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Abstract 

Easy-to-use programming paradigm for high performance computing has been a challenging issue in the parallel computing community. 

This paper discusses on the approaches to apply the OpenMP programming model to SMP (Symmetric Multi-Processor) clusters using 

SDSM (Software Distributed Shared Memory). Especially, the major focus of this paper is on the challenges that the prior studies faced 

and on their solution techniques. The major obstacles are thread-unsafe memory access, slow inter-process synchronization, and excessive 

remote page accesses, which stem from the page-based memory consistency mechanisms of the traditional SDSM systems. Exploiting 

message passing primitives explicitly for the OpenMP synchronization and work-sharing directives enables light inter-process synchroni-

zations while the techniques such as variable privatization to reduce the shared address space and selective data touch and migratory home 

to exploit data locality avoid unnecessary page migrations significantly. Through the evaluation of an OpenMP micro-benchmark program 

and a real application, an exemplary system, ParADE that leverages these techniques achieved scalable performance on small-scale SMP 

clusters. 
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A programming model provides a high-
level abstraction of underlying hardware 
system to application programmers. For 
cluster systems, message passing models 
have been dominant since the models go 
with the distributed memory architecture 
of clusters, in which each processor has 
its private memory and communicates 
each other by explicit message exchange. 
MPI (Message Passing Interface) is a 
standard message passing programming 
model, which provides functional and 
performance portability. Despite high 
performance, a major challenge in MPI 
programming is programming complex-
ity; every detail about programming logic, 
communication, and synchronization is up 
to the application programmers. This 
programming complexity is critical to the 
application programmers who are not 
aware of details of underlying hardware 
systems. 

In contrast, a Shared Address Space 
(SAS) programming model enables easy 
programming in that processors see a 
same address space and communicate 
each other using the conventional 
read/write memory operations. OpenMP 
has been widely accepted as a standard 
SAS programming model. OpenMP pro-
vides a high-level interface to thread pro-
gramming and enables the application 
programmers with an easy, simple way to 
develop parallel programs. OpenMP con-
sists of the compiler directives that de-
clare work-sharing algorithms, synchroni-
zation methods, and scope rules and the 
runtime library that provides auxiliary 
primitives for synchronization and infor-
mation query. The application program-
mers can parallelize time critical sequen-
tial codes inserting the directives. Even 
though OpenMP is originally proposed for 
single shared memory multiprocessor 
systems, as cluster systems have become a 
viable platform for high-performance 
computing, extending the model to clus-
ters is demanding. 

Challenges in OpenMP for Clus-
ters 
An intuitive, straightforward approach to 
extending OpenMP to SMP clusters is 
exploiting SDSM (Software Distributed 
Shared Memory) systems. An SDSM 
system provides a shared address space to 
users transparently across distributed 
memory. The previous studies on SDSM 
have revealed that high synchronization 
overhead, long memory access latency 
due to remote pages, and heavy network 
traffic due to page migrations are the ma-

jor performance bottlenecks. These bot-
tlenecks would be critical when an SDSM 
system is used for the OpenMP extension.  

A research group at Rice University 
conducted the first study on OpenMP for 
SMPs, using a multi-threaded version of 
the TreadMark SDSM system. They ex-
panded the original system for multi-
threading and implemented an OpenMP 
compiler for the new system. Through the 
intensive evaluation of the system against 
MPI, they confirmed that the performance 
bottlenecks in the SDSM system were still 
the major sources of poor performance.  

The common challenges that the ap-
proaches based on SDSM face when ex-
tending OpenMP to SMPs can be summa-
rized as follows. 

 Thread-safe memory access: 
Since most conventional SDSM systems 
are single-threaded, an SDSM system for 
OpenMP should support multi-threads 
efficiently. Specifically, thread-safe mem-
ory access is a key requirement of the new 
SDSM system. 

 Synchronization overhead: Syn-
chronization operations across cluster are 
very expensive. Moreover, OpenMP pro-
grams experience more synchronizations 
than the corresponding MPI programs 
because many work-sharing and synchro-
nization directives enforce implicit barri-
ers at the end of execution.  

 Consistency protocol overhead: 
Most SDSM systems preserve memory 
consistency in the unit of page. An access 
to shared address space includes resolving 
the location of up-to-date page, fetching 
the page from its owner, bookkeeping for 
the updates, etc, which increase memory 
access latency and network traffic due to 
page migrations. 

