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Abstract 

We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), 

for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based 

on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent 

attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing 

boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted 

for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to 

allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct 

seismic wave propagation simulations using their own velocity structure models and the necessary source represen-

tations by specifying them in an input parameter file. The code has various modes for different types of velocity struc-

ture model input and different source representations such as single force, moment tensor and plane-wave incidence, 

which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data 

Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model 

and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in 

Fortran 2003 and are available with detailed documents in a public repository.
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Background

�e numerical simulation of seismic wave propagation 

is a fundamental tool for seismological studies such as 

estimation of the heterogeneous velocity structure (e.g., 

Tape et al. 2009; Chen and Lee 2015), the study of seis-

mic source processes (e.g., Lee et al. 2006; Imperatori and 

Gallovič 2017), wave propagation in the heterogeneous 

Earth (e.g., Frankel and Clayton 1986; Emoto et al. 2010) 

and hazard assessment (e.g., Graves et  al. 2010; Maeda 

et al. 2016). Significant improvements in numerical sim-

ulation techniques, high-resolution velocity structure 

models and high-performance computer systems have 

enabled the use of 3D numerical simulations as a practi-

cal tool for regular data processing studies with currently 

available parallel computers.

Of the wide variety of numerical methods used to 

simulate seismic wave propagation, the staggered-grid 

finite difference method (FDM) has been widely used 

in the seismological community. �e staggered-grid 

FDM with second-order accuracy in space and time to 

simulate seismic waves was first proposed by Madariaga 

(1976); then, it was expanded to fourth-order accuracy 

in space by Levander (1988). �e 3D FDM simulation 

of seismic wave propagation at regional scales has been 

conducted after Olsen et  al. (1995) and Graves (1996). 

Since then, the FDM simulations have been widely used 

for the numerical modeling of seismic wave propagation 
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(see Moczo et  al. 2014 and references therein) due to 

the relative simplicity of its numerical algorithm as well 

as its computational efficiency in parallel computing. 

Multiple available FDM codes, such as GMS (Aoi and 

Fujiwara 1999; Aoi et  al. 2004), FDMPI (Bohlen 2002), 

AWP-ODC (Cui et al. 2013), FDSim (Moczo et al. 2014) 

and SW4 (Petersson and Sjogreen 2014), have been 

used to numerically model seismic wave propagation. 

Many other available community codes including other 

numerical methods such as the spectral-element method 

are described in Igel (2016).

In this study, we developed a new staggered-grid FDM 

code to model seismic waves in 3D and 2D viscoelastic 

media in local-to-regional scale. By improving the usa-

bility of the code, called the Open-source Seismic Wave 

Propagation Code (OpenSWPC), the numerical simula-

tion with parallel computing of a wide variety of targets 

is made accessible to users. �e original version of this 

code, designed to be implemented on supercomputers 

(Furumura and Chen 2005; Inoue et  al. 2013), was fully 

restructured to have excellent performance on a variety 

of computer architectures to be fully open to the seismo-

logical community.

�e development of OpenSWPC was in particular 

intended to improve its usability for non-experts who are 

not so familiar with numerical simulation techniques. 

For this purpose, OpenSWPC combines the necessary 

pre- and post-processing functions in its main simu-

lation code (Fig.  1), and all the necessity information 

for the simulations are defined in input text parameter 

files. �erefore, users do not need to modify the code 

to apply it to individual simulation targets. We adopt 

de facto standard formats for the binary input and out-

put datasets; the velocity structure input model is given 

in the Network Common Data Form (NetCDF; Rew and 

Davis 1990), and the simulation results are output in the 

NetCDF and the Seismic Analysis Code (SAC; Goldstein 

et  al. 2003; Helffrich et  al. 2013) formats. Following the 

input parameters, OpenSWPC dynamically allocates 

the computer memory, automatically generates grids for 

a heterogeneous velocity model and performs parallel 

numerical simulations of seismic wave propagation.

In the following, we briefly review the strategy of the 

FDM simulation of seismic wave propagation in hetero-

geneous viscoelastic media with frequency-independent 

attenuation and the numerical techniques adopted in the 
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Fig. 1 A schematic illustration of the flow of the wave propagation simulation using OpenSWPC
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present code. �en, examples of numerical simulations 

are demonstrated to show how the present code works.

Methods

In this section, we briefly introduce the staggered-grid 

FDM method for simulating seismic waves in viscoelastic 

media and the algorithms adopted in OpenSWPC. �e 

details of theories for viscoelasticity and numerical algo-

rithms can be found in Moczo et al. (2014) and Igel (2016).

Seismic wave modeling with a viscoelastic body

We solve the equation of motion of continuum mechan-

ics described by the velocity and stress components in 

the Cartesian coordinate system such that

where ND is the model dimension (ND = 2 or 3), vi is the 

particle velocity of the elastic motion in the ith compo-

nent, ρ is the density, σij is the i, jth component of the 

stress tensor and fi is the ith component of the body 

force. In the following, we primarily describe the three-

dimensional case, ND = 3; however, it is straightforward 

to reproduce the two-dimensional P-SV or SH formulae 

from this case.

