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Abstract—In this paper we propose, implement and evaluate
OpenSample: a low-latency, sampling-based network measure-
ment platform targeted at building faster control loops for
software-defined networks. OpenSample leverages sFlow packet
sampling to provide near–real-time measurements of both net-
work load and individual flows. While OpenSample is useful in
any context, it is particularly useful in an SDN environment
where a network controller can quickly take action based on the
data it provides. Using sampling for network monitoring allows
OpenSample to have a 100 millisecond control loop rather than
the 1–5 second control loop of prior polling-based approaches. We
implement OpenSample in the Floodlight OpenFlow controller
and evaluate it both in simulation and on a testbed comprised
of commodity switches. When used to inform traffic engineering,
OpenSample provides up to a 150% throughput improvement
over both static equal-cost multi-path routing and a polling-based
solution with a one second control loop.

Keywords-sFlow; Packet Sampling, Software Defined Network-
ing; Data Center; Traffic Engineering; Measurement

I. INTRODUCTION

Software-defined networking (SDN) replaces the dis-
tributed, per-switch control planes of traditional networks
with a (logically) centralized control plane that programs the
forwarding behavior of all the switches in a given network.
This centralized control plane, run on a controller, can act as
a control loop that (i) gathers traffic and other measurements
from the network and (ii) uses the gathered information to
compute and install forwarding behaviors in the switches. Al-
though there are two logical components to this control loop—
measurement and control—the focus of the vast majority of
SDN research has been on control. Some prior SDN research
has included a measurement component [1], [2], [3], but the
closest related work also notes this bias toward control [4].

OpenFlow [5], the dominant protocol used to implement
SDN, provides two measurement techniques to create a global
view of the network: packet_in messages and per-port/per-
rule counters. Typically when a packet matches no switch rule,
the switch sends a packet_in message containing the packet
header (and possibly payload) to the controller for handling,
which may include installing new rules. Thus, in a typical
setup, the controller receives one packet_in message1 at the

1It is possible to receive more than one packet_in message per flow
especially if the flow is not connection oriented and thus sends many packets
before hearing anything from the receiver.

beginning of each flow. In addition, switches maintain counters
to track the number of packets and bytes handled by each port
and each OpenFlow rule.

In practice, neither of these measurement mechanisms
enable a scalable, low-latency measurement system. The
packet_in messages place a high burden on the local switch
CPU and are typically limited to at most a few hundred per
second [6], [7]. Further, they only provide data when a new
flow appears or a rule expires. Allowing a rule to expire
typically causes the flow to be paused until the packet_in
message is delivered to the controller and a new rule installed,
which typically takes a few 10s of milliseconds. In the wide-
area this might be tolerable, but in data centers and other local-
area networks this is long enough to cause TCP timeouts and
thus likely unacceptable.

On the other hand, port and flow counters are typically only
updated every second or so [2], which limits the control loop of
a controller to operating at a speed that is too slow to catch any
but the largest flows [8]. Further, the space-granularity of coun-
ters are either per-port or per-rule. Per-port counters do not
provide flow-level information, which either limits visibility
into the network or requires more processing, i.e., tomography,
to (probabilistically) disaggregate port-level information into
flow-level tracking. Per-rule counters require that rules be
installed at the granularity of the desired measurement, which
couples forwarding and measurement, with both mechanisms
installing rules in the switch. For example, Frenetic [3] is
forced to break apart OpenFlow rules when the monitoring
requests do not directly correspond to the forwarding rules,
consuming even more scarce TCAM space [6].

Ideally, a measurement system for software-defined net-
works would provide global visibility into the network and
near–real-time data, i.e., latencies on the order of milliseconds.
Further, it would scale to large traffic volumes without over-
taxing switch control CPUs or the SDN controller.

In this paper we present the design and evaluation of a
sampling-based SDN measurement system called OpenSample
that achieves these goals. Rather than using the OpenFlow
measurement mechanisms, OpenSample leverages the sFlow
packet sampling functionality present in most switches. sFlow
supports uniform random sampling of packets on a per-port
basis. The switch forwards the header of, on average, 1 in
every N packets traversing a given port to a collector. From
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(a) The physical OpenSample testbed
with four 10 Gbps IBM G8264 switches
configured with 6 hosts and 3 large flows.
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(b) The throughput of three large flows both before and after
enabling OpenSample-based traffic engineering.

Fig. 1. An intuitive example of OpenSample-based traffic engineering
running on a physical testbed.

these random samples, the collector can infer a variety of
information about the network including the elephant flows
present on each link and link utilization. Further, since each
switch that a packet traverses can sample that packet, the
effective sampling ratio of a network grows as the network
grows and paths get longer.

To demonstrate the value of OpenSample’s faster network
monitoring, we implemented a traffic engineering application
that uses OpenSample to detect congested links and the large
flows using those links. In our experiments, traffic engineering
informed by OpenSample provides up to 150% more aggregate
throughput than both equal-cost multi-path (ECMP) routing
and polling-based traffic engineering (inspired by Hedera [1])
when flow sizes are small, i.e., a flow in a slow start phase.
Further, OpenSample can be implemented without the end-
host modifications required by Mahout [2] and MicroTE [8],
and does not require the use of expensive OpenFlow rules for
fine-grained measurement like Frenetic [3].

The following example, illustrated in Fig. 1(a), motivates
and explains OpenSample-based traffic engineering. We con-
figure a physical testbed with four IBM RackSwitch G8264
10GbE switches in a clique with three hosts attached to two
of the switches. Hosts A, B, and C each generate long-running
flows using iperf to hosts D, E, and F, respectively. Fig. 1(b)
shows the throughput of each of the three flows both before
and after we turn on traffic engineering. Initially, the three
flows compete for bandwidth on the single shortest path (SW1-
SW4) and converge to a fair share of approximately 3 Gbps
each. However, there are sufficient redundant paths in the
topology for each flow to follow its own disjoint path. After
five seconds we enable traffic engineering, which is able to

identify the three elephant flows and re-route two of them to
uncongested paths. After that, each flow achieves 10 Gbps of
throughput using the three different disjoint paths: 1-4, 1-2-4
and 1-3-4.

