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Abstract 

The collection of chemical structure information and associated experimental data for quantitative structure–activity/
property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing 
large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data 
and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties 
of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly 
available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. 
These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and 
the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure 
was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for 
QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descrip-
tors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and 
mechanistically interpretable descriptors (2–15, with an average of 11 descriptors). The sizes of the modeled datasets 
varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemi-
cals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using 
fivefold cross-validation (CV) and test sets (25%). The CV  Q2 of the models varied from 0.72 to 0.95, with an average of 
0.86 and an  R2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described 
in QSAR model reporting format and were validated by the European Commission’s Joint Research Center to be OECD 
compliant. All models are freely available as an open-source, command-line application called OPEn structure–activ-
ity/property Relationship App (OPERA). OPERA models were applied to more than 750,000 chemicals to produce 
freely available predicted data on the U.S. Environmental Protection Agency’s CompTox Chemistry Dashboard.
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Background
�e increase in the number and quantity of manufac-

tured chemicals finding their way into the environment is 

proportionally increasing potential exposures of humans 

and wildlife to potentially harmful substances [1–7]. Due 

to constraints associated with time, costs, and animal 

welfare issues, most of these chemicals lack experimen-

tally measured properties [8–11]. To quickly assess large 

numbers of chemicals for potential toxicity at reasonable 

cost, the U.S. Environmental Protection Agency (EPA) 

and other regulatory agencies need to develop new, 

more efficient testing and evaluation methods [2, 12–18]. 

Over the past decade, high-throughput screening (HTS) 

approaches developed by the pharmaceutical industry for 

drug discovery have been used as alternative approaches 

to traditional toxicity tests for environmental chemicals 

[19–22]. At the EPA, since 2007, the National Center 
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for Computational Toxicology (NCCT) has been evalu-

ating HTS approaches through its ToxCast program [9, 

22–24]. However, because tens of thousands of chemicals 

require screening [3, 7, 15, 18, 25], faster and more cost-

effective in silico methods such as quantitative structure–

activity/property relationships (QSAR/QSPR) modeling 

approaches [13, 16, 18, 26–28] are needed to prioritize 

chemicals for testing.

�e growing use of QSAR modeling approaches for vir-

tual screening and data gap filling by the scientific com-

munity is establishing QSAR models as internationally 

recognized alternatives to empirical testing by regula-

tory agencies and organizations such as REACH and the 

United Nations Globally Harmonized System of Classifi-

cation and Labeling of Hazardous Chemicals [18, 28–33]. 

In addition to aiding in prioritization, QSAR models 

including other calculated descriptors and predicted 

chemical properties [23, 34] can help overcome difficul-

ties that may arise during in  vitro to in  vivo extrapola-

tion (IVIVE) or exposure assessment. �erefore, reliable 

predictions for both physicochemical properties and 

environmental fate endpoints are needed for risk assess-

ment as well as prioritization for testing, among other 

applications.

�e most widely used chemical properties in toxico-

logical studies, risk assessment, and exposure studies are 

associated with bioavailability, permeability, absorption, 

transport, and persistence of chemicals in the body and 

in the environment [35–39]. �ese properties (includ-

ing, but not limited to, the octanol–water partition 

coefficient, water solubility, melting point, bioconcentra-

tion factor, and biodegradability) have been extensively 

modeled using QSAR/QSPR approaches using existing 

experimental data [18, 36, 37, 40–43]. �e QSAR concept 

is based on the congenericity principle, which hypothe-

sizes that similar structures have similar properties and 

exhibit similar biological activities [44–47]. However, not 

all QSAR models are suitable for regulatory purposes 

because most use proprietary data and algorithms or lack 

documentation and transparency.

Several modeling guidance documents have been pub-

lished [29, 48–52] to support the use of QSAR models 

in regulatory decision. In this study, OECD principles 

for building robust QSAR models were followed, if pos-

sible. �e five OECD principles were: a defined end-

point; an unambiguous algorithm; a defined applicability 

domain (AD); appropriate measures for goodness-of-fit, 

robustness, and predictivity; and a mechanistic inter-

pretation, if possible. �is study, focused on develop-

ment of QSAR/QSPR models for physicochemical 

properties, primarily using data from the publicly avail-

able PHYSPROP database [53] consisting of a set of 13 

common physicochemical properties and environmental 

fate endpoints (Table 1).

In this study, every endpoint was well defined, with 

documented sources and data curated from the pub-

licly available PHYSPROP database [53–55]. In addition, 

genetic algorithms (GA) were employed during the vari-

able selection step to identify a minimum number of the 

most suitable descriptors for each endpoint [56–58]. A 

weighted k-nearest neighbor (kNN) approach was used 

for model fitting to make the models as simple as possi-

ble [59, 60]. Goodness-of-fit, robustness, and predictiv-

ity were evaluated using internal fivefold cross-validation 

(CV) and external test set techniques [51, 61, 62]. �e AD 

of the developed models were defined using local five-

nearest neighbor and global leverage approaches [63–65]. 

�e mechanistic associations between the descriptors 

and the endpoint being predicted were investigated 

and provided in QSAR model reporting format reports 

(QMRF) and registered in the European Commission’s 

Joint Research Center (JRC) QMRF Inventory [66, 67].

All models are freely available as an open-source, 

command-line application called OPERA (OPEn struc-

ture–activity/property Relationship App) [68, 69]. For 

transparency, all curated data used for training and test-

ing as well as the QMRF documentation for each model 

are available in the Additional file 1: S1, a GitHub reposi-

tory, ResearchGate, and the JRC’s QMRF Inventory [67, 

69–82]. �e OPERA models were used to predict prop-

erties for about 750,000 organic chemicals from the 

Distributed Structure-Searchable Toxicity (DSSTox) 

database and made publicly available, along with the 

experimental data, detailed prediction reports, and JRC 

validated QMRFs, through the EPA’s CompTox Chemis-

try Dashboard at https://comptox.epa.gov/dashboard/ 

[83, 84].

Methods
Datasets

Although there has been a dramatic increase in the num-

ber of data collections available for QSAR modeling over 

the last decades, the quality of the chemical structure 

information and associated experimental data remains 

of concern [85–88]. For the purpose of this modeling 

study, extensive curation work was conducted on 13 pub-

licly available PHYSPROP physicochemical property and 

environmental fate datasets as previously reported [53, 

54]. Data quality is important for QSAR/QSPR mod-

els and their predictive ability, as been demonstrated 

in previous work using the logP dataset which showed 

improved performance after curation [54]. �e curation 

and correction of errors in the structure and identity of 

chemicals was performed using an automated workflow 

https://comptox.epa.gov/dashboard/
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developed using the Konstanz Information Miner 

(KNIME), a free open-source data analytics, reporting, 

and integration platform [89].

