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Abstract
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research, e.g. into its use on new target architectures, such as SMPs with chip multithreading, as well as
learning how to translate for clusters of SMPs. In this paper, we present our efforts to design and implement
such an OpenMP compiler on top of Open64, an open source compiler framework, by extending its existing
analysis and optimization and adopting a source-to-sourcetranslator approach where a native back end
is not available. The compilation strategy we have adopted and the corresponding runtime support are
described. The OpenMP validation suite is used to determinethe correctness of the translation. The
compiler’s behavior is evaluated using benchmark tests from the EPCC microbenchmarks and the NAS
parallel benchmark.

∗Wenguang Chen and Weiming Zheng are with Computer Science Department, Tsinghua University, China.



1

OpenUH: An Optimizing, Portable OpenMP
Compiler

Chunhua Liao, Oscar Hernandez, Barbara Chapman, Wenguang Chen∗ and Weimin Zheng∗

Abstract

OpenMP has gained wide popularity as an API for parallel programming on shared memory and distributed
shared memory platforms. Despite its broad availability, there remains a need for a portable, robust, open source,
optimizing OpenMP compiler for C/C++/Fortran 90, especially for teaching and research, e.g. into its use on new
target architectures, such as SMPs with chip multithreading, as well as learning how to translate for clusters of
SMPs. In this paper, we present our efforts to design and implement such an OpenMP compiler on top of Open64,
an open source compiler framework, by extending its existing analysis and optimization and adopting a source-to-
source translator approach where a native back end is not available. The compilation strategy we have adopted and
the corresponding runtime support are described. The OpenMP validation suite is used to determine the correctness
of the translation. The compiler’s behavior is evaluated using benchmark tests from the EPCC microbenchmarks
and the NAS parallel benchmark.
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I. INTRODUCTION

OpenMP [1], a set of compiler directives and runtime libraryroutines, is the de-facto programming standard for
parallel programming in C/C++ and Fortran on shared memory and distributed shared memory systems. Its popularity
stems from its ease of use, incremental parallelism, performance portability and wide availability. Recent research
at language and compiler levels, including our own, has considered how to expand the set of target architectures
to include recent system configurations, such as SMPs based on Chip Multithreading processors [2], as well as
clusters of SMPs [3]. However, in order to carry out such work, a suitable compiler infrastructure must be available.
In order for application developers to be able to explore OpenMP on the system of their choice, a freely available,
portable implementation would be desirable.

Many compilers support OpenMP today, including such proprietary products as the Intel Linux compiler suite,
Sun One Studio, and SGI MIPSpro compilers. However, their source code is mostly inaccessible to researchers and
they cannot be used to gain an understanding of OpenMP compiler technology or to explore possible improvements
to it. Several open source research compilers (Omni OpenMP compiler [4], OdinMP/CCp [5], and PCOMP [6])
are available. But none of them translate all of the source languages that OpenMP supports, and one of them is
a partial implementation only. Therefore, there remains a need for a portable, robust, open source and optimizing
OpenMP compiler for C/C++/Fortran 90, especially for teaching and research into the API.

In this paper, we describe the design, implementation and evaluation of OpenUH, a portable OpenMP compiler
based on the Open64 compiler infrastructure with a unique hybrid design that combines a state-of-the-art optimizing
infrastructure with a source-to-source approach. OpenUH is open source, supports C/C++/Fortran 90, includes
numerous analysis and optimization components, and is a complete implementation of OpenMP 2.5. We hope this
compiler (which is available at [7]) will complement the existing OpenMP compilers and offer a further attractive
choice to OpenMP developers, researchers and users.

The reminder of this paper is organized as follows. Section 2describes the design of our compiler. Section 3
presents details of the OpenMP implementation, the runtimesupport as well as the IR-to-source translation. The
evaluation of the compiler is discussed in Section 4. Section 5 reviews related work and the concluding remarks
are given in Section 6 along with future work.
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II. T HE DESIGN OFOPENUH

Building a basic compiler for OpenMP is not very difficult since the fundamental transformation from OpenMP
to multithreaded code is straightforward and there are already some open source implementations that may serve
as references. However, it is quite a challenge to build a complete, robust implementation which can handle real
applications. But such a compiler is indispensable for real-world experiments with OpenMP, such as considering
how a new language feature or an alternative translation approach will affect the execution behavior of a variety of
important codes. Given the exceptionally high cost of designing this kind of compiler from scratch, we searched
for an existing open-source compiler framework that met ourrequirements.

