
Scientific Programming 10 (2002) 253–261 253
IOS Press

OpenMP programming for a global inverse

model

Ping Wanga,∗ and Xiaoping Wub

aLawrence Livermore National Laboratory, PO Box 808, L-312, Livermore, CA 94551, USA

Tel.: +1 925 423 2612; Fax: +1 925 422 3134; E-mail: Wang32@llnl.gov
bJet Propulsion Laboratory, CA, USA

Abstract. The objective of our investigation is to establish robust inverse algorithms to convert GRACE gravity and ICESat

altimetry mission data into global current and past surface mass variations. To assess separation of global sources of change

and to evaluate spatio-temporal resolution and accuracy statistically from full posterior covariance matrices, a high performance

version of a global simultaneous grid inverse algorithm is essential. One means to accomplish this is to implement a general,

well-optimized, parallel global model on massively parallel supercomputers. In our present work, an efficient parallel version

of a global inverse program has been implemented on the Origin 2000 using the OpenMP programming model. In this paper,

porting a sequential global code to a shared-memory computing system is discussed; several efficient strategies to optimize the

code are reported; well-optimized scientific libraries are used; detailed parallel implementation of the global model is reported;

performance data of the code are analyzed. Scaling performance on a shared-memory system is also discussed. The parallel

version software gives good speedup and dramatically reduces total data processing time.

Keywords: OpenMP, inverse model, least squares, GRACE, gravity

1. Introduction

Recently, parallel computing systems, strongly

driven by many applications which require fast proces-

sors and large memory, have been invented with new

computer architecture design to handle large scale sci-

entific applications, data processing, and other fields.

Because of the new design in parallel computing sys-

tems, software developers and users face many new

challenges, such as designing new parallel software or

using existing codes on modern computers.

Performance of most existing codes on modern com-

puters is seriously constrained because the traditional

programming method for a single CPU system will not

fully benefit from present supercomputers and parallel

systems. These systems require modern programming

methods to use their fast CPU and large memory sys-

tems, but to develop complete new parallel application

∗Corresponding author.

codes takes time, and is expensive. For those codes

which have been well-implemented and used by many

users, porting them to a modern parallel computer is a

natural choice. Currently there are two major parallel

computer models: a distributed-memory model and a

shared-memory model. Between these two systems, a

hybrid model such as a cluster of SMPs is also avail-

able. Each of these systems might require a different

programming model.

On a distributed-memory computing system, a Mes-

sage Passing Interface (MPI) library [4] is usually

used for intercommunication among different comput-

ing processors for applications using domain decom-

position techniques, while OpenMP directives [2] or

system directives are used on a shared-memory system

to parallelize sequential codes. A hybrid programming

model, which combines these two programming mod-

els together, has been investigated recently by many

researchers to improve scalability. These three mod-

els have their own advantages and disadvantages, but

they all have to deal with similar issues such as par-

ISSN 1058-9244/02/$8.00 2002 – IOS Press. All rights reserved

254 P. Wang and X. Wu / OpenMP programming for a global inverse model

allel software portability, software reuse and maintain-

ability, and more importantly, the total time required

to transfer an existing code to an executable one on

advanced parallel systems. The debate about whether

the shared memory or message passing paradigm is the

best is bound to continue for a while. However, many

people believe that the OpenMP programming model

allows the general user to gain a reasonable amount

of parallelism for a reasonable amount of effort. It is

commonly believed that using MPI you should be able

to get better parallel speedup and portability but that

it may require more complicated programming from

the user. Message passing code can also be used on

most shared memory systems, and in many cases will

be a good choice. For applications when performance

and portability become more important, an MPI model

might be a good choice, but for other applications when

time becomes critical, an OpenMP model can be ap-

plied because of its simplicity which allows software

developers or scientists to port their sequential codes in

a relatively short time and have moderate performance

on shared-memory systems.

In this paper, we will focus our investigation on

the OpenMP model due to the time constraint and the

available computing resources. Our experience using

OpenMP programmingfor a large scale scientific appli-

cation on the SGI Origin 2000 is reported. Through the

specific scientific application, a global inverse model,

problems which most existing codes might have are dis-

cussed; efficient approaches to these problems, includ-

ing optimization and parallelization, are given; perfor-

mance and results are analyzed and reported.