�e stress is related to the particle velocity via the con-

stitutive equation. In this study, we adopted the General-

ized Zener Body (GZB) (e.g., JafarGandomi and Takenaka 

2007; Maeda et  al. 2013) of the viscoelasticity, which is 

expressed as a parallel connection of Zener bodies (e.g., 

Aki and Richards 2002, Chapter 5) having different physi-

cal constants. Note that the GZB is known to be equiva-

lent to the generalized Maxwell body (Moczo and Kristek 

2005; Cao and Yin 2014), which is also widely used for 

seismic wave modeling (e.g., Emmerich and Korn 1987).

Following Robertsson et  al. (1994), the constitutive 

equation of the viscoelastic body is written as

where ǫij is the i, jth component of the strain tensor, ψ̇π (t) 

and ψ̇µ(t) are the time derivatives of the relaxation func-

tions for two independent relaxed moduli πR ≡ �R + µR 

and µR, respectively. For the GZB, they are represented 

using the L different relaxation times τσ

ℓ
 (ℓ = 1, . . . , L ) 

and the creep times of the P- and S-waves (τ ǫP
ℓ

, τ ǫS

ℓ
, 

respectively) such that
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As a consequence of introducing the viscoelasticity, the 

phase speeds of the body waves become a function of the 

frequency due to the physical dispersion effect (Aki and 

Richards 2002). �erefore, they follow the given velocity 

structure at a given reference frequency fR.

In the actual Earth medium, QP and QS do not signifi-

cantly depend on frequency over a wide frequency range 

below ∼1 Hz. To yield an approximately constant Q over 

a frequency range, we introduced memory variables fol-

lowing Robertsson et  al. (1994) with the τ-method pro-

posed by Blanch et al. (1995). �e τ-method assumes that 

the ratios between the relaxation and creep times are 

constant among all Zener bodies (ℓ = 1, . . . , L):

From a given set of relaxation times, the τ-method gives 

optimized values for the parameters τP and τ S using the 

least squares method, so that the attenuation QP and QS 

become approximately constant over a given frequency 

range. �e constitutive equation based on this τ-method 

is written as follows:

where rijℓ is the memory variable of the (i,  j)th compo-

nent of the stress tensor and the ℓth Zener body and sat-

isfy the following auxiliary equation:

�e selection of the relaxation times, τσ

ℓ
, is not a triv-

ial issue in the τ-method. We adopted logarithmically 

spaced relaxation times in the given frequency range. 

As in an example in Fig. 2, the adopted model can yield 
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an approximately constant Q over two orders of the 

frequency range below 2 Hz using three Zener bodies 

(L = 3). Frequency range of the approximately constant 

Q is adjustable by input parameter of the code.

Discretization

�e equation of motion, Eq. (1), and the constitutive 

equations, Eqs. (5) and (6), are solved numerically based 

on a staggered-grid FDM with fourth-order accuracy in 

space and second-order accuracy in time (e.g., Levander 

1988). We adopt the Cartesian coordinate system with 

x1 = x and x2 = y as the horizontal direction and vertical 

axis x3 = z was taken to be positive downward with aver-

age sea level height at z = 0. Figure 3 shows the layout of 

the staggered-grid adopted in this study.

We adopted the first-order Crank–Nicolson method to 

calculate the time integration of the constitutive equa-

tion, Eq.  (5), and the auxiliary equation for the memory 

variables, Eq.  (6). �is enables us to solve the original 

implicit scheme equations explicitly. �e discretized for-

mula can be found in Maeda et al. (2013).

�e evaluation of the medium properties defined in 

the staggered-grid system requires appropriate averag-

ing of the medium parameters defined on the neighbor-

ing grids. In this code, all medium properties (relaxed 

medium parameters �R and µR, density ρ, and attenuation 

parameters τP and τ S) are defined on the same grid as 

the normal stress components (Fig. 3). Averaging of the 

density on neighboring grids is necessary when evaluat-

ing the velocity, Eq. (1), and averaging the relaxed rigidity 

modulus is necessary when evaluating the shear stress 

components and the accompanying memory variables 

(Eqs. 5, 6). For the averaging, we adopted an arithmetic 

and a harmonic averaging for the density and the relaxed 

rigidity modulus, respectively. Notice that no averaging is 

necessary for �R because it is used only for updating the 

normal stress components.

Boundary conditions

�e free surface and ocean bottom boundary condi-

tions are implemented in the FDM simulation based on 

the efficient Heterogeneity, Oceanic layer and Topogra-

phy (HOT) FDM method (Nakamura et  al. 2012). �is 

method was originally developed for a second-order 

FDM method to include the topographic variations of 

volcanoes (Ohminato and Chouet 1997). Later, it was 

shown that this condition could be applied effectively for 

fluid–solid boundaries (Okamoto and Takenaka 2005). 

