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Abstract. Model- and component-based design have yielded dramatic increase 

in design productivity in several narrowly focused homogeneous domains, such 

as signal processing, control and aspects of electronic design. However, signifi-

cant impact on the design and manufacturing of complex cyber-physical sys-

tems (CPS) such as vehicles has not yet been achieved. This paper describes 

challenges of and solution approaches to building a comprehensive design tool 

suite for complex CPS.  The primary driver for the OpenMETA tool chain was 

to push the boundaries of the “correct-by-construction” principle to decrease 

significantly the costly design-build-test-redesign cycles in design flows. In the 

discussions we will focus on the impact of heterogeneity in modeling CPS. This 

challenge is compounded by the need for rapidly evolving the design flow by 

changing/updating the selection of modeling languages, analysis and verifica-

tion tools and synthesis methods. Based on our experience with the develop-

ment of OpenMETA and with the evaluation of its performance in a complex 

CPS design challenge we argue that the current vertically integrated, discipline-

specific tool chains for CPS design need to be complemented with horizontal 

integration layers that support model integration, tool integration and design 

process integration. This paper will examine the OpenMETA technical ap-

proach to construct the new integration layers, provides and overview of the  

technical framework we established for their implementation and  summarize 

our experience with their application. 

Keywords: Model-Based Design, Component-Based Design, Cyber Physical 

Systems, Design Automation, Model-Integrated Computing, Domain-Specific 

Modeling Language, Model Integration Language 

1 Introduction 

Model- and component-based design have been recognized as key technologies for 

radically changing productivity of CPS design [1]. Model-based design uses formal 
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and sufficiently complete models of physical and computational processes, their envi-

ronment and their interactions. These models are mathematically and physically accu-

rate for verifying and testing the behavior of the designed system against established 

requirements. The main promise of model-based design is a significant decrease or 

elimination of costly design-build-test-redesign iterations. The ultimate goal of mod-

el-based design is “correct-by-construction”, where properties of the synthesized 

models of the designed system predict the properties of the implement-

ed/manufactured system with sufficient accuracy.  

Component-based design constructs systems from reusable components. A compo-

nent is the superposition of two models: a behavior model and an interaction model 

[2]. In a model-based design flow, models of components are used for constructing 

valid system models. The promise of component-based design is the potentially mas-

sive productivity increase due to the reuse of design knowledge captured by the com-

ponent models.  

While model- and component-based design methods and tools have demonstrated 

significant success in several engineering domains, such as VLSI design, electronics 

design and specific segments of software design [6], success has been elusive for 

CPS.   Among the reasons are the following technical barriers. 

1. Heterogeneity of CPS models. Heterogeneity in CPS design has several dimen-

sions such as  physical phenomena, levels of abstraction used in modeling physi-

cal and computational structures and processes, and engineering disciplines in-

volved in CPS design.  

2. Heterogeneity of design tools. Tool chains that are used in traditional CPS design 

flows are discipline oriented, vertically integrated and cover “islands” in the 

overall design space. Integration across the tool suites is hard and usually not 

supported. 

3. Life-cycle heterogeneity. A unique aspect of CPS design is the significant impact 

of manufacturing on system performance. In fact, design of the physical part of 

the system needs to be integrated with the design of manufacturing processes that 

will make those. Manufacturability constraints and properties of the system “as 

manufactured” require tradeoffs with the design even in the early conceptual de-

sign phase.   

Separation of concerns is a widely used strategy to deal with heterogeneity in the 

design process. Its goal is to decrease design complexity by decomposing the overall 

design problem according to physical phenomena (electrical, mechanical, thermal, 

structural, etc…), level of abstraction (static, lumped parameter dynamics, distributed 

parameter dynamics, etc…) or engineering discipline (performance, systems engi-

neering, software engineering, manufacturing, etc…). Consequences of this design 

strategy are quite significant both in terms of weakening the opportunity for correct-

by-construction design, as well as performing  cross-domain optimizations in CPS 

design flows. The chief reason is that discipline oriented design flows usually miss 

modeling interactions/interdependences among the various design views. The ap-

proach would work if the design concerns were orthogonal, but in tightly coupled 

CPS this is not the case. The price of the simplification is decreased predictability of 

properties of the implemented CPS and costly re-design cycles.   