We chose to base our efforts on the Open64 [8] compiler suite,which we judged to be more suitable than, in
particular, the GNU Compiler Collection [9]. Open64 was open sourced by Silicon Graphics Inc. from its SGI
Pro64 compiler targeting MIPS and Itanium processors. It isnow mostly maintained by Intel under the name Open
Research Compiler (ORC) [10], which targets Itanium platforms. Several other branches of Open64, including our
own, have been created to translate language extensions or perform research into one or more compilation phases.
For instance, the Berkeley UPC compiler [11], extends Open64 to implement UPC [12]. Open64 is a well-written,
modularized, robust, state-of-the-art compiler with support for C/C++ and Fortran 77/90. The major modules of
Open64 are the multiple language frontends, the interprocedural analyzer (IPA) and the middle end/back end, which
is further subdivided into the loop nest optimizer (LNO), global optimizer (WOPT), and code generator (CG).

Five levels of a tree-based intermediate representations (IR) called WHIRL exist in Open64 to facilitate the
implementation of different analysis and optimization phases. They are classified as being Very High, High, Mid,
Low, and Very Low levels, respectively. Most compiler optimizations are implemented on a specific level of WHIRL.
For example, IPA and LNO are applied to High level WHIRL whileWOPT operates on Mid level WHIRL. Two
internal WHIRL tools were embedded in Open64 to support the compiler developer; one waswhirlb2a, used to
convert whirl binary dump files into ASCII format, and the other waswhirl2c/whirl2f, to translate Very High and
High level WHIRL IR back to C or Fortran source code. However,the resulting output code was not compilable.

The original Open64 included an incomplete implementationof the OpenMP 1.0 specification, inherited from
SGI’s Pro64 compiler. Its legacy OpenMP code was able to handle Fortran 77/90 code with some OpenMP features
until the linking phase. The C/C++ frontend of Open64 was taken from GCC 2.96 and thus could not parse
OpenMP directives. Meanwhile, there was no corresponding OpenMP runtime library released with Open64. A
separate problem of Open64 was its lack of code generators for machines other than Itaniums. One of the branches
of Open64, the ORC-OpenMP [13] compiler from Tsinghua University that was worked on by two of the authors of
this paper, tackled some of these problems by extending Open64’s C frontend to parse OpenMP constructs and by
providing a tentative runtime library. Another branch working on this problem was the Open64.UH compiler effort
at the University of Houston, worked on by the remainings authors of this paper. It focused on the pre-translation
and OpenMP translation phases. A merge of these two efforts has resulted in the OpenUH compiler and associated
Tsinghua runtime library. More recently, a commercial product based on Open64 and targeting the AMD x8664,
the Pathscale EKO compiler suite [14], was released with support for OpenMP 2.0.

The Open64.UH compiler effort designed a hybrid compiler with object code generation on Itaniums and source-
to-source OpenMP translation on other platforms. The OpenUH compiler described in this paper uses this design,
exploits improvements to Open64 from several sources and relies on an enhanced version of the Tsinghua runtime
library to support the translation process. It aims to preserve most optimizations on all platforms by recreating
compilable source code right before the code generation phase.

Fig. 1 depicts an overview of the design of OpenUH. It consists of the frontends, optimization modules, OpenMP
transformation module, a portable OpenMP runtime library,a code generator and IR-to-source tools. Most of
these modules are derived from the corresponding original Open64 module. It is a complete compiler for Itanium
platforms, for which object code is produced, and may be usedas a source-to-source compiler for non-Itanium
machines using the IR-to-source tools. The translation of asubmitted OpenMP program works as follows: first, the
source code is parsed by the appropriate extended language frontend and translated into WHIRL IR with OpenMP
pragmas. The next phase, the interprocedural analyzer (IPA), is enabled if desired to carry out interprocedural
alias analysis, array section analysis, inlining, dead function and variable elimination, interprocedural constant
propagation and more. After that, the loop nest optimizer (LNO) will perform many standard loop analyses and
optimizations, such as dependence analysis, register/cache blocking (tiling), loop fission and fusion, unrolling,
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automatic prefetching, and array padding. The transformation of OpenMP, which lowers WHIRL with OpenMP
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Fig. 1. OpenUH: an optimizing and portable OpenMP compiler based on Open64