As a first step in data curation, the workflow identified 

and corrected (when possible) errors and mismatches 

in chemical structure formats and identifiers (chemi-

cal names, Chemical Abstracts Service Registry Num-

bers [CASRN], Simplified Molecular Input Line Entry 

Specification [SMILES], and MOL), and various struc-

ture validation issues, including hypervalency and ste-

reochemistry descriptions [90–93]. Data quality then was 

rated on a scale of 1–4, and only the top 2 classes (anno-

tated as 3- and 4-star classes) were used as the model 

training data as explained in Mansouri et al. [54].

During the second step, QSAR-ready structures were 

generated from the high-quality chemical structure and 

property data using a KNIME standardization work-

flow developed previously [6, 94, 95]. �e QSAR-ready 

workflow decreases the number of structures through 

the removal of duplicates generated by the standardiza-

tion procedure. �e standardization procedure includes 

removal of salt counterions (while retaining salt informa-

tion in a separate field for potential later use), removal of 

stereochemistry, standardization of tautomers and nitro 

groups, correction of valences, neutralization of struc-

tures when possible, and removal of duplicates, among 

other steps, based on the International Chemical Iden-

tifier (InChI) code of the QSAR-ready structure. Due 

to its importance for melting point and boiling point 

endpoints, information regarding salts was considered, 

together with the QSAR-ready InChI code, during the 

duplicates removal step of these two specific datasets (see 

“Discussion”).

During the third step, modeling, the average experi-

mental value was used if the difference between the 

duplicates was not significantly high (based on the stand-

ard deviation of the whole dataset). Otherwise, both 

duplicates were considered outliers and removed. Table 2 

summarizes the evolution of the number of chemicals for 

the 13 datasets over the three steps.

Descriptor calculation

�e curated chemical structures were used to calculate 

molecular descriptors using the free and open-source 

software PaDEL [96]. PaDel was used to calculate only 

1D and 2D descriptors; 3D descriptors were avoided even 

though they could potentially add useful chemical infor-

mation about the molecules [27, 97]. We decided to use 

only 2D descriptors to keep the models as simple as pos-

sible, to speed up predictions, and to avoid repeatability 

problems associated with 3D descriptor values. �ese 

can arise due to differences between conformers, espe-

cially with very flexible molecules requiring geometry 

optimization. �ese differences can affect the predict-

ability of the resulting chemical properties [98, 99]. To 

avoid inconsistencies due to explicit hydrogen atoms and 

interpretation of aromatic rings by the software during 

descriptor calculations, the aromaticity option was set to 

auto-detection as suggested by the PaDEL developers to 

fix known issues [100]. �e need for the auto-detection 

setting was verified by performing tests that confirmed 

that PaDEL can interpret aromaticity in different ways for 

the same chemical, depending on whether it is provided 

in MOL, SMILES, or SDF format, and can provide dif-

ferent values for certain descriptors, such as number of 

aromatic rings.

A total of 1444 molecular descriptors were calculated, 

including constitutional, topological, functional group 

counts; fragmental, atom-type E-state indices; and other 

physicochemical descriptors. To reduce collinearity 

Table 1 Endpoint datasets in the PHYSPROP database

Property abbreviation Property Source SD file

AOH Atmospheric hydroxylation rate EPI_AOP_Data_SDF.sdf

BCF Bioconcentration factor EPI_BCF_Data_SDF.sdf

BioHL Biodegradability half-life EPI_BioHC_Data_SDF.sdf

BP Boiling point EPI_Boil_Pt_Data_SDF.sdf

HL Henry’s Law constant EPI_Henry_Data_SDF.sdf

KM Fish biotransformation half-life EPI_KM_Data_SDF.sdf

KOA Octanol–air partition coefficient EPI_KOA_Data_SDF.sdf

KOC Soil adsorption coefficient EPI_PCKOC_Data_SDF.sdf

logP Octanol–water partition coefficient EPI_Kowwin_Data_SDF.sdf

MP Melting point EPI_Melt_Pt_Data_SDF.sdf

RB Readily biodegradable EPI_Biowin_Data_SDF.sdf

VP Vapor pressure EPI_VP_Data_SDF.sdf

WS Water solubility EPI_Wskowwin_Data_SDF.sdf
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among descriptors, a correlation filter with a threshold 

of 0.96 was applied. For each pair of descriptors with a 

correlation coefficient higher than the threshold, the one 

showing the largest pair correlation with all the other 

descriptors was excluded. �en, descriptors with con-

stant, near-constant (using a standard deviation of 0.25 as 

a threshold), or at least one missing value were removed. 

�e remaining reduced sets ranging from 800 to 1000 

descriptors were used for subsequent modeling analysis.

Fitting algorithm

Several model-fitting techniques have been used in the 

literature to model physicochemical properties and bio-

logical activity endpoints [101–106]. �e application of 

these methods, based on different mathematical strate-

gies with varying degrees of complexity, aims to explore 

chemical space and balance potential biases inherent in 

each single modeling algorithm. However, the increase in 

model complexity is not always justified with statistically 

significant increases in predictive accuracy [107, 108]. 

Because the goal of this study is to facilitate the inter-

pretability of the models (a requirement of regulators 

according to OECD guidelines), one of the simplest yet 

highly reliable methods, kNN, was selected [59, 60, 103, 

109]. �is method can be applied to both quantitative 

and qualitative data and is very similar to read-across, a 

widely used method in the regulatory field [110, 111].

�e kNN method was applied to estimate the best 

relationship between chemical information, encoded 

in molecular descriptors, and the modeled activity of 

chemicals based on the closest chemicals to the query 

chemical. Its classification rule is conceptually quite sim-

ple: each predicted chemical is classified according to the 

majority of its k nearest neighbors in the selected descrip-

tor space of the training set. In this study, the classical 

kNN classification algorithm has been refined so that 

the contribution of each of the k neighbors is weighted 

according to distance to the query point, giving greater 

weight to closer neighbors [18, 112]. �e weighted kNN 

algorithm uses the Euclidean metric to measure dis-

tances between molecules. �e Euclidean distance was 

calculated using the auto-scaled descriptor values [113, 

114]. For each dataset, first the training set was scaled, 

and its parameters saved. �en, the test set was scaled 

using the same parameters. Even with this refinement, 

the weighted kNN is an unambiguous algorithm that ful-

fills the transparency requirements of OECD principle 2, 

with an optimal compromise between model complexity 

and performance.

