
Scientific Programming 11 (2003) 95–104 95
IOS Press

OpenMP issues arising in the development of

parallel BLAS and LAPACK libraries

C. Addisonb,∗, Y. Rena and M. van Waverenc

aFujitsu European Centre for Information Technology, Hayes, UK
bDepartment of Computer Science, University of Manchester, Manchester
cFujitsu Systems Europe, Toulouse, France

Abstract. Dense linear algebra libraries need to cope efficiently with a range of input problem sizes and shapes. Inherently this

means that parallel implementations have to exploit parallelism wherever it is present. While OpenMP allows relatively fine grain

parallelism to be exploited in a shared memory environment it currently lacks features to make it easy to partition computation

over multiple array indices or to overlap sequential and parallel computations. The inherent flexible nature of shared memory

paradigms such as OpenMP poses other difficulties when it becomes necessary to optimise performance across successive parallel

library calls. Notions borrowed from distributed memory paradigms, such as explicit data distributions help address some of

these problems, but the focus on data rather than work distribution appears misplaced in an SMP context.

1. Introduction

The BLAS and LAPACK libraries [1] are widely

used by scientists and engineers to obtain good levels

of performance on todayfls cache-based computer sys-

tems. Distributed memory analogues, the PBLAS and

ScaLAPACK [3]have been developed to assist people

on this type of parallel system. Shared memory (SMP)

variants tend to only be available from hardware ven-

dors (e.g. Intel’s Math Kernel Library, [6]) or from li-

brary companies such as NAG Inc. or Visual Numerics

Ltd.

Consistent with this pattern, Fujitsu recently released

its first SMP version of the parallel BLAS and LAPACK

libraries for its PRIMEPOWER series. What makes

this release interesting is that it was written exclusively

using OpenMP, rather than a special purpose thread li-

brary. In the course of developing these libraries, sev-

eral issues arose concerning OpenMP. Some of these

issues can be handled by careful use of OpenMP di-

rectives. Other issues reveal weaknesses in the Version

∗Corresponding author: 66 Queens Avenue, Meols, Wirral, CH47

0NA, UK. Tel: +44 151 632 6615; E-mail: caddison@addis0.fsnet.

co.uk.

1.1 specification that are addressed in the Version 2

specification. Still other issues reveal weaknesses that

are inherent in this approach to parallelisation and may

be difficult to resolve directly.

In the rest of this paper, we present a brief overview

of the SMP environment on the Fujitsu PRIMEPOW-

ER. We then discuss some of the basic library issues

surrounding the BLAS and how we have resolved these

using OpenMP. Parallel performance in LAPACK rou-

tines is often obtained through a sequence of calls to

parallel BLAS and by masking sequential computations

with parallel ones. The latter requires splitting thread

families into teams. The OpenMP Version 1.1 spec-

ification [11] does not support this particularly well.

OpenMP Version 2 [12] has better support and some

attractive extensions have been proposed (e.g. the sug-

gestions in [5]) that make this approach simpler. Fi-

nally, many LAPACK routines have kernels that con-

sist of a sequence of consecutive BLAS calls within a

loop. When these calls operate on just vectors, or per-

form matrix-vector type operations, they are sensitive

to the migration of data from one processor’s cache to

another and by the overheads that result from making

each BLAS call a separate parallel region. Avoiding

such overheads is not always possible and the paper

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

96 C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries

concludes by examining some of the limitations that

are inherent to OpenMP.

2. SMP programming on the Fujitsu

PRIMEPOWER

The Fujitsu PRIMEPOWER is an SMP system that

supports up to 128 processors in a Solaris environ-
ment [7]. The current processor employed is the

SPARC64 IV. This is a SPARC V9 architecture com-

pliant processor that is similar to Sun’s UltraSPARC

processor series. The SPARC64 IV contains extensive

support for out-of-order and speculative execution. It

has a fused floating-point multiply-add as well as a sep-

arate floating-point add pipeline. Each processor has

128 Kbytes of data cache and a similarly sized instruc-

tion cache. There is also a unified second level cache of

8 Mbytes. In September 2001, the top clock speed of

these processors was 675 MHz, so the achievable peak

performance is 1350 Mflop/s.

Multi-processor systems are built from system

boards that have up to 4 processors and 16 Gbytes of

memory. There is a maximum of 8 such boards in

a node (cabinet) and then up to 4 nodes can be con-
nected together via a high-speed crossbar. The system

has nearly uniform memory access across its poten-

tial 512 GBytes of memory. As the SPEC OpenMP

benchmarks, [14], show, it is possible to obtain parallel

speed-ups using the full 128 processor configuration on

non-trivial applications.