Solution techniques 
The focus of this paper is on the tech-
niques to support OpenMP efficiently on 
top of SDSM systems and new SDSM 
requirements, not on those to efficiently 
implement an SDSM system itself. 

 Thread-safe memory access 
Let me discuss a new requirement of 
SDSM first. Most conventional SDSM 
systems implement the memory consis-
tency protocols at the user-level using 
page-based virtual memory protection 
mechanisms. Initially, the system pre-
serves a segment of application virtual 
address space for the shared address space 
and prohibits accesses to it. When an 
application accesses a page in the shared 

memory region, the SDSM system detects 
the access by catching a segmentation 
fault signal generated by the operating 
system. Then, a user-defined segmenta-
tion fault handler implemented in SDSM 
system performs a series of operations 
and fetches the most up-to-date page from 
the owner(s) of the page. This page fetch 
operation is atomic from the application 
perspective because the program control 
is returned to the application only after 
the signal handler completes the service 
on the protection fault.  

However, this mechanism will not work 
perfectly in a multi-threaded environment 
when multiple application threads com-
pete to access a page simultaneously. On 
the first access to an invalid page, the 
system sets the access permission of the 
page writable in order to fetch the most 
up-to-date page. Unfortunately, this 
change of access permission also allows 
other threads to access the same page 
freely. This constitutes the atomic page 
update problem. 

The cause of this problem is that both 
the system and the application share the 
same virtual address space. Virtual pages 
can have different access permissions 
even if they might reside in the same 
physical page. Therefore, a general solu-
tion can be to partition the virtual address 
space for the application and the system 
but to make the virtual pages in the two 
address spaces reside in the same physical 
pages. Then, the system can update the 
physical pages through the virtual pages 
in the system address space while control-
ling accesses to the virtual pages in the 
application address space. 

Most SDSM systems use the file map-
ping mechanism to implement this general 
solution. A UNIX mmap() system call 
maps a file to a certain memory region in 
the virtual address space. Then, the user 
can access the file using normal memory 
operations. Moreover, a file can be 
mapped to different address spaces at the 
same time. Similarly, three other methods 
can solve this problem as well. First, the 
System V shared memory mechanisms 
can create multiple address spaces. A 
shmget() system call creates a shared 
object in the kernel, and a shmat() system 
call attaches it to the application virtual 
address space. That object can be attached 
to different virtual addresses at the same 
time. Second, the process fork mechanism 
is another way to create two address 
spaces. When forked, a child process 
inherits the runtime image of the parent 
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process including the page tables. Since 
the Copy-On-Write policy is not applied 
to the shared memory segments (e.g. 
mapped files, System V shared objects), 
the child share the same physical memory 
with the parent. Lastly, a new system call 
(e.g., mdup() in ParADE system) can be 
plugged into the operating system to im-
plement this solution directly.  

Even though almost all the SDSM sys-
tems are based on UNIX, Windows sys-
tems also provide similar virtual memory 
protection and process fork mechanisms 
and APIs for file mapping. All the meth-
ods have comparable performance while it 
is not always possible to implement them 
in certain operating systems due to vari-
ous constraints of the operating systems.  

 Efficient synchronization 
Since synchronization operations are ex-
pensive, and they suppress concurrency in 
applications, efficient implementation of 
the operations has been one of the major 
issues in parallel computer architecture. 
To safely enter a critical section in con-
ventional SDSM systems, a process must 
acquire a lock, negotiating with the owner 
of the lock. This locking mechanism is 
very expensive and critical to perform-
ance especially when an SDSM system 
uses a slow interconnect network. 

An interesting observation from scien-
tific OpenMP programs is that many code 
blocks protected by synchronization di-
rectives have regular forms, and they are 
statically analyzable at compile time. 
Another observation is that collective 
communication primitives perform an 
implicit global synchronization. These 
give us new opportunities to reduce the 
synchronization overhead. First, collec-
tive communications bypass the compli-
cated memory consistency mechanisms, 
but they can simulate the behavior of the 
code block in the critical section. Second, 
collective communications can remove 
the barriers that the synchronization and 
work-sharing directives impose at the end 
of execution because it performs a kind of 
global synchronization implicitly even 
though its semantic does not enforce any 
barrier.  