2. A global inverse model

The Gravity Recovery and Climate Experiment

(GRACE) mission, to be launched by NASA in early

2002, will provide a revolutionary tool to measure

Earth’s gravity. The GRACE mission will accurately

map the Earth’s gravity field and its variations over

5-years. It will have two identical spacecraft flying

about 220 kilometers apart in a polar orbit 500 kilo-

meters above the Earth. Each spacecraft will carry a

dual frequency microwave transmitter and receiver to

measure satellite-to-satellite range variations to an ac-

curacy level of a few µm. Global Positioning System

tracking and accelerometer measurements will also be

made. The mission will provide scientists from all over

the world with an efficient and cost-effective way to

map the Earth’s gravity with unprecedented accuracy

and spatial resolution. The results from this mission

will yield crucial information about the distribution and

flow of mass within the Earth and it’s surroundings. It

is likely that a series of ever-improving gravity map-

ping missions will follow on to provide the climate-

change sensitive gravity data with a continuous and

longer time-span.

Satellite gravity measurements are directly sensi-

tive to present-day mass variations in Greenland and

Antarctic ice sheets (ice mass imbalance), in the oceans

(bottom pressure change), and over the land as soil

moisture content and ground water changes. Since the

Earth is a viscoelastic body, it is still deforming in re-

sponse to late-Pleistocene and Holocene deglaciation

of vast ancient ice sheets. This phenomenon is known

as post-glacial rebound (PGR) which significantly con-

tributes to mass redistribution and gravity change. The

multiple sensitivities of the gravity data to these global

processes present a challenge to unambiguous determi-

nation of each event. Such challenge is further com-

plicated by many unknown factors governing the mass

redistribution, such as surface layer density variation,

grounding line retreat/advancement of the continental

ice sheets, mantle viscosity structure, and the timing-

geometry of deglaciation [5], lithospheric thickness,

among others.

On the other hand, the sensitivities of the gravity pro-

vide us with many opportunities to learn more about the

Earth when multi-mission and ground based data can

be combined with dynamic models governing the mass

redistribution processes. In addition to the GRACE

gravity data, several radar and laser satellite altimetry

missions are either complete, operational, or in prepa-

ration. Particularly, the Geoscience Laser Altimeter

System (GLAS) on-board the Ice, Cloud and land Ele-

vation Satellite (ICESat) mission will be launched also

in 2002 to provide concurrent 3 to 5 elevation change

measurements over most area of continental ice sheets.

Also, a very valuable set of ground-based data is the

large number of relative-sea-level (RSL) records along

coastlines dating back many thousands of years (kyr)

ago. The goal of our study is to establish and cali-

brate a valid inverse algorithm to incorporate the multi-

mission and/or multi-type dataset and a viscoelastic

load-induced Earth deformation model. The algorithm

can be used to study separation of geophysical sources

of change, to evaluate spatio-temporal resolution and

accuracy in inferred surface mass variations, and to as-

sess contributions of each mission or data type. More

importantly, the algorithm will eventually be used to

convert the data into the climate-change-sensitive sur-

P. Wang and X. Wu / OpenMP programming for a global inverse model 255

face mass variables described above (e.g., ice mass im-

balances in Greenland and Antarctica and their contri-

butions to sea level rise, last glacial maximum height

of the massive ancient Laurentian and Fennoscandian

ice sheets).

3. A numerical approach

Our inverse strategy involves discretization of the

surface mass changes over global grids and time in-

tervals, least-squares solution using different types of

data with very large a priori parameter uncertainties,

and the construction of suitable averaging kernels over

space and time. The global algorithm can also pro-

vide a framework for future non-linear inference on the

mantle viscosity profile.