The remainder of the paper is organized as follows. Sec-
tion II provides a more detailed look at sampling-based
measurement as well as data center traffic characterizations.
We describe the design and implementation of OpenSample in
Section III. Section IV presents an evaluation of OpenSample
using both emulation and results from a real testbed. We cover
the work most closely related to OpenSample in Section V.
Finally, in Section VI we draw conclusions and present ideas
for future work.

II. BACKGROUND

Before diving into the design, implementation and evalua-
tion of OpenSample, we first present background material on
both typical data center workloads and existing non-OpenFlow
network monitoring approaches, which we use to drive the
design of our traffic engineering application.

A. Data Center Network Workloads and Topologies

While the purpose of this paper is not to characterize
modern data center workloads or topologies, we note certain
properties in current data centers that others have observed
and use these properties in our construction and evaluation of
OpenSample. In particular, several characterizations of data
center workloads [9], [10] have shown that while there are
often hot spots in data center networks, the remainder of the
networks is typically underutilized. Thus, if the topology has
multiple paths for any given flow to select, it is likely that
traffic experiencing congestion could be re-routed to an under-
utilized path.

Fortunately, common current and future data center network
topologies, e.g., Fat Tree [11], HyperX [12], and Jellyfish [13],
offer many diverse paths between arbitrary endpoints. Despite
this, most current data centers still use static routing configu-
rations and/or equal-cost multi-pathing (ECMP). While these
approaches attempt to minimize the occurrence of hot spots,
hot spots still occur and these static approaches can do nothing
in response to congestion once it occurs.

Recent research efforts [1], [6], [8] use SDN to reroute
flows in reaction to congestion. The result is a variety of
good techniques for selecting alternate paths. However, these
approaches rely on switch-based measurements with latencies
measured in seconds, and are thus limited to detecting and
rerouting only the largest flows.

Thus, all of the ingredients for substantially improved
traffic engineering are present, except for the timely network
measurements OpenSample provides.

Further, we note that the traffic characterization indicates
that flow sizes are approximately exponentially distributed and
flow inter-arrival times are also exponentially distributed, i.e.,
a poisson process. As a consequence, in our emulation results,
we assume exponential flow sizes and inter-arrival times.
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B. Non-OpenFlow Network Monitoring
While many readers are no doubt familiar with the network

monitoring features of OpenFlow, i.e., per-port and per-rule
byte and packet counters, they may be less familiar with other
monitoring techniques such as NetFlow [14] and sFlow [15].
NetFlow produces per-flow statistics without requiring rules
to be installed. sFlow provides real-time packet samples from
individual switches. Mann et al. [16] recently compared Net-
Flow and sFlow for network monitoring at the hypervisor in
virtualized data centers. Since congestion can occur anywhere
in the network, we monitor both physical and virtual switches.
And because the overhead of monitoring impacts its value, we
are concerned with the overhead of monitoring techniques.

1) NetFlow: NetFlow [14] was originally developed by
Cisco to provide a way to collect statistics about individual IP
flows in a data network. In NetFlow, each switch (or router)
maintains a flow cache that tracks flow statistics for each
flow, usually identified by 5-tuple (source and destination IP
address, source and destination TCP/UDP port, and IP protocol
number) and type of service. As each packet arrives, its header
fields are checked to see if it matches an existing entry in the
flow cache. If it does, then the flow cache entry is updated
appropriately, i.e., by incrementing the packet and byte counts.
If the flow is not already present in the flow cache, a new
entry in the flow cache is created. NetFlow has four policies to
decide when to send the flow record to a NetFlow collector: (i)
when a TCP packet is seen with a FIN or RST flag indicating
flow completion, (ii) when a flow idle timeout expires, (iii)
when a hard timeout fires indicating that the flow has been
tracked for y seconds regardless of whether it is still sending
traffic, and (iv) when the flow cache is full and an entry must
be evicted. When any of these four conditions hold, the switch
sends a NetFlow record including flow statistics to a collector
for further analysis.

Implementing NetFlow in hardware requires a dedicated
CAM to track this information at line-rate. This hardware is
not found in all switches and support for NetFlow is chiefly
found in Cisco products and hypervisor vSwitches such as
VMware ESX and Open vSwitch.

Further, NetFlow timeouts are specified at second granular-
ity and in practice many implementations do not allow for val-
ues less than 30 seconds, so it provides little latency advantage
over the low polling rates achievable using OpenFlow’s per-
rule counters. Since OpenSample is focused on low-latency
network measurements, NetFlow is not a suitable choice for
OpenSample.

It should be noted that later versions of NetFlow also in-
clude a “Sampled NetFlow” [17] mode that produces NetFlow
records based on sampling 1 in N packets that traverse a
switch rather than every packet. However, the samples are still
applied to the records in the flow cache and records are still
sent according to the same policy. Thus Sampled NetFlow
incurs the same coarse-grained timeouts that make NetFlow
unsuitable for low-latency monitoring.

2) sFlow: The sFlow [15] standard aims to provide fine-
grained network measurements without requiring per-flow
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Fig. 2. The number of samples per second received at the collector as the
sampling ratio increases.

state at switches. Instead it relies on two forms of sampling:
packet sampling and port counter sampling.

For packet sampling, the switch captures one out of every
N packets on each input port2. It then immediately forwards
the sampled packet’s header encapsulated with metadata to a
central collector. The metadata includes the sampling ratio of
the port, the switch ID, the timestamp at the time of capture,
and forwarding information such as the input and output port
numbers.

