
OpenMP Extension to SMP Clusters
Yang-Suk Kee

Computer Science & Engineering, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404

yskee@csag.ucsd.edu

 2

Abstract

Easy-to-use programming paradigm for high performance computing has been a challenging issue in the parallel computing community.

This paper discusses on the approaches to apply the OpenMP programming model to SMP (Symmetric Multi-Processor) clusters using

SDSM (Software Distributed Shared Memory). Especially, the major focus of this paper is on the challenges that the prior studies faced

and on their solution techniques. The major obstacles are thread-unsafe memory access, slow inter-process synchronization, and excessive

remote page accesses, which stem from the page-based memory consistency mechanisms of the traditional SDSM systems. Exploiting

message passing primitives explicitly for the OpenMP synchronization and work-sharing directives enables light inter-process synchroni-

zations while the techniques such as variable privatization to reduce the shared address space and selective data touch and migratory home

to exploit data locality avoid unnecessary page migrations significantly. Through the evaluation of an OpenMP micro-benchmark program

and a real application, an exemplary system, ParADE that leverages these techniques achieved scalable performance on small-scale SMP

clusters.

 3

A programming model provides a high-
level abstraction of underlying hardware
system to application programmers. For
cluster systems, message passing models
have been dominant since the models go
with the distributed memory architecture
of clusters, in which each processor has
its private memory and communicates
each other by explicit message exchange.
MPI (Message Passing Interface) is a
standard message passing programming
model, which provides functional and
performance portability. Despite high
performance, a major challenge in MPI
programming is programming complex-
ity; every detail about programming logic,
communication, and synchronization is up
to the application programmers. This
programming complexity is critical to the
application programmers who are not
aware of details of underlying hardware
systems.

In contrast, a Shared Address Space
(SAS) programming model enables easy
programming in that processors see a
same address space and communicate
each other using the conventional
read/write memory operations. OpenMP
has been widely accepted as a standard
SAS programming model. OpenMP pro-
vides a high-level interface to thread pro-
gramming and enables the application
programmers with an easy, simple way to
develop parallel programs. OpenMP con-
sists of the compiler directives that de-
clare work-sharing algorithms, synchroni-
zation methods, and scope rules and the
runtime library that provides auxiliary
primitives for synchronization and infor-
mation query. The application program-
mers can parallelize time critical sequen-
tial codes inserting the directives. Even
though OpenMP is originally proposed for
single shared memory multiprocessor
systems, as cluster systems have become a
viable platform for high-performance
computing, extending the model to clus-
ters is demanding.

Challenges in OpenMP for Clus-
ters
An intuitive, straightforward approach to
extending OpenMP to SMP clusters is
exploiting SDSM (Software Distributed
Shared Memory) systems. An SDSM
system provides a shared address space to
users transparently across distributed
memory. The previous studies on SDSM
have revealed that high synchronization
overhead, long memory access latency
due to remote pages, and heavy network
traffic due to page migrations are the ma-

jor performance bottlenecks. These bot-
tlenecks would be critical when an SDSM
system is used for the OpenMP extension.

A research group at Rice University
conducted the first study on OpenMP for
SMPs, using a multi-threaded version of
the TreadMark SDSM system. They ex-
panded the original system for multi-
threading and implemented an OpenMP
compiler for the new system. Through the
intensive evaluation of the system against
MPI, they confirmed that the performance
bottlenecks in the SDSM system were still
the major sources of poor performance.

The common challenges that the ap-
proaches based on SDSM face when ex-
tending OpenMP to SMPs can be summa-
rized as follows.

 Thread-safe memory access:
Since most conventional SDSM systems
are single-threaded, an SDSM system for
OpenMP should support multi-threads
efficiently. Specifically, thread-safe mem-
ory access is a key requirement of the new
SDSM system.

 Synchronization overhead: Syn-
chronization operations across cluster are
very expensive. Moreover, OpenMP pro-
grams experience more synchronizations
than the corresponding MPI programs
because many work-sharing and synchro-
nization directives enforce implicit barri-
ers at the end of execution.

 Consistency protocol overhead:
Most SDSM systems preserve memory
consistency in the unit of page. An access
to shared address space includes resolving
the location of up-to-date page, fetching
the page from its owner, bookkeeping for
the updates, etc, which increase memory
access latency and network traffic due to
page migrations.

Solution techniques
The focus of this paper is on the tech-
niques to support OpenMP efficiently on
top of SDSM systems and new SDSM
requirements, not on those to efficiently
implement an SDSM system itself.