Our linear global inverse algorithm currently incor-

porates, as data: secular GRACE gravity rates up to

spherical harmonic degree and order 90, secular el-

evation rates over all area of current continental ice

sheets, including Greenland and Antarctica. Widely

distributed RSL histories will also be implemented to

the algorithm. The global surface of the Earth is divided

into 10502 grid cells with spatial scales of about 200-

km, and realistic geographical boundaries. The esti-

mated parameters include secular present-day oceanic,

hydrological, and ice mass variations, late-Pleistocene

and Holocene deglaciation, and any ice mass varia-

tions in the last few thousand years over Greenland and

Antarctica after several other continental ice sheets es-

sentially disappeared. A detailed description of the nu-

merical algorithm used for the present study is reported

by Wu et al. [9].

Based on the above algorithm, a sequential global

inverse code was implemented. To exploit recent ad-

vances in computing hardware and software, we use

multi-thread super computing platforms available at Jet

Propulsion Laboratory (JPL) and implement the code

in a well-optimized parallel manner. In this code, the

grid parameterization is particularly suitable for paral-

lel operations in evaluating data forms and measure-

ment of partial derivatives. The linear least-squares

inversion with a priori information and large amount

of covariance propagations and analyses are also very

good candidates for vector-optimization and parallel

operations.

4. Optimization strategies

The above global inverse model was initially de-

veloped on sequential computing systems. The code

performance on modern computers is seriously con-

strained. In order to use these systems efficiently, most

parts of the code require certain modifications. We

have applied single PE optimization techniques and

other strategies to our global inverse model on the Ori-

gin 2000. These strategies include memory optimiza-

tion, effective use of arithmetic pipelines, and usage

of optimized libraries [8]. The remainder of this sec-

tion discusses these strategies and the corresponding

improvement in performance of the code on the Origin

2000.

Memory optimization and arithmetic pipelines. The

Origin 2000 at JPL uses the R12000 Processors with

a 300 MHz clock and is capable of 600 MF lops peak

performance. It has 128 nodes with a total 64 GB

main memory. It is a Scalable Shared-Memory Pro-

cessor (SSMP) system that offers the advantages of

both shared-memory systems and distributed comput-

ing systems. The Origin architecture is an instantiation

of a Cache-Coherent Non-Uniform Memory Access

(CC-NUMA) Architecture. There are several ways to

achieve good performance on the Origin system. One

is through effective use of cache; another is through ef-

fective use of pipelined arithmetic. The global inverse

code uses many multidimensional arrays and indirect

indexing calculations, which can be inefficient when

frequent stride-one addressing is encountered. One im-

provement is to change to explicit lower dimensional

addressing and eliminate indirect indexing calculations.

This type of change can increase performance, both

by simplifying index calculations and by making the

code easier for the compiler to optimize. After these

modifications, the code performed with a significant

speedup.

Another useful strategy is to unroll loop statements.

The R12000 is a four-way super-scalar RISC proces-

sor. It can fetch and decode four instructions per cy-

cle to be run on its five independent, pipelined execu-

tion units. Although a multiplication or addition can

be issued every clock period, the result is not ready

for several clock periods. The division, square root,

and some other operations need more clock periods.

Thus, in order to get top performance from FORTRAN

code, the user must expose functional unit parallelism

to the compiler. Because of these features of the Origin

system, the global inverse code has been optimized by

unrolling loop statements if this will expose functional

256 P. Wang and X. Wu / OpenMP programming for a global inverse model

unit parallelism. This strategy is applied by both manu-

ally modification of the code and the compiler options.

The number of divide and square root operations also

has been minimized by using real variables to store the

values resulting from these operation and moving the

operations out of loop statements when it is indepen-

dent of the loop index. After these techniques were

applied, the code gained a total speedup of 35%. An

example using some of the above techniques is given

below:

Example 1: single node optimization

! The original code

.

do 280 i=1,maxcur

280 Cpp(ikf(m+i,m+i))=sig7**2

m=maxgrid+2*maxold+nh*maxcur

+maxcur

do 290 i=1,3

290 Cpp(ikf(m+i,m+i))=sigt0**2

.

! The new code using explicit

addressing and loop unroll

techniques

.

cons1=sig7*sig7

cons2=sigt0*sigt0

m=maxgrid+2*maxold+nh*maxcur

do 280 i=1,maxcur

280 Cpp(m+i,m+i)=cons1

m1=m+maxcur

Cpp(m1+1,m1+1)=cons2

Cpp(m1+2,m1+2)=cons2

Cpp(m1+3,m1+3)=cons2

.