The parallel programming environment is provided

by Fortran and C compilers that support OpenMP Ver-

sion 1.1.1 Both compilers also have extensive support

for the automatic parallelisation of user codes. Fu-

jitsu’s Parallelnavi batch environment, accessible via

NQS, binds threads to processors, processors to jobs

and provides support for 4 MByte pages. These all

reduce performance variations relating to system and

other user activity. Therefore, provided there are one

or two processors available for systems’ use and for
handling basic interactive facilities, user jobs run on

effectively dedicated processors.

3. Designing OpenMP parallel BLAS

One of the challenges in providing parallel BLAS

and LAPACK routines is that most BLAS routines con-

1Version 2.0 Fortran will be available in 2002.

tain assembler kernels. Therefore OpenMP parallelism

must lie outside of these kernels. This effectively in-

troduces yet another level of blocking within the rou-

tines. The practical aspects of this and related issues

are illustrated by the general matrix by matrix multipli-

cation routine dgemm. This family of multiplications

also forms the kernel around which all the other matrix-

matrix BLAS operations are constructed, see [8].

The basic operation that dgemm supports is: C ←

αAB+βC, where C is a general m by n matrix, A is a

general m by k matrix and B is a general k by n matrix.

Both α and β are scalars. In addition either A or B can

be transposed, with a consistent change in dimension-

ality. Each member of this family of four operations is

highly parallel. When m and n are sufficiently large,

an effective solution is to partition the problem into an

appropriate number of sub-matrices and perform each

sub-matrix multiplication in parallel. With 4 threads

one partition would be
(

C11 C12

C21 C22

)

= α

(

A11 A12

A21 A22

)

×

(

B11 B12

B21 B22

)

+β

(

C11 C12

C21 C22

)

This then leads to:

C11 = αA11 × B11 + αA12 × B21 + βC11,

C12 = αA11 × B12 + αA12 × B22 + βC12,

C21 = αA21 × B11 + αA22 × B21 + βC21,

C22 = αA21 × B12 + αA22 × B22 + βC22,

where these sub-matrix operations are independent of

one another and can be performed by separate calls to

the sequential dgemm on different threads. The only

challenge is to ensure that the number of threads allo-

cated to a dimension is proportional to m and n and

that the sub-blocks are large enough that near peak se-

quential performance is obtained. Since OpenMP has

no equivalent to the High Performance Fortran (HPF)

notion of processor arrays with shape [9], the library

writer must map the 2-D thread partitioning onto the

1-D array of thread identifiers. This is not difficult,

but the mapping clutters the code and makes it slightly

harder to maintain. This is particularly relevant when

one recalls that this mapping must be performed sep-

arately for each variant of the operation because the

partitioning of the matrices A and B across sequential

calls depends on whether they are transposed or not.

C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries 97

Performance of dgemm on the PRIMEPOWER

is good. Single processor performance using a

562.5 MHz system on 500 by 500 to 1000 by 1000

matrices is around 1 Gflop/s. On 16 processors, the

performance is around 12 Gflop/s on the same sized

problems and on 64 processors, the performance of

dgemm on 500 by 500 to 1000 by 1000 matrices is

around 32 Gflop/s.

The strategy of partitioning BLAS operations into a

series of independent sequential BLAS calls has proven

effective. However, the performance of the matrix-

vector and vector-vector BLAS routines is sensitive

to whether the matrix was already in cache (the “hot-

cache” case) or not (the “cold-cache” case). This will

be discussed in more detail at the end of this paper.

4. Building OpenMP LAPACK routines on top of

OpenMP BLAS

One of the design decisions in LAPACK was to make

extensive use of the matrix-matrix BLAS in order to

block computations and thereby make better use of data

in cache [1]. It was also felt, with some justification,

that the performance of major LAPACK computation

routines would improve simply from the use of SMP

versions of the BLAS routines. While the operations

performed between matrix blocks tend to parallelise

well, the operations performed within blocks tend to

be sufficiently fine grain that performance is mediocre

sequentially and scales poorly.

A classical way to remove such sequential bottle-

necks is to overlap the sequential computations on

one processor with different parallel computations per-

formed by the remaining processors.

Consider the pseudo-code for the main block of the

LU-decomposition routinedgetrf as shown in Fig. 1.

