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Abstract—In traditional graph learning tasks, such as node
classification, learning is carried out in a closed-world setting
where the number of classes and their training samples are
provided to help train models, and the learning goal is to
correctly classify unlabeled nodes into classes already known. In
reality, due to limited labeling capability and dynamic evolving
of networks, some nodes in the networks may not belong to any
existing/seen classes, and therefore cannot be correctly classified
by closed-world learning algorithms. In this paper, we propose
a new open-world graph learning paradigm, where the learning
goal is to not only classify nodes belonging to seen classes into
correct groups, but also classify nodes not belonging to existing
classes to an unseen class. The essential challenge of the open-
world graph learning is that (1) unseen class has no labeled
samples, and may exist in an arbitrary form different from
existing seen classes; and (2) both graph feature learning and
prediction should differentiate whether a node may belong to an
existing/seen class or an unseen class. To tackle the challenges,
we propose an uncertain node representation learning approach,
using constrained variational graph autoencoder networks, where
the label loss and class uncertainty loss constraints are used
to ensure that the node representation learning are sensitive to
unseen class. As a result, node embedding features are denoted by
distributions, instead of deterministic feature vectors. By using a
sampling process to generate multiple versions of feature vectors,
we are able to test the certainty of a node belonging to seen
classes, and automatically determine a threshold to reject nodes
not belonging to seen classes as unseen class nodes. Experiments
on real-world networks demonstrate the algorithm performance,
comparing to baselines. Case studies and ablation analysis also
show the rationale of our design for open-world graph learning.

Keywords-Graph neural network, open-world learning, node
classification

I. INTRODUCTION

Networks/Graphs are convenient tools to model interac-

tions and interdependencies between large-scale data. Graph

learning, such as node classification, attempts to categorize

nodes of graphs into several groups. Such learning tasks are

fundamental, but challenging, and have received continuous

attention in the research field. Many research efforts have been

made to develop reliable and efficient algorithms for different

types of node classification tasks. However, existing methods

mainly carry out the learning in a “closed-world” setting,

where nodes in the test data must belong to one or multiple

classes already seen in the training set. As a result, when a

new/unseen class node appears in the test set, classifiers cannot

detect the new/unseen class and will erroneously classify the

node as seen/learned classes in the training data.
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Fig. 1: An example of open-world learning for network node

classification. Given a graph with some labeled nodes and

unlabeled nodes (left panel), open-world graph learning aims

to learn a classifier to classify unlabeled nodes belonging to

seen class into its own class, and also detects unlabeled nodes

not belonging to any seen class as unseen class nodes.

In reality, new trends emerge constantly and a model that

cannot detect these new/unseen trends can hardly work well in

a dynamic environment. This problem/phenomenon is referred

to as the open-world classification or open classification

problem [1]. The new “open-world” learning (OWL) [2]–[4]

paradigm is to not only recognize objects belonging to the

classes already seen/learned before, but also detects new class

samples which are previously unseen.

Several approaches, such as one-class SVM [5], can be

adjusted to address open-world learning by treating all seen

classes as the positive class, but they cannot differentiate

instances in seen classes and often have poor performance

to find unseen class, because no negative data is used. To

date, open-world learning has already attracted many interests

from Natural Language Processing (NLP) [1] [2] and computer

vision fields [6] [7] [8]. In NLP, Shu et al. [1] proposed the

solution to open-world learning by setting thresholds before

the sigmoid function to reject unseen classes. In computer

vision, Scheirer et al. [6] studied the problem of recognizing

unseen images that are not in the training data by reducing

the half-space of a binary SVM classifier with a positive

region. However, to the best of our knowledge, the open-world

classification problem has not been previously investigated in

graph structure data and graph learning tasks.

Given a graph consisting of seen class and unseen class

nodes, the objective of open-world graph learning is to build

a classifier to classify nodes belonging to seen classes into

correct categories, and also detect nodes not belonging to any
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Fig. 2: A visualization of classification probability on seen

(blue) and unseen (orange) class test instances. The x−axis

denotes the index of test instances (first 500 instances belong

to seen classes and the last 100 instances belong to unseen

class). The y−axis denotes the maximum probability output

of each instance through the softmax classifier. (a) denotes

the classification probabilities using only label loss, and (b)

denotes the classification probabilities combining both label

loss and class uncertainty loss.

seen class as unseen class. An example of open-world learning

for graph node classification is illustrated in Fig. 1.

Currently, existing solutions to open-world learning are

mainly focused on documents or images, and cannot be

directly applied to graph structured data and graph learning

tasks because they cannot model graph structural information,

which is the core of node classification.

The challenge of graph learning is that graphs have node

content and structure information. Furthermore, existing so-

lutions to node classification task are built on the closed-

world assumption, in which the classes appeared in the testing

data must have appeared in training. For example, the basic

idea of graph convolutional networks (GCNs) is to develop a

convolutional layer to exploit the graph structure information

and use a classification loss function to guide the classification

task. However, they directly use softmax as the final output

layer, which does not have the rejection capability to unseen

class nodes because the prediction probability of each class

is normalized across all training/seen classes. In addition,

in representation learning level, most existing graph learning

methods employ feature engineering or deep learning to extract

feature vectors. However, these models can only generate

deterministic mappings to capture latent features of nodes.

A major limitation of them is their inability to represent

uncertainty caused by incomplete or finite available data.

In this paper, we propose to study open-world learning for

graph data. Considering the complicated graph data structure

and the node classification task, we summarize the main

challenges as follows,

• Challenge 1: How to design an end to end framework for

open-world graph learning in graphs where unseen class

has no labeled samples, and may exist in an arbitrary

form different from seen classes. Existing graph neural

networks (GNNs) are typical built based on closed-world

assumption and cannot detect unseen class.