In 2010, the Defense Advanced Research Project Agency (DARPA) initiated the 

Adaptive Vehicle Make (AVM) program
1
  to construct a fully integrated model- and 

component-based design flow for the “make” process of complex cyber-physical 

systems (CPS) [1]. The resulting integrated tool suite, OpenMETA, provides a manu-

facturing-aware design flow, which covers both cyber and physical design aspects. In 

order to test and demonstrate the capabilities of the new design flow and the integrat-

ed tool suite in a real-life system, the AVM program also includes the Fast, Adapta-

ble, Next-Generation Ground Vehicle (FANG) design challenge sequence
2
.  FANG is 

a combined design and manufacturing effort constructing and building a new amphib-

ious vehicle (IFV) in three competitions: (1) Drive-train design challenge – FANG 1, 

(2) Hull design challenge – FANG 2, and (3) Full vehicle design challenge – FANG 

3. While the target system for the AVM program is ground vehicle, the created infra-

structure for model- and component-based design is generic and targets radical 

changes in the overall “make” process of large CPS systems.  Through our work in 

leading the research  on the open-source design tool suite, OpenMETA, the open-

source model exchange and web-based collaborative design environment, Vehi-

cleForge, and the curation effort for  the FANG component model library, we had the 

opportunity to gain experience with the challenges of using model- and component-

based design methods in large-scale CPS.   

In this paper we focus on the impact of heterogeneity on the OpenMETA tool ar-

chitecture. We argue that the primary barriers to apply model- and component-based 

design flows for CPS are the lack of the following three integration frameworks: 

1. Model Integration Framework. Model integration is required for expressing in-

teractions across modeling domains - creating the need for multi-modeling. Semantic 

heterogeneity of domain specific modeling languages (DSMLs) used in different 

modeling views and the fact that DSMLs in  CPS subdomains evolve more or less 

independently, further add  to the modeling language and model integration challenge. 

The overall semantic complexity of CPS modeling domains and the differences 

among CPS product categories make the development and standardization of some 

form of unified CPS multi-modeling languages impractical.  Instead, a different solu-

tion is needed that enables the semantically sound integration of modeling domains. 

2. Tool Integration Framework. End-to-end tooling for complex CPS product lines 

such as automotive and aerospace systems is too heterogeneous and extends to too 

many technical areas for a single tool vendors to fully cover. In addition, significant 

part of the companies’ design flow is supported by in-house tools that are proprietary 

and capture high value design IP. Integration of end-to-end tool chains for highly 

automated execution of design flows is such a complex task that successful examples 

are hard to find – even after massive investment by OEMs. Change demands robust 

tool integration frameworks that go well beyond the semantically weak and necessari-

ly fragile ad-hoc connection among tools.    

                                                           
1 http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx 
2http://www.darpa.mil/Our_Work/TTO/Programs/AVM/AVM_Design_Competitions_(FANG)

.aspx 



3. Execution Integration Platform. The dominant approach in current tool suites is 

desktop integration using platforms such as Microsoft’s Visual Studio
3
, or Eclipse

4
. 

However, overall complexity and heterogeneity of CPS tool chains increasingly de-

mand the use of software as a service (SaaS) models, web-based tool integration plat-

forms, high performance cloud-based back-ends for model repositories and web-

based distributed collaboration services.  

The rest of the paper has the following structure. First, we provide an overview of 

the three layers and their relationships. Next, we analyze the challenges and lessons 

learned in the design and implementation of the Model Integration Framework and 

show the significance of Model Integration Languages in CPS design flows. Finally 

we discuss application experience and summarize the ongoing research efforts. 

2 OpenMETA Integration Layers 

Achieving the goal of “correct-by-construction” design requires that models and 

analysis methods in the design phase predict with the required accuracy the behavior 

of the designed system. Our approach to improve the predictability of design has been 

the explicit modeling of multi-physics, multi-abstraction and multi-fidelity interac-

tions and providing methods for composing heterogeneous component models.   

The OpenMETA design flow is implemented as a multi-model composi-

tion/synthesis process that incrementally shapes and refines the design space using 

formal, manipulable models [3][19]. The model composition and refinement process 

                                                           
3 http://www.visualstudio.com/ 
4 http://www.eclipse.org/ 
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is intertwined with testing and analysis steps to validate and verify requirements and 

to guide the design process toward the least complex, therefore the least risky and 

least expensive solutions. The design flow follows a progressive refinement strategy, 

starting with early design-space exploration covering very large design spaces using 

abstract, lower fidelity models and progressing toward increasingly complex, higher 

fidelity models and focusing on rapidly decreasing number of candidate designs.   