The rate of samples sFlow produces is not constant; as it
samples one in every N packets, the rate of samples varies
based on the rate of packet arrivals. Since the packet arrival
rates vary dramatically based on network load and packet size,
the rate of samples also varies. Note that a packet passing
through multiple switches is eligible to be sampled by every
switch along the path. If a flow passes through k switches,
combining the samples from those switches gives an effective
factor of k increase in the sampling ratio.

From the gathered samples, the collector can probabilisti-
cally infer a number of flow statistics, e.g., it can estimate the
expected number of packets and bytes in each flow by simply
multiplying the number of sampled bytes and packets by the
sampling ratio, N [18]. This approach statistically produces an
unbiased estimator for the actual number of bytes and packets
sent by the flow. In the remainder of this paper we refer to
this technique for estimating the byte and packet counts of the
flow as Maximum Likelihood Estimation (MLE).

However, MLE has the limitation that it requires a large
number of samples to provide accurate estimates of the true
flow byte and packet counts. The expected relative error is
inversely proportional to the square root of the number of
samples, s, gathered from that flow. In particular, the percent
error can be bounded as: % error ≤ 196 ·

√
1
s [18].

With an analysis of real data center workloads by Benson
et al., [10] we found that an average of 60 flows totaling
3,000 packets arrive at each top-of-rack switch in any given
100 ms window. This means the average flow has 50 packets
in a 100 ms window. Even if all 50 packets from a given
flow are sampled, we can only estimate the flow’s actual

2In actuality N is a parameter per port of a switch and need not be the
same for all ports. However, in OpenSample, we assume the sampling ratio
is fixed for all ports and leave exploration of per-port sampling ratio to future
work.



4

!"#$%&'"(#)

!"#$%

&'(")*+,%

-#,.%

&'(")*+,%

/+.$#,0%

1'(234#.5%67%

*+$,-+((#-)

!"#$./0)

8#9'.+,%

3(:2"+3%

/+$%,9"+%

3!"#$%;#""+;.#,%

-(;0+.%<#$%

3(:2"+3%

=!>3$?.;4%@%3!"#$%(A+'.%

1(:2"+3%

!"#$%

&'(")*+,%

-#,.%

&'(")*+,%

/+.$#,0%

1'(234#.567

!"#$

1'(234#.
7

-#,.-#,.

(234#.
7%

&'(")*+,%

8#9'.+,%8#9'.+,%

3(:2"+3%

3!"#$%;#""+;.#,%

-(;0+.-(;0+. #$+.%<#$+.%<#$

3(:2:2"+3%3%:2:2

&'(")*+,&'(")*+,+,%

8#8#

3(
#$%

Fig. 3. The architecture of OpenSample providing measurement data to an
SDN controller is depicted. sFlow agents running on switches provide samples
to an sFlow collector which are then forwarded to flow and port analyzers.
This information is aggregated into network snapshots and exposed via an
open API. The SDN controller uses this API to make flow rerouting decisions.

rate with approximately 30% error. In practice with realistic
sampling ratio, even this is optimistic. Using MLE, there are
only two ways to improve accuracy: (i) increase the sampling
ratio and/or (ii) increase the sampling period. The latter is
not viable without violating OpenSample’s goal of low-latency
measurements.

Unfortunately, increasing the sampling ratio is difficult as
well. Fig. 2 shows the number of samples per second our
sFlow collector receives from one of our testbed switches as
we increase the sampling ratio while keeping the amount of
traffic going through the switch constant, i.e., 10Gbps. The
number of samples per a second peaks at between 300 and 350
samples per second. We believe this limit is a consequence of
the switch’s control CPU being overwhelmed. With a limit of
∼350 samples per second, the expected number of samples
for a given flow in a 100 ms time window that samples from
60 flows is less than one. While newer switches may provide
faster control CPUs, it seems likely that it will be infeasible
to get enough sFlow samples in a short period, i.e., 100 ms,
to provide an accurate estimate of the flow throughput for the
foreseeable future. Therefore, we need to do something other
than MLE to estimate flow statistics accurately and in near-
real-time, which is detailed in the next section.

III. OPENSAMPLE DESIGN

The architecture of OpenSample is illustrated in Fig. 3. We
use i) packet sampling, e.g., sFlow, to capture packet header
samples from the network with low overhead and ii) use TCP
sequence numbers from the captured headers to reconstruct
nearly-exact flow statistics. Simultaneously, we use the same
packet samples to estimate port utilization at sub-second time
scales, described in detail below. We use a single, centralized
collector that combines samples from all switches in the
network to construct a global view of traffic in the network at
both flow and link granularities.

Detailed network monitoring information has a variety of
uses, including traffic engineering, resource provisioning, VM
placement/migration, and intrusion detection. For illustration
purposes, we focus on traffic engineering as the consumer of

OpenSample’s ability to very quickly detect elephant flows
and estimate link utilization. In the following subsections, we
describe how OpenSample extracts flow statistics from the
samples, detects elephant flows, estimates link utilization of
each switch’s ports, and enables traffic engineering.

A. Protocol-Aware Flow Statistics Detection

As discussed earlier, accurately inferring flow statistics
using MLE requires many samples per flow. To overcome the
limitation of statistical inference, we exploit the fact that most
traffic sent in data centers today is TCP traffic [19]. Each
TCP packet carries a sequence number indicating the specific
byte range the packet carries. Fortunately, when sFlow samples
the header of TCP packets, this header also includes the TCP
sequence numbers3.

Thus, if we sample at least two distinct packets from a given
TCP flow, we can compute an accurate measure of the flow’s
average rate during the sampling window by subtracting the
two sequence numbers and dividing by the time between the
samples.