• Challenge 2: How can we model the uncertainty of node

representations and promote robustness in graphs. Many

existing GNN-based approaches only generate determin-

istic mappings to capture latent features of nodes.

To overcome the above challenges, we propose a novel

open-world graph leaning paradigm (OpenWGL) for node

classification tasks. For Challenge 1, we employ two loss

constraints (a label loss and a class uncertainty loss) to ensure

that the node representation learning is sensitive to unseen

class and assist in our model to differentiate whether a node

belongs to an existing/seen class or an unseen class. We

visualize a testing dataset in our experiment in Fig. 2, which

can illustrate the effectiveness of our method. In Fig. 2(a),

we only use the label loss (the cross-entropy loss), which has

a good performance on existing/seen class nodes, but unseen

class nodes cannot be differentiated and will be classify to

seen classes randomly. In Fig. 2(b), we introduce a class

uncertainty loss constraint, which can reduce the probability

of unseen class nodes being classified as seen class, and

therefore help detect unseen class nodes without impact on

the classification of nodes in seen classes. For Challenge

2, instead of learning deterministic node feature vector, We

utilize a graph variational autoencoder module to learn a latent

distribution to represent each node. During the classification

phase, a novel sampling process is used to generate multiple

versions of feature vectors to test the certainty of a node

belonging to seen classes, and automatically determine a

threshold to reject nodes not belonging to seen classes as

unseen class nodes.

Our contributions can be summarized as follows:

• We formulate a new open-world learning problem for

graph data, and present a novel deep learning model

OpenWGL as a solution.

• We propose an uncertain node representation learning

approach, by using label loss and class uncertainty loss

to constrain variational graph autoencoder to learn node

representation sensitive to unseen class.

• We propose to use sampling process to test the certainty

of a node belonging to seen classes, and automatically

determine a threshold to reject nodes not belonging to

seen classes as unseen class nodes.

• Experiments on benchmark graph datasets demonstrate

that our approach outperforms the baseline methods.

II. RELATED WORK

A. Open-World Learning

Open-World Learning aims to recognize the classes the

learner has seen/learned before and also detect new class it

has never seen before. There are some early explorations of

open-world learning. Scholkopf et al. [5] employ the one-class

SVM as the classifier, which shows poor performance since

no negative data is used. Fei and Liu [9] propose a Center-

Based Similarity (CBS) space learning method, which first

computes a center for each class and converts each document

to a vector of similarities to the center. Fei et al. [3] then

extend their work by adding the capability of incrementally or

cumulatively learning new classes.



Recently, open-world learning has been studied in Natural

Language Processing [1] [2] and computer vision (where it is

called open-set recognition) [6] [7] [8]. In NLP, Shu et al. [1]

propose the deep learning solution to open-world learning by

setting thresholds before the sigmoid function to reject unseen

classes. Xu et al. [2] propose a new open-world learning model

based on meta-learning, which allows new classes to be added

or deleted with no need for model re-training. In computer

vision, Scheirer et al. [6] study the problem of recognizing

unseen images that are not in the training data by reducing the

half-space of a binary SVM classifier with a positive region.

In [7] and [8], Scheirer et al. utilize the probability threshold

to detect new classes, while their models are weak because of

lacking prior knowledge.

B. Emerging Class and Outlier Detection

Our research is also related to emerging/new class detection

in supervised learning, such as stream data mining [10], [11]

and multi-instance learning [12], and outlier detection [13].

In supervised learning, instances are assumed to belong

to at least one of the predefined classes, and a classifier is

trained to learn discriminative patterns to separate samples

into known classes. When a class is unknown or unavailable

at the time of training a classifier, in the test stage, an ideal

classifier is expected to be able to detect the emerging/new

class [14]. A common solution of detecting new class samples

is to use a decision threshold to give a confidence score [15]–

[17], including multilayer neural network [18] to increase the

threshold, and samples with low confidence below threshold

are recognized as the new class. Unfortunately, as we have

shown in Fig. 2, simply increasing the threshold will make

existing class samples being misclassified.

Outlier detection, on the other hand, aims to detect data

instances which abnormally deviate from the underlying

data [19]. Some distance-based outlier detection methods such

as One-class SVM have been proposed, in which the normal

data domain is obtained by finding a hyper-sphere enclosing

the normal data samples [5] [20]. A recent method [13]

proposes to detect outliers from data stream, but new class

detection by outliers is not addressed.

C. Graph Neural Networks

Graph Neural Networks (GNNs), introduced in [21] and

[22] as a generalization of recursive neural networks to directly

deal with a more general class of graphs, e.g. cyclic, directed

and undirected graphs, are a powerful tool for machine learn-

ing on graphs. GNNs have attracted attention all around the

world, which are designed to use deep learning architectures

on graph-structured data [23] [24] [25]. Many solutions are

proposed to generalize well-established neural network models

that work on regular grid structure to deal with graphs with

arbitrary structures [26] [27] [28].

Among these methods, the most classic model is GCN,

which is a deep convolutional learning paradigm for graph-

structured data integrating local node features and graph

topology structure in convolutional layers [29]. GraphSAGE

[30] is a variant of GCN which designs different aggregation

methods for feature extraction. Although GCNs have shown

great performance in graph-structured data for semi-supervised

learning tasks such as node classification, the variational

graph autoencoder (VGAE) [31] extends it to unsupervised

scenarios. Specifically, VGAE integrates GCN into the varia-

tional encoder framework [32] by using a graph convolutional

encoder and a simple inner product decoder.