Currently, HOT-FDM is widely applied in regional-scale 

modeling of seismic wave propagation in coastal areas 

(e.g., Maeda and Furumura 2013; Maeda et al. 2013, 2014; 

Nakamura et al. 2012, 2015; Noguchi et al. 2016; Todoriki 

et al. 2017), in high-frequency seismic wave simulations of 

topographic scattering (Takemura et al. 2015), and in the 

synthesis of elastic wave propagation in cylinder-shaped 

materials on the scale of 10 cm (Yoshimitsu et al. 2016), 

demonstrating the ability of the HOT-FDM to include 

irregular topography and curved surfaces in FDM.

In this HOT-FDM method, the air column is treated as 

a medium with a very small density and zero wavespeeds 

for the P- and S-waves as αR = βR = 0 [km/s]. �is col-

umn is treated as a vacuum where no seismic wave can 

propagate due to zero wavespeeds. �e ocean column 

is treated as an elastic medium having ρ = 1.0  [g/cm3], 
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αR = 1.5 [km/s] and βR = 0.0 [km/s]. On the free surface 

and seafloor, a reduced, second-order FDM scheme is 

applied instead of the fourth-order FDM. To apply such 

a reduced-order FDM across the boundaries, the location 

of the boundaries are detected automatically in Open-

SWPC by searching for the grid positions where µR and 

�R change from zero to a finite value.

Except in whole-Earth seismic wave modeling, an 

appropriate absorbing boundary condition surrounding 

the bounded model is necessary to avoid artificial reflec-

tions from the boundaries of the computational model. 

We adopt the Perfectly Matched Layer (PML) boundary 

condition (after Chew and Liu 2011) to minimize artifi-

cial reflections. Up to now, various PML methods have 

been developed (for example, Kristek et  al. 2009 and 

references therein); we adopted an implementation pro-

posed by Zhang and Shen (2010) to consider its effective-

ness in and applicability to OpenSWPC.

�is PML method solves the auxiliary differential equa-

tions in addition to the equations of motion and the con-

stitutive equations in the absorbing zone with complex 

and frequency-shifted absorbing functions. Typically 

10–20 grids are used for the thickness of the PML zone 

surrounding the model; this can be defined in the input 

parameters. To avoid large computational loads when 

solving the auxiliary equations of the PML, we assumed 

that the material in the PML zone was perfectly elastic 

and did not calculate the memory variables (Eq.  6), for 

the anelasticity.

Even though the PML efficiently absorbs outgoing 

waves from the model, it occasionally causes severe 

instabilities during the calculation, in particular when 

the seismic waves propagate in highly heterogeneous 

structures with very large velocity contrasts (Maeda et al. 

2013). �erefore, we also implemented the stable sponge 

boundary condition of Cerjan et al. (1985), which simply 

attenuates the waves in the absorbing layer by multiply-

ing small values to the stress and velocity components 

in the absorbing zone at each time step so that users can 

select the appropriate boundary condition. Note that 

the sponge condition is perfectly stable but less efficient 

when absorbing outgoing waves.

Seismic source representation

�e seismic moment tensor source can be implemented 

in the FDM either by couples of body forces (Graves 

1996) or based on a stress discontinuity representa-

tion (Coutant et al. 1995; Pitarka 1999). In OpenSWPC, 

the stress discontinuity representation was adopted to 

implement the moment tensor sources. �e seismic 

source can be implemented in OpenSWPC with a sin-

gle point source. A finite-fault source can be represented 

using multiple point sources (Graves and Wald 2001; 

Takenaka and Fujii 2008). In this code, there is no 

restriction on the number of point sources; the code 

automatically detects the number of sources and allo-

cates the required memory. We also implemented a sin-

gle-force source that is widely used for modeling seismic 

signals excited in volcanic environments (e.g., Ohmi-

nato et  al. 1998). Both moment tensor and single-force 

sources are placed on the nearest grid point of the nor-

mal stress component. �is source grid point is averaged 

with the neighboring source grid points if necessary 

when updating the shear stress and velocity components 

(Coutant et al. 1995).

�e seismic source time function is represented by 

bell-like functions (Fig. 4) of various forms such as box-

car, triangle and cosine functions, Herrmann’s quadratic 

function (Herrmann 1979) and Küpper’s wavelet of a sin-

gle cycle (Mavroeidis and Papageorgiou 2003). �ey have 

a common cutoff frequency, which is a reciprocal of the 

source duration time, but have different roll-offs above 

the cutoff frequency.

�e incidence of plane P- or S-waves with near-vertical 

angles was also implemented in OpenSWPC. �e plane-

wave incidence uses a solution of the up-going wave of 

the 1D wave equation in a homogeneous medium as an 

initial condition of the velocity and stress components 

at the bottom of the model (e.g., Emoto et  al. 2010). A 

bell-like-shaped spatial distribution corresponding to the 

source time function (Fig. 4) is assumed as initial condi-

tions. Even though the OpenSWPC allows a non-vertical 

incidence angle to be set for the plane wave, note that 

artificial reflections may arise at both sides of the plane 

wave traveling in the absorbing boundaries with increas-

ing plane-wave incidence angles.