Using optimized libraries. There are several opti-

mized libraries available on the Origin 2000, such as

the LAPACK library [1]. These libraries have been

already highly optimized to give the best possible per-

formance if the user applies them properly. In the
global inverse code, one of the major time consuming

parts is to solve a least-squares problem. When a fine

grid size is used, the total processing time for this part

increases significantly. Since the LAPACK has sev-

eral optimal least-squares equation solvers, the original

least-squares equation solver was replaced by calling

the corresponding LAPACK subroutines. This substi-

tution results in a significant speedup. The LAPACK

least-squares equation solver runs about 4.5 times faster

than the original one. The following example shows

the replacement of the original code by the LAPACK

subroutine for solving a least-squares equation:

Example 2: using LAPACK

! The original user’s least-squares

equation solver

.

call bysian_5(ndata,mpara,Cdd)

.

! The new code using LAPACK

.

call DGELSX(......)

.

.

call DTRTRI(......)

.

.

call DTRMM(......)

.

After all these techniques were applied, the entire

optimized code gained about a total speedup of 240%,

which dramatically reduced the total wallclock time and

makes it feasible to run higher resolution applications.

Detailed comparison data are given later.

5. An OpenMP programming model

After the optimization of the code, the next step is to

choose a suitable parallel programming model so that

the code, with moderate modifications, can be run on a

parallel system. It should be noted that it is possible to

use a compiler to auto-parallelize some codes, but the

results from the auto-parallelizer depend on the com-

plexity of the code and the data layout therein. We first

tried the parallel FORTRAN 77 compiler with the pfa

and O2 options on the Origin 2000, but the results were

not as good as we expected because of the complexity of

the code. In general, these options work well for codes

with simple and clear data structures. After consider-

ing the time constraint (GRACE will be launched by

NASA in early 2002), the simplicity of OpenMP pro-

gramming, and more importantly, the code structure,

we decided to use OpenMP directives to implement a

shared-memory programming model. OpenMP is the

emerging industry standard for directive-based shared-

memory parallel processing. This permits the applica-

P. Wang and X. Wu / OpenMP programming for a global inverse model 257

tion designer to distribute work over multiple proces-

sors and thereby develop faster codes. It is a directive

based parallel programming model that allows incre-

mental parallelization of codes, i.e. individual loops or

subroutines may be parallelized. For those codes which

have explicit parallel regions or independent work in

a loop, using OpenMP directives is straightforward.

But for those codes which have complicated data struc-

tures, more care needs to be taken. Our global inverse

model has 50,000 lines in FORTRAN with hundreds

of subroutines. In order to use OpenMP directives, the

following approaches have been used.

First, a performance tool and a timer were used to

identify bottlenecks of the code. Once this was done,

we worked on the most time consuming part of the code

and detected all possible regions and loop statements

with heavy work load. For the global inverse code, as-

sembling the global matrix part requires a large amount

of processing time, especially in the ocean area. The

least-squares solver also requires significant precessing

time. Besides those two parts, the interpretation of the

solutions is time consuming as well. So most attention

was focused on these three parts. After the analysis of

the entire code, several types of directives were intro-

duced to the code: OpenMP PARALLEL DO, PAR-

ALLEL SECTIONS, PARALLEL DO REDUCTION.

The high-level framework of the global inverse

model in Fig. 1 illustrates the major code compo-

nents for both the original model and the new OpenMP

model. For many large loop statements which appear

in the matrix formation and the solution interpretation

parts, OpenMP Parallel Do directives were applied.

For example, gravity due to ocean mass variations was

computed through a large loop statement (loop through

all grid points covering the ocean area) and several sub-

routines were called inside this loop. The Parallel Do

directive specifies that the iterations of the immediately

following Do loop must be executed in parallel. Since

the solution from each grid point, at that stage, is inde-

pendent from each other, an OpenMP Parallel Do di-

rective can be inserted before this loop. This modifica-

tion gained a very significant speedup due to the large

ocean area over the Earth’s surface. Similar strate-

gies were applied for the rest of the code, such as the

land, the present-day and ancient. Since the data struc-

tures inside those loops were complicated, and inside

each loop, several subroutines were called with many

different types of variables and arrays, it was critical

to distinguish PRIVATE VARIABLES from SHARED

VARIABLES. To use Parallel SECTIONS directives

was straight forward once regions, which could be exe-

cuted independently at the same time, were found. For

most global summations in the code, they were modi-

fied by PARALLEL DO REDUCTION directives.