Exploiting TCP information drastically increases estima-
tion accuracy for any given sampling ratio. This TCP-aware
sFlow analysis is the key innovation OpenSample incorporates
compared to prior sFlow monitoring frameworks. In the next
section, we provide analytic and simulation-based analysis of
the probability of sampling two different packets from a given
flow for a given number of switches, sampling ratio, and flow
size. We also examine the expected time before receiving two
samples from a flow for a variety or parameters.

Our OpenSample-based traffic engineering mechanism con-
siders any TCP flow for which it receives two or more samples
to be an elephant flow and all elephant flows are candidates
for traffic engineering. Thus, it considers far more flows to be
candidates for rerouting than prior work [1], [2], [8].

Finally, we note that this approach is not limited to TCP,
but can be extended to any protocol that includes sequence
numbers in the header. Even if the sequence numbers represent
packets and not bytes, as long as this is known a priori, the
sequence numbers can be used to compute flow bandwidth
rates substantially more accurately than MLE.

B. Probability of Flow Statistics Detection

To determine the probability of detecting a flow statistics
using our enhanced Protocol-aware flow statistics detection,
we analytically calculate the probability of getting at least
two different samples from a single switch and use a simple
simulator to find the same probability across one or more
switches. In both cases, we evaluate the probability under a
variety of different flow sizes and sampling ratio.

3 The sFlow specification does not actually mention or require that
samples include TCP sequence numbers, but it does specify that the preferred
implementation should provide the raw packet header [20] and, in practice,
both our physical switches and Open vSwitch [21] provide this information.
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(a) The analytical and simulated probability for
one switch. The lines show the analytical values
while the points show the simulated values.
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(c) The CDF of the delay to get any two consecu-
tive samples from a flow based on average packet
inter-arrival rate λ.

Fig. 4. The probability of getting at least two different samples from the same flow for varying flow sizes, sampling ratio and number of switches. Each
line is labeled “1 in N” for the single switch case or “1 in N , k” for multiple switches where the sampling ratio is 1

N
and there are k switches.

First, we develop an analytical model for a single switch.
To ease exposition, we introduce the following variables:

n = number of packets in the flow

p = probability of packet sampled (0 ≤ p ≤ 1) =
1

N
k = number of switches

Since there is no risk of sampling the same packet twice at
a single switch, the probability of getting two samples from
the same flow at the same switch is the probability of getting
two samples from the same flow. More formally:

Pr{2+ samples} = 1− Pr{get zero or 1 sample}
= 1− Pr{get no samples} −

Pr{get 1 sample}

= 1−
(
n

0

)
(1− p)n −

(
n

1

)
p(1− p)n−1

= 1− (1− p)n − np(1− p)n−1

When considering the case with more than one switch,
the analysis becomes more complex because it must account
for the possibility of sampling the same packet twice at two
different switches. However, for realistic numbers of switches,
k, and probability of packet sampled, p, the probability of
sampling the same packet more than once at different switches
is low enough that it effectively acts as the one switch model
with a probability of packet sampled of kp. More formally:

Pr{2+ samples} ≈ 1− (1− kp)n − nkp(1− kp)n−1

To avoid analytical inaccuracy due to this simplification, we
use a simple simulator to estimate the probability of getting
two distinct samples from k switches. Each point is the result
of 1000 simulations and the error bounds are small enough
that we omit them. The results from both our analysis and
simulator appear in Fig. 4. Fig. 4(a) shows the results of
both the analysis and simulator for a single switch at various
sampling ratio. The points are from the simulator and the
lines are from the analysis. The two are almost identical,
which provides validation for our model. Further, note that for
sampling ratio greater than 1 in 200, we are nearly guaranteed
to get two distinct samples from flows with more than 1000
packets, i.e., 1.5 MB or more. In contrast, for a 1000-packet

flow and a 1 in 200 sampling ratio, MLE has an 87% estimated
error.

Fig. 4(b) shows the simulation results for varying number
of switches and sampling ratio. This shows that even for low
sampling ratio, increasing the number of switches drastically
improves the probability that we will get two distinct samples
with low-cost. It also confirms the intuitive approximation to
the one switch model. The lines with half the sampling ratio,
but twice the switches closely follow each other, e.g., one
switch with 1 in 5000 sampling produces the same result as
two switches with 1 in 10000 sampling.

C. Flow Detection Delay
To determine how long it takes to acquire two samples from

a given flow, we analytically calculate the expected delay, D.
We express D as the sum of two random variables, X1 and
X2, representing the arrival time (after the start of the flow)
of the first and second sampled packets.

If packet arrivals are a Poisson process with average packet
inter-arrival rate λ, then sample arrivals are a Poisson process
with an average inter-arrival rate of λp. Thus, X1 and X2 are
i.i.d. exponential random variables with mean 1

λp . Assuming a
single switch, the delay to receive two samples can be stated:

E[D] = E[X1 +X2]

= E[X1] + E[X2] =
1

λp
+

1

λp
=

2

λp

For the case with k switches, this is approximately 2
λkp .

More accurately, D, is an Erlang-distributed [22] random
variable with shape k̂ = 2 and rate λ̂ = λkp. The CDF of D is
shown in Fig. 4(c). We present values for k = 3 representing
a typical 3-hop path in data center and for packet inter-arrival
times of 1000µs and 10µs representing slow (12 Mbps) and
fast (1.2 Gbps) flows (assuming 1500 byte packets). As can be
seen, we easily detect all fast flows in less than 100 ms even
with sampling ratio of 1 in 1000.

Note that there is nothing special about the choice of starting
time and two samples. The analysis holds for the time to gather
two samples after any arbitrary point in the duration of a flow.

D. Estimating Switch Port Utilization
In addition to packet samples, sFlow reports exact packet

and byte counter values for each port in a switch every 5
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seconds, similar to OpenFlow. This data is not useful for our
goal of sub-second monitoring.