For example, a critical directive 
provides mutual exclusion between 
threads, and in most cases it is used to 
reduce non-scalar variables. As illustrated 
in Figure 1, a critical directive and its 
associated code block can be translated to 
a new code block using a thread lock and 
a collective communication operation. 

First, each process initializes the variable 
with the identity value (0) for the function 
(+). Next, the threads under the control of 
a thread lock execute the code block and 
produce a partial result. Then, a collective 
communication operation reduces the 
partial results of all processes, and finally 
each process adds the reduced value to the 
original one. Overall, the new codes simu-
late the behavior of the original code 
block and produce the same result. 

  

Figure 1. Translation of a critical 
code block 

 Variable privatization 
A parallel directive is the basic direc-
tive that starts parallel execution. Any 
variables declared outside of parallel 
regions but accessed within them are 
shared among threads. An interesting 
observation from many OpenMP applica-
tions is that a significant number of vari-
ables within parallel regions are read-only 
(e.g., variables for array size and problem 
size). Another observation is that for cer-
tain shared arrays, the read and write ref-
erences access disjoint parts of the array 
from different nodes, and a node reads 
from the region of the array that it writes 
to (e.g., array that stores temporary results 
of computation). That is, the array is par-
titioned, and each segment of the array is 
exclusively accessed by only one node. 
Even though these variables do not need 
to preserve consistency, the memory con-
sistency protocols of SDSM system create 
unnecessary network traffic. 

Privatizing variables in these categories 
can reduce the shared address space for 
the system to manage. For the read-only 
variables, redundant local computation 
against private variables can avoid syn-
chronization; the OpenMP compiler iden-
tifies the read-only variables within par-
allel regions and checks if any state-
ments in the preceding serial regions write 
these variables. If any, execute those 
statements redundantly on all nodes. 
These writes in the serial regions do not 
require any following barrier synchroniza-
tions. However, if these writes are associ-

ated with other shared variables, a barrier 
must precede to these references. 

In comparison, an exclusively accessed 
array can be transformed to private arrays 
on each node. The compiler allocates a 
private instance of the array for each node 
that has the same size to the segment ac-
cessed by each node. This technique en-
ables fast access to the array avoiding 
expensive remote page accesses. Further-
more, this eliminates the false sharing 
between the nodes that partition a page 
and reduces unnecessary network traffic. 
Finally, privatization reduces the shared 
address space and consequently lessens 
the overall consistency preservation over-
head. 

 Data locality exploitation 
Most SDSM systems preserve consistency 
by exchanging information about which 
nodes updated each page between syn-
chronization points. A node that modifies 
a shared page becomes a temporary owner 
of the page. These ownership changes 
significantly affect application perform-
ance because they are closely related to 
page migration. 

A general idea to reduce page migra-
tion is to exploit data locality. To avoid 
inefficient access patterns, the program 
needs to be selective about which nodes 
touch which portions of the data. For 
example, SMP machines may prefer exe-
cuting small parallel loops serially to 
avoid parallelization overhead. However, 
cluster systems may experience perform-
ance degradation if the data accessed in 
the loop is distributed across cluster. In-
stead, the nodes owning the data would 
perform computation in parallel; the per-
formance gain caused by local access can 
exceed the penalty due to parallelization 
overhead. 

To the contrary, another approach to 
exploiting data locality is to use a consis-
tency protocol with migratory home. Most 
SDSM systems have a fixed home node 
for a page that has the most up-to-date 
page. If a frequent writer to a page is not 
the home, the page moves back and forth 
between the writer and the home for every 
cycle of modification and synchronization. 
The key idea of migratory home approach 
is to relocate the home of a page to the 
node that updates the page most fre-
quently. An OpenMP compiler can give 
information about the access pattern of 
shared memory and help the runtime sys-
tem decide right homes. Then, the writers 
can find the up-to-date pages locally after 
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home migration, which reduces not only 
page access latency but also outstanding 
network traffic. 

A Case Study: ParADE System 
ParADE (Parallel Application Developing 
Environment) system was initiated to 
realize easy, high-performance program-
ming for SMP clusters. ParADE exploits 
most aforementioned solution techniques 
to overcome the performance bottlenecks. 
Specifically, the intensive use of message 
passing primitives reduces synchroniza-
tion overhead significantly. 