Simulations exchanging source and station positions 

are sometimes conducted because the reciprocity theo-

rem (e.g., Aki and Richards 2002) implies the equivalence 

of both simulation results under certain conditions. �e 

use of the reciprocity theorem is very effective to obtain 

a large number of synthetic seismograms for a small 

number of stations when there is a very large number of 

source grids, e.g., when calculating Green’s function with 

reduced computational cost (e.g., Graves and Wald 2001; 

Eisner and Clayton 2001; Zhao et  al. 2006; Hsieh et  al. 

2016; Petukhin et al. 2016). OpenSWPC is equipped with 

this feature. In this mode, a single-force source is placed 

at a specified station grid to export displacement wave-

forms and spatial derivatives of displacement at the mul-

tiple source grid locations. Using a source having much 

shorter source time functions compared to the dominant 

period of the simulation target, the simulation results can 

be used as Green’s functions.
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Software implementations

Parallel computing

All codes in OpenSWPC were written following to the 

standards of Fortran 2003 (e.g., Adams et al. 2008) with 

very few compiler-unique functions; therefore, this code 

should work in a variety of computational environ-

ments without modification. �is code uses the external 

libraries of Message Passing Interface (MPI) and NetCDF 

for parallel computing and data I/O, respectively. 

Note that these external libraries also work in many 

environments.

In OpenSWPC, all definitions such as parallelization 

strategies, model size, discretization and output file-

names are defined in the input parameter files. Because 
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the computational memory is allocated dynamically, users 

do not need to re-compile the code to perform simula-

tions with different model sizes. OpenSWPC adopts a 

domain-partitioning procedure for the parallel comput-

ing using MPI. It performs 2D and 1D model partition-

ing in the horizontal directions for the 3D and 2D codes, 

respectively (see Fig.  5 for the partitioning for the 3D 

code). �en, OpenSWPC sets up the velocity structure 

model for the partitioned domain on each CPU or CPU 

core, and calculates the seismic wave propagation in the 

domain using MPI data communication at each time step.

To maintain wavefield continuities across the par-

titioned domain, the velocity and stress components 

defined at the two-point-thick outermost layer are 

exchanged with those of the neighboring partitioned 

domains at every time step using MPI (Fig.  5b). We 

adopted hybrid-style programming using OpenMP and 

MPI (e.g., Furumura and Chen 2005) to make full use of 

many CPUs with multiple CPU cores; directive-based 

OpenMP parallel programming is applied to parallel-

ize the computation among the CPU cores, and the MPI 

data communication between the CPUs is performed 

explicitly. Compared to the flat-MPI application which 

explicitly exchanges data for all cores, this hierarchical 

OpenMP/MPI parallel programming method is expected 

to reduce the data communication overhead (Furumura 

and Chen 2005).

�e simulations are performed with a mix of single- 

and double-floating-point-precision arithmetic. Static 

parameters such as the medium velocities or density are 

defined in single precision; however, the FDM calculation 

and the stress discontinuity at the sources are evaluated 

more accurately in double precision. We found that sim-

ulations in single precision often lead to numerical insta-

bility after long-time step calculations, as demonstrated 

in Fig. 6. �e panels in Fig. 6a show snapshots of the par-

ticle velocity amplitude in the seismic wavefield obtained 

by a 2D P-SV numerical simulation using single-precision 

arithmetic. After a long elapsed time, it was confirmed 

that a randomly oscillating noise was continuously being 

radiated from the source location. Such unstable noise is 

suspected to occur due to the wide dynamic range of the 

wavefield amplitude near the seismic source, which can-

not be handled accurately using single-precision arith-

metic. �e accumulation of this small error over long 

time steps may cause problems or instabilities in the 

simulation. �e use of double-precision arithmetic can 

effectively avoid this problem (Fig. 6b); however, it leads 

to a considerable increase in the memory usage and com-

putation time. OpenSWPC has an option to evaluate all 
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calculations using single-precision arithmetic to reduce 

the computational cost.

Model input

For the 3D simulation of seismic wave propagation, we 

consider a layered structure model formed by a set of 

velocity layers with varying depths. Each layer describes 

the medium discontinuities with the definitions of 

medium parameters of density, P- and S-wave velocities, 

and attenuation (QP ,QS) beneath the layer. �e depth of 

the shallow-most layer corresponds to the topography. 

�e topography is treated as a staircase boundary with 

a sufficiently small FDM grid. We assume that z = 0 on 

the depth axis corresponds to the average sea level; the 

topography deeper than zero is treated as the seafloor, 

and the seawater column is filled between the seafloor 

and z = 0.

We adopted NetCDF as the input data format for 

each layer. �e NetCDF format is commonly used in the 

seismological community, such as in Generic Mapping 

Tools (GMT; Wessel et al. 2013). In OpenSWPC, a set of 

NetCDF files and a list of these files associated with the 
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medium parameters are used as input to OpenSWPC. 

Each NetCDF file is defined in geographical coordinates 

(longitude and latitude) and contains the depth informa-

tion at each coordinate location.