 Thread-safe memory access
Let me discuss a new requirement of
SDSM first. Most conventional SDSM
systems implement the memory consis-
tency protocols at the user-level using
page-based virtual memory protection
mechanisms. Initially, the system pre-
serves a segment of application virtual
address space for the shared address space
and prohibits accesses to it. When an
application accesses a page in the shared

memory region, the SDSM system detects
the access by catching a segmentation
fault signal generated by the operating
system. Then, a user-defined segmenta-
tion fault handler implemented in SDSM
system performs a series of operations
and fetches the most up-to-date page from
the owner(s) of the page. This page fetch
operation is atomic from the application
perspective because the program control
is returned to the application only after
the signal handler completes the service
on the protection fault.

However, this mechanism will not work
perfectly in a multi-threaded environment
when multiple application threads com-
pete to access a page simultaneously. On
the first access to an invalid page, the
system sets the access permission of the
page writable in order to fetch the most
up-to-date page. Unfortunately, this
change of access permission also allows
other threads to access the same page
freely. This constitutes the atomic page
update problem.

The cause of this problem is that both
the system and the application share the
same virtual address space. Virtual pages
can have different access permissions
even if they might reside in the same
physical page. Therefore, a general solu-
tion can be to partition the virtual address
space for the application and the system
but to make the virtual pages in the two
address spaces reside in the same physical
pages. Then, the system can update the
physical pages through the virtual pages
in the system address space while control-
ling accesses to the virtual pages in the
application address space.

Most SDSM systems use the file map-
ping mechanism to implement this general
solution. A UNIX mmap() system call
maps a file to a certain memory region in
the virtual address space. Then, the user
can access the file using normal memory
operations. Moreover, a file can be
mapped to different address spaces at the
same time. Similarly, three other methods
can solve this problem as well. First, the
System V shared memory mechanisms
can create multiple address spaces. A
shmget() system call creates a shared
object in the kernel, and a shmat() system
call attaches it to the application virtual
address space. That object can be attached
to different virtual addresses at the same
time. Second, the process fork mechanism
is another way to create two address
spaces. When forked, a child process
inherits the runtime image of the parent

 4

process including the page tables. Since
the Copy-On-Write policy is not applied
to the shared memory segments (e.g.
mapped files, System V shared objects),
the child share the same physical memory
with the parent. Lastly, a new system call
(e.g., mdup() in ParADE system) can be
plugged into the operating system to im-
plement this solution directly.

Even though almost all the SDSM sys-
tems are based on UNIX, Windows sys-
tems also provide similar virtual memory
protection and process fork mechanisms
and APIs for file mapping. All the meth-
ods have comparable performance while it
is not always possible to implement them
in certain operating systems due to vari-
ous constraints of the operating systems.

 Efficient synchronization
Since synchronization operations are ex-
pensive, and they suppress concurrency in
applications, efficient implementation of
the operations has been one of the major
issues in parallel computer architecture.
To safely enter a critical section in con-
ventional SDSM systems, a process must
acquire a lock, negotiating with the owner
of the lock. This locking mechanism is
very expensive and critical to perform-
ance especially when an SDSM system
uses a slow interconnect network.

An interesting observation from scien-
tific OpenMP programs is that many code
blocks protected by synchronization di-
rectives have regular forms, and they are
statically analyzable at compile time.
Another observation is that collective
communication primitives perform an
implicit global synchronization. These
give us new opportunities to reduce the
synchronization overhead. First, collec-
tive communications bypass the compli-
cated memory consistency mechanisms,
but they can simulate the behavior of the
code block in the critical section. Second,
collective communications can remove
the barriers that the synchronization and
work-sharing directives impose at the end
of execution because it performs a kind of
global synchronization implicitly even
though its semantic does not enforce any
barrier.

For example, a critical directive
provides mutual exclusion between
threads, and in most cases it is used to
reduce non-scalar variables. As illustrated
in Figure 1, a critical directive and its
associated code block can be translated to
a new code block using a thread lock and
a collective communication operation.

First, each process initializes the variable
with the identity value (0) for the function
(+). Next, the threads under the control of
a thread lock execute the code block and
produce a partial result. Then, a collective
communication operation reduces the
partial results of all processes, and finally
each process adds the reduced value to the
original one. Overall, the new codes simu-
late the behavior of the original code
block and produce the same result.