Variable selection

Variable selection techniques are usually applied to find 

the optimal subset with a minimum number of molecu-

lar descriptors [57, 115]. �is step consisted of coupling 

GA with the weighted kNN algorithm, and was applied in 

fivefold CV on the auto-scaled training set (75% of each 

dataset). GA starts from an initial random population of 

chromosomes, which are binary vectors representing the 

presence or absence of the molecular descriptors [56–

58]. An evolutionary process is simulated to optimize 

a defined fitness function, and new chromosomes are 

obtained by coupling the chromosomes of the initial pop-

ulation with genetic operations (crossover and mutation). 

�is evolution process was repeated 100 times for each of 

the 100 consecutive independent runs, with a 0.01 prob-

ability of mutation and a 0.5 probability of crossover on 

Table 2 Numbers of chemicals associated with PHYSPROP datasets before and after curation and QSAR-ready standardi-

zation workflows

a Percentages relative to the original dataset shown in parentheses; 2D descriptors only used

Property No. of chemicals in dataset No. of top-quality  chemicalsa No. of QSAR-ready  chemicalsa

AOH 818 818 (100%) 745 (91.1%)

BCF 685 618 (90.2%) 608 (88.7%)

BioHL 175 151 (86.3%) 150 (85.7%)

BP 5890 5591 (94.9%) 5436 (92.3%)

HL 1829 1758 (96.1%) 1711 (93.5%)

KM 631 548 (86.8%) 541 (85.7%)

KOA 308 277 (90%) 270 (87.7%)

KOC 788 750 (95.2%) 735 (93.3%)

LogP 15,806 14,544 (92%) 14,041 (88.8%)

MP 10,051 9120 (90.7%) 8656 (86.1%)

RB 1265 1196 (94.5%) 1171 (92.5%)

VP 3037 2840 (93.5%) 2716 (89.4%)

WS 5764 4372 (75.8%) 4224 (73.3%)
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30 chromosomes. �e generations of populations are 

evaluated and ranked during the evolution process based 

on goodness-of-fit functions used to optimize the mod-

els and calculated in CV, maximizing the accuracy and 

minimizing the number of descriptors. �e number of 

neighbors (k) was optimized within the range of 3–7. �e 

k value giving the lowest classification error in CV was 

selected as the optimal value. �e descriptors were then 

ranked based on frequency of selection during the GA 

runs, and the final set of descriptors encoding the most 

relevant structural information to the modelled endpoint 

was picked in a forward-selection manner. If the algo-

rithm did not converge during the first 100 runs, another 

round of 100 runs was performed on the top performing 

half of the initial set of descriptors, ranked by frequency 

of selection during the first 100 runs.

Validation methods

Each of the 13 datasets was randomly divided into train-

ing and test sets containing 75 and 25% of the total num-

ber of considered molecules, respectively. Selection was 

performed maintaining a distribution of the quantita-

tive data values and class proportions for the qualitative 

data. �e outcome was that the number of test molecules 

for each range/class was proportional to the number of 

training molecules of that range/class. Figure 1 shows the 

distribution of logP values across the training and test 

sets. Figures similar to Fig. 1 were generated for the full 

set of models and are provided in the Additional file  1: 

S1. �ese figures can be viewed in the calculation reports 

on the CompTox Chemistry Dashboard [84] (https://

comptox.epa.gov/dashboard).

�e training set was used to select molecular descrip-

tors and to build the models. Molecules within the test 

set were used to evaluate the predictive ability of the built 

models. Fivefold CV was used during model optimiza-

tion and descriptor selection. �is procedure is similar 

to constantly dividing the initial set into training and test 

sets, containing 80 and 20% of the total number of chem-

icals, respectively.

Model performance

�is study used two types of models, a classification 

model for the RB dataset and continuous models for the 

other 12 datasets. �e performance of each type of model 

was evaluated as summarized below.

Classification model

�e performance of the classification model was evalu-

ated using sensitivity (Sn), the true positive rate, and spec-

ificity (Sp), the true negative rate. �ese statistical indices 

represent the ability of the model to correctly predict two 

classes, such as active and inactive molecules (readily 

biodegradable and non-readily biodegradable) [59, 116]. 

�ese indices are calculated from the confusion matrix, 

which collects the number of samples of the observed and 

predicted classes in the rows and columns, respectively 

[117]. �e classification parameters are defined using the 

number of true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN).

�e most important parameter considered during the 

evaluation step was the balanced accuracy (BA), usually 

expressed as a fraction calculated as follows:

where the Sn is calculated as follows:

and the Sp is calculated as follows:

In the case of two-class models, the Sn of one class cor-

responds to the Sp of the other class. �ese indices were 

used to better estimate performance of the classification 

model in the presence of a dataset with an unequal num-

ber of molecules in each class. In this study, BA, Sn, and 

Sp are expressed as ratios and not as percentages.

Continuous models

�e quality of continuous models was evaluated 

using two groups of statistical indices, goodness-of-fit 

parameters and goodness-of-prediction parameters. 

(1)BA =
(Sn + Sp)

2

(2)Sn =
TP

TP + FN

(3)Sp =
TN

TN + FP

Fig. 1 Distribution of experimental logP values between training and 
test sets

https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard
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Goodness-of-fit parameters measure the fitting ability 

and are used to measure the degree to which the model is 

able to explain the variance contained in the training set 

[118]. Traditionally, regression model quality is evaluated 

using the root mean square error (RMSE) calculated as 

the root of the average of the residual sum of squares:

where n is the number of training compounds, and ŷi and 

yi are the estimated and observed responses, respectively.

�e coefficient of determination R2 is a useful param-

eter because it is independent from the response scale, 

contrary to RMSE. (RMSE is in turn useful because it 

provides an estimate of the expected error magnitude on 

the scale of the property being calculated.) It is the square 

multiple correlation coefficient calculated as follows: 

where ŷi and yi are the estimated and observed responses, 

respectively, and ȳ is the average observed response over 

the n training compounds.

Goodness-of-prediction parameters measure the true 

predictive ability of a model and are related to the reli-

ability of prediction. �ese parameters are used in the 

validation step. �e most important parameters are the 

root mean square error in prediction (RMSEP) and the 

predictive squared correlation coefficient  Q2. RMSEP is 

calculated as follows:

where nEXT is number of test compounds, and ŷi and yi 

are the estimated and observed responses respectively.

Different ways of calculating  Q2 are available in the 

literature [50, 61, 62]. However, because RMSEP (and 

RMSE) depends on the scale reference,  Q2 must fulfill the 

ability of  R2 to be independent of the response scale [51]. 

Also, to be a subjective representative of the true predic-

tivity of a model,  Q2 must be invariant for a fixed RMSEP 

value, be invariant to the splitting of the external data 

into subsets (ergodic principle), and correlate perfectly 

with RMSEP. �is study used the  Q2 formula below dem-

onstrated by Todeschini et al. [51] because it is the only 

formula that fulfils all these requirements.

