
LLNL-CONF-474253

OpenMP for Accelerators

J. C. Beyer, E. J. Stotzer, A. Hart, B. R. de
Supinski

March 17, 2011

International Workshop on OpenMP (IWOMP)
Chicago, IL, United States
June 13, 2011 through June 15, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

OpenMP for Accelerators

James C. Beyer1, Eric J. Stotzer2, Alistair Hart3, and Bronis R. de Supinski4

1 Cray Inc., 380 Jackson Street, Suite 210 St. Paul, MN
2 Texas Instruments Inc., 12500 TI Boulevard, Stafford, TX

3 Cray European Exascale Research Initiative, c/o EPCC, University of Edinburgh
4 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

beyerj@cray.com, estotzer@ti.com, ahart@cray.com, bronis@llnl.gov

Abstract. OpenMP [13] is the dominant programming model for shared-
memory parallelism in C, C++ and Fortran due to its easy-to-use directive-
based style, portability and broad support by compiler vendors. Similar
characteristics are needed for a programming model for devices such
as GPUs and DSPs that are gaining popularity to accelerate compute-
intensive application regions. This paper presents extensions to OpenMP
that provide that programming model. Our results demonstrate that a
high-level programming model can provide accelerated performance com-
parable to hand-coded implementations in CUDA.

Keywords: OpenMP, Accelerator, GPU, DSP, CUDA

1 Introduction

The rapid growth in the application of GPUs as accelerators has increased inter-
est in programming models that comprehend heterogeneous systems composed
of a host and an attached accelerator. Embedded systems designers have long
relied on accelerators to improve system performance for specific application ar-
eas. In general, programming models have been difficult to implement on the
irregular hardware features of the accelerators in embedded systems.

Although hardware accelerator performance continues to outpace general
processor performance, accelerators remain difficult to program. For example,
Compute Unified Device Architecture (CUDA) [11] and Open Computing Lan-
guage (OpenCL [8]), the two dominate programming models for GPUs, sup-
port high-performance accelerator algorithms but require the programmer to
rewrite their code specifically for the target architecture (with CUDA, specifi-
cally NVIDIA GPUs).

We propose OpenMP extensions that support accelerators (cache coherent or
not) without requiring the programmer to rewrite the code. Our extensions add
the concept of execution engines (i.e., accelerators) that the runtime manages.
The programmer identifies accelerator regions through directives or accelerator-
specific functions. We also extend the OpenMP memory model to ensure data
integrity across these regions.

Our example changes for matrix multiply and MG from the NPB suite [3]
show that these OpenMP extensions provide a simple mechanism to target C,

C++ and Fortran code to accelerators. We show that our prototype compiler
implementation provides comparable performance to hand-coded CUDA imple-
mentations.

2 Motivation

The motivation for developing hardware accelerators is efficiency improvement
with respect to power, performance, and silicon area. High performance appli-
cations are characterized by dynamic compute-intensive regions. Optimizing the
compute-intensive regions of the application is highly desirable. Often these re-
gions of the application contain loops with high degrees of parallelism. One way
to dramatically improve the overall performance of the application is to execute
the compute-intensive regions on a hardware accelerator. Because the accelera-
tor is specialized for a specific function, it eliminates the non-essential circuitry
that must be present on a general-purpose processor. This enables the accel-
erator to use less power to execute the same function. With respect to area,
specialized accelerator hardware tends to be much smaller than the number of
general-purpose processors that would be required to execute the accelerated
code block in the same amount of time.

Several vendors have defined their own languages or have extended the C
language to address parallelism on custom devices. For example, Clearspeed
defined Cn [5], an extension of C to support their data-parallel architecture
by providing the definitions of mono (scalar) and poly (parallel,or replicated)
data types. The Multicore Association has proposed a message-passing model,
referred to as the Communications API (CAPI) [10]. Intel proposed an extension
to OpenMP in its EXOCHI [16] programming environment.

The following works were evaluated and influence, sometimes heavily, the
extensions to the OpenMP specification that are presented in the paper.