The operations performed within dgetf2 and the

pivot updates are best performed on a single processor.

The routines dtrsm and dgemm are BLAS routines

that operate on large parts of the matrix and that tend

to perform well in parallel. Observe that the first nb

columns of the trailing matrix will be the panel used for

factorisation with the next value of j. Therefore this

factorisation could be overlapped with the remainder of

the update of the trailing matrix. Indeed, it is possible

to do better than this, as is shown in Fig. 2 with a

segment of a variant of dgetrf containing OpenMP

directives.

It is useful to distinguish between the names of the

sequential BLAS called from within a parallel region

(as in Fig. 2) and the parallel BLAS called from a se-

quential region (as in Fig. 1), but the functionality of the

routines is identical. The pseudo-code in Fig. 2 allows

the factorisation of the second and subsequent panels

to be overlapped with the updating of the remainder of

the matrix. The code will only work if thread 0 up-

dates at least A(j:m,j:j+jb−1)prior to factoring this

same block. Further notice that the partitioning in the

dl gemm call is only over columns, which will limit

scalability on small to medium problems.

When the problem size is large enough and the num-

ber of threads small enough for a column decomposi-

tion to be appropriate, then the computation performed

in thread 0 can almost be totally masked by the opera-

tions in the other threads. Consider using 4 threads and

a problem size of 1000. A paper and pencil study that

only considers floating point operations suggests that

the parallel BLAS leads to a speed-up of around 2.3.

Overlapping the panel LU with matrix multiplication

leads to a theoretical speed-up of around 3.8. Measured

speed-up is less because of OpenMP overheads and be-

cause the rate of floating point computation is also rel-

evant. On a 300 MHz PRIMEPOWER, a speed-up of

2.3 on 4 processors has been observed on the 2000 by

2000 system using parallel BLAS only, which rises to

3.6 when overlapping is also used. These are compared

against the base LAPACK code with tuned BLAS. A

comparison of performance over a wider range of prob-

lems is shown in Fig. 3. When only floating point op-

erations are considered, this strategy appears effective,

so that good performance on 8 threads is possible on

the 1000 by 1000 problem.

Improving scalability further runs into limitations of

the OpenMP Version 1.1 specification. It also makes

the code much more complicated. Effectively, three

teams of threads are desired. The first team contains

thread 0. The second team (empty in the code of

Fig. 2, but probably just 1 or 2 threads) consists of

threads that update a part of A(j:m,j:j+jb−1) and

then proceed to update a part of A(j:m,j+jb:n). The

third (main) team of threads just updates a portion of

A(j:m,j+jb:n). The goal is to distribute the ma-

trix update across all threads subject to the constraint

that thread 0 has additional processing to perform when

factoring A(j:m,j:j+jb−1).

When there are a larger (say 16 or more) number of

threads, it is desirable to partition the matrix multiply

performed with the main thread team by both rows and

columns. This is only possible if the operations can be

synchronised properly. For instance, before a part of

the matrix multiplication can be performed, all earli-

98 C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries

 do j = 1, min(m, n), nb

 jb = min(min(m, n)-j+1, nb)

*

* Factor diagonal and subdiagonal blocks and test for exact

* singularity.

*

 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)

*

* Adjust info and the pivot indices. (Code not shown!)

*

*

* Apply interchanges to columns 1:j-1. (Code not shown!)

*

 if(j+jb.le.n) then

*

* Apply interchanges to columns j+jb:n. (Code not shown!)

*

*

* Compute block row of U.

*

 call dtrsm('left', 'lower', 'no transpose', 'unit', jb,

 $ n-j-jb+1, one, a(j, j), lda, a(j, j+jb),

 $ lda)

 if(j+jb.le.m) then

*

* Update trailing submatrix.

*

 call dgemm('no transpose', 'no transpose', m-j-jb+1,

 $ n-j-jb+1, jb, -one, a(j+jb, j), lda,

 $ a(j, j+jb), lda, one, a(j+jb, j+jb),

 $ lda)

 end if

 end if
 end do

Fig. 1. Pseudo-code for dgetrf.

er operations (e.g. the call to dl trsm to update the

sub-matrix that will form B in the subsequent matrix

multiply) must have updated all the relevant parts of the

sub-matrices. A block of columns that is partitioned

among several threads for the matrix multiply will be

composed from several column blocks that were up-

dated independently in the previous call to dl trsm.

Therefore explicit synchronisation is required.