Even though the input NetCDF files describe the depths 

of the boundary at the locations defined by the geograph-

ical coordinates, the FDM simulation model needs the 

depths of the boundary at grids in the Cartesian coordi-

nate system. �erefore, a coordinate transform is neces-

sary to model seismic waves in the Cartesian coordinate 

system. For this purpose, a coordinate transform based 

on a power-series expression of the Gauss–Krüger trans-

form (Kawase 2011) is embedded in OpenSWPC. Users 

are requested to input the center of the simulation model 

in longitude and latitude for the coordinate transform, 

and the OpenSWPC automatically generates the veloc-

ity structure model in the Cartesian coordinate system. 

Because the grid locations in a Cartesian coordinate sys-

tem are usually not identical to the grid locations of the 

input NetCDF files, a bicubic interpolation is applied to 

obtain the depth of the boundary.

�e layered velocity structure model can be superim-

posed by a random velocity fluctuation described by sta-

tistical characteristics such as the Gaussian or von Kármán 

power spectrum density functions (Sato et al. 2012), to sim-

ulate the scattering of high-frequency seismic waves in het-

erogeneous structures (e.g., Furumura and Kennett 2005; 

Takemura et al. 2015, 2016). �e random velocity pertur-

bation is calculated in wavenumber space based on the 

statistical characteristics of the random medium (Klimeš 

2002; Sato et al. 2012). Utility programs to calculate these 

random velocity fluctuations in 2D and 3D are provided 

in OpenSWPC. �e utility programs provide the random 

velocity fluctuation data in the NetCDF format, which can 

be used in OpenSWPC. By customizing the model gen-

eration subroutine in OpenSWPC, it is easy to implement 

another type of velocity model in OpenSWPC if necessary.

Simulation data output

�e simulation results are exported as two types of 

datasets: waveforms at specified station points and 2D 

snapshots of the seismic wavefield on 2D horizontal 

and vertical cross sections. For the waveforms, veloc-

ity and displacement traces from specified station loca-

tions (in either geographical or Cartesian coordinates) 

are exported in the SAC data format. Because the FDM 

simulations are performed with much smaller time steps 

compared to the dominant period of the seismic waves, 

a temporal decimation is often applied to reduce the 

data size. �e decimation factor is specified in the input 

parameter file. Note that the integration of velocity 

waveforms with respect to time to obtain displacement 

records is performed before the decimation.

�e snapshots of the wavefield are stored in NetCDF 

format files. �ese cross sections can be taken vertically 

or horizontally, or along the topography or bathymetry. 

�e snapshots contain the three-component velocity or 

the displacement motions, or divergence and rotation of 

the velocity, which are related to the P- and S-waves.

Checkpoint and restart

Most computer systems restrict the maximum com-

puter time for a single simulation job via their job queu-

ing systems. To cope with this restriction, OpenSWPC 

is equipped with a checkpoint–restart function that 

halts the simulation at a specified checkpoint prior to 

the allowed CPU time and exports all data on memory 

to files. �en, a new job restarts the simulation from the 

checkpoint by reading the stored data files of the previ-

ous job.

Two‑dimensional codes

OpenSWPC also provides 2D codes for the P-SV and SH 

models. �e 2D FDM simulations use the same input 

parameter file, except they perform the wave propaga-

tion simulations in the x–z plane. A 2D simulation along 

a cross section of the 3D medium has a much lighter 

computational load. �e horizontal direction of the cross 

section can be chosen arbitrarily by adjusting the coor-

dinate rotation parameter. Note that the 2D codes adopt 

one-dimensional MPI domain partitioning along the x 

direction.

Computation performance

Strong‑scale performance measurement

�e computational efficiency of the parallel simula-

tion was examined using a strong scaling test, where 

the computation time of a fixed-sized numerical model 

is measured for parallel computing using different CPU 

numbers. We performed this test on different computer 

systems and two different model sizes, a cluster-type 

computer of the Earthquake Information Center (EIC) 

system of the Earthquake Research Institute at the Uni-

versity of Tokyo with up to 36 Intel Xeon E5-2680 v3 

(403.2 GFlops) CPUs, and the Earth Simulator (ES) 

supercomputer of the Japan Agency for Marine–Earth 

Science and Technology (JAMSTEC) with up to 2048 the 

NEC SX-ACE (256 GFlops) CPUs.

�e parallel performance was measured for two model 

sizes: 512 × 512 × 512 and 1024 × 1024 × 1024 on the 

EIC and 1024 × 1024 × 1024 and 2048 × 2048 × 2048 

on the ES. In these experiments, the average compu-

tation time per time step was normalized by the total 

number of grids. �e results (Fig. 7) demonstrate a linear 

decrease in the computation time (a linear increase in the 

computational performance) with increasing numbers 
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of CPUs for all models. �is parallel performance fol-

lows a near perfect theoretical scaling, except for cases 

of over parallelization using very large numbers of CPUs 

for the small model simulations (e.g., the result of the 

1024 × 1024 × 1024 model on the ES). �is result sup-

ports the efficiency of the parallel simulation of Open-

SWPC using a variety of numbers of CPUs from a small 

(2) to large (2048) number of CPUs.