StarSs extensions to OpenMP [2] This proposal, gives the programmer the
ability to tell the OpenMP compiler that a particular snippet of code is to
be compiled for a particular accelerator or that it will be compiled for several
different accelerators and the runtime will have to figure out which accelerator
is the best to use when the task is run. One of the strongest features of this
proposal is that it allows the programmer to annotate the header file and to never
expose the actual code to the compiler. This allows libraries to be augmented
for accelerators and then called directly from user code with the correct calling
sequence for the given accelerator.

hiCUDA [6] is a high-level directive-based language targeting CUDA. A pro-
totype source-to-source compiler was implemented which showed no loss of per-
formance between writing the code in hiCUDA and CUDA.

The hybrid multicore parallel programming (HMPP) language, from CAPS [4]
Entreprises, targets GPUs via directive-based programming and introduced codelets,
asynchronous tasks executed by an accelerator. The system supports C, Fortran
and C++ with the goal of doing form GPUs what OpenMP has done for multi-

thread programming. This system supports a diverse set of accelerators, Nvidia,
ATI/AMD, SSE, CELL and OpenCL engines.

The PGI accelerator directives is a collection of compiler directives used to
specify regions of code in Fortran and C programs that can be offloaded from a
host CPU to an attached accelerator. The method outlined provides a model for
accelerator programming that is portable across operating systems and various
types of host CPUs and accelerators. [14]

OpenMPC [9] is a programming interface which builds on OpenMP to pro-
vide an abstraction of the CUDA programming model. The system addes CUDA
specific directives to existing OpenMP parallel region directives. The directives
are added automatically by the system to parallel regions, with the user over-
riding decisions when needed. The performance numbers, 88% of hand written
CUDA, are impressive, however, the approach ignores the OpenMP execution
model.

Accelerators are common in embedded computing, where they tend to be pro-
grammed using low-level vendor specific APIs. Currently, the most well known
accelerators are GPUs, which have a separate memory space that is connected
to the host (and network) via a relatively slow (high latency, low bandwidth)
PCIe bus. The dominant programming models for GPUs are currently CUDA
and OpenCL. Both give the programmer the power to extract performance from
the accelerator but also require the programmer to rewrite their code for the
target architecture at a low level. While future architectures will integrate these
accelerators and full-featured cores on the same die with direct network access,
we expect the accelerators will remain difficult to program [1, 7].

The low level code required by CUDA and OpenCL is often repetitive and
error-prone. It often focuses on moving data between the host CPU and the ac-
celerator. Compilers could implement significant portions of this repetitive code.
Thus, we propose extensions to OpenMP that allow the programmer to acceler-
ate key kernels or entire applications by adding directives to the original source
code (Fortran, C or C++). These directives do not alter the existing code that
runs well on the host CPU. Overall, our extensions support rapid, maintainable
accelerator code development while leaving performance optimizations to the
compiler and runtime environment. We also provide optional directive clauses
that can guide these optimizations.

3 Changes to OpenMP Models

Our extensions require fundamental changes to the OpenMP execution and mem-
ory models. We add the concept of an accelerator region to the execution model.
The runtime generates an explicit accelerator task when a thread encounters an
accelerator region. If the system has multiple accelerators that can execute the
region, then the runtime determines which one to use. If the system has multiple
types of accelerators, the runtime ensures that an appropriate version is available
for the one that it selects. Execution of that accelerator task is then tied to that
accelerator type. The accelerator task must complete before the next OpenMP

barrier completes. Alternatively, we provide an accelerator task synchronization
construct that enforces completion of the accelerator task. All accelerator tasks
must complete before the program exits.

Accelerators can have both private and shared accelerator-resident objects.
They can access host memory via direct access or via data copying. Data motion
directives provide hints to the compiler on where to place data that accelera-
tor regions access. Accelerators do not have memory equivalent to threadpri-
vate memory; all threadprivate data is treated as firstprivate. Since we target
non-cache coherent accelerators as well as integrated ones that support cache
coherence, host threads must use explicit synchronization to modify or to read
a memory location that is duplicated on the accelerator; otherwise the result is
unspecified. Both the host and the accelerator must execute flushes to ensure
that global memory modifications made by one are visible by the other. How-
ever, accelerator-resident shared objects can be updated or copied to the host
whenever the accelerator is not modifying them.