With the OpenMP Version 1.1 specification, this is

only possible through the use of several sets of locks.

OpenMP Version 2 removes the need for locks be-

cause it allows the number of threads used within a

parallel region to be specified at run time and barrier

synchronisation can be used within a parallel region.

The specification of the 3 teams of threads mentioned

above could be performed as follows:

1. At the outer most parallel region theNUM THREADS

attribute is set to 2.

2. The row and columns indices over which the dif-

ferent thread teams operate are determined.

3. The two nested parallel regions are defined.

4. Calls to dlaswp and dl trsm are performed.

Partitioning is over columns only. The first thread

team takes at least the first nb columns of the

trailing matrix. The second team takes the bal-

ance of the columns.

5. The second thread team performs the dl gemm

call over independent rectangular regions that

covered its portion of the trailing matrix. Barri-

er synchronisation is required to prevent threads

making dl gemm calls before the relevant

dl trsm call has been completed.

6. The first thread team performs its initialdl gemm

calls over the first nb columns of the trailing

matrix. The thread team then splits into two, with

the team’s master thread performing the panel LU

decomposition over the first nb columns while the

C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries 99

 jb = min(min(m, n), nb)

 call dgetf2(m, jb, a(1, 1), lda, ipiv, info)

 jmax = min((n/nb-1)*nb,m)

*$OMP PARALLEL default(shared) private(range_n,i,low_n,jb,j)

 n_pmax = omp_get_num_threads()-1

 do j = nb+1, jmax, nb

 jb = min(jmax-j+1, nb)

*$OMP DO schedule(static)

 do i_n=0,n_pmax

*

* Compute range_n and low_n for each value of i_n (Not shown)

*

 call dlaswp(range_n, a(1, low_n),lda,j-nb,j-1,

 $ ipiv, 1)

 call dl_trsm('left', 'lower', 'no transpose', 'unit',

 $ nb, range_n,one, a(j-nb, j-nb), lda,

 $ a(j-nb, low_n), lda)

*

 call dl_gemm('no transpose', 'no transpose', m-j+1,

 $ range_n, nb, -one, a(j, j-nb), lda,

 $ a(j-nb, low_n),lda,one,

 $ a(j, low_n),lda)

 if (i_n .eq. 0) then

 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)

*

* Adjust INFO and the pivot indices. (Code not shown!)

 end if

 end do

*$OMP END DO

*$OMP MASTER ! Apply interchanges to columns 1:j-1 – can be asynchronous

 call dlaswp(nb, a(1,j-nb),lda, J, J+JB-1, IPIV, 1)

*$OMP END MASTER

 end do

*$OMP END PARALLEL

*

* Finish by updating then factoring a(jmax+1:m,jmax+1:n)
*

Fig. 2. OpenMP overlapped dgetrf.

remaining threads made dl gemm calls to update
their portion of the trailing matrix.

7. The nested regions end and there is a barrier syn-
chronisation performed between the two “outer”
threads.

The pseudo-code that implements the above steps is
shown in Fig. 4. The code has been simplified by hid-
ing the computation of the partition values and by using
a parallel do loop to differentiate the actions taken by
the two outer threads. Also note the implicit assump-
tion in step 5 that the column partitionings used for

dlaswp and dl trsm do not lead to any dependen-

cies between the 2 thread teams when calls todl gemm

are performed.

Unfortunately, no performance runs with a code sim-

ilar to that in Figure 4 have been possible. Perfor-

mance with 4 processors should be slightly better than

the tuned parallel dgetrf shown in Fig. 3. It should

scale better on small problem sizes with 8 or more

processors.

Similar scalable performance issues can be found in

many other LAPACK routines. Essentially the difficul-

100 C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Matrix size

M
fl

o
p

/s

4 threads-overlap 4 threads-base

Fig. 3. Tuned versus base parallel dgetrf on a 4 processor 300 MHz SPARC64 III system.

ty is that the Version 1.1 OpenMP specification does not

offer sufficient flexibility in the way in which teams of

threads can be defined. At present, synchronising the

activity of a sub-set of threads in a parallel region re-

quires the use of locks, which can become very cumber-

some. This problem has not been resolved in the Ver-

sion 2.0 specification for recursive algorithms, which

are becoming increasingly important in linear algebra

operations such as factorisation, see [4]. There are also

new algorithms to support, such as the divide and con-

quer algorithms for the symmetric tridiagonal eigenval-

ue problem and singular value decomposition included

in LAPACK Release 3.0. Possibly something like the

thread groups proposed in [5] or the work queues pro-

posed in [13] might be required in a future OpenMP

specification.