pragmas into WHIRL representing multithreaded code with OpenMP runtime library calls, is performed after LNO.
The global scalar optimizer (WOPT) is subsequently invoked. It transforms WHIRL into an SSA form for more
efficient analysis and optimizations and converts the SSA form back to WHIRL after the work has been done. A
lot of standard compiler passes are carried out in WOPT, including control flow analysis (computing dominance,
detecting loops in the flowgraph), data flow analysis, alias classification and pointer analysis, dead code elimination,
copy propagation, partial redundancy elimination and strength reduction.

The remainder of the process depends on the target machine: for Itanium platforms, the code generator in Open64
can be directly used to generate object files. For a non-Itanium platform, thewhirl2c or whirl2f translator will be
invoked instead; in this case, code represented by Mid WHIRLis translated back to compilable, multithreaded C or
Fortran code with OpenMP runtime calls. A native C or Fortrancompiler must be invoked on the target platform
to complete the translation by compiling the output from OpenUH into object files. The last step is the linking of
object files with the portable OpenMP runtime library and final generation of executables for the target machine.

III. T HE IMPLEMENTATION OF OPENMP

Based on our design and the initial status of Open64, we needed to focus our attention on developing or enhancing
four major components in order to implement OpenMP: frontend extensions to parse OpenMP constructs and convert
them into WHIRL IR with OpenMP pragmas, the internal translation of WHIRL IR with OpenMP directives into
multithreaded code, a portable OpenMP runtime library supporting the execution of multithreaded code, and the
IR-to-source translators, which needed work to enable themto generate compilable and portable source code.

To improve the stability of our frontends and to complement existing functionality, we integrated features from
the Pathscale EKO 2.1 compiler. Its Fortran frontend contains many enhancements and the C/C++ frontend extends
the more recent GCC 3.3 frontend with OpenMP parsing capability. The GCC parse tree is extended to represent
OpenMP pragmas and is translated to WHIRL IR to enable later phases to handle it. The following subsections
describe our OpenMP translation, runtime library and IR-to-source translators.

A. OpenMP Translation

An OpenMP implementation transforms code with OpenMP directives into corresponding multithreaded code
with runtime library calls. A key component is the strategy for translating parallel regions. One popular method
for doing so is outlining, which is used in most open source compilers, including Omni [4] and OdinMP/CCp [5].
Outlining denotes a strategy whereby an independent, separate function is generated by the compiler to encapsulate
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the work contained in a parallel region. In other words, a procedure is created that contains the code that will be
executed by each participating thread at run time. This makes it easy to pass the appropriate work to the individual
threads. In order to accomplish this, variables that are to be shared among worker threads have to be passed
as arguments to the outlined function. Unfortunately, thisintroduces some overheads. Moreover, some compiler
analyses and optimizations may be no longer applicable to the outlined function, either as a direct result of the
separation into parent and outlined function or because thetranslation may introduce pointer references in place of
direct references to shared variables.

The translation used in OpenUH is different from the standard outlining approach. In it, the compiler generates a
microtask to encapsulate the code lexically contained within a parallel region, and the microtask is nested (we also
refer to it as inlined, although this is not the standard meaning of the term) into the original function containing
that parallel region. The advantage of this approach is thatall local variables in the original function are visible
to the threads executing the nested microtask and thus they are shared by default. Also, optimizing compilers can
analyze and optimize both the original function and the microtask, thus providing a larger scope for intraprocedural
optimizations than the outlining method. A similar approach named the Multi-Entry Threading (MET) technique [15]
is used in Intel’s OpenMP compiler.