(4)RMSE =

√

∑n
i=1

(

yi − ŷi
)2

n

(5)R2
=

∑n
i=1

(ŷi − yi)
2

∑n
i=1

(

yi − ȳ
)2

(6)RMSEP =

√

∑nEXT
i=1

(

yi − ŷi
)2

nEXT

(7)Q2
= 1 −

∑nEXT
i=1

(

yi − ŷi
)2

/

nEXT

∑nTR
i=1

(

yi − ȳ
)2

/

nTR

where nEXT and nTR are the numbers of test and training 

compounds, respectively, and ŷi and yi are the estimated 

and observed responses, respectively.

Applicability domain and reliability assessment

�e modeling approach used in this study is applicable 

to heterogeneous collections of organic chemicals. As a 

result of the implementation of the models, several pieces 

of information are provided to help the user evaluate the 

reliability of a prediction. �e chemical structure is first 

assessed to see if it falls within the AD of the training 

set chemical space. �en, the accuracy of the predicted 

value is reported based on the accuracy of prediction 

of the neighboring chemicals in the training set using a 

leave-one-out procedure, weighted by similarity to the 

query chemical. �is approach fulfills the requirements 

of the third OECD principle by defining the limitations in 

terms of the types of chemical structures, physicochemi-

cal properties, and mechanisms of action for which the 

model can generate reliable predictions.

�e AD of the model is assessed at two independent 

levels using two different distance-based methods. First, 

a global AD is determined using a leverage approach 

that checks whether the query structure falls within the 

multidimensional chemical space of the whole training 

set [63]. �e leverage of a query chemical is proportional 

to its Mahalanobis distance measured from the centroid 

of the training set [119, 120]. �e leverages of a given 

n-chemical by p-descriptor matrix, X, are obtained from 

the diagonal values of the hat matrix, H, calculated as 

follows:

�is approach is associated with a threshold leverage that 

corresponds to 3 * p/n, where p is the number of model 

variables (descriptors) and n is the number of training 

compounds. A query chemical with leverage higher than 

the threshold is considered outside the AD and can be 

associated with unreliable prediction.

�e leverage approach has specific limitations, in par-

ticular with respect to gaps within the descriptor space 

of the model or at the boundaries of the training set. 

To obviate such limitations, a second tier of AD assess-

ment was added. �is is a local approach, which only 

investigates the vicinity of the query chemical. �is local 

approach provides a continuous index ranging from 0 

to 1, which differs from the first approach that provides 

only Boolean answers (yes or no). �is local AD index 

is relative to the similarity of the query chemical to its 

five nearest neighbors in the p-dimensional space of the 

model using a weighted Euclidean distance. �e higher 

this index, the more the prediction is expected to be 

reliable.

(8)H = X(XT
X)−1

X
T
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�ese two AD methods are complementary and can be 

interpreted as summarized below.

  • If a chemical is considered outside the global AD and 

has a low local AD index (< 0.4), the prediction can 

be unreliable.

  • If a chemical is considered outside the global AD but 

the local AD index is average (0.4–0.6), the query 

chemical is on the boundary of the training set but 

has quite similar neighbors (average reliability). If the 

local AD index is high (> 0.6), the prediction can be 

trusted.

  • If a chemical is considered inside the global AD but 

the local AD index is average (0.4–0.6), the query 

chemical falls in a “gap” of the chemical space of 

the model but still falls within the boundaries of the 

training set and is surrounded with training chemi-

cals. �e prediction therefore should be considered 

with caution.

  • If a chemical is considered inside the global AD and 

has a high local AD index (> 0.6), the prediction can 

be considered reliable.

A confidence level index also was calculated based on the 

accuracy of the predictions of the five nearest neighbors 

weighted by their distance to the query chemical. �is 

index gives the user an estimate regarding the reliability 

of the prediction when the query chemical is inside the 

AD. Further details about the implementation of AD 

approaches can be found in Sahigara et al. [63].

Software and calculations

Data-mining steps, including structures and experimen-

tal data pre-treatment, QSAR-ready data preparation, 

and training/test set splitting were performed using 

KNIME (version 3) [89]. Molecular descriptors were 

calculated using PaDEL software (version 2.21) from 

QSAR-ready structures in SDF files [96]. All modeling 

steps and calculations, including GA variable selection, 

model fitting, and validation as well as AD and accuracy 

assessment were performed using MATLAB (version 8.2, 

glnxa64) [121].

Results
Descriptor selection and model fitting

�e curation step performed during previous work [54] 

helped in the selection of the highest quality data from 

the publicly available PHYSPROP [53] database for the 

13 available physicochemical property and environmen-

tal fate datasets (Table 1). �e resulting validated chem-

ical structures were used to calculate PaDEL 1D and 2D 

descriptors (a total set of 1444). Although certain filters 

were applied (collinearity, missing values, and constant 

and near-constant), large numbers of descriptors (800–

1000 across all datasets) remained available for mod-

eling. To include only the most pertinent descriptors 

in the QSAR models, the variable selection procedure 

was performed on training chemicals (75% of the data) 

in two subsequent steps. �e initial 100 independent 

GA runs were conducted on the full list of the descrip-

tors associated with each dataset, then a second set of 

100 independent GA runs were conducted on the 50% 

of descriptors that showed the highest frequency of 

selection during the first round. �is two-step approach 

was adopted in order to ensure the convergence of the 

selection towards the same final subset with the high-

est frequency of selection. �e subsets of molecular 

descriptors yielding the highest model performance 

were selected at the end of the second round of GA 

(forward step selection based on decreased frequency 

of selection), and were used to fit and calibrate the final 

models. �e final models were selected by considering a 

minimum number of descriptors and keeping a balance 

between statistics in fitting and in fivefold CV. �is pro-

cedure has been shown to minimize the risk of overfit-

ting [58, 61, 112].

�e QSAR models were validated using the test set 

molecules, which did not participate in the descriptor 

selection and model fitting and calibration steps. Train-

ing and test sets for all OPERA models are provided in 

the Additional file 1: S1.

Models and performance

Table  3 summarizes the performance of the selected 

models. 