Another difficulty with writing efficient OpenMP

LAPACK routines relates to the overheads associat-

ed with several successive calls to parallel BLAS rou-

tines within one loop of an LAPACK routine. For in-

stance, in the main loop of the symmetric tridiagonal-

isation routine dlatrd there is a sequence of 5 calls

to matrix-vector BLAS, followed by 3 calls to vector

BLAS. Each of these creates its own parallel region

and each defines how many threads are appropriate for

the operation and how work is partitioned among these

threads. In a given call to dlatrd, this sequence of

calls of BLAS routines is executed about 64 times, so

that at least 512 different parallel regions are created.

Even though the overheads associated with creating a

new parallel region are low, the accumulated overheads

of this many different regions impact the performance

on smaller problems.

The current solution to this problem is to create spe-

cial “in-parallel” versions of the relevant BLAS rou-

tines. These routines are written assuming that a par-

allel region has already been created (i.e. they are us-

ing “orphaned directives”). It is then possible to have

only one parallel region for the entire calling routine.

While this reduces the overheads of creating the paral-

lel regions, there is no mechanism within OpenMP by

which the partitioning of work among threads within

these various routines can be organised to maximise the

reuse of data that is already in the cache of particular

processors. This can be a major performance difficulty.

5. Desired: OpenMP standards to support cache

reuse

Cache reuse is related to the discussion of control-

ling data distribution on NUMA systems in OpenMP,

see [2] and [10], but it is not identical. For example,

the cache line (typically 64 bytes) is the important unit

of ownership on a uniform memory access (UMA) sys-

tem like the PRIMEPOWER while the page (typically

C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries 101

 jb = min(min(m, n), nb)

 call dgetf2(m, jb, a(1, 1), lda, ipiv, info)

 jmax = min((n/nb-1)*nb,m)

*$OMP PARALLEL default(shared) private(range_n,low_n,range_m,low_m,Mth,Nth,j)

*$OMP& NUM_THREADS(2)

 mn_th = omp_get_num_threads()-1

 do j = nb+1, jmax, nb

 jb = min(jmax-j+1, nb)

* Determine Mth (number row blocks), Nth (number column blocks),

* tot_th(0), tot_th(1) (total number of threads in each team)

*$OMP DO schedule(static)

 do i_n=0,1

*$OMP PARALLEL NUM_THREADS(tot_th(i_n))

*

* Determine range_n, low_n for the following 2 operations

*

 call dlaswp(range_n, a(1, low_n),lda,j-nb,j-1,

 $ ipiv, 1)

 call dl_trsm('left', 'lower', 'no transpose', 'unit',

 $ nb, range_n, one, a(j-nb, j-nb), lda,

 $ a(j-nb, low_n), lda)

*$OMP BARRIER ! Necessary when move from 1-D to 2-D index partition.

* Determine range_n, low_n, range_m, low_m for dl_gemm

 call dl_gemm('no transpose', 'no transpose', range_m,

 $ range_n, nb, -one, a(low_m, j-nb), lda,

 $ a(j-nb, low_n),lda, one,

 $ a(low_m, low_n),lda)

 if (i_n .eq. 0) then

*$OMP BARRIER

* Reset values of partition variables (low_n etc.) for special phase

*$OMP MASTER ! Master thread team 0 – factorisation but null dl_gemm call

 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)

* Adjust INFO and the pivot indices.

 range_m = 0; range_n=0; low_m=m; low_n=n

*$OMP END MASTER ! Rest thread team 0 – dl_gemm call independent of master

 call dl_gemm('no transpose', 'no transpose', range_m,

 $ range_n, nb, -one, a(low_m, j-nb), lda,

 $ a(j-nb, low_n),lda, one,

 $ a(low_m, low_n),lda)

 end if

*$OMP END PARALLEL

 end do

*$OMP END DO

*$OMP MASTER ! Apply interchanges to columns 1:j-1 – can be asynchronous

 call dlaswp(nb, a(1,j-nb),lda, J, J+JB-1, IPIV, 1)

*$OMP END MASTER

 end do

*$OMP END PARALLEL

*

* Finish by updating then factoring a(jmax+1:m,jmax+1:n)
*

Fig. 4. Simplified pseudo-code for dgetrf using OpenMP Version 2.