Original OpenMP Code Outlined Translation 
int main(void) 
{ 
  int a,b,c; 
 
#pragma omp parallel private(c) 
  do_sth(a,b,c); 
   
  return 0; 
} 

Inlined (Nested) Translation 
_INT32 main() 
{ 
  int a,b,c; 
 
/*inlined (nested) microtask */ 
void __ompregion_main1() 
{ 
  _INT32 __mplocal_c;  
 
/*shared variables are keep intact, only 
substitute the access to private 
variable*/ 
  do_sth(a, b, __mplocal_c); 
}  
 … 
/*OpenMP runtime call */ 
 __ompc_fork(&__ompregion_main1); 
  … 
} 

/*Outlined function with an extra argument 
for passing addresses*/ 
static void __ompc_func_0(void 
**__ompc_args){ 
     int *_pp_b, *_pp_a, _p_c; 
 
/*dereference addresses to get shared 
variables */ 
_pp_b=(int *)(*__ompc_args); 
_pp_a=(int *)(*(__ompc_args+1)); 
 
/*substitute accesses for all variables*/ 
do_sth(*_pp_a,*_pp_b,_p_c); 
}  
 
int _ompc_main(void){ 
     int a,b,c; 
     void *__ompc_argv[2]; 
 
/*wrap addresses of shared variables*/ 
*(__ompc_argv)=(void *)(&b); 
*(__ompc_argv+1)=(void *)(&a); 
… 
/*OpenMP runtime call has to pass the 
addresses of shared variables*/ 
_ompc_do_parallel(__ompc_func_0, 
                    __ompc_argv); 
… 
} 

 

Fig. 2. OpenMP translation: outlined vs. inlined

Fig. 2 illustrates each of these strategies for a fragment ofC code with a single parallel region, and shows in detail
how the outlining method used in Omni differs from the inlining translation in OpenUH. In both cases, the compiler
generates an extra function (the microtaskompregion main1() or the outlined function ompc func 0()) as
part of the work of translating the parallel region enclosing do sth(a, b, c). In each case, this function represents
the work to be carried out by multiple threads. Each translation also adds a runtime library call (ompc fork()
or ompc do parallel(), respectively) into the main function, which takes the address of the compiler-generated
function as an argument and executes it on several threads. The only extra work needed in the translation to the
nested microtask is to create a thread-local variable to realize the private variablec and to substitute this forc in
the call to the enclosed procedure, which now becomesdo sth(a, b, mylocal c). The translation that outlines the
parallel region has more to take care of, since it must wrap the addresses of shared variablesa andb in the main
function and pass them to the runtime library call. Within the outlined procedure, they are referenced via pointers.



5

This is visible in the call to the enclosed procedure, which in this version becomesdo sth(∗ pp a, ∗ pp b, p c).
The nested translation leads to shorter code and is more amenable to subsequent compiler optimizations.

Both the original Open64 and OpenUH precede the actual OpenMP translation with a preprocessing phase named
OpenMP Prelowering, which facilitates later work by reducing the number of distinct OpenMP constructs that occur
in the IR. It does so by translating some of them into others. (This smaller set of features is named MP in Open64
and they can also be generated by the Auto Parallelization module in LNO, enabling Open64 to support both
automatic and manual parallelization in a common framework.) It also performs semantic checks. For example, a
barrier is not allowed within acritical or single region. Some of the tasks performed are:

1) Convertingsection into omp do.
2) Converting unsupportedFetch And Op intrinsics such asFetch And Add into atomic.
3) Inserting memory barriers around each parallel region toprevent impermissible code motion.
4) Loweringatomic using one of three possible ways: replacement by acritical, a Compare and Swap

or Fetch And Op.

After prelowering, the remaining constructs are lowered. Afew OpenMP directives can be handled by a one-to-one
translation; they includebarrier, atomic andflush. For example, we can replacebarrier by a runtime
library call named ompc barrier(). Most other OpenMP directives demand significant changes tothe WHIRL
tree, including rewriting the code segment and generating anew code segment to implement the multithreaded
model.