 Architecture 
As illustrated in Figure 2, the ParADE 
system consists of an OpenMP compiler 
and a ParADE runtime system. Further, 
two subcomponents, a multi-threaded 
SDSM and a thread-safe MPI library 
compose the runtime system. The 
OpenMP translator converts an OpenMP 
program into a multi-threaded message 
passing program using the ParADE APIs. 
The major focus of the translator is on 
exploiting the message-passing primitives 
for synchronization and work-sharing 
directives while the runtime system im-
plements a shared address space across 
distributed memory and message passing 
primitives. 

 

Figure 2. ParADE system architecture 

 Key features 
The unique feature of the ParADE system 
is an efficient translation of the synchro-
nization and work-sharing directives. The 
following highlights how the translator 
converts some important directives. 

 Parallel directive 

A parallel directive is the basic direc-
tive that starts parallel execution. A code 
block annotated with a parallel direc-
tive is encapsulated into a thread function, 
and the directive is replaced with the Pa-
rADE interfaces that realize the fork-join 
execution model. The variables declared 
as shared, firstprivate, last-
private, and reduction are passed 
to the thread function through pointers 
while the private variables are de-
clared automatic inside the function. 

According to the OpenMP specification, 
the default scope of variables in a par-
allel block is shared. However, this 
assumption is inappropriate when 
OpenMP is extended to clusters: the vari-
ables on different nodes cannot be shared 
for free. For better optimization and port-
ability, it is highly recommended to ex-
plicitly annotate all the variables used in 
parallel blocks. 

 Synchronization directives 
The OpenMP specification defines several 
synchronization directives. A critical 
directive provides mutual exclusion be-
tween threads, and in most cases it is used 
to reduce non-scalar variables. As dis-
cussed earlier, this directive can be trans-
lated to a collective communication op-
eration and a thread lock. ParADE exe-
cutes a critical code block hierarchi-
cally: the threads of each process execute 
the code block under the control of a 
thread lock, and then the collective com-
munication operation merges the partial 
results across the processes. In conse-
quence, a collective communication op-
eration together with a thread lock simu-
lates the behavior of the code block with-
out any costly lock over the network 
while the heavy lock primitives of SDSM 
result in high synchronization overhead. 

Similarly, an atomic directive ensures 
the atomic update of a specific memory 
location. An atomic code block must be 
one of the simple arithmetic expressions 
defined in the OpenMP specification. The 
ParADE translator regards an atomic 
directive as a special case of critical 
directive with well defined simple form. 

Lastly, a reduction clause performs 
a reduction on scalar variables as a part of 
work-sharing directives. Similar to the 
atomic directive, a reduction clause 
must be one of the predefined expressions, 
and accordingly the translator converts 
the code block in the same manner as the 
atomic directive. One difference from 
the atomic directive is that a reduction 
clause can declare multiple variables. To 
efficiently handle multiple variables, the 
translator packs them into a new struc-
ture-type variable, defines a user-defined 
reduction operation for the new type, and 
applies the operation to the variable.  

 Work-sharing directives 
Work-sharing directives distribute work-
loads among threads. A for directive is 
used within the scope of or in a combined 
form of a parallel directive, and it 

defines a parallel execution of loop. Its 
associated loop scheduler determines and 
assigns the chunks of the loop to threads. 
In addition, an implicit barrier is enforced 
at the end of its execution, and reduc-
tion variables can be declared for the 
loop. Since a collective communication 
operation performs an implicit global 
synchronization, it combines and replaces 
the reduction operation and the implicit 
barrier.  

In contrast, a single directive let 
only the first arriving thread execute its 
code block. A major use of this directive 
is to initialize shared variables. This di-
rective also enforces an implicit barrier at 
the end of execution by default. Different 
from the variable privatization technique, 
ParADE replaces a single code block 
with a broadcast operation. That is, only 
one thread of the first process executes the 
code block, packs the modified variables 
into a single message, and broadcast the 
message to all processes. Since the other 
threads can proceed only after they have 
received a message from the first thread, a 
broadcast operation can replace the direc-
tive and the implicit barrier. 

 

Figure 3. Translation of a single di-
rective 

 Performance 
A Linux cluster that consists of four dual-
Pentium III 550Mhz SMP nodes and four 
dual-Pentium III 600Mhz SMP nodes was 
used to evaluate the performance of the 
ParADE system. Each node had 512 MB 
main memory, and they were connected 
to a 3Com Fast Ethernet switch and a 
Giganet's cLAN VIA switch. Redhat 8.0 
of a 2.4.18-14 SMP kernel ran on each 
node. A GNU gcc compiler was used with 
the –O2 option. 