To some extent, it is easy to make mistakes and hard

to debug them when OpenMP directives are used if you

do not fully understand how the data moves in a shared-

memory system. Therefore, code verification and val-

idation are necessary. Each module in the code was

fully tested, integration testing and comprehensive per-

formance evaluation were performed along with corre-

lation with theoretical performance estimates. Critical

code verification activities such as regression testing,

code review, and algorithmic convergence experiments

were conducted. Our final model was benchmarked by

comparing with the results of the sequential code for

a small scale problem. The following examples illus-

trate how to use OpenMP directives to parallelize the

original sequential code:

Example 3: parallel do

! The original code

.

do 1008 w=mpara+1,ndata

TMP=1.d0/sqrt(Cdd(w))

data(w)=data(w)*TMP

do 1008 v=1,mpara

1008 obs(w,v)=obs(w,v)*TMP

.

! The new code

.

!$OMP PARALLEL DO DEFAULT(SHARED)

PRIVATE(w,TMP)

do 1008 w=mpara+1,ndata

TMP=1.d0/sqrt(Cdd(w))

data(w)=data(w)*TMP

do 1008 v=1,mpara

1008 obs(w,v)=obs(w,v)*TMP

!$OMP END PARALLEL DO

.

Example 4: parallel sections

! The original code

.

call smgrld(geoidt,......)

do 216 u=1,ll-l1

obs(u,m+n)=geoidt(u)*cons5

216 continue

call smdisc(upe,)

do 218 u=1,nu

218 obs(ll-l1+u,m+n)=upe(u)*rate

258 P. Wang and X. Wu / OpenMP programming for a global inverse model

The Original Code

 (a) (b)

 End End

Form Matrix:

 Ocean
 Land
 Ancient Ice Sheet
 Current Ice Sheet
 Others

Least-Squares Solver

Solution Interpretation

:

The Openmp Code

Form Matrix:

Ocean
Land
Ancient Ice Sheet
Current Ice Sheet
Others

 +
 OpenMP
 Directives

LAPACK for the Least-
Squares Equations

 Solution Interpretation
 with OpenMP Directives

Fig. 1. High-level framework of the global inverse model illustrating major software components for both (a) the original model, and (b) the new

OpenMP model.

call smdisc(vhe,.....)
do 220 u=1,nalt

220 obs(ll-l1+nu+u,m+n)=vhe(u)*rate
.

! The new code

.

!$OMP PARALLEL SECTIONS

!$OMP SECTION

call smgrld(geoidt,......)
do 216 u=1,ll-l1

obs(u,m+n)=geoidt(u)*cons5
216 continue

!$OMP SECTION

call smdisc(upe,)
do 218 u=1,nu

218 obs(ll-l1+u,m+n)=upe(u)*rate
!$OMP SECTION

call smdisc(vhe,......)
do 220 u=1,nalt

220 obs(ll-l1+nu+u,m+n)=vhe(u)*rate
!$OMP END PARALLEL SECTIONS

.

Example 5: parallel do reduction

! The orignal code

.

do 830 n=mp1,mp2

tdata(k)=tdata(k)+obs0(k,n)*

tpara(n)

830 datam(k)=datam(k)+obs0(k,n)*

para(n)

.

! The new code

.

!$OMP PARALLEL DO REDUCTION(+:

tdata(k), datam(k))

do 830 n=mp1,mp2

tdata(k)=tdata(k)+obs0(k,n)*

tpara(n)

830 datam(k)=datam(k)+obs0(k,n)*

para(n)

!$OMP END PARALLEL DO

.

After all this optimization, parallelization, verifica-

tion, and validation, extensive performance tests were

P. Wang and X. Wu / OpenMP programming for a global inverse model 259

Fig. 2. The real time comparison between the optimized parallel

code and the original code.

carried out on the Origin 2000. This allows us to fully

understand the scalability of the code and to run large-

scale applications with a large number of threads to

attack scientific problems. Detailed code performance

data are given in the following section.