The OpenMP standard makes the implementation of nested parallelism optional. The original Open64 chose to
implement just one level of parallelism, which permits a straightforward multithreaded model. The implementation
of nested parallelism in OpenUH is work in progress. When themaster thread encounters a parallel region, it
will check the current environment to find out whether it is possible to fork new threads. If so, the master thread
will then fork the required number of worker threads to execute the compiler-generated microtask; if not, a serial
version of the original parallel region will be executed by the master thread. Since only one level of parallelism is
implemented, a parallel region within another parallel region is serialized in this manner.

Fig. 3 shows how a parallel region is translated. The compiler-generated nested microtask containing its work is
named ompregion main1(), based on the code segment within the scope of theparallel directive inmain().
It also rewrites the original code segment to implement its multithreaded model: this requires it to test via the
corresponding OpenMP runtime routine whether it is alreadywithin a parallel region, in which case the code is
executed sequentially. If not, and if threads are available, the parallel code version will be used. The parallel version
contains a runtime library call namedompc fork() which takes the microtask as an argument.ompc fork() is
the main routine from the OpenMP runtime library. It is responsible for manipulating worker threads and it assigns
microtasks to them.

OMP PARALLEL Code segment rewriting & microtask creation  
#include <omp.h> 
 
int main(void) 
{ 
#pragma omp parallel 
printf("Hello,world.!\n"); 
} 

int main(void) 
{ 
/* inlined microtask generated from parallel region */ 

void __ompregion_main1( …) 
{ 

printf(“Hello,world.!\n”); 
  return; 

} /* __ompregion_main1 */ 
….. 

/* Implement multithreaded model */ 
  __ompv_in_parallel = __ompc_in_parallel(); 
  __ompv_ok_to_fork = __ompc_can_fork(); 
  if(((__ompv_in_parallel== 0) && (__ompv_ok_to_fork == 1))) 
  {   
/* Parallel version:  a runtime library call for creating  
multiple threads and executing  the microtask in parallel */ 

    __ompc_fork(&__ompregion_main1,…); 
  }  else 
  { /* Sequential version */ 

printf(“Hello,world.!\n”); 
  return; 

  } 
} 

 

Fig. 3. Code reconstruction to translate a parallel region
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Fig. 4 shows how a code segment containing the worksharing construct omp for, which in this case is
“orphaned” (i.e. is not within the lexical scope of the enclosing parallel construct), is rewritten. There is no need to
create a new microtask for this orphanedomp for because it will be invoked from within the microtask createdto
realize its caller’s parallel region. OpenMP parcels out sets of loop iterations to threads according to the schedule
specified; in the static case reproduced here, a thread should determine its own execution set at run time. It does so
by using its unique thread ID and the current schedule policyto compute its lower and upper loop bounds, along
with the stride. A library call to retrieve the thread ID precedes this. The loop variablei is private by default and so
it has been replaced by the thread’s private variablemplocal i. The implicit barrier at the end of the worksharing
construct is also made explicit at the end of the microtask asrequired by the OpenMP specifications. Chen et al. [13]
describe in more detail the classification of OpenMP directives and their corresponding transformation methods in
the Open64 compiler.

Orphaned OMP 
FOR 

Rewriting the code segment 

 
 
 
static void init(void) 
{ 
  int i; 
#pragma omp for 
  for 

(i=0;i<1000;i++) 
   { 
    a[i]= i*2; 
   } 
} 

void init() 
{   ……….  
/* get current thread id */ 
__ompv_gtid_s = __ompc_get_thread_num(); 
……….. 
/* invoke static scheduler */ 
__ompc_static_init(__ompv_gtid_s, STATIC_EVEN, 
 &__ompv_do_lower,&__ompv_do_upper, &__ompv _do_stride, …); 
 
/* execute loop body using assigned iteration space */ 
 for(__mplocal_i = __ompv _do_lower; (__mplocal_i <= __ompv 

_do_upper); __mplocal_i = (__mplocal_i + 1)) 
  {    a[__mplocal_i] = __mplocal_i*2; 
  } 
/* Implicit BARRIER after work sharing constructs */ 
  __ompc_barrier(); 
  return; 
}  

 