Thus we use packet samples to estimate link utilization at
small timescales. OpenSample estimates the utilization of each
link during a given interval by multiplying the number of
sampled packets in that interval by the average packet size.
This is akin to treating all packets going through a particular
link as a single “superflow” and using MLE to estimate its
throughput. This estimate is accurate, despite MLE’s poor
error bounds, as it includes all samples from a given port.

E. Network State Snapshot Database

Every 100 ms, OpenSample generates a snapshot of the
network state for consumption by other applications. This state
includes the network topology (retrieved from the SDN con-
troller), estimated utilization of every switch port, and the set
of detected elephant flows. For each elephant flow, the snap-
shot includes the flow’s five-tuple, its estimated bandwidth,
and its current path. Applications such as traffic engineering
can query the latest snapshot through an API, making them
loosely coupled with the internals of OpenSample.

F. Traffic Engineering

Traffic engineering is a natural application of software-
defined networks because the controller has a global view of
the topology and it controls all of the switches’ forwarding
tables. An SDN controller forward a flow over a non-shortest
path just as easily as over a shortest path, with no concerns
about convergence time, forwarding loops, or black holes.
Unfortunately, the high latency of network measurements has
limited the effectiveness SDN-based traffic engineering [23].

Since we use exponentially distributed flow sizes, statisti-
cally a flow is expected to last as long as it has already lasted.
Thus, if we detect an elephant flow that has sent a significant
amount of traffic, we can expect it to send that much again
in the near future. By moving such flows from congested
to uncongested paths, that future traffic will achieve higher
throughput, as will any traffic with which it was competing.
Because only the packets sent after the flow is scheduled can
benefit from traffic engineering, fast detection and scheduling
are crucial to the efficiency of traffic engineering. Thus,
OpenSample’s low-latency monitoring is an ideal candidate
for traffic engineering.

While we experimented with a variety of scheduling al-
gorithms, we found that, in general, the speed at which the
scheduling control loop could operate made a more significant
difference than the algorithm used. As a consequence, we
use the global first fit algorithm presented in Hedera [1]
for its simplicity. Our technical innovations focus purely on
improving the speed of congestion and large flow detection
rather than improved flow scheduling techniques.

While our algorithm is borrowed from Hedera, it operates on
a 100 ms interval—50 times faster than Hedera’s five second
interval. As data center networks are upgraded from 1 Gbps
to 10 and 40 Gbps, we expect flow duration to shrink, which
means that traffic engineering must become proportionately

faster to remain effective. Alternately, with a constant link
speed faster traffic engineering can make better decisions, as
shown in our evaluation.

By default, all traffic in our network follows shortest paths—
we do not use Spanning Tree Protocol or equivalent. When
multiple shortest paths exist, ties are broken by using equal-
cost multi-path (ECMP) hashing based on the TCP/IP 5-tuple.
Every 100 ms interval, the controller estimates the utilization
of every link in the network and attempts to reduce congestion
by moving elephant flows from highly-utilized links to less
utilized ones. The controller considers the set of detected
elephant flows that traverse at least one congested link and
uses a global first-fit algorithm to re-route them.

In OpenSample, both default forwarding and traffic en-
gineering use OpenFlow. Engineered paths use high-priority
OpenFlow rules and default paths use lower-priority rules.
Scheduling a flow along a different path simply requires
installing one new high-priority rule in each switch along the
path. After an elephant flow ends, its rules time out and the
switches automatically remove them. The time to install an
OpenFlow rule—approximately 10 ms—is fairly small com-
pared to OpenSample’s 100 ms control interval.

IV. EVALUATION

In this section, we present the results of our experimental
evaluation of OpenSample. Our goal is to compare OpenSam-
ple’s fast control loop against previous counter-polling–based
approaches. To this end, we implemented OpenSample and a
traffic-engineering application as modules for Floodlight [24],
an open-source OpenFlow controller written in Java. We tested
OpenSample on both the Mininet-HiFi [25] emulator and a
physical network testbed of x86 servers connected with IBM
RackSwitch G8264 switches.

Because of our physical testbed’s limited scale—only four
switches—we predominantly used it to verify that our tech-
niques work in practice, to validate our simulator framework,
and to inform our design with the constraints of real-world
hardware. As a consequence, we omit the testbed results
except for the simple demonstration of traffic engineering,
shown in Fig. 1, and an evaluation of the sampling ratio
supported on our switches, shown in Fig. 2.

The remainder of this section focuses entirely on the em-
ulation results, which provide an insight into OpenSample’s
operation at reasonable scales.

A. Methodology

We use the Mininet-HiFi [25] network emulator to evalu-
ate OpenSample in a controlled and repeatable environment.
Mininet uses Linux containers to emulate hosts and Open
vSwitch (OVS) to emulate switches, allowing a whole network
to be emulated on a single computer. Mininet-HiFi uses
Linux traffic shaping to emulate fixed-speed links, giving the
emulated network realistic congestion and queueing delays.
We set the link speed to 10 Mbps to allow for faster emulation.
However, note that OpenSample can control either Mininet or
a physical network with no changes.
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Fig. 5. Aggregate throughput for ECMP, Polling, OpenSample-MLE and OpenSample-TCP traffic engineering on a k=4 fat free compared to a single
non-blocking switch all with 10 Mbps links. Each bar represents the average of 5 runs with error bars showing standard deviations. Flow inter-arrival times are
exponentially distributed with a 1 ms average. OpenSample uses a sampling ratio of N=50 and a 100 ms scheduling interval while polling uses a 1 s interval.
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We replicate the testbed benchmark of Hedera [1] with
identical settings, including topology and workloads. We use a
three-level k=4 FatTree as an example of a network topology
with a realistic diameter and degree of multipathing (a real
network would use a much larger switch radix such as k=64).
We also run the workloads on an emulated single large non-
blocking switch to determine the maximum throughput when
constrained only by host NIC speeds. Note that we omit the
details of FatTree and non-blocking topology and refer to
Figure 2 in [1] due to the page limitation. However, we do
note that because non-oversubscribed FatTree topologies are
rearrangeably non-blocking, the non-blocking topology also
serves as the achievable optimum performance on the FatTree.