�e continuous models yielded Test  R2 in the range of 

0.71–0.96. For most of the models the external  R2 and 

the internal  Q2 are close in value, which indicates that 

overfitting has not occurred. �e exceptions are BioHL 

(0.89–0.75), KM (0.83–0.73) and KOC (0.81–0.71). �e 

drop in performance for these properties could be due to 

the biological complexity of these endpoints compared 

to the physicochemical properties. �e final models use 

small numbers of descriptors which helps with model 

transparency and facilitates mechanistic interpretation, 

as required by OECD principles 2 and 5. Indeed, the 

number of descriptors ranged from only 2 descriptors for 

KOA to 16 descriptors for MP, with an average of about 

10 descriptors. �e RB model, a classification model, 

also shows the same robustness as the continuous mod-

els, with an additional characteristic that is the balance 

between the Sn and Sp parameters, indicating that the 

model is as good at predicting readily biodegradable mol-

ecules versus non-readily biodegradable molecules.
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Implementation of the models in OPERA

All 13 models were implemented in MATLAB and com-

piled into OPERA, a standalone command-line applica-

tion for Microsoft Windows and Linux [68, 69]. �is 

application uses an input file containing one or multiple 

QSAR-ready structures in SMILES strings or MOL or 

SDF format. (A QSAR-ready workflow will be imple-

mented in a future version of OPERA.) After parsing and 

checking the structures, OPERA calculates the necessary 

descriptors for the requested models using the embed-

ded PaDEL software (version 2.21) with its developer’s 

recommended options for consistency [96, 100]. It then 

writes the requested results to a tab-delimited txt file or 

a comma-delimited csv file. �e output file contains the 

OPERA predictions, AD and accuracy assessment, and 

up to five nearest neighbors from the training set. �e 

neighbors are identified by their CASRNs, QSAR-ready 

InChI keys, and a unique DSSTox database substance 

identifier (DTXSID) that links them to the CompTox 

Chemistry Dashboard [84]. All these details are provided 

in the output of single chemical and batch mode calcu-

lation. However, the CompTox Dashboard provides AD 

and accuracy assessment for one chemical per page but 

in batch mode downloading provides predictions only 

[84, 122]. Pre-calculated PaDEL descriptors can also be 

used as inputs to avoid re-calculating them, which can 

be time-consuming for large files (such as the DSSTox 

database of over 700K structures). �e users are given 

different options for both input and output to allow for 

additional flexibility. �e available input/output options 

and usage arguments are described in a help file provided 

as Additional file 2: S2.

OPERA executables (current version 1.5), C/C++ 

libraries, and the associated MATLAB source code are 

available for free on Github under the Massachusetts 

Institute of Technology (MIT) license (https://github.

com/kmansouri/OPERA.git) together with the data and 

QMRFs (Table 4) that are also available in the Additional 

file 1: S1 and on the JRC repository [67].

OPERA applied to the CompTox Chemistry Dashboard

�e curation of PHYSPROP datasets and the development 

of the OPERA models were part of the CompTox Chem-

istry Dashboard project [84]. �e CompTox Chemistry 

Dashboard is a web-based application and data hub devel-

oped by EPA’s NCCT [83]. Chemical substances surfaced 

via the Dashboard are hosted in the underlying DSSTox 

database with associated identifiers (such as CASRNs, sys-

tematic and common names, and other chemical structure 

identifiers, including InChIs and SMILES strings). �e 

Dashboard is used to search the DSSTox database using 

a simple alphanumeric text entry box accessible on the 

home page [83]. A successful search result will result in a 

chemical page header that provides the following [123]:

  •  Chemical structure image (with the ability to down-

load in MOL file format).

  •  Intrinsic properties (such as molecular formula and 

monoisotopic mass).

  •  Chemical identifiers (such as systematic name, 

SMILES string, InChI string, and InChIKey).

  •  Related compounds (based on molecular skeleton 

search, molecular similarity search, and presence of 

the chemical in various mixtures and salt forms).

Table 3 Performance of the selected models in fitting, CV, and on the test sets

Property No. of descriptors Fivefold CV (75%) Training (75%) Test (25%)

Q2 RMSE Dataset R2 RMSE Dataset R2 RMSEP

AOH 13 0.85 1.14 516 0.85 1.12 176 0.83 1.23

BCF 10 0.84 0.55 469 0.85 0.53 157 0.83 0.64

BioHL 6 0.89 0.25 112 0.88 0.26 38 0.75 0.38

BP 13 0.93 22.46 4077 0.93 22.06 1358 0.93 22.08

HL 9 0.84 1.96 441 0.84 1.91 150 0.85 1.82

KM 12 0.83 0.49 405 0.82 0.5 136 0.73 0.62

KOA 2 0.95 0.69 202 0.95 0.65 68 0.96 0.68

KOC 12 0.81 0.55 545 0.81 0.54 184 0.71 0.61

LogP 9 0.86 0.69 10,537 0.86 0.67 3513 0.86 0.78

MP 16 0.74 50.20 6486 0.75 49.12 2167 0.74 52.27

VP 12 0.91 1.08 2034 0.91 1.08 679 0.92 1

WS 11 0.87 0.81 3158 0.87 0.82 1066 0.86 0.86

Property Descriptor BA Sn–Sp Dataset BA Sn–Sp Dataset BA Sn–Sp

RB 10 0.8 0.82–0.78 1197 0.8 0.82–0.79 411 0.79 0.81–0.77

https://github.com/kmansouri/OPERA.git
https://github.com/kmansouri/OPERA.git
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  •  List of databases in which the chemical is present 

(such as ToxCast and Tox21).

  •  Record citation, including the unique DTXSID.

Figure  2 shows a search chemical page header for 

atrazine.

Below the header are a series of data tabs (shown in 

the red box in Fig.  2). �e “Chemical Properties” tab 

(expanded in Fig. 3) and Environmental Fate and Trans-

port tabs contain experimental properties assembled 

from various sources and properties predicted by a series 

of algorithms, including (1) ACD/Labs predicted data 

sourced from Open PHACTS [124]; (2) EPI Suite data 

sourced from [53]; (3) NICEATM predictions for a small 

number of properties [37]; and (4) OPERA predicted 

data, discussed in more detail below.

�e experimental and predicted chemical properties 

data tables show the average, median, and range of prop-

erties associated with a particular chemical (Fig. 4). 

Both National Toxicology Program Interagency Center 

for the Evaluation of Alternative Toxicological Methods 

(NICEATM) and OPERA QMRF reports are available as 

PDF files via a hyperlink. In addition to the QMRFs [70–

82], additional information about OPERA predictions is 

provided in a detailed calculation report (Fig.  5), which 

adds another level of transparency by showing the global 

performance of the models, the AD, and the reliability 

assessment. It also provides up to five nearest neighbors 

from the training set (where available), with their experi-

mental and predicted values as an additional reliability 

assessment for the user.

A batch search allows users to input search lists, 

including chemical names, CASRNs, and InChI Keys, 

and to retrieve formulae, masses, DTXSIDs, and other 

data related to chemical bioactivity and exposure, includ-

ing the download of data associated with OPERA pre-

dictions as either tab-separated values or Excel or SDF 

files. An example downloaded Excel table with predicted 

OPERA values is provided as Additional file 3: S3.