Fig. 4. Code reconstruction to translate an OMP FOR

Data environment handling is simplified by the adoption of nested microtasking instead of outlined functions to
represent parallel regions. All global and local variablesin the original function are visible to a nested microtask;
theshared data attribute in OpenMP is thus available for free. Onlyprivate variables need to be translated. We
have seen in the examples that this is achieved by creating temporary variables that are local to the thread and will
be stored on the thread stacks at runtime. Variables infirstprivate, lastprivate andreduction lists are
treated in a similar way, but require some additional work. First, a private variable is created. Forfirstprivate,
the compiler adds a statement to initialize the local copy using the value of its global counterpart at the beginning
of the code segment. Forlastprivate, some code is added at the end to determine if the current iteration is
the last one that would occur in the sequential code. If so, ittransfers the value of the local copy to its global
counterpart.reduction variables are translated in two steps. In the first step, eachthread performs its own local
reduction operation. In the second step, the reduction operation is applied to combine the local reductions and the
result is stored back in the global variable. To prevent a race condition, the compiler encloses the final reduction
operation within a critical section. The handling ofthreadprivate, copyin andcopyprivate variables is
discussed below.

B. A Portable OpenMP Runtime Library

The role of the OpenMP runtime library is at least twofold. First, it must implement standard user level OpenMP
runtime library routines such asomp set lock(), omp set num threads() andomp get wtime(). Second, it should
provide a layer of abstraction for the underlying thread manipulation (to perform tasks such as thread creation,
suspension and wakeup) and deal with repetitive tasks (suchas internal variable bookkeeping, calculation of chunks
for each thread used in different scheduling options). The runtime library can free compiler writers from many
tedious chores that arise in OpenMP translation and librarywriters can often conduct performance tuning without
needing to delve into details of the compiler. All OpenMP runtime libraries are fairly similar in term of functionality,
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but the division of work between the compiler and runtime library is highly implementation-dependent. In other
words, an OpenMP runtime library is tightly coupled with a particular OpenMP translation in a given compiler.

Our runtime library is based on the one shipped with the ORC-OpenMP compiler, which in turn borrowed some
ideas from the Omni compiler’s runtime library. Like most other open source ones, it relies on the Pthread API
to manipulate underlying threads as well as to achieve portability. A major task of the runtime library is to create
and manage threads in a team. When an OpenMP program starts toexecute, the runtime library initialization is
performed by the master thread when the first parallel regionis encountered (this is indicated by the API call

ompc fork()). If N is the number of desired threads in the team, it will create N-1 worker threads and initialize
internal variables (to record such things as the number of threads and the default scheduling method) related to
the thread team. The worker threads will sleep until the master thread notifies them that a microtask is ready to be
executed. The master then joins them to carry out the work of the microtask. The worker threads go back to sleep
after finishing their microtask and will wait until they are notified of the next microtask. In this way, the worker
threads are reused throughout the execution of the entire program and the overhead of thread creation is reduced
to a minimum. This strategy is widely used in OpenMP implementations.

We enhanced the original ORC-OpenMP runtime library to support the compiler’s implementation of the
threadprivate, copyin andcopyprivate clauses. Forthreadprivate variables, the runtime library
will dynamically allocate private copies on the heap storage for each thread and store their start addresses in an
array indexed by thread IDs. Thus each thread can easily access its own copy of the data and the values may
persistent across different parallel regions.copyin is implemented via binary copy from the global value of a
threadprivate variable to the current thread’s private copy in the heap storage. To implementcopyprivate,
a new internal variable is introduced to store the address ofthecopyprivate variable from thesingle thread
and all other threads will copy the value by dereferencing it. Some extra attention is needed to ensure the correct
semantics: a barrier is used to ensure all other threads do not copy the value before thesingle thread has set
the address. Another barrier is used to ensure thesingle thread will not proceed until all other threads finish the
copying.

Other enhancements to the runtime library include changingsome interfaces to accommodate new translations,
optimizing the division of the work between the compiler andruntime library, modification to improve its portability,
and performance tuning. The resulting OpenMP runtime library is now one of the most complete open source
implementations.

C. The IR-to-Source Translators

We considered it essential that the compiler be able to generate code for a variety of platforms. We initially
attempted to translate Mid WHIRL to the GNU RTL, but abandoned this approach after it appeared to be too
complex. Instead, we adopted a source-to-source approach and enhanced the IR-to-source translators that came
with the original Open64 (whirl2c and whirl2f) to output compilable, portable C and Fortran source code after
translating OpenMP. As previously described, a native C or Fortran compiler can then generate the object files and
link them with the portable OpenMP runtime library on non-Itanium platforms.