We evaluate OpenSample with two sampling ratios: N=50
and N=200. Simple calculations indicate that to avoid ex-
ceeding the 350 sample per second limit on our physical
switches, the sampling ratio should be closer to N=250,000 to
handle line-rate traffic on all ports. The bulk of the discrepancy
comes from the 1000x difference between link speeds in our
emulations and our physical switches. The remainder stems
from the fact that (i) in practice, not all ports operate at line
rate simultaneously under realistic workloads and (ii) newer
switches [26] have significantly faster control CPUs allowing
for more than 350 samples per second.

We use a workload generator [27] originally written for
Hedera. It has three different traffic communication patterns
such as Stride(s), Staggered Prob (EdgeP, PodP), and Ran-
dom(u). Given a network with N hosts, the Stride(s) workload
causes the host with index i to communicate with the host
with index (i + s)mod(N), resulting in an adversarial traffic
pattern on our topology. On the contrary, in the Random(u)
workload each host communicates with u different hosts that
are chosen uniformly. Staggered Prob (EdgeP, PodP) has each
flow stay within the same rack with probability EdgeP, stay
within the same pod with probability PodP, and crosses pods
with probability 1− EdgeP− PodP.

Moreover, we generate two classes of flows: (i) short flows
with an exponential distribution of mean 1 MB size, and (ii)
long flows with the same exponential distribution but a 1 GB
mean flow size. Both short and long flows follow the same
inter-arrival time distribution, exponential with a mean of 1 ms.

For our performance baseline we use shortest-path ECMP
forwarding with no traffic engineering. We compare three dif-
ferent measurement approaches: (i) Polling, (ii) OpenSample-
MLE using a maximum likelihood estimator as described in
Section II-B2, and (iii) OpenSample-TCP using TCP sequence
numbers to infer throughput as described in Section III.

The Polling approach is designed to model measurement
based on querying all of the flows in each switch as presented
in prior work [1], [7], [28], [29], [30]. Based on their observa-
tions, we chose a polling rate of once per second as it matched
the typical performance reported for the hardware switches
evaluated. However we note that depending on the number
of flows present in the switch and implementation details this
latency varies from 75 ms to 15 s. We note that the systems
which provided performance noticeably better than one second

Technique Total bytes sent % of bytes scheduled
Polling (1s) 133 MB 25%

OpenSample-MLE (N=200) 166 MB 30%
OpenSample-MLE (N=50) 185 MB 36%
OpenSample-TCP (N=200) 226 MB 41%
OpenSample-TCP (N=50) 264 MB 62%

TABLE I
THE TOTAL BYTES SENT IN 30 S AND THE PERCENT OF THOSE BYTES
SCHEDULED BY TRAFFIC ENGINEERING FOR THE Stride8 WORKLOAD.

either used specialized interfaces to query counters or assumed
that only a very small number of flows would be present.

To evaluate the performance of each approach, we measure
the aggregate throughput achieved on the various spatial work-
load patterns after applying traffic engineering as described
earlier. In all cases, we employ the same (Hedera) traffic
engineering algorithm and change only the underlying mea-
surement system. Meanwhile, we measure the total number of
bytes sent and the fraction of those bytes that we were able
to schedule on alternate routes for each case.

B. Results

Fig. 5 shows the throughput of a variety of workloads on
our emulated configuration. Note that even the non-blocking
switch does not achieve normalized throughput of 1.0 because
sometimes two hosts transmit to the same destination, causing
unavoidable congestion. Although a fat tree is a rearrangeably
non-blocking topology, there is a significant gap between naive
ECMP forwarding and the hypothetical single non-blocking
switch due to collisions where multiple flows are hashed onto
the same link. This gap makes the case for traffic engineering:
with perfect flow scheduling it should be possible to approach
the throughput of a non-blocking switch.

Polling is generally ineffective at detecting short flows
(shown in Fig. 5(a)), because these flows are almost always
finished before the controller can detect them. Polling is much
more effective when elephant flows are longer than the polling
interval (in this case one second), as in Fig. 5(b).

OpenSample-MLE outperforms polling in a few cases, but
in general it suffers from the sampling bottleneck described
earlier; by the time it receives enough samples to be confident
that a flow is large, the flow is almost over. Thus OpenSample-
MLE schedules relatively few flows.

OpenSample-TCP performs significantly better than either
polling or OpenSample-MLE, because it detects and schedules
elephant flows earlier. In most cases it achieves performance
close to a non-blocking switch, even for fairly small (1MB)
flows. Often it outperforms the alternatives by 25-50%.

Table I gives an intuition of the source of the performance
gains. It shows both the total bytes transferred in the 30 s
duration of the experiment and the percentage of those bytes
that the traffic engineering manages to schedule for the stride8
benchmark. The fraction of bytes scheduled can be considered
a figure of merit for traffic engineering, since any bytes that
are not scheduled are more likely to be subject to congestion.
By this metric, OpenSample-TCP schedules over twice the
fraction of bytes as the polling system. We can also see that
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the reduced congestion allowed the workload to send twice as
much data in the same time, doubling throughput.