4 Directives

This section describes the syntax and behavior of our new directives and clauses.

4.1 Accelerator Region Construct

Syntax:
C/C++
#pragma omp acc region [clause [[,] clause]...] newline

Structured-block
Fortran
!$omp acc region [clause[[,] clause]...]

Structured-block
!$omp end acc region
Clauses

device(integer-expression [,integer-expression])
if(scalar-expression) or if(scalar-logical-expression)
num pes(depth:number [, depth:number])
acc shared(list)
acc copy(list)
acc copyin(list)
acc copyout(list)
host shared(list)
firstprivate(list)
private(list)
present(list|*)
default(acc shared|acc copy|firstprivate|private|none|ignore)

This fundamental construct starts an accelerator region. Its primary purpose
is to delineate the code that is to be run on an accelerator. When a thread
encounters an ACC REGION construct, it creates an accelerator task that
can be assigned to an accelerator or to the threads in a parallel team (a new
parallel team will be constructed if the construct is not inside a parallel region).
If the ACC REGION is inside a data environment it shall be assigned to the
same device to which the ACC DATA REGION (Section 4.2) is bound.

The device clause causes the construct to be tied to the accelerator deter-
mined by the constant positive integer expression. The if clause determines
whether the region is accelerated: the region is accelerated if the expression eval-
uates to true; otherwise, the encountering thread runs the region. The numpes

clause controls the number of processing elements that are applied to a given
level. The depth refers to the level of parallelism that is to be exploited. A depth
greater than the current depth causes pre-allocation of resources for when that
depth is reached. A depth:number pair is ignored if the depth is less than the
current depth. The compiler may generate improved code if the depth and num-
ber positive integer expressions are constants. We discuss the data clauses in
Section 4.7.

4.2 Accelerator Data Region Construct

Syntax:
C/C++
#pragma omp acc data [clause [[,] clause]...] newline

Structured-block
Fortran
!$omp acc data [clause[[,] clause]...]

Structured-block
!$omp end acc data
Clauses

device(integer|expression [, integer|expression])
acc copy(list)
acc copyin(list)
acc copyout(list)
host shared(list)
acc shared(list)
present(list|*)
default(acc shared|host shared|acc copy|none|ignore)

This fundamental construct starts an accelerator data region. Its primary
purpose is to define a data scope that applies to multiple accelerated constructs.
When a thread encounters an ACC DATA REGION construct, it creates an
accelerator task data environment. This task data environment is assigned to
the default accelerator or to the accelerator specified by the device clause, which

causes the construct to be tied to the accelerator determined by the constant in-
teger expression. As stated previously, we discuss the data clauses in Section 4.7.

4.3 Accelerator Loop Construct

Syntax:
C/C++
#pragma omp acc loop [clause[, clause]...] new-line

For-loop-nest
Fortran
!$omp acc loop [clause[, clause]...]
Do-construct
!$omp end acc loop
Clauses

host(expr)
level(dimension)
max par level(expr)
num pes(depth:number [, depth:number])
reduction(operator:list)

The accelerator loop construct specifies that the iterations of one or more as-
sociated loops will accelerated. The ACC LOOP construct is associated with a
loop nest consisting of one or more loops that follow the ACC LOOP directive.

The host clause causes the associated loop nest to execute on the host if the
expression evaluates to true. If the expression evaluates to false, or neither the
host nor the hetero clause appears, all iterations execute on the accelerator. The
level clause causes the associated loop to be spread across the accelerator at the
dimension, or level of parallelism on the accelerator, specified. If a dimension
that the constant positive integer expression specifies is not supported then the
compiler will schedule the loop to be run sequentially. The max par level clause
indicates that the level of parallelism in the loop will not exceed expr, which
is a constant positive integer expression. The compiler uses this information
to determine how to utilize resources on the accelerator. The num pes clause
controls the number of processing elements that are applied to a given level. As
with the ACC REGION construct, a depth greater than the current depth
causes pre-allocation of resources while the depth:number pair is ignored if it
is less than that depth. For each list item of a reduction clause, each ”thread”
creates a private copy that is initialized appropriately for the operator. After the
end of the region, the original list item is updated to the result of combining the
private copies using the specified operator.