The META design flow proceeds in the following main phases: 

1. Combinatorial design space exploration using static finite domain constraints and 

architecture evaluation. 

2. Behavioral design space exploration by progressively deepening from qualitative 

discrete behaviors to precisely formulated relational abstractions and to quantita-

tive multi-physics, lumped parameter hybrid dynamic models using both deter-

ministic and probabilistic approaches. 

3. Geometric/Structural Design Space Exploration coupled with physics-based non-

linear finite element analysis of thermal, mechanical and mobility properties. 

4. Cyber design space exploration (both HW and SW) integrated with system dy-

namics. 

As discussed before, automation of the design flow leads to complex integration 

challenges that we decomposed into three integration layers shown in Figure 1.  Ele-

ments of the framework reflect primarily the FANG 1 drive-train challenge, but the 

basic structure of the integration architecture remains the same for the FANG 2 hull 

design challenge as well, with larger emphasis on 3-D/CAD tools and a range of finite 

element analysis for verifying blast protection and hydrodynamic requirements.   

In the following sections we describe each integration framework with more em-

phasis on  model integration. 

3 Model Integration Framework – Semantic Integration 

The modeling and model-synthesis functions of the OpenMETA design flow is 

built on the introduction of the following model types: 

1. AVM Component Models (ACM) with standard, composable interfaces 

2. Design Models (DM) that describe component architectures and related con-

straints 

3. Design Space Models (DSM) that define structural and architectural variabilities 

4. Test Bench Models (TBM) representing environment inputs, composed system 

models connected to a range of testing and verification tools for key performance 

parameters, and   

5. Parametric Exploration Models (PEM) for specifying regions in the design space 

to be used for optimization and models for complex analysis flows producing re-

sults such as Probabilistic Certification of Correctness (PCC). 

In META, as well as in all other approaches to model-based design, modeling lan-

guages and their underlying semantics play a fundamental role in achieving composi-

tionality. Heterogeneity of the multi-physics, multi-abstraction and multi-fidelity  

design space, and the need for rapidly evolving/updating design flows require the use 



of a rich set of modeling languages usually influenced/determined by existing and 

emerging model-based design, verification and simulation technologies and tools. 

Consequently, the language suite and the related infrastructure cannot be static; it will 

continuously evolve. To address both heterogeneity and evolvability simultaneously, 

we departed from the most frequently used approach to address heterogeneity: the 

development or adoption of a very broad and necessarily hugely complex language 

standard designed for covering all relevant views of a multi-physics and cyber do-

mains. Instead, we placed emphasis on the development of a model integration lan-

guage – CyPhyML – with constructs limited to modeling the interactions among dif-

ferent modeling views (see Figure 2). 

3.1 Model Integration Language and Semantic Interfaces 

CyPhyML targets multi-modeling – it advances multi-modeling from a mere “en-

semble” of models to a formally and precisely integrated, mathematically sound suite 

of models. Integration of the modeling language suite by CyPhyML is minimal in a 

sense that only those abstractions that are imported from the individual languages to 

CyPhyML are those required those for modeling cross-domain interactions. Since the 

suite of engineering tools is changing and the modeling languages of the individual 

tools (such e.g. Modelica) evolve independently from the model integration frame-

work, CyPhyML is constructed as a light-weight, evolvable, composable integration 

language that is frequently updated and morphed. While these DSMLs may be indi-

vidually quite complex (Modelica, Simulink, SystemC, etc.) ChyPhyML is relatively 

simple and easily evolvable. This “semantic interface” between CyPhyML and the 

domain specific modeling languages (DSML) (Figure 2) is formally defined, evolved 

as needed, and verified for essential properties (such as well-formedness and con-

sistency) using the methods and tools of formal metamodeling [4][7]. By design, Cy-

PhyML is moving in the opposite direction to unified system design languages, such 
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as SySML or AADL. Its goal is specificity as opposed to generality, and heavy 

weight standardization is replaced by layered language architecture and specification 

of explicit semantics. 