Figure 8 compares the computational speeds by adopting 

OpenMP/MPI hybrid computation (hybrid-MPI) relative 

to pure MPI (flat-MPI) computation. �e measurement 

was taken for the model size of 1024 × 1024 × 1024 on 

the EIC. A CPU of the EIC has 12 CPU cores. For the flat-

MPI parallel computing, the velocity structure model was 

partitioned and assigned into all cores, and explicit data 

communications between CPU cores have been made via 

MPI. On the other hand, the hybrid-MPI computing uti-

lizes the shared memory among CPU cores in the CPU, 

and the MPI data communications were performed only 

for inter-CPU data exchange. �e comparison shows con-

siderable improvement in computational performance for 

the hybrid-MPI, up to 25% speedup compared to the flat-

MPI. �e speedup ratio slightly increases with increasing 

numbers of CPUs. �ese performance improvements in 

the hybrid programming are in particular because of the 

efficient reuse of the data on the cache of CPU which are 

shared among CPU cores (Inoue et al. 2013). We note that 

the efficiency of the hybrid-MPI may depend on model 

configurations such as model size or number of CPUs and 

computer architecture.

Memory requirements and maximum frequency of the 3D 

FDM

�e maximum size of the 3D FDM simulation and the 

highest frequency of the seismic waves in the model are 

bounded by the size of the computer memory. To con-

sider the maximum frequency of the simulation, suppose 

a simulation model has a square horizontal surface with an 

area of S and a depth of D. OpenSWPC requires a memory 

of mg = 188 bytes per grid when using mixed-precision 

arithmetic calculations. Discretizing the 3D computational 

volume with a uniform grid spacing of h indicates that 

OpenSWPC requires a total memory size, MR, of

Further, the spatial grid size h controls the highest fre-

quency allowed for the FDM simulation considering the 

minimum wavespeed, vmin, such that

where we assume that at least seven grid points per mini-

mum wavelength are necessary to restrict the numerical 

dispersion of the FDM calculation within the required 

level. Combining the above equations (Eqs. 7, 8), the maxi-

mum frequency of the 3D FDM, fmax, can be estimated by 

the size of the simulation, the minimum wavespeed and 

the memory size of the computer Mmax such that

(7)MR =

mgSD

h3
.

(8)fmax =

vmin

7 h
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We evaluated the maximum frequency for the 3D FDM 

simulation on the EIC and the ES as a function of hori-

zontal distance in the model and minimum wavespeed 

(Fig. 9). In this evaluation, we assumed a square simulation 

model in the horizontal directions with a size of 
√

S and a 

fixed model depth of D = 200 km as a typical simulation 

model on a regional scale. For example, assuming a mini-

mum S-wavespeed of 1.5 km/s, which corresponds to the 

P-wavespeed in the ocean column, and a horizontal scale 

of 200  km, OpenSWPC can simulate a high-frequency 

seismic wavefield up to 2 and 10 Hz using the EIC and the 

ES, respectively.

Simulation examples

To demonstrate the effectiveness of OpenSWPC, here we 

show examples of the seismic wave propagation simula-

tions performed by OpenSWPC.

Comparison with the wavenumber integration method

We first demonstrate the accuracy of the simulation 

for a laterally homogeneous medium compared to the 

result of the wavenumber integration method using the 

FKRPOG code (Saikia 1994), which is distributed along 

with the TDMT_INVC moment tensor estimation code 

(Dreger 2003). �e wavenumber integration method is 

often employed as a reference to validate the accuracy of 

(9)fmax =
vmin

7

(

MR

mgSD

)1/3

≤
vmin

7

(

Mmax

mgSD

)1/3

.

synthetic seismograms in laterally homogeneous layered 

structures. In this experiment, we assumed the layered 

structure model of Kubo et  al. (2002) and a double-

couple point source (strike: 70◦, dip: 30◦ and rake: −50
◦)  

placed at a depth of 25 km. �e FDM simulation was 

conducted with a model of 1024 × 1024 × 1024 grid 

points, a grid size of 0.5 km and a time step of 0.025 s. 

�e reference frequency for Q was set to 1 Hz to match 

the parameter of the wavenumber integration code. Fig-

ure  10 compares the vertical-component seismograms 

along the x direction obtained by the wavenumber inte-

gration method and OpenSWPC. �e same band-pass 

filter of 0.01–0.5 Hz was applied to both traces, consid-

ering the expected maximum frequency (∼0.89  Hz) of 

this simulation. �ere is excellent agreement between 

the synthetic seismograms of OpenSWPC and those 

of the wavenumber integration method from short to 

large distances and in the wide frequency range below 

~1  Hz, demonstrating the effectiveness of OpenSWPC 

for simulations of seismic wave propagation in an elastic 

medium.