To the best of our knowledge, the open-world learning

problem has not been previously investigated in graph structure

data and graph learning tasks. We are the first to study the

open-world graph learning and propose an novel uncertain

node representation learning approach, based on a variant

of GCN (i.e., variational graph autoencoder networks) to

differentiate whether a node belongs to an existing (seen) class

or an unseen class.

III. PROBLEM DEFINITION AND OVERALL FRAMEWORK

A. Problem Statement

Node Classification on Graphs: In this paper, we focus

on node classification on graphs. A graph is represented as

G = (V,E,X, Y ), where V = {vi}i=1,··· ,N is a vertex set

representing nodes in a graph, and ei,j = (vi, vj) ∈ E is

an edge indicating the relationship between two nodes. The

topological structure of a graph G can be represented by an

adjacency matrix A, where Ai,j = 1 if (vi, vj) ∈ E; otherwise

Ai,j = 0. xi ∈ X indicates content features associated with

each node vi. Y ∈ R
N×C is a label matrix of G, where N

is the number of nodes in G and C is the number of node

categories (classes) already known/seen. If a node vi ∈ V is

associated with label l , Y l
(i) = 1 ; otherwise, Y l

(i) = 0.

Open-World Graph Learning: Given a graph G =
(V,E,X, Y ), X = Xtrain

⋃

Xtest, where Xtrain denotes

training data (labeled nodes) and Xtest denotes testing nodes

(unlabeled nodes). Assume Xtest = S
⋃

U , where S are the

set of nodes belonging to seen classes already appeared in

Xtrain and U are the set of nodes not belonging to any

seen class (i.e. unseen class nodes). Open-World Learning

on Graphs aims to learn a (C + 1)-class classifier model,

f(Xtest) 7→ Y , (Y ∈ {1, · · · , C, rejection}) to classify each

test node S to one of the training/seen classes in Y and reject

U to indicate that it does not belong to any training/seen class

(i.e., it belongs to the unseen class).

B. Overall Framework

Our framework for open-world graph learning, as shown in

Fig. 3, mainly consists of following two components:

• Node Uncertainty Representation Learning. Most

GCN models generate deterministic mappings to capture

latent features of nodes. A major limitation of these

models is their inability to represent uncertainty caused

by incomplete or finite available data. In order to learn

a better representation of each node, we employ a Vari-

ational Graph Autoencoder Network to obtain a latent

distribution of each node, which enables to represent

uncertainty and promote robustness.
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Fig. 3: The overall architecture of the proposed Open-World Graph Learning (OpenWGL) model for node classification task.

The input consists of a graph with labeled and unlabeled nodes. The learning objective of OpenWGL, defined in Eq. (8), is

constrained by (1) the KL divergence loss and network reconstruction loss (Eq. (7)), and (2) label loss (Eq. (9)), and class

uncertainty loss (Eq. (10)). As a result, OpenWGL can learn uncertain node representation sensitive to the class labels and

unseen class. More details are given in Section IV.

• Open-World Classifier Learning. In order to classify

seen class nodes to their own groups and detect unseen

class nodes, we introduce two constraints, label loss and

class uncertainty loss, to differentiate whether a node

belongs to an existing class or an unseen class.

Open-World Classification & Rejection. To perform infer-

ence during the testing phase (i.e., perform classification or

rejection of an example), we propose a novel sampling process

to generate multiple versions of feature vectors to test the

certainty of a node belonging to seen classes and automatically

determine a threshold to reject nodes not belonging to seen

classes as unseen nodes. Our inference framework is given in

Fig. 4 with detailed discussion given in Section IV. C.

IV. METHODOLOGY

A. Node Uncertainty Representation Learning

In order to encode latent feature information of each node

and obtain an effective representation of uncertainty, we

employ Variational Graph Autoencoder network (VGAE) to

generate a latent distribution based on extracted node features.

This allows our method to leverage uncertainty for robust

representation learning.

Graph Encoder Model: Given a graph G = (X,A), in order

to represent both node content X and graph structure A in

a unified framework, our approach firstly utilizes a two-layer

GCN method proposed by [29]. Given the input feature matrix

X and adjacency matrix A, the first GCN layer generates a

lower-dimensional feature matrix, which is defined as follows:

Z(1) = GCN(X,A) = ReLU
(

D̃− 1

2 ÃD̃
1

2XW (1)
)

(1)

where Ã = A + In is the adjacent matrix with self-loops

(In ∈ R
n×n is the identity matrix), and D̃i,i =

∑

j Ãi,j .

Accordingly, D̃− 1

2 ÃD̃
1

2 is the normalized adjacency matrix.

W (1) is the trainable parameters of the network, and ReLU(·)
denotes the activation function.

For the second layer GCN model, instead of generating a

deterministic representation, we assume that the output Z is

continuous and follows a multivariate Gaussian distribution.

Hence, we follow an inference model proposed by [31]:

q(Z|X,A) =
N
∏

i=1

q(zi|X,A), (2)

q(zi|X,A) = N (zi|µi, diag(σ
2
i )) (3)

Here, µ = GCNµ(X,A) = ReLU
(

D̃− 1

2 ÃD̃
1

2Z(1)W (2)
)

is the matrix of mean vectors µi; σ is the standard vari-

ance matrix of the distribution, logσ = GCNσ(X,A) =

ReLU
(

D̃− 1

2 ÃD̃
1

2Z(1)W ′(2)
)

. Then we can calculate Z us-

ing a parameterization trick:

Z = µ+ σ · ζ, ζ ∼ N (0, I) (4)

where 0 is a vector of zeros and I is the identity matrix.

By making use of the latent variable Z, our model is able to

capture complex noisy patterns in the data.