A detailed help file regarding how to use the Dashboard 

is available online (https://comptox.epa.gov/dashboard/

help). Various subsets of data associated with the Dash-

board are available as open data and can be obtained from 

the downloads page (https://comptox.epa.gov/dashboard/

downloads). �e download page also provides access to 

a zip file containing training and test data sets associated 

with the OPERA models and the KNIME workflows used 

for the original curation of the PHYSPROP data.

Discussion
OPERA logP modeling

�e QSAR community has extensively modeled multiple 

physicochemical properties, such as logP, using different 

approaches [38, 41, 125–128]. Most of these published 

models are reported with  R2 for fitting and  R2/Q2 valida-

tion within a range of 0.8–0.9. However, the possibility of 

objective comparisons is undermined by the absence of 

standardized metrics and evaluation equations as well as 

the lack of transparency in training and test sets of chem-

icals and data, AD, descriptors, and code or executables. 

�is study attempts to deliver transparency in terms 

of access to data and model performance statistics. �e 

classical approach of comparing models by global  R2/Q2 

fitting performance may or may not reflect higher predic-

tive ability, especially when dealing with different sizes of 

datasets, for example. �erefore, comparisons of model 

fit should be local and specific, not based on overall sta-

tistics. Also, every model, even though it may be built 

correctly and validated, has its own strengths and limita-

tions [129]. A model should include tools that can help 

assess the reliability of its predictions. A model can be 

evaluated locally only within its AD, which is the interpo-

lation space of the training set [63, 64]. Any extrapolation 

outside of that specific area of structure space is most 

likely unreliable.

�e logP model presented in this study showed good 

overall performance and, more importantly, also dem-

onstrated stable statistics across the different steps of 

Table 4 The QMRF reports published online

Property JRC report ID DOI

AOH Q17-22b-0024 https://doi.org/10.13140/
RG.2.2.24685.59368/2

BCF Q17-24a-0023 https://doi.org/10.13140/
RG.2.2.17974.70722/1

BioHL Q17-23b-0022 https://doi.org/10.13140/
RG.2.2.34751.92320/1

BP Q17-12-0021 https://doi.org/10.13140/
rg.2.2.33074.20160/1

HL Q17-19-0020 https://doi.org/10.13140/
rg.2.2.17764.99201/1

KM Q17-66-0019 https://doi.org/10.13140/
rg.2.2.31186.76482/1

KOA Q17-18-0018 https://doi.org/10.13140/
rg.2.2.14409.54883/1

KOC Q17-26-0017 https://doi.org/10.13140/
rg.2.2.27831.32163/1

LogP Q17-16-0016 https://doi.org/10.13140/
rg.2.2.12731.82723/1

MP Q17-11-0015 https://doi.org/10.13140/
rg.2.2.26153.60003/1

RB Q17-23a-0014 https://doi.org/10.13140/
rg.2.2.19442.71369/1

VP Q17-14-0013 https://doi.org/10.13140/
rg.2.2.32864.48641/1

WS Q17-13-0012 https://doi.org/10.13140/
rg.2.2.16087.27041/1

https://comptox.epa.gov/dashboard/help
https://comptox.epa.gov/dashboard/help
https://comptox.epa.gov/dashboard/downloads
https://comptox.epa.gov/dashboard/downloads
https://doi.org/10.13140/RG.2.2.24685.59368/2
https://doi.org/10.13140/RG.2.2.24685.59368/2
https://doi.org/10.13140/RG.2.2.17974.70722/1
https://doi.org/10.13140/RG.2.2.17974.70722/1
https://doi.org/10.13140/RG.2.2.34751.92320/1
https://doi.org/10.13140/RG.2.2.34751.92320/1
https://doi.org/10.13140/rg.2.2.33074.20160/1
https://doi.org/10.13140/rg.2.2.33074.20160/1
https://doi.org/10.13140/rg.2.2.17764.99201/1
https://doi.org/10.13140/rg.2.2.17764.99201/1
https://doi.org/10.13140/rg.2.2.31186.76482/1
https://doi.org/10.13140/rg.2.2.31186.76482/1
https://doi.org/10.13140/rg.2.2.14409.54883/1
https://doi.org/10.13140/rg.2.2.14409.54883/1
https://doi.org/10.13140/rg.2.2.27831.32163/1
https://doi.org/10.13140/rg.2.2.27831.32163/1
https://doi.org/10.13140/rg.2.2.12731.82723/1
https://doi.org/10.13140/rg.2.2.12731.82723/1
https://doi.org/10.13140/rg.2.2.26153.60003/1
https://doi.org/10.13140/rg.2.2.26153.60003/1
https://doi.org/10.13140/rg.2.2.19442.71369/1
https://doi.org/10.13140/rg.2.2.19442.71369/1
https://doi.org/10.13140/rg.2.2.32864.48641/1
https://doi.org/10.13140/rg.2.2.32864.48641/1
https://doi.org/10.13140/rg.2.2.16087.27041/1
https://doi.org/10.13140/rg.2.2.16087.27041/1
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modeling and validation (Table 3). �is indicates that the 

model is both robust and reliable. Figure 6 presents the 

experimental and predicted values for the training and 

test sets for logP.

In addition, the OPERA logP model is developed to 

compromise between model complexity and predictive 

ability, which are OECD recommendations for QSAR 

models developed for regulatory applications. �is model 

is built using an unambiguous weighted kNN algorithm 

and uses only nine descriptors (variables). Figures similar 

to Figs. 1 and 6 were generated for the full set of models 

and are provided in the Additional file 1: S1 as well as the 

calculation reports on the CompTox Chemistry Dash-

board [83, 84].

�e OPERA logP model performance was evaluated in 

relation to a reference model, EPI Suite’s KOWWIN logP 

model. �is model was chosen because the OPERA train-

ing set uses curated data derived from the PHYSPROP 

database, which in its original form was used to develop 

the KOWWIN logP model. �e exact training subset 

Fig. 2 Results search header for atrazine on the CompTox Chemistry Dashboard

Fig. 3 Summary view of experimental and predicted physicochemical properties
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Fig. 4 Melting Point (MP) experimental and predicted values from different sources

Fig. 5 OPERA prediction calculation report for the melting point of bisphenol A
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used to develop the EPI Suite KOWWIN model and the 

AD for the KOWWIN model are not fully known. �us, 

the comparison was not based on overall training, CV 

and test set but was performed locally for a specific sub-

set of the data.

To show localized improvement of the OPERA logP 

model compared to the KOWWIN logP model, a small 

subset of data (280 chemicals) was selected for which the 

KOWWIN logP model overestimates the values (repre-

sented by the red stars in Fig. 7).