3.2 Semantic Backplane of Open META 

The “cost” of introducing a dynamic model integration language is that a mathe-

matically precise  formal semantics for model integration had to be developed. The 

OpenMETA Semantic Backplane  [4][22][23] is at the center of our semantic integra-

tion concept. The key idea is to define the structural [5] and behavioral semantics [8] 

of the CyPhy model integration language using formal metamodeling, and use a tool 

supported formal framework for updating the CyPhy metamodels and verifying its 

overall consistency and completeness as the modeling languages are evolving. The 

selected tool for formal metamodeling is FORMULA
5
 from Microsoft Research [10]. 

FORMULA’s  algebraic data types (ADTs) and constraint logic programming (CLP) 

based semantics is rich enough for defining mathematically modeling domains, trans-

formations across domains, as well as constraints over domains and transformations.  

In the followings we provide a brief summary of the basic elements of the mathemati-

cal framework used in the Semantic Backplane. 

Structural semantics of modeling languages represents the domain of well-formed 

models [5]. Domains are modeled as a term algebra whose function symbols charac-

terize the key sets and relations through uninterpreted functions. A syntactic instance 

of some structural semantics is a finite set of terms over its term algebra TΥ(Σ), where 

Σ is an infinite alphabet of constants, Υ is a finite set of n-ary function symbols (sig-

nature) standing for uninterpreted functions, and the algebra is inductively defined as 

the set of all terms that can be constructed from Σ and Υ. A syntactic instance of some 

structural semantics is a finite set of terms over its term algebra TΥ(Σ).The set of all 

syntactic instances is then the power set of its term algebra: P(TΥ(Σ)).  

To avoid the many unintended instances of the syntax of a  modeling language, 

FORMULA enriches term algebra semantics with types by reconstructing Σ as the 

union of smaller alphabets and alphabets are ordered by set inclusion. Structural se-

mantics often contain complex conformance rules; these rules cannot be captured by 

simple-type systems.  One common solution to this problem is to provide an addition-

al constraint language for expressing syntactic rules such as the Object Constraint 

Language (OCL). Unlike other approaches, FORMULA choose Constraint Logic 

Programming (CLP)  to represent syntactic constraints because it can extend term 

algebra semantics while supporting declarative rules and unlike purely algebraic spec-

ifications  it provides a clear execution semantics for logic programs making it possi-

ble to specify model transformations in the same framework. FORMULA supports a 

class of logic programs with the following properties: (1) expressions may contain 

uninterpreted function symbols, (2) the semantics for negation is negation as finite 

failure, (3) all logic programs must be stratified and (4) supports fixpoint logic over 

theories [13][14]. 

                                                           
5 http://research.microsoft.com/formula 



Expressiveness of the formal framework discussed up to this point is sufficient for 

formalizing structural semantics, but does not support yet the specification of behav-

ioral semantics. Since multi-physical modeling of systems requires modeling lan-

guages for continuous (DAE, PDE),  discrete and hybrid dynamics, semantics need to 

be defined both denotationally  and operationally  [4]. Fortunately, the key to formali-

zation in both cases is the development of precise specification of model transfor-

mations. In addition, formal modeling of model transformation are fundamental in all 

design automation frameworks, because they are used pervasively  in integrating tool 

chains. In the OpenMETA Semantic Backplane, model transformations are encoded 

as logic programs where data types distinguish the inputs and outputs of the transfor-

mation [10]. For example:  

Filter = out.MetaNode(x) :- in.MetaNode(x). 

The constructor in.MetaNode() stands for primitives at the input of the transfor-

mation.  Similarly, out.MetaNode() stands for primitives on the output of the trans-

formation. A transformation is executed by providing an interpretation  for the input 

primitives, and then computing the output primitives according to the CLP semantics.  

Specifying model transformations in the same CLP framework has fundamental ad-

vantages in allowing reasoning over the fully integrated representation of the input 

and output domains (e.g. proving that selected invariants will hold before and after the 

transformation). 

While ADTs and CLP are sufficient for defining complex modeling domains and 

transformations, consistency checking and constructive modeling (model finding) 

[10] require the generation of  automatic proofs from formal specifications by solving 

CLP satisability problems. Satisfiability is different from checking satisfaction of 

goals that be solved by simply running a logic program. It is to determine if a CLP 

program can be extended by a finite set of facts so that a goal is satisfied [9][16]. It 

requires searching through (infinitely) many possible extensions, which we achieve 

by efficient forward symbolic execution. FORMULA  achieves this by efficient for-

ward symbolic execution of logic program into the state-of-the-art satisfiability modu-

lo theories (SMT) solver Z3 [15]. As a result, specifications can include variables 

ranging over infinite domains and rich data types (partial models). The  method is 

constructive; it returns extensions of the CLP program witnessing goal satisfaction. 