Graph Decoder Model: After we get the latent variable Z,

we use a decoder model to reconstruct the graph structure A
to better learn the relationship between two nodes. Here, the
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Fig. 4: The classification and rejection process (assuming seen class set has 4 classes). For nodes in the testing set, node

uncertainty representation learning generates M different versions of feature vectors for each node by a sampling process. The

M different representations are fed into a softmax layer to obtain M probability outputs Si. The probabilities of each class are

averaged to obtain a vector si,a, and the largest average is denoted by max(si,a). Finally, Eq.(11) is used to decide whether

a node belongs to the seen or unseen classes.

graph decoder model is defined by a generative model [31]:

p(A|Z) =

N
∏

i=1

N
∏

j=1

p(Ai,j |zi, zj), (5)

p(Aij = 1|zi, zj) = σ(zT
i zj), (6)

where Aij are the elements of A and σ(·) denotes the logistic

sigmoid function.

Optimization: To better learn class discriminative node rep-

resentations, we optimize the variational graph autoencoder

module via two losses as follows:

LV GAE = Eq(Z|X,A)[logp(A|Z)]−KL[q(Z|X,A)||p(Z)]
(7)

where the first term is the reconstruction loss between the input

adjacent matrix and the reconstructed adjacent matrix. The

second term KL[q(Z|X,A)||p(Z)] is the Kullback-Leibler di-

vergence between q(Z|X,A) and p(Z), here p(Z) = N (0, I).

B. Open-World Classifier Learning

After the variational graph autoencoder network, we obtain

the uncertainty embeddings for each node through Eq. (4),

which consists of two parts: uncertainty embeddings for la-

beled/training nodes Zlabeled and uncertainty embeddings for

unlabeled/test nodes Zunlabeled. To better learn an accurate

classifier for classifying both seen and unseen nodes in testing

data, our proposed model consists of a cooperative module, a

label loss as well as a class uncertainty loss working together

to differentiate whether a node belongs to an existing class or

an unseen class. The overall objective function is as follows:

LOpenWGL = γ1LL + γ2LC + LV GAE (8)

The γ1, γ2 are the balance parameters. The LV GAE is the

loss function of the variational graph autoencoder network

mentioned above. The LL and LC represent the label loss

and the class uncertainty loss, respectively. The details are

introduced as follows. Label Loss: The label loss LL is to

minimize the cross-entropy loss for the labeled data:

LL(fs(Zlabeled), Y ) = −
1

Nl

Nl
∑

i=1

C
∑

c=1

yi,clog(ŷi,c) (9)

where fs(·) is a softmax layer consisting of a full-connected

layer with corresponding activation function which can trans-

form Zunlabeled into probabilities that sum to one. Nl is

the number of labeled nodes. C denotes the number of seen

classes, and yi,c denotes the groundtruth of the i-th node in

the labeled data, ŷi,c is the classification prediction score for

the i-th labeled node vi in the c class, respectively.

Class Uncertainty Loss: Since we do not have the class

information in the test data and there exists a considerable

number of unseen nodes, we need to find a way to differentiate

the seen class and unseen class. Unlike the label loss LL,

which can utilize the abundant training data and have a good

performance on the seen class by the cross-entropy loss, the

class uncertainty loss is proposed to balance the classification

output for each node and have superior effects on the unseen

nodes. In our paper, an entropy loss is placed as the class

uncertainty loss and our goal is to maximize this entropy loss

to make the normalized output of each node balanced. The

formula is as follows:

LC(fs(Zunlabeled)) =
1

Nu

Nu
∑

i=1

C
∑

c=1

ŷi,clog(ŷi,c) (10)

where Nu is the number of labeled nodes. ŷi,c is the classifi-

cation prediction score for the i-th unlabeled node vi in the c
class. Note that we do not put a negative sign in front of the

formula as usual because we need to maximize the entropy



Avg_seen

Avg_E_unseen

Threshold

(a) In the validation set.

Threshold

(b) In the testing set.

Fig. 5: A visualization of determining the threshold using
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loss. In addition, we will not use all the unlabeled data to

max the entropy loss. We first sort all the unlabeled data output

probability values (choosing the maximum probability for each

node) after the softmax layer, and then discard the largest

10% (nodes with large probability values are easily classified

into seen classes since their output is discriminative) and the

smallest 10% nodes (nodes with small probability means that

the node’s output is balanced over each seen class which can

be easily detected as the unseen class). Finally the remaining

nodes are utilized to maximize their entropy.

The training for label loss and class uncertainty loss is like a

adversarial process. On the one hand, we want the label loss to

influence the classifier to make the output of each node more

discriminative and classify each seen node into the correct

class via minimizing Eq. (9). On the other hand, we would

like that the class uncertainty loss can make the output of

each node more balanced to assist in detecting the unseen

class through maximizing the entropy loss.

LL, LC and LV GAE are jointly optimized via our objective

function in Eq. (8), and all parameters are optimized using the

standard backpropagation algorithms.

C. Open-World Classification & Rejection

After performing the node uncertainty representation learn-

ing, we obtain a distribution (i.e. the Gaussian distribution) of

the node embeddings. Thus we generate M different versions

of feature vectors (z1
i , · · · , z

M
i ) for each node vi form this

distribution via Eq. (4) called a reparametrization trick. Then

we feed these M different representations into the softmax

layer to turn them into probabilities over C classes respectively

(each zm
i can obtain an output vector smi ∈ R

1×C ).