Fig. 6 provides deeper insight into the behavior of the
measurement systems in the context of traffic engineering.
Fig. 6(a) shows the fraction of bytes left in a flow at the
time it is detected by each measurement system and Fig. 6(b)
shows the fraction of the bytes left in a flow at the time
it is actually rerouted, i.e., after the new forwarding rules
have been installed. The results show that OpenSample-MLE
and OpenSample-TCP dramatically outperform Polling when
it comes to detecting short flows. When accounting for the
scheduling interval, the time needed to compute routes and
install the new routes, the advantage that OpenSample-MLE
had vanishes, but OpenSample-TCP is still able to significantly
outperform the alternatives.

In conclusion, OpenSample-TCP can detect elephant flows
far earlier than the alternatives and, when used to drive traffic
engineering, it enables the traffic engineering mechanism to
schedule up to 60% of the bytes that hosts send (for Stride8)
and to a 150% improvement in aggregate throughput (for
Stride4) when flow sizes are small.

C. Scalability

The OpenSample collector is currently implemented with
the assumption that a single machine running the collector will
gather samples from all the switches in the network4. Thus,
the rate of samples that it can handle will limit the number
of switches a single collector can monitor. Therefore, to
evaluate how many samples per second a single OpenSample
collector can handle, we implemented a benchmark tool by
modifying Cbench [31]. Cbench is a tool intended to measure
the performance of OpenFlow controllers by sending large
numbers of packet_in messages as if they were from a
collection of switches. Our modified version sends sFlow
datagrams rather than sending packet_in messages.

While we omit a full presentation of these results for varying
imposed loads, we found the OpenSample collector was able
to process more than 100,000 samples per second. This means
our current OpenSample implementation can handle samples
from at least 285 switches assuming each switch sends 350
samples per second. That implies a single OpenSample is able
to handle production data centers servicing 4K or 8K hosts
with 1:2 or 1:5 oversubscription ratio, respectively [6]. Further,
recent SDN controller efforts [32] have shown the ability to
process and respond to as many as 10 million events per
second. As a consequence, we believe that with more careful
engineering, we could handle as many as 28,500 switches with
a single collector, but we leave this to future work.

V. RELATED WORK

There has been a significant amount of work on WAN traffic
engineering, but much less work on traffic engineering on data

4While we believe that it is possible to build a hierarchical version of
OpenSample which uses multiple collectors to monitor more switches than a
single collector can handle and aggregates their different network views, we
leave this as a topic of future work.

center networks. Traffic engineering in data centers has only
become a topic of interest in recent years due to the adoption
of multipath topologies; without multiple paths there is nothing
to engineer.

Miura et al. [33] describe cases where parallel workloads
can generate traffic patterns that cause congestion in data
center networks that use single-path routing. They show that it
is possible to increase network utilization by hand-optimizing
routing tables, but do not provide any algorithmic solution.

The first practical data center traffic engineering work we
know of is Hedera [1]. They found that congestion can
occur even in full-bisection-bandwidth networks due to routing
collisions—ECMP reduces collisions compared to single-path
routing but does not eliminate them. They provide algorithms
to estimate demand of network-limited flows and to schedule
flows in a Clos network. They poll switch counters every
five seconds to detect congestion and elephant flows and they
use OpenFlow to reroute flows. Our work is significantly
influenced by Hedera, while also taking into consideration the
realities and limits of existing switches.

DevoFlow [7] addresses many inefficiencies of OpenFlow
by “devolving” control of some things, such as microflow
creation and multipath, to switches. They also propose using
sFlow sampling but do not implement it using real hardware.

Helios [29] discusses building a fast control loop for hybrid
optical/electrical data center networks and is able to complete
a full control loop in approximately 100 ms, but does so by
minimizing the number of installed flows to read and they
make use of a proprietary RPC mechanism rather than a
standard measurement mechanism like sFlow.

MicroTE [8] characterizes several data center workloads,
finding similar collision-induced congestion as Hedera and De-
voFlow. They modify servers to perform network measurement
and report data to a central controller every second, which
infers congestion based on server-level information. They also
describe optimizations such as server-based aggregation to
reduce the overhead of network monitoring. Like Hedera and
DevoFlow, MicroTE uses OpenFlow to perform rerouting.

Mahout [2] has similar goals to OpenSample, but seeks to
provide low-latency elephant flow detection by using queue
depth at end-hosts rather than using network-based measure-
ments. When using switches with support for packet sampling,
OpenSample offers a more resource-efficient measurement
platform and is potentially more deployable, since changing
switch configuration is likely easier than installing new soft-
ware on all end-hosts.

Multipath TCP [34] (MPTCP) allows a single TCP connec-
tion to be split into multiple subflows that take different paths.
Each subflow uses TCP congestion control to monitor and
respond to congestion and MPTCP dynamically shunts data
to less-congested paths. This can be viewed as a monitoring
and traffic engineering system that is implemented entirely on
end hosts using local knowledge.

OpenSketch [4] proposes configurable network measure-
ment hardware that can calculate approximate “sketches” of
common statistics, such as heavy hitters and flow size distri-
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bution. If implemented in switches, OpenSketch could enable
even faster traffic engineering by efficiently and rapidly detect-
ing elephant flows directly in switches. Although OpenSketch
enables software-defined measurement in the same way that
OpenFlow enabled software-defined forwarding, it is based on
a clean-slate redesign of portions of the switch hardware.

InMon sFlow-RT [35] is similar to the network analyzer
component of OpenSample. Although it is designed to in-
tegrate with an OpenFlow controller, its traffic engineering
capabilities are not clearly documented.

VI. CONCLUSIONS AND FUTURE WORK

We have presented OpenSample, a working prototype of a
low-latency, sampling-based measurement platform, and a data
center traffic engineering application based on OpenSample.
Our primary contribution is lowering the latency to gather ac-
curate measurements of network load and elephant flows from
1–5 seconds to 100 milliseconds. Faster detection of elephant
flows allows traffic engineering to better schedule the network,
yielding increased throughput—up to 150% in some cases. In
general, workloads that cause more congestion benefit more
from our work and our improvement over prior efforts is
more significant for smaller flows. OpenSample works with
unmodified Ethernet switches, making it deployable without
waiting for new hardware or modifying end-host software.