4.4 Accelerator Region Loop Construct

Syntax:
C/C++

#pragma omp acc region loop [clause[[,] clause]...] new-line
For-loop-nest

Fortran
!$omp acc region loop [clause[[,] clause]]

Do-loop-nest
!$omp end acc region loop
Clauses

See component constructs.

The combined ACC REGION LOOP construct creates an accelerator re-
gion with an accelerator loop. This construct must contain a single loop nest.

4.5 Accelerator Call Construct

Syntax:
C/C++
#pragma omp acc call [clause[[,]clause]...] newline

Function call expression
Fortran
!$omp acc call [clause[[,] clause]...]

Call statement
!$omp end acc call
Clauses

device(integer-expression)
if(scalar-expression)
implements(device:name [, device:name])
num pes(depth:num [, depth:num])
acc copy(list)
acc copyin(list)
acc copyout(list)
present(list|*)

The accelerator call construct specifies that a copy of the associated call has
an accelerated version in a user provided location. The ACC CALL construct
causes the encountering thread to request that the runtime determine the best
way to accelerate the associated call. Functions that return anything will write
to an accelerator memory location and this location will be copied back to the
host, unless the system supports some other method of returning values. The
size of the resulting data must be determinable before the call is launched on
the accelerator.

If the device clause is present then only the associated type of device as
determined by constant positive integer expression can be used to accelerate the
call. As with the ACC REGION construct, the if clause determines whether
the call is accelerated. The implements clause provides a mechanism by which the
programmer can tell the compiler that a prototype is implemented for ”device”

with name ”name”. This mechanism allows the programmer to provide their own
accelerator version without having to determine the proper name mangling for
routine. As with the ACC REGION construct, the num pes clause controls
the number of processing elements that are applied to a given level.

4.6 Accelerator Update Directive

Syntax:
C/C++
#pragma omp acc update clause[, clause]... new-line
Fortran
!$omp acc update clause[, clause]...
Clauses

host(obj1[:obj2] [,obj1[:obj2]])
acc(obj1[:obj2] [,obj1[:obj2]])

The update directive is used within an explicit or implicit data region to update
all or part of a host memory array with values from the corresponding array in
accelerator memory, or to update all or part of an accelerator memory object
with values from the corresponding object in host memory. The host clause
causes the obj1 objects to be copied from the accelerator memory to the host
memory, if the host and accelerator memory are distinct. The acc clause causes
the obj1 objects to be copied from the host memory to the accelerator memory,
if the memories are distinct. The optional obj2 object allows the programmer to
move data between two objects that have different identifiers; when it is provided,
obj1 is the source object and obj2 is the destination object. This directive allows
both the host and the accelerator to work independently and then to update each
other before continuing.

4.7 Data Environment

The following section defines the data clauses used in the various constructs.
General Clauses:
Default clause: The default clause specifies the default behavior for all objects

that are used but not explicitly placed in a given memory type. A default(none)
clause requires all objects used inside the construct to be present on a data-
sharing attribute clause list. The default is copy if no default is provided. A
default(ignore) clause requires any objects that are not explicitly scoped to be
in a present clause.

Cache clause: The cache clause causes the compiler to attempt to place the
object at the memory depth requested. If the depth is greater than the supported
depth of the accelerator, it will be placed on the depth closest to the requested
depth.

Data-sharing Attribute clauses:

Host shared clause: The host shared clause causes the objects in the list to
be shared with the host. The objects are left in host memory or copied and
updated automatically by the compiler if the accelerator has direct access to the
hosts memory. The compiler will attempt to move data between the host and
accelerator so as to ensure correct memory semantics for the accelerator region
if the accelerator does not have direct access to the host memory. The compiler
may demote the accelerator region to a parallel region if it cannot determine
how to move the data.