After this process, for each node we concatenate these M
outputs and obtain a sampling matrix Si ∈ R

M×C . In Si,

each column denotes M different probabilities of a specific

class and we average these probabilities for each class to

obtain a vector si,a ∈ R
1×C . For the vector si,a with C

different probabilities, we choose the largest one max(si,a). To

recognize whether each node vi is the seen or unseen classes

for testing data, we have:

ŷ =

{

Rejection, if maxc∈C p(c|xi) ≤ t
arg maxc∈C p(c|xi), otherwise.

(11)

where p(c|xi) is obtained from the softarmax layer output of

fs(·). If none of existing seen classes probability p(c|xi) value

is above the threshold t, we reject xi as a sample from the

unseen class; otherwise, its predicted class is the one with

the highest probability. The prediction process of each testing

sample is illustrated in Fig. 4.

In open-world graph learning, a key problem is the deter-

mining of the threshold t. In our paper, we propose a selection

approach to automatically determine a threshold to reject

nodes not belonging to seen classes. Specifically, we use the

validation set to do the threshold selection. Similarly, for nodes

in the validation set, we perform the node uncertainty repre-

sentation learning, and conduct the same sampling process and

choose the largest probability. Then we average these chosen

largest probabilities of all the nodes and obtain avg seen.

Because unseen class instances are assumed not appearing

in the training set (including the validation set), we choose

10% nodes with the largest entropy as the “expected unseen

class nodes”, and their average probability is denoted by

avg E unseen. The final threshold is calculated by averaging

the probabilities: t = (avg seen + avg E unseen)/2). Fig.

5(a) shows an example of the determining process in the

validation set. We use this determined threshold to classify

seen and unseen nodes in the test set in Fig. 5(b).

Therefore, by using a sampling process to generate multiple

versions of feature vectors, we are able to test the confidence of

a node belonging to seen classes, and automatically determine

a threshold to reject nodes not belonging to seen classes as

unseen class nodes.

D. Algorithm Description

Our algorithm is illustrated in Algorithm 1. Given a graph

G = (V,E,X, Y ), our goal is to obtain the node representa-

tions and classify the seen nodes and detect the unseen nodes,

respectively. Firstly, we employ a variational graph autoen-

coder network to model the uncertainty of each node (Step

2-10). Here, the output Z is a distribution and we optimize

the network through the KL loss and the reconstruction loss

(Step 12). Then we propose two loss constraints LL and LC

to make our model capable of classifying seen and unseen

classes (Step 13-14). Finally, by jointly considering the label

loss, class uncertainty loss and the VGAE loss, our model can

better differentiate whether a node belongs to a seen class or

an unseen class and capture the uncertainty representations for

open-world graph learning.

V. EXPERIMENTS

A. Experimental Setup

Benchmark Datasets We employ three widely used citation

network datasets (Cora, Citeseer, DBLP) for node classifica-

tion [33] [34]. The details of the experimental datasets are

reported in Table I.

Test Settings and Evaluation Metrics For each dataset, we

hold out some classes as the unseen class for testing and the

remaining classes as the seen classes. we randomly sample



Algorithm 1: Open-World Graph Learning

Date: G = (V,E,X, Y ): a Graph with links and features;
X = Xtrain

⋃

Xtest, Xtest = S
⋃

U : S are the seen classes
appeared in Xtrain and U are the unseen classes; C: the
number of seen classes.

Result: f(Xtest) 7→ Y , Y ∈ {1, · · · , C, rejection}.
1: while not convergence do
2: // Graph Encoder Model
3: For the first layer:

4: Z(1) ← ReLU
(

D̃−
1

2 ÃD̃
1

2XW (1)
)

5: For the second layer:

6: µ← ReLU
(

D̃−
1

2 ÃD̃
1

2Z(1)W (2)
)

7: logσ ← ReLU
(

D̃−
1

2 ÃD̃
1

2Z(1)W ′(2)
)

8: Z ← µ+ σ · ζ, ζ ∼ N (0, I)
9: // Graph Decoder Model

10: p(Aij = 1|zi, zj)← σ(zT
i zj)

11: // Compute Loss
12: LV GAE ← Obtain the variational graph autoencoder loss

using Eq. (7)
13: LL ← Obtain the label loss using Eq.(9)
14: LC ← Obtain the class uncertainty loss using Eq.(10)
15: Back-propagate loss gradient using Eq.(8)

16: [W (1),W (2),W ′(2), fs(·)]← Update weights
17: if early stopping condition satisfied then
18: Terminate

TABLE I: Statistics of the experimental datasets.

Dataset # of Nodes # of Edges # of Features # of Labels

Cora 2,708 5,429 1,433 7
Citeseer 3,312 4,732 3,703 6
DBLP 60,744 52,890 1,587 4

70% of nodes for training, 10% for validation and 20% for

testing. Note that, the nodes of unseen class only appear in

the testing set. We use the validation set to determine the

threshold for rejecting the unseen class. Like the traditional

semi-supervised node classification, for each dataset, we feed

the whole graph into our model. We vary the number of unseen

classes to verify the performance of our model at different

unseen class proportion. We use the Macro F1 score and

Accuracy for evaluation [1].

Baselines We employ following methods as baselines.

• GCN [29]: GCN is a deep convolutional network for

graph-structured data, which directly uses softmax as

the final output layer. GCN does not have the rejection

capability to the unseen class.

• GCN Sigmod: In GCN Sigmod, we use multiple 1-vs-

rest of sigmoids rather than softmax as the final output

layer of the GCN model, which also does not have the

rejection capability to the unseen class.

• GCN Sigmod Thre: Based on GCN Sigmod, we use the

default probability threshold of ti = 0.5 for classification

of each class i, which means if all predicted probabilities

are less than the threshold 0.5, we will reject it as the

unseen class. Otherwise, its predicted class is the one

TABLE II: Experimental results on Cora with different number

of unseen classes |U |.