6. Performance and results

For the parallel version of the global inverse model,

timing tests were performed on the SGI Origin 2000.

Table 1 shows the real time comparison between the

optimized code and the original code for a test case

with a three degrees global model on a single processor.

A global grid with a horizontal resolution of 3 degrees

was used, and the global surface was divided into 4682

grid cells with spatial scales of about 300-km. The

total wallclock time is significantly reduced by using

optimization techniques and a well-optimized scientific

library. Figure 2 shows the real time comparison be-

tween the optimized parallel code and the original code

for a smaller test case with a horizontal resolution of 8

degrees using different numbers of threads. The total

wallclock time is significantly reduced by using opti-

mization techniques and multiple threads. The parallel

code gives good speedup vs. the number of threads, but

the efficiency decreases when more threads are used.

In order to find out what kinds of factors affect the

code efficiency, several timers inside the entire code

Fig. 3. Speed up of the parallel global inverse model on the SGI

Origin 2000 which do not include calls to LAPACK.

were set up and the performance of each module was

measured. It turned out that when the code called LA-

PACK subroutines, there was no speedup gained inside

LAPACK when the number of threads increased. This

library can be called by multi-threads at the same time

but for each subroutine of LAPACK the use of multiple

threads does not improve its performance. This is be-

cause that currently, there is no directive-implemented

LAPACK library available on the SGI Origin 2000.

Our code did not gain any speedup with multi-threads

when LAPACK was called, but as we discussed ear-

lier, the LAPACK subroutines did give an excellent per-

formance comparing with user’s original least-squares

solver on a single thread. Figure 3 shows the timing of

the global OpenMP code without using the LAPACK

subroutines. It gives good speedup vs the number of

threads. These data indicate that users can achieve good

parallel performance with a relatively small amount of

work (a couple of lines need to be added for each sub-

routine) through the effective use of OpenMP direc-

tives. Since the code did not gain significant improve-

ment of the performance by calling LAPACK using

multi-threads and the least-squares solver is one of the

major parts in the code, to use an alternative paradigm

MPI should improve its overall performance for the en-

tire code by benefiting from the version of the LAPACK

on distributed-memory systems. In the future, if LA-

PACK allows users to use any number of threads inside

LAPACK subroutines, our code performance will be

260 P. Wang and X. Wu / OpenMP programming for a global inverse model

Table 1

Single PE performance data of the optimized code and the original code in seconds

Module The optimized code The original code Speed-up

Matrix formation and Interpretation 9913 13656 35%

Least square equation solver 4926 22368 450%

Entire code 14839 36024 240%

significantly improved by calling multi-threads inside

the least-squares solver of LAPACK.

One more issue we would like to discuss about our

OpenMP code is that the code is limited to using a mod-

erate number of threads for high resolution applications

due to the memory limitation on the SGI Origin 2000 at

JPL. We could not run a large number of threads with

high resolution grids. If the global surface of the Earth

is divided into 10502 grid cells with spatial scales of

about 200-km, the code will exhaust all system mem-

ory when 32 threads are applied as the total amount

of memory for all local variables with each thread will

increase when more threads are used. In other words,

for those applications which require a large amount of

memory, the OpenMP model might have limitations be-

cause of the memory consumption problem. Again, the

MPI model might be served as an alternative paradigm

which can use domain decomposition techniques and

overcome the memory consumption problem. If the

MPI programming model is applied, the global sur-

face will be divided into many sub domains, and each

computing node will work on one or several sub do-

mains. In this case, each grid point is only stored in

one node and there is no memory copying problem.

Another alternative solution for the memory problem

is to run the code on shared-memory systems with a

large memory size. We did successfully run the code

with a high resolution application using 200-km scale

grids on a cluster of Sun workstation with 16 threads.

As we discussed earlier, a MPI model does need some

additional programming, and an OpenMP model will

result in a fast parallel version of a sequential code.

Both programming models can be chosen according to

different applications.