Acc shared clause: The acc shared clause causes the objects in the list to be
shared by all tasks executing on the associated accelerator.

Private clause: The private clause causes a unique copy of the objects in the
list to be provided to each task on the accelerator.

Data copying clauses:
Acc copy clause: The acc copy clause causes the accelerator shared objects

to be initialized to the hosts memory state when the region starts and then
causes the hosts memory state to be updated with the accelerator memory state
when the region ends. This clause combines the behavior of the acc copyin and
acc copyout clauses. An object that appears in an acc copy clause cannot appear
in other data sharing clauses.

Acc copyin clause: The acc copyin clause causes the accelerator shared ob-
jects to be initialized to the hosts memory state when the region starts. Objects
in this clause may also appear in the acc copyout clause.

Acc Copyout clause: The acc copyout clause causes the hosts memory to be
updated with the state of the accelerator shared objects when the accelerator
region ends. Objects in this clause may also appear in the acc copyin clause.

Present clause: The runtime system checks for copies of list items in a present
clause already on the accelerator. If the list item also appears in an acc shared,
acc copy, acc copyin or acc copyout clause and the object is not found on the
accelerator then the copy clause takes effect. The behavior is unspecified if the
object is not already on the accelerator and is not in another data placement
clause. The special ”*” list is the same as listing all objects in the lexical region
in the list.

Firstprivate clause: The firstprivate clause causes all private versions of the
list objects to be initialized to the state of the associated shared object.

4.8 Array section specifications

Array shaping syntax must be used when arrays and pointers are used inside
any of the clauses and the extents are to be limited or are unknown.

Fortran: Fortran array syntax can be used to define the array section. The
placement of Explicit, Assumed and Deferred shape array types may be modified
with the array section construct. CRI pointers inherit the shape of the pointee.

C/C++: We provide an extended array shaping syntax for C and C++.
Shaping operator ::= [¡lower bound¿ : ¡length¿ : ¡stride¿] where ¡lower bound¿,
¡length¿, and ¡stride¿ are integer expressions that represent the integer values:
¡lower bound¿, ..., ¡lower bound¿ + (¡length¿ - 1) * ¡stride¿

Successive section operators designate a sub-array of a multidimensional ar-
ray object. When absent, the ¡stride¿ defaults to 1. If the ¡length¿ is less than
1, the array section is undefined. We provide [:] as shorthand for a whole array
dimension if the size of the dimension is known from the array declaration or
a cast. The placement of Arrays, single and multi dimensional, Pointers, single
level and multi-level and C++ vectors may be modified with the array sections
construct.

5 Examples

5.1 Matrix Multiply

Our simple matrix multiply example shows how to accelerate a code region with
minimal effort. This example takes over two pages in CUDA [12] We only need
to add two lines of code to run on an accelerator. These additions move data
between the host and the accelerator and generate the code for the accelerator.
The following shows the complete implementation of our OpenMP-based routine
for the accelerator:

!$omp acc_region_loop

do j = 1,L

do i = 1,N

do k = 1,M

C(i,j) = C(i,j) + A(i,k)*B(k,j)

enddo

enddo

enddo

!$omp end acc_region_loop

The main line:
!$omp acc region loop

conveys that this is an accelerator region loop, which is analogous to a parallel
do or parallel for construct. The region construct instructs the compiler to place
the code on the accelerator and the loop construct then instructs the compiler
to workshare the next loop on the accelerator. The compiler determines how
workshare the loop, for instance by stripmining the j-loop, although clauses
on the directive can guide the compiler choices. We do not need to use data
placement clauses: the compiler determines correct data movements at the start
and end of the region construct. This default movement can be tuned using data
placement clauses. In this case, we can use the following clauses to direct the
correct behavior explicitly:

!$omp acc region loop acc copyin(a,b) acc copy(c)
The acc copyin instructs the compiler to transfer the values the host has in the
objects a and b to the accelerator. After the region the objects can simply be
freed from the accelerator memory; they do not have to be copied back. The

acc copy clause instructs the system to move the data from the host to the
accelerator before the region and back to the host after the region.