An interesting application of this capability is design-space exploration [12]. 

The Model Integration Framework of OpenMETA (Figure 1) currently includes  a 

large suite of modeling languages and tools for multi-physics, multi-abstraction and 

multi-fidelity modeling such as OpenModelica, Dymola, Bond Graphs, Sim-

ulink/Stateflow, STEP, ESMOL and many others. The CyPhyML model integration 

language provides the integration across this heterogeneous modeling space and the 

FORMULA - based Semantic Backplane provides the semantic integration for all 

OpenMETA composition tools. 



4 Tool Integration Framework 

The OpenMETA Tool Integration Framework (see Figure 1) comprises a network 

of model transformations that compose models for individual tools (e.g. Modelica 

models from ChyPhyML design models and component models) and integrate model-

based design flows. Model-transformations are used  in the following roles: 

1. Packaging. Models are translated into a different syntactic form without chang-

ing their semantics. For example, AVM Component Models and AVM Design 

Models are translated into standard Design Data Packages (Figure 1, .ACM and 

.ADM files) for consumption by   a variety of design analysis, manufacturability 

analysis and repository tools.  

2. Composition. Model- and component-based technologies are based on composing 

different design artifacts (such as DAE-s for representing lumped parameter dy-

namics as Modelica equations [23], input models for verification tools [25], CAD 

models of component assemblies [19], design space models [25], and many oth-

ers) from appropriate  models of components and component architectures. 

3. Virtual prototyping. Several test and verification methods (such as Probabilistic 

Certificate of Correctness – PCC) require test benches that embed a virtual proto-

type of the designed system executing a mission scenario in some environment 

(as defined in the requirement documents). We found distributed, multi-model 

simulation platforms the most scalable solution for these tests. We selected the 

High Level Architecture (HLA) as the distributed simulation platform and inte-

grated FMI Co-Simulation components with HLA [26].    

4. Analysis flow. Parametric explorations of designs (PET), such as analyzing ef-

fects of structural parameters (e.g. length of vehicle) on vehicle performance, or 

deriving PCC for performance properties frequently require complex analysis 

flows that include a number of intermediate stages. Automating design space ex-

plorations require that Python files controlling the execution of these flows on the 

Multidisciplinary Design Analysis and Optimization (OpenMDAO
6
)  platform 

(that we currently use in OpenMETA) are autogenerated from the test bench and 

parametric exploration models (Figure 1).  

Continuous evolution of the OpenMETA design flow makes it essential that the 

modeling tool suite for ChyPhyML is metaprogramable [4][17][20][18] and all model 

transformations used in the Composition Framework are formally specified as part of 

the Semantic Backplane. We believe that the lack of these capabilities are significant 

contributors to the failure of numerous large-scale model and tool integration efforts, 

due to the fact that semantic errors are all but impossible to detect without formal 

models.  

Advantages of the Semantic Backplane and the logic-based formal framework is 

particularly important in the specification of composition semantics for mixed, multi-

physical and computation modeling. For physical interactions, we chose acausal, 

power flow oriented modeling (e.g. Modelica, Simscape or Bond Graph modeling 

languages). In this approach, safe modeling of multi-physics interactions require rich 

                                                           
6 http://openmdao.org/ 



typing for expressing and enforcing connectivity constraints. Beyond these static con-

straints, the semantics of acausal physical interconnections are expressed using alge-

braic constraints over the effort and flow variables [3]. This leads to a formal compo-

sition semantics that is simply the merging of the DAE equations representing com-

ponent behaviors with the interconnection constraints [4]. Since our logic-based for-

mal framework is expressive enough for describing typing and  variables ranging over 

infinite domains and rich data types), description of composition semantics denota-

tionally is quite straightforward in FORMULA. 