Methods
|U | = 1 |U | = 3

Accuracy Macro F1 Accuracy Macro F1

GCN 0.726 0.683 0.345 0.463
GCN Sigmod 0.728 0.681 0.338 0.463

GCN Sigmod Thre 0.782 0.786 0.593 0.664
MLP DOC 0.455 0.452 0.670 0.493
GCN DOC 0.753 0.769 0.729 0.735
OpenWGL 0.833 0.835 0.775 0.752

TABLE III: Experimental results on Citeseer with different

number of unseen classes |U |.

Methods
|U | = 1 |U | = 3

Accuracy Macro F1 Accuracy Macro F1

GCN 0.445 0.477 0.263 0.320
GCN Sigmod 0.443 0.472 0.258 0.318

GCN Sigmod Thre 0.670 0.609 0.683 0.621
MLP DOC 0.455 0.433 0.745 0.564
GCN DOC 0.687 0.613 0.758 0.679
OpenWGL 0.700 0.654 0.766 0.698

with the highest probability.

• MLP DOC: DOC [1] is the state-of-the-art open-world

classification method for text classification. We use a two-

layer perceptron to obtain the node representation.

• GCN DOC: We utilize the rich node relationships and

combine the GCN with DOC to compare with our model.

In DOC, it uses multiple 1-vs-rest of sigmoids rather than

softmax as the final output layer and defines a automatic

threshold setting mechanism.

All deep learning algorithms are implemented using Ten-

sorflow and are trained with Adam optimizer. We follow the

evaluation protocol in open-world learning [1] [2] and evaluate

all approaches through grid search on the hyperparameter

space and report the best results of each approach. We feed

the whole graph into our model when training. For all baseline

methods, we use the same set of parameter configurations

unless otherwise specified. For each deep approach, we use a

fixed learning rate 1e−3. For each method, the GCNs contain

two hidden layers (L = 2) with structure as 32 − 16. The

balance parameters γ1, γ2 are set to 1, 0.8, respectively. The

dropout rate for each GCN layer is set to 0.3. M is set to 100.

TABLE IV: Experimental results on DBLP with different

number of unseen classes |U |.

Methods
|U | = 1 |U | = 2

Accuracy Macro F1 Accuracy Macro F1

GCN 0.662 0.562 0.285 0.323
GCN Sigmod 0.662 0.562 0.290 0.323

GCN Sigmod Thre 0.657 0.650 0.282 0.326
MLP DOC 0.643 0.630 0.480 0.477
GCN DOC 0.657 0.658 0.503 0.506
OpenWGL 0.688 0.689 0.653 0.642



TABLE V: The Macro F1 score and Accuracy on three

datatsets for closed-world settings (without unseen classes).

Dataset (|U | = 0) GCN OpenWGL

Cora
Accuracy 0.863 0.854
Macro F1 0.848 0.829

Citeseer
Accuracy 0.774 0.779
Macro F1 0.752 0.745

DBLP
Accuracy 0.806 0.809
Macro F1 0.754 0.751

B. Open-world Graph Learning Classification Results

Table II, Table III and Table IV list the Macro F1 score and

Accuracy of different methods on open-world node classifica-

tion task. From the results, we have following observations:

(1) The GCN and GCN Sigmoid obtain the worst perfor-

mance among these baselines in all datasets since they

do not have the rejection capability to the unseen class.

Therefore, all the unseen nodes will be misclassified and

their performance become worse with the number of

unseen nodes increases.

(2) GCN Sigmoid Thre and GCN DOC have better perfor-

mances than GCN and GCN Sigmoid, which shows that

the threshold can improve the performance of detecting

the unseen nodes. In addition, with the number of unseen

nodes increases, GCN Sigmoid Thre and GCN DOC

become more competitive.

(3) GCN DOC has better performance than

GCN Sigmoid Thre in most cases, confirming that

the threshold is not a fixed value and it varies with

different datasets and the ratio of unseen class. DOC’s

automatic threshold setting mechanism can effectively

improve the classification results of unseen class.

(4) The proposed Open-World Graph Learning model con-

sistently outperforms all baselines on three datasets with

different numbers of unseen classes. It demonstrates

that the proposed constrained graph variational encoder

network can better differentiate whether a node belongs to

a seen class or an unseen class and capture the uncertainty

representation of each node by jointly considering the

label loss, class uncertainty loss and the node uncertainty

representation learning as a unified learning framework.

(5) We also report closed-world learning setting results (with-

out unseen class) in Table V. The results show that

when networks do not have unseen class, OpenWGL

has comparable performance as GCN, confirming its

effectiveness and generalization for node classification.

C. Ablation Analysis of OpenWGL Components

Because OpenWGL contains two key constraints, in this

subsection, we compare variants of OpenWGL with respect

to the following aspects to demonstrate: (1) the effect of the

class uncertainty loss, and (2) the impact of the VGAE module

(KL loss and reconstruction loss).

The following OpenWGL variants are designed for compar-

ison.

TABLE VI: The Macro F1 score and Accuracy between

OpenWGL variants on Cora.

Methods
|U | = 1 |U | = 3

Accuracy Macro F1 Accuracy Macro F1

OpenWGL¬C 0.782 0.787 0.700 0.665
OpenWGL¬V 0.824 0.829 0.785 0.705

OpenWGL 0.833 0.835 0.775 0.752

TABLE VII: The Macro F1 score and Accuracy between

OpenWGL variants on Citeseer.