Simulation and visualization with a 3D velocity structure

�e next example demonstrates the result of a simula-

tion of seismic wave propagation in a 3D heterogeneous 

model of the Japan Integrated Velocity Structure Model 

(JIVSM; Koketsu et al. 2012). �e JIVSM consists of a set 

of sedimentary layers, Conrad and Moho discontinuities, 

and Pacific and Philippine Sea Plate interfaces associated 

Fig. 9 Maximum frequency of the 3D FDM simulation bounded by the maximum memory size for a the EIC computer (2.2 TB) and b the Earth 

Simulator (128 TB) as a function of the horizontal size of the 3D model and the minimum value of the wavespeed in the medium. The color scale is 

shown in the right
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with oceanic Mohos and topography. �ese are rep-

resented by the depth variations of each layer and the 

medium parameters below each depth.

We performed a 3D FDM simulation of the seismic 

wave propagation for the 2005 West Off Fukuoka Pre-

fecture (MW = 6.6) earthquake. �e source location and 

the fault mechanism were taken from the F-net moment 

tensor catalog (Fukuyama et  al. 1998). �e simulation 

model has a spatial grid size of 2000 × 2560 × 500 with a 

grid spacing of 0.5 km and a time step of 0.025 s with the 

minimum wavespeed of 1.5  km/s for the shallow-most 

sedimentary layer. We evaluated the seismic wave propa-

gation in the long period band using a source time func-

tion with a rise time of 20 s.

�e record section of the vertical-component veloc-

ity traces (Fig. 11) at the station locations of High Sensi-

tivity Seismograph Network Japan (Hi-net) operated by 

National Research Institute for Earth Science and Disas-

ter Resilience (Okada et al. 2004) shows very complicated 

waves as a result of propagation in the heterogeneous 

structure. In particular, there are significant wave pack-

ets after the arrival of dispersive surface waves at epicen-

tral distances over 500 km that seem to be incoherent in 

neighboring stations. �e development of this peculiar 

wave packet is clearly seen in the snapshots of the seis-

mic wave propagation shown in Fig. 12. It is demonstrated 

that the direct waves were first radiated from the epicenter 

and then were trapped in the very low-wavespeed layer of 

the accretionary prism, which was formed by the subduc-

tion of the Philippine Sea Plate (mark A). �en, part of the 

trapped seismic wave energy was released from the accre-

tionary prism and propagated back to the Japanese Archi-

pelago (marks B and C), as demonstrated by Furumura 

et al. (2008) and Guo et al. (2016). As a result, apparently 

incoherent arrivals appear in the record section (Fig.  11) 

due to significant off-great-circle propagation.

Note that the visualized seismic wavefield (Fig. 12) was 

obtained using an associated tool included in the Open-

SWPC package. �is program reads the wavefield and 

topography from a NetCDF-formatted output file of the 

simulation NetCDF file, and the spatiotemporal wave-

fields over the topography map are plotted in sequentially 

numbered portable bitmap files.

Finite‑fault rupture and coseismic deformation

�e finite source rupture over the fault is represented in 

OpenSWPC using multiple sources. To demonstrate this 

feature, we set up a finite-fault model in a homogeneous 
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half-space as depicted in Fig.  13. A Poisson medium 

(α/β =
√
3) is assumed with an S-wavespeed of 

β = 3500  m/s and a density of ρ = 2700  kg/m3 . No 

attenuation was included in the simulation. We 

assumed slip with a dip angle of 45◦ and a fault size of 

100  km ×  50  km. �e slip amount is 7.5  m, which cor-

responds to a moment magnitude of MW = 8.0. In this 

simulation, the finite-sized fault was represented by 

100 × 50 (=5000) point sources along the strike and dip 

directions, respectively. �e moment release was equally 

distributed over the point sources assuming homogene-

ous slip on the fault. �e rupture propagation starts from 

one corner of the fault and spreads over the fault with an 

assumed constant rupture speed of 2.5 km/s. �e source 

rupture is expressed in OpenSWPC as the delay of the 

initiation time of each point source. �e FDM simula-

tion was performed with a 3D model of 600 × 600 × 400 

grid points with a spatial grid size of 0.25 km and time 

step of 0.01 s.

�e simulation result 200  s after the rupture starting 

time was compared with the analytic solution of Okada 

(1985) (Fig. 14). �e result of the FDM simulation for the 

coseismic deformation of the finite-fault source over-

all agrees with the analytic solution as demonstrated in 

previous studies (e.g., Wald and Graves 2001; Maeda 

and Furumura 2013). Note that the conventional sponge 

absorbing boundary condition of Cerjan et  al. (1985) 

leads to an inaccurate estimation of final deformation 

pattern close to the edge of the fault. In this case, this 

is most significant in the horizontal dip (y) direction of 

the fault, and the error grows gradually with increasing 

time even after the termination of the fault rupture. Con-

versely, the estimation using the PML boundary agrees 

quite well with the analytic solution even if the boundary 

is very close to the fault.