To achieve this, the originalwhirl2c andwhirl2f had to be extended to translate Mid level WHIRL to compilable
code after the WOPT phase. This approach preserves valuableanalysis and optimizations as far as possible. This
created many challenges, as thewhirl2c/whirl2f tools were only designed to help compiler developers look atthe
High level WHIRL corresponding to a submitted program in a human-readable way. We required them to emit
compilable and portable source code. For example, the compiler-generated nested function to realize an OpenMP
parallel region was output bywhirl2c/whirl2f as a top-level function, since the compiler works on programunits
one at a time and does not treat these in a special way; this will not compile correctly, since in particular, the shared
variables will be undefined. To handle this particular problem, a new phase was added towhirl2c/whirl2f to restore
the nested semantics for microtasks using the nested function supported by GCC andCONTAINS from Fortran 90.
Another problem is that though most compiler transformations before the CG (code generation) phase are machine-
independent, some of them still take platform-specific parameters or make hardware assumptions, such as expecting
dedicated registers to pass function parameters, the transformation for 64-bit ISA, and register variable identification
in WOPT. To deal with this, a new compiler option -portable has been introduced to let the compiler perform
only portable phases or to apply translations in a portable way (for instance, the OpenMPatomic construct will be
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transformed using thecritical construct rather than using machine-specific instructions). Some other problems
we faced included missing headers, an incorrect translation for multidimensional arrays, pointers and structures, and
incompatible data type sizes for 32-bit and 64-bit platforms. We used the enhancedwhirl2c tool from the Berkeley
UPC compiler to help resolve some of these problems.

IV. EVALUATION OF THE COMPILER

We have chosen a set of benchmarks and platforms to help us evaluate the compiler for correctness, performance
and portability. The major platform used for testing is COBALT, an SGI Altix system at NCSA. Cobalt is a
ccNUMA platform with a total of 1024 1.6GHz Itanium 2 processors with 1024 or 2048 GB memory. Two other
platforms were also used: an IA32 system running Redhat 9 Linux with dual Xeon-HT 2.4 GHZ CPUs and 1.0GB
memory, and a SunFire 880 node from the University of Houston’s Sun Galaxy Cluster, running Solaris 9 with four
750MHz UltraSPARC-III processors and 8 GB memory. The source-to-source translation method is used when the
platform is not Itanium-based.

The correctness of the OpenMP implementation in the OpenUH compiler was our foremost consideration. To
determine this, we used the public OpenMP validation suite [16] to test the compiler’s support for OpenMP. All
OpenMP 1.0 and 2.0 directives and most of their legal combinations are included in the tests. Results on the three
systems showed our compiler passed almost all tests and had verified results. But we did notice some unstable
results from the test forsingle_copyprivate and this is under investigation.

The next concern is to measure the overheads of the OpenUH compiler translation of OpenMP constructs. The
EPCC microbenchmark [17] has been used for this purpose. Fig. 5 and Fig. 6 show the parallel overheads and
scheduling overheads, respectively, of our compiler on 1 to8 threads on COBALT. All constructs have acceptable
overheads except forreduction, which uses acritical section to protect the reduction operation on local
values for each thread to obtain portability.

We used the popular NAS parallel benchmark (NPB) [18] to compare the performance of OpenUH with two
other OpenMP compilers: the commercial Intel 8.0 compiler and the open source Omni 1.6 compiler. A subset of
the latest NPB 3.2 was compiled using the Class A data set by each of the three compilers. The compiler option -
O2 was used and the executables were run on 4 threads on COBALT. Fig. 7 shows the normalized Mop/s ratio for
seven benchmarks. The results of LU and LU-HP from Omni were not verified but we include the performance data
for a more complete comparison. OpenUH outperformed Omni except for the EP benchmark. Despite its reliance
on a runtime system designed for portability rather than highest performance on a given platform, OpenUH even
achieved better performance than the Intel compiler in several instances, as demonstrated by the FT and LU-HP
benchmarks. The result of this test confirms that the OpenUH compiler can be used as a serious research OpenMP
compiler on Itanium platforms.