Figure 1. Translation of a critical
code block

 Variable privatization
A parallel directive is the basic direc-
tive that starts parallel execution. Any
variables declared outside of parallel
regions but accessed within them are
shared among threads. An interesting
observation from many OpenMP applica-
tions is that a significant number of vari-
ables within parallel regions are read-only
(e.g., variables for array size and problem
size). Another observation is that for cer-
tain shared arrays, the read and write ref-
erences access disjoint parts of the array
from different nodes, and a node reads
from the region of the array that it writes
to (e.g., array that stores temporary results
of computation). That is, the array is par-
titioned, and each segment of the array is
exclusively accessed by only one node.
Even though these variables do not need
to preserve consistency, the memory con-
sistency protocols of SDSM system create
unnecessary network traffic.

Privatizing variables in these categories
can reduce the shared address space for
the system to manage. For the read-only
variables, redundant local computation
against private variables can avoid syn-
chronization; the OpenMP compiler iden-
tifies the read-only variables within par-
allel regions and checks if any state-
ments in the preceding serial regions write
these variables. If any, execute those
statements redundantly on all nodes.
These writes in the serial regions do not
require any following barrier synchroniza-
tions. However, if these writes are associ-

ated with other shared variables, a barrier
must precede to these references.

In comparison, an exclusively accessed
array can be transformed to private arrays
on each node. The compiler allocates a
private instance of the array for each node
that has the same size to the segment ac-
cessed by each node. This technique en-
ables fast access to the array avoiding
expensive remote page accesses. Further-
more, this eliminates the false sharing
between the nodes that partition a page
and reduces unnecessary network traffic.
Finally, privatization reduces the shared
address space and consequently lessens
the overall consistency preservation over-
head.

 Data locality exploitation
Most SDSM systems preserve consistency
by exchanging information about which
nodes updated each page between syn-
chronization points. A node that modifies
a shared page becomes a temporary owner
of the page. These ownership changes
significantly affect application perform-
ance because they are closely related to
page migration.

A general idea to reduce page migra-
tion is to exploit data locality. To avoid
inefficient access patterns, the program
needs to be selective about which nodes
touch which portions of the data. For
example, SMP machines may prefer exe-
cuting small parallel loops serially to
avoid parallelization overhead. However,
cluster systems may experience perform-
ance degradation if the data accessed in
the loop is distributed across cluster. In-
stead, the nodes owning the data would
perform computation in parallel; the per-
formance gain caused by local access can
exceed the penalty due to parallelization
overhead.

To the contrary, another approach to
exploiting data locality is to use a consis-
tency protocol with migratory home. Most
SDSM systems have a fixed home node
for a page that has the most up-to-date
page. If a frequent writer to a page is not
the home, the page moves back and forth
between the writer and the home for every
cycle of modification and synchronization.
The key idea of migratory home approach
is to relocate the home of a page to the
node that updates the page most fre-
quently. An OpenMP compiler can give
information about the access pattern of
shared memory and help the runtime sys-
tem decide right homes. Then, the writers
can find the up-to-date pages locally after

 5

home migration, which reduces not only
page access latency but also outstanding
network traffic.

A Case Study: ParADE System
ParADE (Parallel Application Developing
Environment) system was initiated to
realize easy, high-performance program-
ming for SMP clusters. ParADE exploits
most aforementioned solution techniques
to overcome the performance bottlenecks.
Specifically, the intensive use of message
passing primitives reduces synchroniza-
tion overhead significantly.

 Architecture
As illustrated in Figure 2, the ParADE
system consists of an OpenMP compiler
and a ParADE runtime system. Further,
two subcomponents, a multi-threaded
SDSM and a thread-safe MPI library
compose the runtime system. The
OpenMP translator converts an OpenMP
program into a multi-threaded message
passing program using the ParADE APIs.
The major focus of the translator is on
exploiting the message-passing primitives
for synchronization and work-sharing
directives while the runtime system im-
plements a shared address space across
distributed memory and message passing
primitives.

Figure 2. ParADE system architecture

 Key features
The unique feature of the ParADE system
is an efficient translation of the synchro-
nization and work-sharing directives. The
following highlights how the translator
converts some important directives.

 Parallel directive

A parallel directive is the basic direc-
tive that starts parallel execution. A code
block annotated with a parallel direc-
tive is encapsulated into a thread function,
and the directive is replaced with the Pa-
rADE interfaces that realize the fork-join
execution model. The variables declared
as shared, firstprivate, last-
private, and reduction are passed
to the thread function through pointers
while the private variables are de-
clared automatic inside the function.