Once our parallel OpenMP code was ready for pro-

duction runs, many numerical experiments were car-

ried out to achieve our scientific objectives. We in-

vestigated the expected contributions of secular gravity

and topography change measurements to the determi-

nation of present-day and historical ice mass variations.

In the simulation, anticipated measurement accuracies

and resolution for the GRACE gravity and ICESat al-

timetry missions are used. Running our parallel global

simultaneous grid inverse algorithm code on parallel

systems, we were able to assess separation of global

sources of mass variation and to statistically evaluate

spatio-temporal resolution and accuracy from full pos-

terior covariance matrices. Linear solutions for a 200-

km scale global grid were achieved. Although, these

results are still preliminary, it clearly demonstrates the

great potential for applying this approach to solving

problems in realistic global geometries using parallel

systems with multi-threads.

7. Discussion and conclusions

In the present study, we have successfully ported a

sequential global inverse code to a shared-memory sys-

tem. After the entire code is optimized by using several

efficient strategies, a parallel global inverse code has

been designed using the OpenMP programming model.

This is the first optimized parallel version of a global

inverse code. It gives good speedup, which will reduce

the total processing time for the GRACE and the ICE-

Sat secular data and some other applications as well.

The code scales fairly well, and achieves reasonable

speedup in performance as the number of threads in-

creases. It can be easily ported to any shared-memory

parallel system which supports the OpenMP program-

ming model. With a relatively small amount of effort,

our performance data on the SGI Origin system gave

a good example of shared-memory computing applica-

tions with OpenMP directives. For the memory con-

sumption problem, which is associated with the usage

of a large number of threads for high resolution appli-

cations, to use the SGI Origin 2000 or other shared-

memory systems with a relatively larger memory size

will improve the situation. In the future, if LAPACK

allows users to control the number of threads which

can be used inside of LAPACK subroutines, the per-

formance of our current code will be improved by ap-

plying multiple threads into the least-squares solver.

The parallel code has been tested with various input

data sets, and the present results illustrated here clearly

demonstrate the potential for applying this approach to

large-scale scientific applications. Numerical solutions

for more detailed non-linear inverse problems are also

under investigation.

P. Wang and X. Wu / OpenMP programming for a global inverse model 261

Acknowledgments

The research described in this paper was performed

at the Jet Propulsion Laboratory (JPL), California In-

stitute of Technology, under contract to the National

Aeronautics and Space Administration. The SGI Ori-

gin 2000 Supercomputers used to produce the results in

this paper were provided with funding from the NASA

offices of the Earth Science, Aeronautics, and Space

Science.

References

[1] E. Anderson et al., LAPACK Users’ Guide, www.netlib.org,
1999.

[2] OpenMP Architecture Review Board. Openmp fortran applica-

tion program interface, version 2.0, 2000.

[3] J.O. Dickey et al., Satellite Gravity and the Geosphere: Con-

tributions to the study of the solid Earth and its uid envelope,

National Academy Press, Washington, DC, 1997.

[4] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Par-

allel Programming with the Message-Passing Interface, MIT

Press, 1999.

[5] D. Han and J. Wahr, The viscoelastic relaxation of a realistically

stratified earth, and a further analysis of postglacial rebound,
Geophys. J. Int. 120 (1995), 287–311.

[6] S.S. Jacobs, H.H. Hellmer, C.S.M. Doake, A. Jenkins and R.M.

Frolich, Melting of ice shelves and the mass balance of antarc-

tica, J. Glaciol. 38 (1992), 375–387.

[7] J.X. Mitrovica, A.M. Forte and M. Simons, A reappraisal of

postglacial decay times from richmond gulf and james bay,

Geophys. J. Int. 142 (2000), 783–800.

[8] P. Wang, D.S. Katz and Y. Chao, Optimization of a parallel
ocean general circulation codel, in the proceedings of the Super

Computing 97 (Awarded the Best Paper prize), 1997.

[9] X. Wu, M.M. Watkins, E.R. Ivins, R. Kwok and P. Wang,

Toward global inverse solutions for the determination of current

and past ice mass variations: Contribution of secular satellite

gravity and topography change measurements, submitted to J.

Geophysical Research, 2001.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