A final (but important) refinement is to add the present clause:
!$omp acc region loop acc copyin(a,b) acc copy(c) present(a,b,c)

If the runtime determines that any of the objects a, b or c are already on the
accelerator, then we use those copies without again copying their values from the
host, which overrides the acc copyin and acc copy clauses. The user must ensure
that the data is updated on the host or accelerator as needed (e.g., by using
the acc data or acc update directives). Overall, the present clause serves two
significant purposes: composability and data reuse. The composability feature
allows us the flexibility to call a routine containing the construct from different
call sites where the data may or may not be on the accelerator.

5.2 5.2 NAS Parallel Benchmark – MG

We modified the NPB MG [3] code to use our accelerator directives to demon-
strate their utility. We only had to address one minor data sharing problem and
then place approximately 25 directives in the (roughly 1500) lines of code. Since
the code is too large to include entirely, we briefly describe the changes. We first
added an acc data region directive:

!$omp acc data acc shared(u,v,r) acc copyin(a,c)
We associate this directive with the 75 lines of code that contitute the main
body of the computation. This block of code has more than 20 calls, some of
which contain computational loops that can be executed on the accelerator.
The accelerator regions are primarily called from within this data region, which
allows reuse of the data objects that are placed on the accelerator just once.

The remaining directives that we added are similar to the following line:
!$omp acc region private(r1,r2) present(r,u,c) acc copyin(r,c) acc copy(u)
!$omp acc loop

These regions create private copies of some objects and conditionally copy other
objects to the accelerator, before starting one or more loop nests that are work-
shared.

These 25 directives were incrementally added to the code. Many, but not all,
replaced standard OpenMP parallel do constructs; a working (CPU) OpenMP
version is a very good template from which to start. Thus, we ported the MG
code to the accelerator with minimal modifications and modest effort. The port
initially achieved a modest speed up of about 2.5 (relative to a single host CPU
thread). This port demonstrates that a directive-driven compiler using the pro-
posed constructs can efficiently place an existing code with little rewriting on
an accelerator. We expect that additional tuning of the compiler technology will
result in even better performance.

6 Performance

We evaluate the performance of accelerator directives against two metrics: ex-
ecution speed; and the time that the programmer spends to port existing code

to the accelerator. Section 5.1 presented a simple matrix multiplication exam-
ple. We accelerated this example in a stepwise manner. We first verified that
the sequential code was correct. We then parallelized that code with traditional
OpenMP parallel do regions. Finally, we replaced the OpenMP constructs with
our proposed accelerator directives and optimized.

The experimental setup is a Dual processor quad-core Xeon E5504 running
at 2.00GHz with two attached Tesla C2050s. The performance results presented
in Fig. 1 are the GigaFlops per-second achieved on the host using standard
OpenMP and then the GigaFlops per-second achieved using the accelerator di-
rectives, plus the gigaflops per minute of effort to switch to accelerator directives
from the best OpenMP performance. The standard OpenMP performance num-
bers show a reasonable increase in Gflops as the number of threads is increased
to four. At four threads, the OS must start placing threads on the second pro-
cessor, which leads to performance problems due to the NUMA nature of the
processor. The Accelerator performance numbers present both the total perfor-
mance for given experiment and the Gflops achieved per minute of work spent
moving the code to the accelerator.

Fig. 1. Matrix Multiplication

The first experiment simply replaced the parallel do with an acc region loop

construct. This took about a minute and lead to a 4.79 Gflop increase in perfor-
mance over the 4 thread run. The second experiment simply moved the transfer
times out of the computation by utilizing the data region construct and the
present clause. This took an additional minute of work leading to a 3.46 Gflop
per minute of effort improvement over the standard OpenMP version. Finally
the loop body was hand unrolled to achieve a speedup that a more mature com-
piler could be expected to achieve without help. The unrolling almost doubled
the performance on the accelerator. The performance is still significantly below
peak, PGI CUDA [15] for Fortran tests have achieved 5 times the speed on this
same test; however, they require the code to be rewritten in CUDA, which limits
the portability of the code.

