Vincentelli, A.: “Quo Vadis, SLD? Reasoning about the Trends and Chal-

lenges of System Level Design” Proc. of the IEEE, Vol. 95, No. 3. pp. 467-506, 2007

7. Jackson, E., Porter, J., Sztipanovits, J.: “Semantics of Domain Specific Modeling Lan-

guages” in P. Mosterman, G. Nicolescu: Model-Based Design of Heterogeneous Embed-

ded Systems. pp. 437-486, CRC Press, November 24, 2009

8. Kai Chen, Janos Sztipanovits, Sandeep Neema: “Compositional Specification of Behavior-

al Semantics,” in Design, Automation, and Test in Europe: The Most Influential Papers of

10 Years DATE, Rudy Lauwereins and Jan Madsen (Eds), Springer 2008.

9. E. K. Jackson and J. Sztipanovits, “Constructive Techniques for Meta- and Model-Level

Reasoning,” in Model Driven Engineering Languages and Systems, vol. 4735, G. Engels,

B. Opdyke, D. C. Schmidt, and F. Weil, Eds. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2007, pp. 405–419

10. E. K. Jackson, T. Levendovszky, and D. Balasubramanian, “Reasoning about Metamodel-

ing with Formal Specifications and Automatic Proofs,” in Model Driven Engineering Lan-

guages and Systems, vol. 6981, J. Whittle, T. Clark, and T. Kühne, Eds. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2011, pp. 653–667

11. Alberto Sangiovanni-Vincentelli, Sandeep Shukla, Janos Sztipanovits, Guang Yang. “Met-

amodeling: An Emerging representation Paradigm for System-Level Design,” IEEE De-

sign and Test of Computers May/June 2009

12. Jackson, E., Simko, G., Sztipanovits, J.: “Diversely Enumerating System‐Level Architec-

tures,” Proceedings of EMSOFT 2013, Embedded Systems Week, September 29-October

4, 2013 Montreal, CA

13. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of log-

ic programming. ACM Comput. Surv. 33(3) (2001) 374-425

14. E. K. Jackson and W. Schulte, “Model Generation for Horn Logic with Stratified Nega-

tion,” in Formal Techniques for Networked and Distributed Systems – FORTE 2008, vol.

5048, K. Suzuki, T. Higashino, K. Yasumoto, and K. El-Fakih, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 1–20.

15. de Moura, L.M., Bjoerner, N.: Z3: An efficient SMT solver. In: TACAS. (2008) 337-340

16. E. K. Jackson and J. Sztipanovits, “Constructive Techniques for Meta- and Model-Level

Reasoning,” in Model Driven Engineering Languages and Systems, vol. 4735, G. Engels,

B. Opdyke, D. C. Schmidt, and F. Weil, Eds. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2007, pp. 405–419

17. G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipanovits, “Composition and cloning

in modeling and meta-modeling,” IEEE Transactions on Control Systems Technology, vol.

12, no. 2, pp. 263– 278, Mar. 2004

18. Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprinkle, and G. Karsai,

“Composing Domain-Specific Design Environments,” IEEE Computer, vol. 34, no. 11, pp.

44–51, 2001.

19. Wrenn, R., Nagel, A., Owens, R., Yao, D., Neema, H., Shi, F., Smyth, K., vanBuskirk, C.,

Porter, J., Bapty, T., Neema, S., Sztipanovits, J., Ceisel, J., Mavris, D.: “Towards Auto-

mated Exploration and Assembly of Vehicle Design Models,” Proceedings of the ASME

2012 International Design Engineering Technical Conferences & Computers and Infor-

mation in Engineering Conference IDETC/CIE 2012 August 12-15, 2012, Chicago, IL

20. G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits. The model integrated computing tool

suite: Metaprogrammable tools for embedded control system design. In Proceedings of the

IEEE Joint Conference CCA, ISIC and CACSD, Munich, Germany, 2006

21. Janos Sztipanovits: “Cyber Physical Systems: Convergence of Physical and Information

Sciences” Information Technology, pp. 257-265, 6/2012, Oldenbourg Wissenschaftsver-

lag GmbH

22. Simko, G., Levendovszky, T., Maroti, M., & Sztipanovits, J.: “Towards a Theory for

Cyber-Physical Systems Modeling”. Proc. 3rd Workshop on Design, Modeling and Evalu-

ation of Cyber Physical Systems (CyPhy'13), April 08-11, 2013, Philadelphia, USA, pp. 1-

6

23. Simko, G., Lindecker, D., Levendovszky, T., Neema, S., & Sztipanovits, J. Specification

of Cyber-Physical Components with Formal Semantics–Integration and Composition. In

Model-Driven Engineering Languages and Systems (pp. 471-487). Springer Berlin Hei-

delberg.

24. Emeka Eyisi, Zhenkai Zhang, Xenofon Koutsoukos, Joseph Porter, Gabor Karsai, and

Janos Sztipanovits. "Model-Based Design and Integration of Cyber-Physical Systems: An

Adaptive Cruise Control Case Studies", Journal of Control Science and Engineering, Spe-

cial Issue on Embedded Model-Based Control. Volume 2013, Article ID 678016, 15 pag-

es, 2013

25. Peter Fritzson, Zsolt Lattmann, Adrian Pop, Johan de Kleer, Bill Janssen, Sandeep Neema,

Ted Bapty, Xenofon Koutsoukos, Matthew Klenk, Daniel Bobrow, Bhaskar Saha and Tol-

ga Kurtoglu. “Verification and Design Exploration through Meta Tool Integration with

OpenModelica” 10th International Modelica Conference 2014, Lund, Sweden March 10-

12, 2014

26. Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai, Sandeep

Neema, Ted Bapty, John Batteh and Hubertus Tummescheit. “Model-Based Integration

Platform for FMI Co-Simulation and Heterogeneous Simulations of Cyber-Physical Sys-

tems”. 10th International Modelica Conference 2014, Lund, Sweden March 10-12, 2014