According to the OpenMP specification,
the default scope of variables in a par-
allel block is shared. However, this
assumption is inappropriate when
OpenMP is extended to clusters: the vari-
ables on different nodes cannot be shared
for free. For better optimization and port-
ability, it is highly recommended to ex-
plicitly annotate all the variables used in
parallel blocks.

 Synchronization directives
The OpenMP specification defines several
synchronization directives. A critical
directive provides mutual exclusion be-
tween threads, and in most cases it is used
to reduce non-scalar variables. As dis-
cussed earlier, this directive can be trans-
lated to a collective communication op-
eration and a thread lock. ParADE exe-
cutes a critical code block hierarchi-
cally: the threads of each process execute
the code block under the control of a
thread lock, and then the collective com-
munication operation merges the partial
results across the processes. In conse-
quence, a collective communication op-
eration together with a thread lock simu-
lates the behavior of the code block with-
out any costly lock over the network
while the heavy lock primitives of SDSM
result in high synchronization overhead.

Similarly, an atomic directive ensures
the atomic update of a specific memory
location. An atomic code block must be
one of the simple arithmetic expressions
defined in the OpenMP specification. The
ParADE translator regards an atomic
directive as a special case of critical
directive with well defined simple form.

Lastly, a reduction clause performs
a reduction on scalar variables as a part of
work-sharing directives. Similar to the
atomic directive, a reduction clause
must be one of the predefined expressions,
and accordingly the translator converts
the code block in the same manner as the
atomic directive. One difference from
the atomic directive is that a reduction
clause can declare multiple variables. To
efficiently handle multiple variables, the
translator packs them into a new struc-
ture-type variable, defines a user-defined
reduction operation for the new type, and
applies the operation to the variable.

 Work-sharing directives
Work-sharing directives distribute work-
loads among threads. A for directive is
used within the scope of or in a combined
form of a parallel directive, and it

defines a parallel execution of loop. Its
associated loop scheduler determines and
assigns the chunks of the loop to threads.
In addition, an implicit barrier is enforced
at the end of its execution, and reduc-
tion variables can be declared for the
loop. Since a collective communication
operation performs an implicit global
synchronization, it combines and replaces
the reduction operation and the implicit
barrier.

In contrast, a single directive let
only the first arriving thread execute its
code block. A major use of this directive
is to initialize shared variables. This di-
rective also enforces an implicit barrier at
the end of execution by default. Different
from the variable privatization technique,
ParADE replaces a single code block
with a broadcast operation. That is, only
one thread of the first process executes the
code block, packs the modified variables
into a single message, and broadcast the
message to all processes. Since the other
threads can proceed only after they have
received a message from the first thread, a
broadcast operation can replace the direc-
tive and the implicit barrier.

Figure 3. Translation of a single di-
rective

 Performance
A Linux cluster that consists of four dual-
Pentium III 550Mhz SMP nodes and four
dual-Pentium III 600Mhz SMP nodes was
used to evaluate the performance of the
ParADE system. Each node had 512 MB
main memory, and they were connected
to a 3Com Fast Ethernet switch and a
Giganet's cLAN VIA switch. Redhat 8.0
of a 2.4.18-14 SMP kernel ran on each
node. A GNU gcc compiler was used with
the –O2 option.

To evaluate the performance benefit of
using explicit message-passing operations,
the average execution time of an OpenMP
micro-benchmark program over TCP/IP
was measured for ParADE and a single-
threaded SDSM system. Especially, two
directives, critical for synchroniza-
tion and single for work-sharing were
considered. Figure 4 shows that the inten-
sive use of message passing operations

 6

reduce synchronization overhead signifi-
cantly, and the gain becomes bigger as the
number of nodes increases because SDSM
needs to exchange control messages over
slow network to grant a lock and the ac-
cesses are serialized.

Figure 4. Performance of OpenMP
micro-benchmark

Furthermore, a real application was
used to evaluate the overall performance.
The Helmholtz program solves a wave
equation on a regular mesh using an itera-
tive Jacobi method with over-relaxation.
It repeats about one thousand iterations
until an estimated error becomes smaller
than a certain threshold. Each thread
communicates with only its direct
neighbors while every thread updates a
shared variable competitively and checks
if the termination condition is satisfied.