7 Conclusion

Accelerators have efficiency advantages that improve performance and reduce
power consumption and cost. However, the challenge is to present a usable pro-
gramming model. Existing models such as CUDA [11, 12] and OpenCL [8] force
the programmer to rewrite their code specifically for the target architecture. We
have proposed OpenMP extensions that support a wide range of accelerators
without requiring the programmer to rewrite their code. With these extensions
the programmer identifies regions of code and data that are offloaded to an ac-
celerator. Using matrix multiply and the NPB MG benchmark, we have shown
that these OpenMP extensions provide a simple mechanism to target C, C++
and Fortran code to accelerators

References

1. AMD: The AMD Fusion Family of APUs (March 2011)
2. Ayguad, E., Badia, R., Bellens, P., Cabrera, D., Duran, A., Ferrer, R., Gonzlez, M.,

Igual, F., Jimnez-Gonzlez, D., Labarta, J., Martinell, L., Martorell, X., Mayo, R.,
Prez, J., Planas, J., Quintana-Ort, E.: Extending openmp to survive the hetero-
geneous multi-core era. International Journal of Parallel Programming 38, 440–
459 (2010), http://dx.doi.org/10.1007/s10766-010-0135-4, 10.1007/s10766-
010-0135-4

3. Bailey, D. H. and Barszcz, E. and Barton, J. T. and Browning, D. S. and Carter, R.
L. and Dagum, L. and Fatoohi, R. A. and Frederickson, P. O. and Lasinski, T. A.
and Schreiber, R. S. and Simon, H. D. and Venkatakrishnan, V. and Weeratunga, S.
K.: The NAS parallel benchmarks. In: International Journal of High Performance
Computing Applications. vol. 5, pp. 63–73 (1991)

4. CAPS: Hmpp (November 2010), http://www.caps-entreprise.com
5. Clearspeed: Support (November 2010), {http://support.clearspeed.com}
6. Han, T.D., Abdelrahman, T.S.: ¡i¿hi¡/i¿cuda: a high-level directive-based language

for gpu programming. In: Proceedings of 2nd Workshop on General Purpose Pro-
cessing on Graphics Processing Units. pp. 52–61. GPGPU-2, ACM, New York, NY,
USA (2009), http://doi.acm.org/10.1145/1513895.1513902

7. Intel Corp.: Intel unveils new product plans for high-performance computing
(March 2011)

8. Khronos Group: The OpenCL Specification, v. 1.1 (September 2010), http://www.
khronos.org/registry/cl/

9. Lee, Seyong and Eigenmann, Rudolf: OpenMPC: Extended OpenMP Program-
ming and Tuning for GPUs. In: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis.
pp. 1–11. SC ’10, IEEE Computer Society (2010), {http://dx.doi.org/10.1109/
SC.2010.36}

10. MCA: The Multicore Association (2011)
11. Nvidia Corp.: NVIDIA CUDA C Programming Guide, v. 3.2 (2010)
12. Nvidia Corp.: What is CUDA (February 2011), {http://www.nvidia.com/object/

what_is_cuda_new.html}

13. OpenMP ARB: OpenMP Application Program Interface, v. 3.0 (May 2008), http:
//openmp.org/wp/openmp-specifications

14. PGI: Accelerator (November 2011)
15. PGI: Cuda fortran (March 2011), {http://www.pgroup.com/resources/

cudafortran.htm}

16. Wang, Perry H. and Collins, Jamison D. and Chinya, Gautham N. and Jiang,
Hong and Tian, Xinmin and Girkar, Milind and Yang, Nick Y. and Lueh, Guei-
Yuan and Wang, Hong: EXOCHI: architecture and programming environment for a
heterogeneous multi-core multithreaded system. In: Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implementation. pp.
156–166. ACM (2007), {http://doi.acm.org/10.1145/1250734.1250753}

bledsoe2
Typewritten Text
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