We believe that there is significant opportunity for future
work in this space as well. We hope to explore dynamically
adapting per-port sampling ratio based on observations and
combining both maximum likelihood and sequence-number–
based estimations for improved accuracy. Lastly, merchant
silicon vendors may introduce ASICs that support sampling
entirely in the data plane allowing for very high sampling ratio,
i.e., N=64, even with 10 Gbps links. This opens the possibility
of control loops that operate as fast as 100µs.

ACKNOWLEDGMENT

We thank Andreas Kind and Chi “Harold” Liu from IBM
Research—China for their work on network monitoring that
inspired this project. This research was supported by Basic
Science Research Program through the “National Research
Foundation of Korea (NRF)” funded by the Ministry of
Science, ICT & future Planning (2013R1A2A2A01016562).
This work (Grants No.C0018176) was supported by Business
for Cooperative R&D between Industry, Academy, and Re-
search Institute funded Korea Small and Medium Business
Administration in 2012.

REFERENCES

[1] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in NSDI, 2010.

[2] A. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant
detection,” in INFOCOM, 2011.

[3] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming
language,” in ICFP, 2011.

[4] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in NSDI, 2013.

[5] “Openflow-switch,” https:
//www.opennetworking.org/sdn-resources/onf-specifications/openflow.

[6] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST:
scalable ethernet for data centers,” in CoNEXT, 2012.

[7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, and P. Yalagandula,
“DevoFlow: Scaling flow management for high-performance
networks,” in SIGCOMM, 2011.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: fine
grained traffic engineering for data centers,” in CoNEXT, 2011.

[9] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall,
“Augmenting data center networks with multi-gigabit wireless links,”
in SIGCOMM, 2011.

[10] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in IMC, 2010.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in SIGCOMM, 2008.

[12] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: topology, routing, and packaging of efficient large-scale
networks,” SC Conference, 2009.

[13] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly,” in NSDI, 2012.

[14] B. Claise, Ed., “Cisco Systems NetFlow Services Export Version 9,”
RFC 3954. http://www.ietf.org/rfc/rfc3954.txt, October 2004.

[15] “sFlow,” http://sflow.org/about/index.php.
[16] V. Mann, A. Vishnoi, and S. Bidkar, “Living on the edge: Monitoring

network flows at the edge in cloud data centers,” in COMSNETS,
2013.

[17] “Sampled NetFlow [Cisco IOS Software Releases 12.0 S],” http:
//www.cisco.com/en/US/docs/ios/12 0s/feature/guide/12s sanf.html.

[18] P. Phaal and S. Panchen, “Packet sampling basics,”
http://www.sflow.org/packetSamplingBasics/index.htm.

[19] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in SIGCOMM, 2010.

[20] P. Phaal and M. Lavine, “sFlow Version 5,”
http://www.sflow.org/sflow version 5.txt.

[21] “Open vSwitch,” http://openvswitch.org.
[22] “Erlang distribution,” http://en.wikipedia.org/wiki/Erlang distribution.
[23] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,

implementation and evaluation of congestion control for multipath
TCP,” in NSDI, 2011.

[24] “Floodlight openflow controller,”
http://www.projectfloodlight.org/floodlight/.

[25] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in CoNEXT, 2012.

[26] R. Ozdag, “Intel Ethernet Switch FM6000 Series - Software Defined
Networking,” http://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf.

[27] Sivasankar Radhakrishnan, “cluster loadgen,”
https://bitbucket.org/nikhilh/mininet tests/src/
9f051450a32a8411f03b7f6bbb99cb436c5a4a73/hedera/hedera.

[28] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for openflow switch evaluation,” in
PAM, 2012.

[29] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a
hybrid electrical/optical switch architecture for modular data centers,”
in SIGCOMM, 2010.

[30] A. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant
detection,” in INFOCOM, 2011.

[31] “Oflops,” http://www.openflow.org/wk/index.php/Oflops.
[32] D. Erickson, “The Beacon OpenFlow Controller,” in HotSDN, 2013.
[33] S. Miura, T. Boku, T. Okamoto, and T. Hanawa, “A dynamic routing

control system for high-performance PC cluster with multi-path
Ethernet connection,” in IPDPS, 2008.

[34] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in SIGCOMM, 2011.

[35] “sFlow-RT,” http://inmon.com/products/sFlow-RT.php.

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
http://www.ietf.org/rfc/rfc3954.txt
http://sflow.org/about/index.php
http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.sflow.org/packetSamplingBasics/index.htm
http://www.sflow.org/sflow_version_5.txt
http://openvswitch.org
http://en.wikipedia.org/wiki/Erlang_distribution
http://www.projectfloodlight.org/floodlight/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
https://bitbucket.org/nikhilh/mininet_tests/src/9f051450a32a8411f03b7f6bbb99cb436c5a4a73/hedera/hedera
https://bitbucket.org/nikhilh/mininet_tests/src/9f051450a32a8411f03b7f6bbb99cb436c5a4a73/hedera/hedera
http://www.openflow.org/wk/index.php/Oflops
http://inmon.com/products/sFlow-RT.php

	Introduction
	Background
	Data Center Network Workloads and Topologies
	Non-OpenFlow Network Monitoring
	NetFlow
	sFlow


	OpenSample Design
	Protocol-Aware Flow Statistics Detection
	Probability of Flow Statistics Detection
	Flow Detection Delay
	Estimating Switch Port Utilization
	Network State Snapshot Database
	Traffic Engineering

	Evaluation
	Methodology
	Results
	Scalability

	Related Work
	Conclusions and Future Work
	References