To evaluate the performance benefit of 
using explicit message-passing operations, 
the average execution time of an OpenMP 
micro-benchmark program over TCP/IP 
was measured for ParADE and a single-
threaded SDSM system. Especially, two 
directives, critical for synchroniza-
tion and single for work-sharing were 
considered. Figure 4 shows that the inten-
sive use of message passing operations 
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reduce synchronization overhead signifi-
cantly, and the gain becomes bigger as the 
number of nodes increases because SDSM 
needs to exchange control messages over 
slow network to grant a lock and the ac-
cesses are serialized. 

 

 
Figure 4. Performance of OpenMP 
micro-benchmark 

Furthermore, a real application was 
used to evaluate the overall performance. 
The Helmholtz program solves a wave 
equation on a regular mesh using an itera-
tive Jacobi method with over-relaxation. 
It repeats about one thousand iterations 
until an estimated error becomes smaller 
than a certain threshold. Each thread 
communicates with only its direct 
neighbors while every thread updates a 
shared variable competitively and checks 
if the termination condition is satisfied. 

To demonstrate the benefits of 
OpenMP for SMPs, three configurations 
were used, and the results are shown in 
Figure 5. 

 1Thread-1CPU Start the oper-
ating system in uniprocessor mode, and 
create one compute thread and one com-
munication thread per node 

 1Thread-2CPU Use the same 
configuration as 1Thread-1CPU except 
starting the operating system in multi-
processor mode 

 2Thread-2CPU Use the same 
configuration as 1Thread-2CPU except 
creating two compute threads per node 

For 1Thread-1CPU, the system spends 
more time in serving the page requests 
from remote nodes as the number of 
nodes increases because a single proces-
sor serves both computation and commu-
nication. In consequence, the excessive 
page migration due to large shared ad-
dress space influences on performance 
adversely. In comparison, an additional 
processor lessens the burden on the com-

pute processor due to handling the page 
requests; it reduces the page fetch latency 
and spares more CPU time for computa-
tion. In consequence, the application 
achieved scalable performance, which is a 
merit of a multi-threaded system over 
single-threaded one. However, assigning a 
processor to communication can waste 
resources. In many cases, compute threads 
are frequently suspended to fetch the non-
cached pages. Multiple threads can over-
lap communication and computation and 
utilize CPU more efficiently. As illus-
trated in Figure 5, 2Thread-2CPU 
achieved better scalable performance than 
the others.  

 

Figure 5. Performance of a wave equa-
tion solver 

Future of OpenMP 
This paper surveyed the challenges and 
solution techniques to extend OpenMP to 
SMP clusters. In addition, the ParADE 
system was overviewed as a case study, 
which enables easy, high performance 
programming for SMP cluster systems. 
Techniques such as variable privatization, 
message passing exploitation for synchro-
nization directives, and high data locality, 
overcome the major performance bottle-
necks in SDSM systems.  

However, still OpenMP based on 
SDSM does not show comparable per-
formance to pure MPI. The major efforts 
to improve performance are on reducing 
the network traffic due to memory consis-
tency protocols. A very challenging ap-
proach is to directly translate an OpenMP 
program to an MPI program without the 
help of SDSM system. Such approaches 
as Omni/Scash and ParADE showed 
promising results that an intelligent com-
piler could analyze the uses of shared 
variables precisely and utilize message 
passing primitives directly. 

Moreover, several orthogonal research 
issues can contribute to improving per-
formance. First, even though the standard 
OpenMP provides various loop-
scheduling algorithms, not all of them are 
appropriate for SMP clusters. Further 
studies on loop scheduling for SMP clus-
ters will promise significant improvement 
in system performance. Another issue is 

to adapt the system configuration during 
runtime. As the Helmholtz results show, 
more processors do not always give better 
performance. For a given application, 
users want to find the best configuration 
to achieve the best performance. A proper 
number of processors and threads could 
be determined statically or dynamically 
by analyzing the behaviors of applications.  

Finally, it is exciting that OpenMP is 
extended to other research fields. Mostly, 
OpenMP is considered as a promising 
programming model. Some noticeable 
examples are the studies on OpenMP for 
multi-processors on a chip in the embed-
ded system community and OpenMP for 
computational Grids in the high perform-
ance distributed computing community. 
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