5 Execution Integration Platform 

The OpenMETA model and tool integration technology needs an infrastructure for 

creating and executing complex analysis flows including heterogeneous tool compo-

nents.  Our Analysis and Execution Framework (Figure 1)  includes a wide range of 

cloud-deployed services such as component model repositories, ontology driven 

search engine, collaboration mechanisms, and cloud-deployed tools for design space 

exploration and data analytics. Our VehicleForge platform developed for DARPA’s 

AVM program is essentially a gateway to shared resources and integrated services, 

not all of which are collocated.  A central aim was to provide users secure and central-

ly managed access to these resources without the responsibility to individually re-

spond to their evolution.   An essential  aspect  of VehicleForge is its  “software-as-a-

service” delivery model. It allows the low-cost access of end users (individuals, re-

search groups, and larger companies) to repositories, analytic services and design 

tools, without the very high cost of acquiring and maintaining desktop engineering 

tools. 

 
Figure 3: VehicleForge Execution Integration Platform 



Two key aspects of sustainability are addressed by this platform.  The first is re-

source elasticity and service staging to address scalability and system-wide optimiza-

tion.  This is a fundamental cloud computing rationale, which is predicated on the 

dynamism of demand for various forms of infrastructure over time.  The second, per-

haps more vital aspect, is managing the evolution of data, data representations, and 

their use by services and service integrations over time. 

6 Lessons Learned 

The first release of the OpenMETA tool suite capable of model-based composi-

tional design, design-space exploration, multi-physics analysis and virtual perfor-

mance testing was used during the FANG 1 Mobility/Drivetrain Challenge from Jan-

uary15 to April 15, 2013. During this competitive design event, over 1000 competi-

tors organized into over 250 teams worked to design the drivetrain, suspension, pro-

pulsion elements and associated subsystems for FANG 1. The FANG component of 

the AVM program is currently building the winning design using the capabilities of 

the AVM program foundry, iFAB. Our team is currently expanding the OpenMETA 

tool suite with  modeling and analysis capabilities required for hull design with strong 

focus on blast protection, structure, and fluid dynamics. This is preparation for the 

upcoming FANG 2 design challenge in February 2014. 

Our  work in the AVM program yields to two different kinds of results. First, we 

have created an end-to-end integrated tool suite, OpenMETA, that is now slated for 

transitioning to both the industry and the academic research communities. To ease 

transitioning and enable continued community-based development of OpenMETA, 

most of the tools integrated into the tool suite are open source with liberal BSD or 

MIT licensing. The second result is the insight we gained regarding promising direc-

tions and open problems in model- and component-based design. Below we list three 

essential points we have identified.  

1. Horizontal integration layers. CPS companies face immense pressures to deliver 

safe and complex systems at low cost. End-to-end tooling for CPS industries is 

too heterogeneous and spans too many technical areas for any single tool vendor 

to fully support. In addition, CPS companies must develop, maintain and inte-

grate in-house, proprietary tools to remain competitive. Consequently, integration 

of models and modeling languages in design flows, integration of tools into tool 

chains capable for the highly automated execution of design processes have 

emerged as a major challenge. Ad-hoc integration of models, tools and automated 

analysis threads is fragile, intractable, error prone and extremely costly.  An es-

sential insight of OpenMETA is that  horizontal integration layers are fundamen-

tally important in end-to-end CPS design flows.  Their complexity requires the 

establishment of integration frameworks that provide the foundations and reusa-

ble, high-complexity components for rapid integration and evolution of CPS de-

sign tool chains. 

2. Component model repositories. Component models capture reusable design 

knowledge, therefore model repositories play crucial role in improving design 



productivity. AVM components contain a suite of modeling views and their in-

teractions: static properties, structural, behavioral, geometric, cyber on multiple 

levels of fidelity. Selected abstractions of these modeling views are exposed via 

the components’ semantic interfaces for composition. Building reusable, com-

posable model libraries requires deep domain understanding and semantic rigor. 

Open research topics include hard problems such as formal relationship among 

modeling abstractions, establishing multiple fidelity levels, and understanding 

methods for representing and managing uncertainties. 

3. Goal-driven model composition. In real-life CPS, model composition methods  

frequently lead to extremely large models. For example, composition of lumped 

parameter physical dynamics easily produces models  including tens of thousands 

of equations with algebraic loops and non-linearities. A common problem is that 

simulation and verification tools do not scale to this complexity. The most prom-

ising research direction we identified is goal directed composition, that composes 

models according to the system property under study.  
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