The evaluation of portability and effectiveness of preserved optimizations using the source-to-source approach
has been conducted on all three test machines. The native GCCcompiler on each machine is used as a backend
compiler to compile the multithreaded code and link the object files with the portable OpenMP runtime library. We
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compiled NPB 2.3 OpenMP/C in three ways: using no optimization in both OpenUH compiler and the backend GCC
compiler, usingO3 for GCC only, and usingO3 for both OpenUH and GCC compilers. All versions were executed
with dataset A on four threads. Fig. 8 shows the speedup of theCG benchmark using different optimization levels
on the three platforms. Other benchmarks have similar speedup but are not shown here due to space limits. The
version with optimizations from both OpenUH and GCC achieves thirty (Itanium and UltraSparc) to seventy percent
(Xeon) extra speedup over the version with only GCC optimizations, which means the optimizations from OpenUH
are well preserved under the source-to-source approach andhave a significant effect on the final performance on
multiple platforms.

V. RELATED WORK

Almost all major commercial compilers support OpenMP today. Most target specific platforms for competitive
performance. They include Sun Studio, Intel compiler, Pathscale EKO compiler suite and Microsoft Visual Studio
2005 beta. Most are of limited usage for public research. Pathscale’s EKO compiler suite is open source because
it is derived from the GPL’ed SGI Pro64. It is a good referenceOpenMP implementation. However, its OpenMP
runtime library is proprietary and targets the AMD X8664 platform.

Omni [4] is a popular source-to-source translator from Tsukuba University supporting C/Fortran 77 with a portable
OpenMP runtime library based on POSIX and Solaris threads. But it has little program analysis and optimization
ability and does not yet support OpenMP 2.0. OdinMP/CCp [5] is another source-to-source translator with only C
language support. NanosCompiler [19] tries to combine automatic parallelization with manual parallelism annota-
tions using OpenMP. It also implements a variety of extensions to OpenMP. However, it is not a fully functional
OpenMP compiler and the source is not released. The ORC-OpenMP compiler [13] can be viewed as a sibling of
the OpenUH compiler in view of the common source base. But itsC/C++ frontend, based on GCC 2.96, is not
yet stable and some important OpenMP constructs (e.g.threadprivate) are not implemented. It targets the
Itanium. PCOMP [6] contains an OpenMP parallelizer and a translator to generate portable multithreaded code to
be linked with a runtime library. Unfortunately, only Fortran 77 is supported. GOMP [20] is an ongoing project
to provide OpenMP support in the GCC compiler. The Berkeley UPC compiler effort [11] uses a similar idea to
ours. Our compiler has integrated and enhanced many desirable features from Pathscale, ORC-OpenMP and the
Berkeley UPC compiler.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our effort to create an optimizing, portable OpenMP compiler based on the
Open64 compiler infrastructure and its branches. The result is a complete implementation of OpenMP 2.5 on Itanium
platforms. It also targets other platforms by providing a source-to-source translation path with a portable OpenMP
runtime library. Extensive tests have been applied to evaluate our compiler, including the OpenMP validation suite,
the EPCC microbenchmarks and the NAS parallel benchmarks. Its features offer numerous opportunities to explore
further enhancements to OpenMP and to study its performanceon existing and new architectures. Our experience
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also demonstrates that the open source Open64 compiler infrastructure is a very good choice for compiler research,
given the modularized infrastructure and code contributions from different organizations.

In the future, we will focus on performance tuning both the OpenMP translation and the runtime library. We
intend to support nested parallelism. We are using OpenUH toexplore language features that permit subsets of
a team of threads to execute code within a parallel region, which would enable several subteams to execute
concurrently [21]. Enhancing existing compiler optimizations to improve OpenMP performance on new chip
multithreading architectures is also a focus of our investigation [2]. We are exploring the creation of cost models
within the compiler to help detect resource conflicts among threads and obtain better thread scheduling. Meanwhile,
we are considering an adaptive scheduler to improve the scalability of OpenMP on large scale NUMA systems.
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