Figure  8 shows that the OPERA model provides esti-

mations of logP closer to observed values than the EPI 

Suite KOWWIN model.

An investigation of the chemical space represented 

by the cluster in red was a specific family of chemicals. 

However, the 280 chemicals tested turned out to be het-

erogeneous, with no obvious common structural fea-

tures. It is possible that these chemicals are outside of 

the AD of KOWWIN’s training set but inside the AD of 

the OPERA logP model, which is built on a newer ver-

sion of the PHYSPROP database and possibly associated 

with a larger AD. �e comparison shows that different 

models can show similar global statistics but provide very 

different predictions for certain local regions of chemi-

cal space and local ADs. Here, for this specific subset,  R2 

and RMSE for KOWWIN were − 0.35 and 2.79, respec-

tively compared to an  R2 equal to 0.75 and an RMSE of 

1.19 for OPERA logP (Table 5). Such a difference in pre-

diction performance, even though it is significant for this 

specific group of chemicals, does not make a difference 

in the global statistics of a large dataset (280 vs ~ 10,000 

chemicals).

Another example of improved OPERA model predic-

tions for a local area of the chemical space is the logP 

data for nine polybrominated diphenyl ethers (PBDE) 

[130]. PBDEs (209 congeners) were commonly used as 

flame retardants but now are recognized for their toxic-

ity, persistence, and potential for bioaccumulation and 

long-range atmospheric transport [131]. PBDEs are con-

sidered persistent organic pollutants and are prioritized 

in regulations [132–134]. As Table 6 shows, the predicted 

logP values for a number of PBDEs were underestimated 

in older versions of the OPERA model. After retraining of 

the models using experimental data, the new predictions 

are more accurate for these nine PBDEs and therefore 

are hypothesized to be more accurate for the remain-

ing 200 congeners. Other congeners, such as BDE-104 

(DTXSID60879916) are predicted within the global and 

local AD (0.64) with a high confidence level (0.78) [135]. 

Even congeners considered outside the global AD, such 

as BDE-150 (DTXSID80879953), are associated with an 

acceptable local AD index (0.62) and high confidence 

level (0.78) [136]. �is last example shows the advantage 

of using two approaches for the AD (instead of a global 

one only) in addition to the confidence level in prediction 

that allows the user to make rational judgement about 

prediction reliability.

�rough the calculation reports associated with 

OPERA model predictions, the CompTox Chemistry 

Dashboard provides decision-makers specific quantita-

tive and qualitative information on how much to trust 

a particular prediction [84]. �e Dashboard enhances 

the transparency for the OPERA model predictions 

because it shows both the model strengths and limita-

tions. Visual inspection of the data represented in the 

prediction reports reveals a number of compounds 

outside the AD (both global and local) and associated 

with a low confidence level, making the prediction for 

those compounds unreliable. One example compound is 

Irganox 1010 (DTXSID1027633), which in the OPERA 

logP model has a local AD index of only 0.11 and a con-

fidence level of 0.2. �is low confidence level indicates 

that the prediction should not be considered accurate 

[137]. �e predicted logP value of 7.25 from the OPERA 

model seems to underestimate the value for this struc-

ture. Irganox 1010 had a measured logP value of 1.3 in 

the PHYSPROP logP training set but was considered 

an outlier and removed during the latest update of the 

Dashboard (released on August 11, 2017). Such chemi-

cals with few to no neighbors in the calculation report 

(https://comptox.epa.gov/dashboard/dsstoxdb/calcula-

tion_details?model_id=22&search=27633) do not have 

enough representatives in the training sets of the models 

and indicate the limits of model reliability. �is exam-

ple also shows that the AD approaches and confidence 

levels are useful ways to expose the boundaries of the 

covered interpolation space of a model and therefore its 

reliability.

Fig. 6 Experimental and predicted values for training and test set of 
OPERA logP model

https://comptox.epa.gov/dashboard/dsstoxdb/calculation_details%3fmodel_id%3d22%26search%3d27633
https://comptox.epa.gov/dashboard/dsstoxdb/calculation_details%3fmodel_id%3d22%26search%3d27633
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OPERA was recently compared with 7 other software 

applications in estimating logP, melting point, vapor 

pressure and water solubility for a dataset of polychlo-

rinated biphenyls, polybrominated diphenyl ethers, pol-

ychlorinated dibenzodioxins, and polycyclic aromatic 

hydrocarbons and demonstrated the best performance 

for the prediction of logP and good performance across 

the other parameters [122].

OPERA MP modeling with and without salts

Another benefit of the OPERA prediction reports on the 

Dashboard is consideration of the presence of salts in 

addition to the desalted QSAR-ready structures for MP 

estimation. �e influence of salt counterions on melting 

points is an important consideration for this particular 

endpoint. (All of the other endpoints model the behav-

ior of the salts in solution, where they are assumed to 

be largely ionized, so that the properties of the organic 

moiety will be independent of the counterion.) �e 

OPERA model’s ability to consider the presence of salts 

shows that the selection of fit-for-purpose standardiza-

tion workflows (such as the one used in this work [94, 

95]) to generate QSAR-ready structures for specific end-

points is important. Adding information regarding the 

salt form increases the prediction accuracy of the mod-

els by considering the correct nearest neighbors. Two 

examples demonstrate the increased prediction accuracy, 

guanidine (DTXSID0023117) and guanidine monohy-

drochloride (DTXSID7058757). For guanidine, both the 

PHYSPROP database and another source (Jean-Claude 

Bradley dataset [138]) agree that the measured MP is 

50  °C, while the MP of the salt form is 182  °C accord-

ing to the PHYSPROP database [139, 140]. �e OPERA 

model predicts the guanidine MP at 62.9 °C and displays 

unsalted neighbors on the prediction report [141]. How-

ever, for the salted form, guanidine monohydrochlo-

ride, the OPERA model predicts an MP of 182  °C, with 

only salted neighbors in the prediction report [142]. �e 

NICEATM model [37] predicts both salted and unsalted 

forms to have a MP of 88.4 °C, which clearly significantly 

underestimates the MP of guanidine monohydrochloride.

�e OPERA MP model can operate with and with-

out salt information by considering the salt form as the 

16th descriptor. To evaluate the impact of including 

and excluding this last descriptor on the statistics of the 

model, a comparison of the two modes was performed 

(Table 7).

Table  7 shows a slight improvement of the statistics 

for the mode with salts information. But these global 

statistics are for the whole training and test sets and do 

not reflect the influence on the salted compounds, which 

represent less than 2% of the two datasets.