8192 bytes or larger) is the more important on NUMA

systems. In many scientific applications, data is stati-

cally defined within pages so on NUMA systems this

induces a data distribution across processors. Latencies

to access remote data elements are orders of magnitude

higher than access latencies to local data elements and

102 C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries

the memory hierarchy is such that exploiting locality is

critical as is communicating blocks of data to amortise

the remote memory access cost. In such situations, it

is helpful to treat distribution as an attribute of the da-
ta. This has been proposed as a model for OpenMP,

see [2], and is also a useful model in a distributed mem-

ory/shared index space environment for languages such
as HPF.

In a UMA environment or in a NUMA system with

effective dynamic page management, there is a more
dynamic and much finer grain view of data ownership

by processors. Rather than distribution being an at-

tribute of the data, it might be more useful to regard

the partitioning of index spaces among threads as an at-
tribute of the operation being performed (e.g. a BLAS

call), with data residing in a cache line on a particu-

lar processor being a side effect. The objective in this
setting is to minimize the differences in index space

partitions between successive parallel loops. Alterna-

tively, if the differences in index space partitions are
known between parallel loops, a less demanding ob-

jective is to define a prefetch strategy that allows the

cache-resident data to be loaded consistent with the

second index space partition while executing over the
first index space partition.

This is something that an OpenMP-aware compiler

might accomplish, with some directive guidance from
the user. Performance problems due to different in-

dex partitionings tend to involve operations with poor

cache reuse, such as matrix-vector multiplication. If

the compiler is given (or directed to deduce) the differ-
ent index partitioning of a matrix over two successive

parallel code blocks, then it should be possible for it to

insert the necessary prefetch directives so that the data
is in cache ready for the second operation while the

first operation is continuing. This prefetch strategy also

complements dynamic page management on a NUMA
system.

The performance problems due to different partition-

ings and hence data lying in the “wrong” cache can

be severe. Consider the code fragment for a parallel
rank-1 update. This is the core operation performed in

the Level 2 BLAS routine dger.

* $OMP PARALLEL DO schedule (static)
* $OMP& default (shared) private (i)

do j=1, n

do i=1, m

a(i,j)=a(i,j)+x (i)∗y(j)
end do

end do

* $OMP END PARALLEL DO

This is a highly parallel operation that should scale

well for a range of problem sizes. However, parallel

performance is heavily dependent on what precedes and

follows this parallel region. For instance, if the array a

is defined immediately beforehand using a single thread

and the array is small enough that it can fit into that

processor’s Level 2 cache then parallel performance

will be terrible. It will be faster to perform the update

on the original processor.

If the array is defined in an earlier parallel region

using a partitioning similar to that used in the above

code fragment, and if the matrix fits into the collective

Level 2 caches of the processors involved, then parallel

performance will be excellent.

Optimal cache use cannot be determined just from

information about current data locality and the next op-

eration to be performed. Suppose that several consecu-

tive rank-1 updates were performed after the array had

been initialised in a sequential section and that the array

was small enough that it would fit into the collective

Level 2 cache of the processors involved. A local deci-

sion to maximize cache reuse by limiting parallelism to

a single thread would be the right decision with a sin-

gle rank-1 update, but it would certainly be the wrong

decision if there were 50 updates.

The rank-1 update also provides an example of how

information from the calling program to the called rou-

tine can improve cache reuse. It is possible for the

rank-1 update to be parallelised across both array di-

mensions and so that the actual partitioning used could

be chosen at runtime to fit with the partitionings in ear-

lier and subsequent parallel sections while still using

all available threads.

The adaptability of the parallel rank-1 update (as well

as that of matrix multiplication and several other oper-

ations) suggests that HPF-style data distribution direc-

tives would be useful. If the data has been distributed

among processes.2 sensibly, then many parallel BLAS

routines will work well just by inheriting this distribu-

tion. However, this thinking misses the critical point

– these routines are called from within larger applica-

tions and it is when defining effective data distributions

for these applications that the limitations of static data

distributions become clear.

2When explicit data distributions are imposed, the computation

units become more heavy weight, which is conveyed by referring to

them as processes rather than threads.