To demonstrate the benefits of
OpenMP for SMPs, three configurations
were used, and the results are shown in
Figure 5.

 1Thread-1CPU Start the oper-
ating system in uniprocessor mode, and
create one compute thread and one com-
munication thread per node

 1Thread-2CPU Use the same
configuration as 1Thread-1CPU except
starting the operating system in multi-
processor mode

 2Thread-2CPU Use the same
configuration as 1Thread-2CPU except
creating two compute threads per node

For 1Thread-1CPU, the system spends
more time in serving the page requests
from remote nodes as the number of
nodes increases because a single proces-
sor serves both computation and commu-
nication. In consequence, the excessive
page migration due to large shared ad-
dress space influences on performance
adversely. In comparison, an additional
processor lessens the burden on the com-

pute processor due to handling the page
requests; it reduces the page fetch latency
and spares more CPU time for computa-
tion. In consequence, the application
achieved scalable performance, which is a
merit of a multi-threaded system over
single-threaded one. However, assigning a
processor to communication can waste
resources. In many cases, compute threads
are frequently suspended to fetch the non-
cached pages. Multiple threads can over-
lap communication and computation and
utilize CPU more efficiently. As illus-
trated in Figure 5, 2Thread-2CPU
achieved better scalable performance than
the others.

Figure 5. Performance of a wave equa-
tion solver

Future of OpenMP
This paper surveyed the challenges and
solution techniques to extend OpenMP to
SMP clusters. In addition, the ParADE
system was overviewed as a case study,
which enables easy, high performance
programming for SMP cluster systems.
Techniques such as variable privatization,
message passing exploitation for synchro-
nization directives, and high data locality,
overcome the major performance bottle-
necks in SDSM systems.

However, still OpenMP based on
SDSM does not show comparable per-
formance to pure MPI. The major efforts
to improve performance are on reducing
the network traffic due to memory consis-
tency protocols. A very challenging ap-
proach is to directly translate an OpenMP
program to an MPI program without the
help of SDSM system. Such approaches
as Omni/Scash and ParADE showed
promising results that an intelligent com-
piler could analyze the uses of shared
variables precisely and utilize message
passing primitives directly.

Moreover, several orthogonal research
issues can contribute to improving per-
formance. First, even though the standard
OpenMP provides various loop-
scheduling algorithms, not all of them are
appropriate for SMP clusters. Further
studies on loop scheduling for SMP clus-
ters will promise significant improvement
in system performance. Another issue is

to adapt the system configuration during
runtime. As the Helmholtz results show,
more processors do not always give better
performance. For a given application,
users want to find the best configuration
to achieve the best performance. A proper
number of processors and threads could
be determined statically or dynamically
by analyzing the behaviors of applications.

Finally, it is exciting that OpenMP is
extended to other research fields. Mostly,
OpenMP is considered as a promising
programming model. Some noticeable
examples are the studies on OpenMP for
multi-processors on a chip in the embed-
ded system community and OpenMP for
computational Grids in the high perform-
ance distributed computing community.

Read more about it
 OpenMP Forum, “Openmp: A

Proposed Industry Standard API for
Shared Memory Programming,” Techni-
cal Report, Oct. 1997.

 Mitsuhisa Sato, Shigehisa Satoh,
Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP
Cluster, European Workshop on OpenMP,
Sep. 1999.

 Y. Charlie Hu, Honghui Lu,
Alan L. Cox, and Willy Zwaenepoel,
OpenMP for Networks of SMPs, Journal
of Parallel and Distributed Computing,
60(12): 1512-1530, Dec. 2000.

 Seung-Jai Min, Ayon Basumal-
lik and Rudolf Eigenmann, Optimizing
OpenMP Programs on Software Distrib-
uted Shared Memory Systems, Interna-
tional Journal of Parallel Programming,
31(3):225-249, 2003.

 Yang-Suk Kee, Jin-Soo Kim,
and Soonhoi Ha, ParADE: An OpenMP
Programming Environment for SMP Clus-
ter Systems, International Conference on
High Performance Computing and Com-
munication, Nov. 2003.

About the author
Dr. Yang-Suk Kee is a post-doctoral re-
searcher at University of California, San
Diego. Dr. Kee received his B.S. and M.S.
degrees in Computer Engineering and his
Ph.D. degree in Electrical Engineering
and Computer Science from Seoul Na-
tional University, Korea. He is one of the
major contributors to the ParADE system.
Contact him at <yskee@csag.ucsd.edu>