Methods
|U | = 1 |U | = 3

Accuracy Macro F1 Accuracy Macro F1

OpenWGL¬C 0.676 0.645 0.759 0.692
OpenWGL¬V 0.691 0.648 0.760 0.683

OpenWGL 0.700 0.654 0.766 0.698

TABLE VIII: The Macro F1 score and Accuracy between

OpenWGL variants on DBLP.

Methods
|U | = 1 |U | = 2

Accuracy Macro F1 Accuracy Macro F1

OpenWGL¬C 0.675 0.672 0.650 0.631
OpenWGL¬V 0.687 0.671 0.651 0.635

OpenWGL 0.688 0.689 0.653 0.642

• OpenWGL¬C : A variant of OpenWGL with only the

class uncertainty loss being removed.

• OpenWGL¬V : A variant of OpenWGL with the KL loss

and reconstruction loss being removed.

Tables VI, VII & VIII report the ablation study results.

1) the effect of the class uncertainty loss: In order to show

the superiority of the class uncertainty loss, we design a

variant model OpenWGL¬C . As mentioned before, the class

uncertainty loss is a constraint on the unlabeled nodes. The

ablation study results show the performances of the node

classification task on both datasets are improved when the

class uncertainty loss is used, indicating its effectiveness of

detecting unseen nodes.

2) the impact of the VGAE module (KL loss and recon-

struction loss): In order to verify the impact of the VGAE

module which can model the uncertainty node representations,

we compare OpenWGL model and OpenWGL¬V . From the

results, we can easily observe the OpenWGL model performs

significantly better than OpenWGL¬V . This confirms that the

usage of KL loss can model the uncertainty to better capture

the latent representation of each node, and reconstruction loss

can preserve node relationships which will assist in the node

representation.

D. Parameter Analysis

Impact of the feature dimensions of node output embed-

dings Z: As mentioned in the method section, the output of

node embeddings is represented as Z. OpenWGL uses 2-layer

GCNs with structure as 32 − 16, and feature dimensions d
of node output embeddings is 16. We vary d from 4 to 64
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Fi g. 6: I m p a ct of f e at ur e di m e nsi o ns of n o d e o ut p ut e m b e d-
di n gs f or t h e a c c ur a c y a n d M a cr o F 1 s c or e o n t hr e e d at as ets.

a n d r e p ort t h e r es ults o n t hr e e d at as ets, r es p e cti v el y i n Fi g.
6. O n Cit es e er a n d D B L P d at as ets, as d i n cr e as es fr o m 4
t o 6 4, t h e p erf or m a n c e gr o ws gr a d u all y t o r e a c h a pl at e a u.
T h e p erf or m a n c e of C or a d at as et is st a bl e wit h d i n cr e asi n g
fr o m 4 t o 3 2 a n d h as a sli g ht d e cr e as e at 6 4 . T h er ef or e, o nl y
sli g ht diff er e n c es c a n b e o bs er v e d wit h diff er e nt d v al u es.
T h e i n cr e as e of d , fr o m 4 t o 6 4, d o es n ot n e c ess aril y r es ult
i n p erf or m a n c e i m pr o v e m e nts. T h e r es ults s h o w t h at wit h
s uf fi ci e nt f e at ur e di m e nsi o ns ( d ≥ 1 6 ), O p e n W G L is st a bl e
wit h t h e i n cr e asi n g n u m b er of f e at ur e di m e nsi o ns.

E. C as e St u d y

1) Vis u aliz ati o n of t h e O p e n W G L s a m pli n g r es ults: I n or d er
t o v erif y t h e eff e cti v e n ess of t h e s a m pli n g pr o c ess of o ur
m o d el, w e r a n d o ml y c h o os e t w o t esti n g n o d es fr o m C or a
d at as et f or s e e n a n d u ns e e n cl ass es ( w e c h o os e o n e cl ass as
u ns e e n, i. e. |U | = 1 ), r es p e cti v el y. Aft er p erf or mi n g t h e n o d e
u n c ert ai nt y r e pr es e nt ati o n l e ar ni n g, w e o bt ai n a distri b uti o n of
t h e n o d e e m b e d di n gs. T h e n w e g e n er at e 1 0 0 diff er e nt v ersi o ns
of f e at ur e v e ct ors f or e a c h n o d e f or m t his distri b uti o n a n d f e e d
t h e m i nt o t h e s oft m a x l a y er t o t ur n t h e m i nt o pr o b a biliti es o v er
6 cl ass es, r es p e cti v el y. T h er ef or e, aft er t his pr o c ess, f or e a c h
n o d e w e o bt ai n a 6 × 1 0 0 s a m pli n g m atri x. I n t h e s a m pli n g
m atri x, e a c h c ol u m n d e n ot es 1 0 0 diff er e nt pr o b a biliti es of a
s p e ci fi c cl ass. We vis u ali z e t h e s a m pli n g m atri c es of t h es e f o ur
n o d es t hr o u g h hist o gr a m c h arts wit h s e e n a n d u ns e e n cl ass es
i n Fi gs. 7( a) a n d ( b). I n Fi g. 7, e a c h r o w r e pr es e nts o n e n o d e
a n d i n e a c h r o w, t h er e ar e si x s u b fi g ur es i n di c ati n g t h e 1 0 0
diff er e nt pr o b a biliti es of e a c h cl ass, r es p e cti v el y. Fr o m Fi g.
7, w e c a n o bs er v e t h at t h e s a m pli n g pr o c ess h a v e s u p eri or
p erf or m a n c e i n diff er e nti ati n g t h e s e e n cl ass es a n d t h e u ns e e n
cl ass, a n d it is v er y h el pf ul f or d et er mi ni n g t h e t hr es h ol d. F or
e x a m pl e, as s h o w n i n t h e first r o w i n Fi g. 7( a), o nl y i n cl ass
2, m ost of t h e 1 0 0 diff er e nt pr o b a biliti es ar e distri b ut e d o n
f ar ri g ht si d e of t h e hist o gr a m (i. e.,l ar g e pr o b a bilit y), w hil e
all t h e ot h er cl ass es ( 0, 1, 3, 4, 5) ar e distri b ut e d o n t h e f ar l eft
si d e (i. e.,s m all pr o b a bilit y). T h us, t hr o u g h t h e s oft m a x l a y er,
w e c a n cl assif y t his n o d e t o cl ass 2 a n d t h e gr o u n d tr ut h is
als o cl ass 2. H o w e v er, if w e j ust us e a d et er mi nisti c f e at ur e
v e ct or i nst e a d of t his s a m pli n g m et h o d, t his n o d e m a y n ot b e
cl assi fi e d t o t h e cl ass 2, si n c e cl ass 2 als o h as c as es wit h s m all
pr o b a bilit y v al u es. Si mil arl y, f or t h e u ns e e n n o d es as s h o w n
i n Fi g. 7( b), i n e a c h s e e n cl ass, m ost of t h e pr o b a bilit y v al u es
ar e c o n c e ntr at e d o n t h e l eft si d e of t h e hist o gr a m (i. e., s m all
pr o b a bilit y), s o w e c a n e asil y d et e ct t h e m a n d cl assif y t h e m