C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries 103

5.1. Data distribution directives – cache reuse at a

price

Consider LU decomposition as discussed in Section

4. With static data distributions using HPF or MPI,

the common approach for this application is to use a

doubly block-cyclic data distribution, see [3] for a jus-

tification. The blocking factor needs to be consistent

with that required for good performance from the sin-

gle processor matrix multiplication. The cyclic distri-

bution is required to provide a degree of load balance

among the processes. In order to have scalable matrix

multiply performance, the block cyclic distribution is

performed over both rows and columns of the matrix,

hence the notion of doubly block cyclic. However, the

induced 2-D process grid forces the “panel” factorisa-

tion (corresponding to calling dgetf2 in Fig. 1) to

be performed over multiple processes. This reduces

performance except on very large systems. The block

cyclic data distribution also makes it difficult to overlap

this factorisation with updates to the rest of the matrix.

The data blocks are the same size, but the amount of

computation required over the sub-group of blocks in

the current panel is larger because of the panel LU fac-

torisation. Furthermore, the processes responsible for

the current panel change as the computation proceeds.

Compare these difficulties with those involved in per-

forming LU decomposition with OpenMP. If the panel

factorisation is not overlapped with other computation,

then the code in Fig. 1 becomes parallel by providing

parallel BLAS. The matrix multiply is partitioned over

both row and column indices in the call to dgemm, so

asymptotically the code will behave well, but the pan-

el factorisation will be a bottleneck for many practical

problem sizes. The panel factorisation can be over-

lapped with other computation, as shown in Fig. 2. Per-

formance is now limited by the 1-D partitioning in the

matrix multiply. An optimal matrix-multiplication that

keeps the work distributed evenly among threads can

be combined with the overlap of the panel factorisation

using locks or Version 2.0 features as in Figure 4. The

resulting code will work well on a range of problem

sizes with a large number of threads.

To summarize, data distribution directives are use-

ful on distributed memory systems. Data distribu-

tion directives also promote cache reuse. The perfor-

mance benefits from better cache reuse can be more

than offset by a lack of scalability when the compu-

tation performed on data blocks changes dynamical-

ly. On balance, it seems this approach will lead to

sub-optimal performance on a uniform memory access

system such as the PRIMEPOWER. When something

like the dynamic page management discussed in [10] is

employed on NUMA systems, the programming issues

reflect those of a UMA system. In other words, better-

balanced performance over a wider range of problem

sizes can be obtained with OpenMP Version 2.0 and a

focus on the operations involved rather than with static

or quasi-dynamic data distributions.

5.2. Cache reuse – design and policy standards?

If explicit data distributions are not a viable solution

to cache reuse, then what is? Clearly, there is scope for

more to be done at compilation. Data prefetch in one

parallel region to improve performance in a subsequent

region has already been discussed. Another possibility

is to make the compiler “BLAS-aware” whereby user

calls to a BLAS routine are replaced by a call to one of

several routines that provide the desired functionality,

but which might differ in their use of orphaned direc-

tives or in the index partitioning that is performed. Call

replacement is not a new idea – Fortran 95 compilers

do this routinely on calls to array intrinsic functions.

Clear documentation about the parallelisation strat-

egy used in each routine is one essential way to avoid

pitfalls such as alternating between sequential and par-

allel sections. It would be useful if library providers

could agree upon a standard format and terminology

for index partitioning information.

There may be a need for information to be available

at run time. One possibility would be for a library

of parallel routines to include a “partitioning inquiry”

function. Given a routine name, a valid set of input ar-

guments and the number of threads, this function could

return a descriptor that defined how the index space

of the input and output arrays was partitioned among

the threads. Notice that the intention is to provide this

information for a specific instance of a routine invoca-

tion. For example, the way in which the array indices

are partitioned among threads in a call to dgemm de-

pends not only on the value of the arguments N, M and

K but also on whether array A or array B is transposed

and how many threads are available. Given this infor-

mation, it might be possible for the writer of the calling

program to organise the computation done at this level

to reduce the amount of cache migration that will result

from calls to a particular routine.

While this idea has merits, there are many difficulties

with it. Firstly, there is the need for all of the partition-

ing algorithms employed in a routine such as dgemm

to be accessible from the inquiry function. This also

104 C. Addison et al. / OpenMP issues arising in the development of parallel BLAS and LAPACK libraries

implies that the control structure of each routine is re-

produced. When a parallel library routine was writ-

ten, would it be possible to generate automatically a

“shadow” routine that could generate the information

required by the inquiry function? How general is the

problem of cache migration, does it extend much be-

yond linear algebra? Would inquiry functions provide

the information required by a user? How complex does

the library routine have to become before this type of

information cannot be provided or is of limited assis-

tance in improving performance? Is there merit in stan-

dardising the format of descriptors, possibly to the ex-

tent that they become part of the OpenMP specifica-

tion? With the limitations of Fortran 77, would there be

merit in using external routines to generate a 2-D parti-

tioning for a given number of rows and columns? A li-

brary would have its own suite of partitioning routines,

but users could be given the specification for such rou-

tines so that they could provide appropriate partitioning

routines for their application.