Table 8 shows the improvement of the MP statistics for 

salt-form chemicals only. �is table compares the RMSE 

values for OPERA predictions for the two modes (with 

and without salts information) to those of the EPI Suite 

model. RMSEs are 20 °C lower using salts for the training 

set and 10 °C lower for the test set. However, even with-

out the salts information, the OPERA model MP predic-

tion RMSE is still more than 50 °C lower than EPI Suite 

model’s RMSE.

Fig. 7 LogP predictions for KOWWIN model. The overestimated 
cluster selected for comparison is highlighted in a red ellipse

Fig. 8 LogP predictions for KOWWIN model in purple stars compared 
to OPERA model in green circles

Table 5 Local comparison of OPERA logP and KOWWIN

Model R2 RMSE

OPERA logP 0.75 1.19

KOWWIN − 0.35 2.79
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Table  7 shows that predicting the MP for chemicals 

with salts is not easy because RMSE values are higher 

than the global RMSE values for the two modes. �e 

OPERA MP model is robust, with stable performance 

across training, fivefold CV, and test steps (RMSE of 

about 50  °C), but the model can be further improved 

by adding more experimental data from the literature. 

A recent work by Tetko et al. [143] reports an RMSE of 

32 °C for a model built on a dataset of 300,000 chemicals. 

However, this accuracy required 700,000 descriptors and 

expensive computational time, a tradeoff in model com-

plexity. �is large data set can be filtered down and added 

to the used PHYSPROP MP data to improve OPERA MP 

model accuracy and AD coverage and still comply with 

OECD principles.

OPERA model improvements

Since the initial development of the OPERA models 

using only the curated PHYSPROP dataset, additional 

changes have been made to the datasets before rebuilding 

the models. �e experimental data have been updated 

by removing outliers (with extreme values) and adding 

data from other sources (for properties such as logP, BCF, 

and RB) [18, 40, 112, 130]. �e models have also been 

refined and refitted, and the code has been optimized 

for speed and consistency. A new model predicting liq-

uid chromatography retention time (RT) at a 95% confi-

dence window of ± 4.5 min was developed as described 

in McEachran et al. [144] and also added to OPERA. �e 

EPA is engaged in research linking high resolution mass 

spectrometry data with high-throughput environmental 

monitoring [145] and is using the Dashboard to support 

the identification of “known unknowns” that benefits 

from OPERA models [146]. Additional parameters to 

assist in the identification of chemicals based on molec-

ular formula search hit lists is required, and predicted 

RTs can be a valuable parameter for this purpose. �e 

OPERA RT model has already been used in a non-tar-

geted screening analysis of drinking water conducted 

at the EPA [147]. OPERA logP, MP, VP and WS models 

were used in a recent environmental fate assessment 

study at the EPA showing good performance and room 

for improvement as well [122]. Additionally, OPERA 

models were used in a recent study to assess alternative 

risk assessment methods and inform the development of 

fit-for-purpose in vitro assays [148].

�e current version of OPERA (version 1.5) on Github 

was used to predict properties for the Dashboard release 

in August 2017. Since that period, we have continued to 

collect new data for RT, HL, logP, VP, and WS, and these 

data will be added to the existing training sets to refine 

the OPERA models [149]. With these additional data, 

further analysis including but not limited to Williams 

graphs for outlier detection and structure–activity land-

scapes for activity cliff detection will be carried out prior 

to modeling. �e use of other fitting methods and valida-

tion techniques will be investigated and the resulting best 

performing models will be implemented as additional 

predictive options in OPERA. New environmentally rel-

evant endpoints will also continue to be added to OPERA 

as data become available. Web services providing real-

time prediction capabilities based on SMILES-based 

Table 6 Newly added data for PBDEs and resulting OPERA model predicted logP values

DTXSID Name CASRN OPERA logP (old) Newly added data OPERA logP (new)

DTXSID40872703 BDE-17 147217-75-2 5.13 5.74 ± 0.22 5.80

DTXSID4052710 BDE-28 41318-75-6 4.17 5.94 ± 0.15 5.97

DTXSID3030056 BDE-47 5436-43-1 5.65 6.81 ± 0.08 6.56

DTXSID4052685 BDE-85 182346-21-0 6.00 7.37 ± 0.12 7.38

DTXSID9030048 BDE 99 60348-60-9 6.03 7.32 ± 0.14 7.38

DTXSID4052689 BDE-100 189084-64-8 6.04 7.24 ± 0.16 7.26

DTXSID4030047 BDE-153 68631-49-2 6.00 7.90 ± 0.14 7.72

DTXSID3052692 BDE-154 207122-15-4 5.94 7.82 ± 0.16 7.72

DTXSID8052693 BDE-183 207122-16-5 6.09 8.27 ± 0.26 8.19

Table 7 OPERA model prediction performance for MP with and without salt information

Mode Variables Fivefold CV (75%) Training (75%) Test (25%)

Q2 RMSE (°C) R2 RMSE (°C) R2 RMSEP (°C)

No salts 15 0.72 51.8 0.74 50.27 0.73 52.72

With salts 16 0.74 50.2 0.75 49.12 0.74 52.27
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structural inputs are presently in development, and the 

ability to draw a chemical structure in an entry web page 

as an input to all OPERA models is planned.

Conclusions
�e OPERA suite of prediction models was initially 

developed based on curated data from the public ver-

sion of the PHYSPROP database. �e ultimate goal of 

this project is to support regulatory decisions. �ere-

fore, the modeling procedure used to develop OPERA is 

based on the five OECD principles: well-defined phys-

icochemical and environmental fate endpoints; predic-

tive yet unambiguous algorithms used to fit the models; 

predictive ability assessed using different conventional 

methods; a thoroughly defined AD; and mechanistic 

interpretation of the used descriptors researched and 

provided in QMRFs validated by the JRC (see Addi-

tional file  1: S1). �e open-source OPERA code, data, 

executables, and QMRFs all are freely available under 

the Massachusetts Institute of Technology (MIT) open 

license.

OPERA models were used to predict properties for 

chemical structures contained within the DSSTox data-

base, and the prediction results and reliability assess-

ment reports are available on the EPA’s CompTox 

Chemistry Dashboard. OPERA data and prediction 

models will be continuously updated and will follow the 

regular releases of the Dashboard. Next versions will 

include more data from different sources, optimized 

code for speed and accuracy, and new features including, 

but not limited to, embedding the QSAR-ready structure 

generation workflow in the dashboard to allow real-time 

calculation of properties for new structures. Feedback 

from the users of the Dashboard regarding the models’ 

performance and assessment provides useful input and 

is taken into account in the development of iterative 

versions.

Additional files

Additional file 1: S1. Training and test sets of the models with the cor-
responding JRC validated QMRFs.

Additional file 2: S2. OPERA command line help file.

Additional file 3: S3. An example Excel table downloaded from the 
Chemistry Dashboard with predicted OPERA values.
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