i nt o u ns e e n cl ass. H o w e v er, If w e o nl y o bt ai n o n e pr o b a bilit y
o ut p ut a n d d o n ot h a v e t h e s a m pli n g pr o c ess, t h e u ns e e n n o d e
mi g ht b e mis cl assi fi e d r a n d o ml y.

2) T h e C o nf usi o n M atri x: I n or d er t o v erif y t h e eff e c-
ti v e n ess of O p e n W G L i n diff er e nti ati n g s e e n cl ass n o d es vs.
u ns e e n cl ass n o d es, Fi g. 8 r e p orts t h e c o nf usi o n m atri x of
O p e n W G L o n C or a n et w or k, w h er e “- 1 ” d e n ot es u ns e e n cl ass.
T h e r es ults s h o w t h at O p e n W G L c orr e ctl y i d e nti fi es 8 7 %
of u ns e e n cl ass n o d es a n d als o r e m ai ns a hi g h a c c ur a c y i n
cl assif yi n g s e e n cl ass n o d es.

VI. C O N C L U S I O N S

I n t his p a p er, w e st u di e d a n e w o p e n- w orl d gr a p h l e ar ni n g
pr o bl e m. We ar g u e d t h at tr a diti o n al gr a p h l e ar ni n g t as ks ar e
b as e d o n t h e cl os e d- w orl d s etti n g ( i. e., cl assif yi n g n o d es
i nt o cl ass es alr e a d y k n o w n, s o t h e y c a n n ot c orr e ctl y cl assif y
n e w/ u ns e e n cl ass n o d es). I n t h e p a p er, w e a d v o c at e d a n o p e n-
w orl d gr a p h l e ar ni n g p ar a di g m w hi c h n ot o nl y cl assi fi es n o d es
b el o n gi n g t o s e e n cl ass es i nt o c orr e ct gr o u ps, b ut als o cl assi fi es
n o d es n ot b el o n gi n g t o e xisti n g cl ass es t o a n u ns e e n cl ass. T o
a c hi e v e t h e g o al, w e pr o p os e d a o p e n- w orl d gr a p h l e ar ni n g
( O p e n W G L) fr a m e w or k wit h t w o m aj or c o m p o n e nts: ( 1) n o d e
u n c ert ai nt y r e pr es e nt ati o n l e ar ni n g, a n d ( 2) o p e n- w orl d cl as-
si fi er l e ar ni n g. T h e f or m er l e ar ns a distri b uti o n f or e a c h n o d e
e m b e d di n g vi a a gr a p h v ari ati o n al a ut o e n c o d er t o c a pt ur e t h e
u n c ert ai nt y, a n d t h e l att er mi ni mi z es t h e l a b el l oss a n d cl ass
u n c ert ai nt y l oss si m ult a n e o usl y t o disti n g uis h s e e n a n d u ns e e n
cl ass n o d es, usi n g a ut o m ati c all y d et er mi n e d t hr es h ol d. E x p er-
i m e nts s h o w e d t h at w h e n u ns e e n cl ass pr es e nts i n t est d at a,
O p e n W G L si g ni fi c a ntl y o ut p erf or ms b as eli n e i n cl assif yi n g
b ot h s e e n a n d u ns e e n cl ass n o d es. W h e n n et w or ks d o n ot h a v e
u ns e e n cl ass n o d es ( o nl y c o nt ai n n o d es fr o m s e e n cl ass es),
O p e n W G L h as a c o m p ar a bl e p erf or m a n c e as t h e b as eli n e.
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(a) The visualization of two randomly selected nodes from seen classes.
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(b) The visualization of of two randomly selected nodes from unseen class.

Fig. 7: A case study of the OpenWGL sampling results with two randomly selected nodes from seen classes and unseen class

on Cora, respectively. Each row denotes one node, “True” denotes that the node belongs to this class, and “False” means

that the node does not belong to this class. (a) two nodes randomly selected from seen classes, and (b) two nodes randomly

selected from unseen class. The x−axis denotes the probability output of each node through the softmax classifier, and the

y−axis denotes the frequency appearing in each class.
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Fig. 8: The confusion matrix of OpenWGL on Cora. “-1”

denotes the unseen class and “0,1,2,3,4,5” are seen classes.
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