Plane‑wave incidence

Analysis of regional wave propagation from far-field body 

waves (Maeda et  al. 2014), core reflected phases (Toya 

et  al. 2017) and the amplification and reflection of seis-

mic waves in the shallow structure can be effectively eval-

uated by considering the incidence of plane waves. An 
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example of an FDM simulation for vertical incidences of 

plane P- and S-waves is shown in Fig. 15. �is simulation 

was performed using the 2D P-SV code with a spatial grid 

size of 0.2 km and a time step of 0.01 s. �e layered veloc-

ity structure model of Kubo et  al. (2002) was assumed, 

and up-going P- and SV-wave packets with characteris-

tic wavelengths of 20 km were set near the bottom of the 

simulation model as initial conditions.

It was found that the use of the PML absorbing bound-

ary condition is essential for FDM simulations with inci-

dent plane waves as well as with coseismic deformation. 

With the use of the conventional sponge absorbing bound-

ary, artificial reflections from the edge of the model at both 

sides of the plane wave make it difficult to recognize later 

arrivals of reflected and converted phases (Fig. 15a). Such 
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Fig. 12 Example of a visualization of a seismic wave propagation simulation by OpenSWPC at the elapsed times of a 100 s, b 200 s, c 300 s and d 
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artificial reflections are inevitable for plane-wave inci-

dence because the attenuation of up-going plane waves 

in the absorbing boundary leads to artificial diffraction 

propagating out of the computational domain, and a part 

of this packet reflects back inside the model. �e situa-

tion is much worse for S-wave incidence (Fig.  15b) due 
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to strong S-to-P conversion at the boundary. Because the 

PML boundary condition does not modify seismic waves 

propagating parallel to the boundary, it minimizes the 

occurrence of such artificial reflections (Fig. 15c, d).

Simulations using the reciprocity theorem

An example of a reciprocity calculation comparing an 

ordinary forward simulation from the source to receiver 

and a simulation using the reciprocity theorem with 
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exchanged source and receiver is shown in Fig.  16. In 

this simulation, we adopted the JIVSM model (Koketsu 

et  al. 2012) in northeastern Japan including the topog-

raphy variation and seawater column and calculated the 

seismic waveforms at a F-net station location (N.KSNF) 

from a source on the Pacific Plate boundary. Both sim-

ulations were performed with the same model size of 

3000 × 2400 × 600 grid points with a discretization of 

0.25 km in space and 0.01 s in time. �e seismic source is 

assumed to have a finite source duration time of 4 s.

Figure  16 compares the two simulations without 

applying a filter. �ey show excellent agreement with 

very small residual amplitudes between the two results. 

Note that the reciprocity theorem (Aki and Richards 

2002) assures the exchange of the source and receiver 

positions only if the absorbing and free surface bound-

ary conditions are satisfied (Eisner and Clayton 2001). 

�erefore, the good agreement between the two simula-

tions demonstrates the effectiveness of the free surface 

and the absorbing boundary conditions in the FDM 

simulation.

Conclusions and future perspectives

�is newly developed FDM simulation code for mod-

eling of seismic wave propagation in heterogeneous vis-

coelastic media in 2D and 3D, OpenSWPC, has wide 

applicability for seismological studies and great port-

ability, allowing excellent performance from PC clusters 

to supercomputers. OpenSWPC was designed to apply 

various models from small to regional scales with the 

use of various seismic source representations and veloc-

ity models. Note that all examples presented in this study 

were obtained by setting necessary parameters and veloc-

ity model files without modifying the simulation code 

itself. Using OpenSWPC, we can simulate seismic waves 

at regional scales of up to approximately 1 Hz using PC 

clusters and up to approximately 10 Hz using high-per-

formance supercomputers. All the codes are available 

with detailed documents at a public repository with an 

open-source (MIT) license.

In OpenSWPC, we implemented a frequency-inde-

pendent attenuation model by adopting the GZB. �e 

assumption of frequency-independent attenuation is 
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Fig. 16 An example of a computation using the reciprocity theorem. a Three-component Green’s functions of the six moment tensor components 

(listed on the left). Black and blue curves represent the traces calculated using the forward simulation and the reciprocity theorem, respectively. Red 

curves show the residual between the forward and reciprocity calculations. b An index map showing the locations of the epicenter (star) and the 

observed station (triangle)
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valid in the low-frequency regime below ∼ 1 Hz, at least 

to a first-order approximation (e.g., Aki and Richards 

2002). However, at frequencies above about 1 Hz, attenu-

ation appears to follow a power-law frequency depend-

ence (e.g., Carcolé and Sato 2010; Phillips et  al. 2014). 

Incorporation of such different frequency-dependent 

attenuation properties for high frequencies can also be 

modeled by applying the memory variable approach 

(Withers et al. 2015). Such implementation of more real-

istic attenuation characteristics to OpenSWPC is a pros-

pect for future development.

�e OpenSWPC adopts the Cartesian coordinate sys-

tem to mainly apply to small-to-regional-scale seismic 

wave modeling. Recently, Takenaka et al. (2017) proposed 

a method to incorporate the effect of spherical geometry 

of the Earth into FDM simulation model in the Cartesian 

coordinate system. Incorporation of such technique may 

lead wider applications of OpenSWPC in global seismology 

without significant modification of present set of the code.
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