If runtime inquiry functions are too cumbersome,

could the required information on cache use be encod-

ed into performance analysis information? This might

allow users to be alerted to performance problems re-

lated to cache reuse with suggestions on how to address

these problems.

6. Conclusions

OpenMP provides a convenient means by which

users can exploit SMP parallelism. However, obtain-

ing good SMP performance on more than a handful of

processors requires careful attention being paid to all

of the standard parallelisation issues. OpenMP pro-

vides mechanisms to address most of these issues, but

the Version 1.1 specification leads to code that is more

cumbersome and harder to maintain than is desirable.

The Version 2 specification addresses several of these

limitations. While OpenMP provides the flexibility and

low overheads to exploit loop parallelism, it lacks facil-

ities to optimise the performance of a sequence of such

parallel loops by exploiting data cache-locality. This

reduces the benefits of library routines that deal with

vector-vector or matrix-vector type operations.

There is a case for including index partitioning as

an attribute of the arguments in calls to routines that

contain parallel loops, but it is not clear what the most

appropriate level of detail would be for this attribute.

There might also be benefits in organising parallel rou-

tines so that one call option was to determine the index

partitioning but not perform any further computation.

However, when parallel routines have a fixed Fortran
77 interface, the problems become more difficult. One
possibility would be to move the partitioning into sep-

arate routines and then document the interface to these
routines so that users could write their own customized

versions.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.

McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users’

Guide, Third Edition, SIAM, Philadelphia, PA, 1999.

[2] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris,

C.A. Nelson and C.D. Offner, Extending OpenMP for NUMA

machines, Proc. Supercomputing 2000, Dallas, November,

2000.

[3] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker and R.C. Whaley, ScaLAPACK Users’

Guide, SIAM, Philadelphia, PA, 1997.

[4] R. C. Clint and J. Dongarra, Automatically Tuned Linear Al-

gebra Software, LAPACK Working Note 131, University of

Tennessee, CS-97-366, 1998.

[5] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguadé, J. Labar-

ta and N. Navarro, OpenMP Extensions for Thread Groups

and Their Run-time Support, International Workshop on Lan-

guages and Compilers for Parallel Computers (LCPC’00),

New York (USA), August 2000.

[6] Intel Corporation, Intel Math Kernel Library, Version 5.0,

2001, http://developer.intel.com/software/products/mkl/index.

htm.

[7] N. Izuta, T. Watabe, T. Shimizu and T. Ichihashi, Overview of

the PRIMEPOWER 2000/1000/800 Hardware, Fujitsu Scien-

tific and Technical Journal 36(2) (December, 2000), 121–127,
http://magazine.fujitsu.com/us/vol36-2/paper03.pdf.

[8] B. Kågström, P. Ling and C. Van Loan, GEMM-Based Lev-

el 3 BLAS: High-Performance Model Implementations and

Performance Evaluation Benchmark, LAPACK Working Note

107, University of Tennessee, CS-95-315, October, 1995.

[9] C. Koebel, D. Loveman, R. Schreiber, G. Steele and M. Zosel,

The High Performance Fortran Handbook, MIT Press, Cam-

bridge, Massachusetts, 1994.
[10] D.S. Nikolopoulos, T.S. Papatheodorou, C.D. Polychronopou-

los, J. Labarta and E. Ayguadé, Is Data Distribution Necessary

in OpenMP, Proc. Supercomputing 2000, Dallas, November,

2000.

[11] OpenMP Architecture Review Board, Open MP For-

tran Application Program Interface 1.1, November, 1999,

http://www.openmp.org/specs/mp-documents/fspec11.pdf.
[12] OpenMP Architecture Review Board, Open MP For-

tran Application Program Interface 2.0, November, 2000,

http://www.openmp.org/specs/mp-documents/fspec2.pdf.

[13] S. Shah, G. Haab, P. Petersen and J. Throop, Flexible Con-

trol Structures for Parallelism in OpenMP, in: 1st European

Workshop on OpenMP, Lund (Sweden), September 1999.

[14] SPEC Organization, Standard Performance Evaluation Cor-

poration OpenMP Benchmark Suite, June 2001, http://www.
spec.org/hpg/omp2001.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

