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Operant matching is not a logical consequence 
of maximizing reinforcement rate 
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The distribution of behavior between concurrently available schedules of reinforcement 
approximates the distribution of reinforcements between the schedules. This equality, called 
matching, has been explained as an instance of the principle that organisms maximize rein- 
forcement rate. However, a precise account of the relationship between the distribution of 
behavior and reinforcement rate on the standard concurrent schedule shows that matching 
and maximizing are different. 

The orderly data of behavior under concurrent 
schedules of reinforcement provide an opportunity to 
test some of our assumptions about choice and the 
economics of behavior. One basic finding is that the 
proportion of choices at each reinforcement source 
approximates the proportion of reinforcements earned 
there (Herrnstein, 1970). Every species tested 
matches behavior proportions to reinforcement pro- 
portions (de Villiers, 1977), and this simple sym- 
metry has been found in free-ranging creatures as 
well (Baum, 1974). At a theoretical level, however, 
no consensus exists as to why organisms match 
(de Villiers, 1977). According to a recent account 
(Rachlin, Green, Kagel, & Batallio, 1976), organ- 
isms maximize the sum of the reinforcement rates 
from the competing sources and this leads to match- 
ing. Rachlin et al. (1976) explicitly adopted a micro- 
economic framework, but their theory is implicit 
in recent definitions of reinforcement (Baum, 1973a), 
and it is consistent with current optimizing theories 
in ecology (Rapport & Turner, 1977). Our purpose 
here is to give a precise account of the relationship 
between maximizing the overall reinforcement rate 
and matching in one situation often used to study 
choice in operant psychology, namely the concur- 
rent variable-interval variable-interval schedule (conc 
V1 VI). The result is that maximizing does not in 
general explain matching. 

On a conc VI VI schedule, reinforcements are 
made available by two independent timers. Each is 
associated with a manipulandum for responses, and 

the distribution of programmed interreinforcement 
intervals is usually exponential (Fleshler & Hoffman, 
1962). When an interval is completed at a timer, a 
reinforcement is set up and the next response at that 
manipulandum is reinforced. For example, in a two- 
lever box, a rat's first press at the "correct" lever 
following the setup is reinforced. The reinforced re- 
sponse resets that timer with a new random interval, 
and the process repeats itself. Because the two timers 
run independently, reinforcement may be available 
at any instant at neither, either, or both of the alter- 
natives; and, for the same reason, the longer the sub- 
ject remains at one alternative, the more likely it is 
that a reinforcer is available at the other one. 

A Model for Independent 
Conc VI VI Performance 

We derive an equation for the expected reinforce- 
ment rate for a conc VI VI schedule from three 
assumptions. The first is that the experiment uses a 
conc VI VI schedule with exponential distributions of 
intervals. This schedule is characterized by the two 
mean intervals, V, and V,. 

Next we must specify something about the sub- 
ject's pattern of switching from one manipulandum 
to the other. Several studies, as well as data we pre- 
sent below, show that switching is well described as 
independent, exponential, interchangeover times 
with different means on the two sides. This means 
that the conditional probability of a switch from an 
alternative at time t since the last switch is indepen- 
dent of t. Supporting evidence includes the follow- 
ing. Figures 1 and 2 ( ~ e ~ m a n ,  1979) present for pi- 
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V I  33.3 see and V I  300 see SCHEDULES 

o V I  YMsec Schedule 

V I 3 3 3 s a c S c i w d u l e  

RUN LENGTH 

Figure 1. The probabil i ty o f  a changeover as a function o f  the number o f  responses since the last changeover 
( run length). The data are f r o m  fou r  dif ferent pigeons f r o m  the last session the VI 33.3-sec V 1  300-sec schedule 
was i n  effect. The sol id lines show the locus o f  points which define stationarity. Accord ing to  a chi-square test, 
the obtained data d id  not  d i f fer  significantly f r o m  the stationary value (Heyman, 1979). When  the sol id l ine starts 
at the f irst postchangeover response, the f irst postchangeover responses were included i n  the calculat ion o f  the 
stationary value; when the solid line starts at the second postchangeover response, the calculation o f  the stationary 
value d i d  not  include f irst postchangeover responses. (Figure I used by permission of the copyright holder, 
Society for the Experimen/aiAnalysis of Behavior, Inc.) 

V I  40 sec and V I  120 sec SCHEDULES 

o V I  120 sec Schedule 
V I  40 sec Schedule 

__ 

RUN LENGTH 

Figure 2. The coordinates and subjects are the same as i n  Figure 1. The data are f r o m  the last session the 
VI 40-sec VI 120-sec schedule was i n  effect. The sol id lines give the predicted stationary values and indicate that 
the changeover probabilities are stationary according t o  a chi-square test. The broken lines, Pigeon 241, indicate 
that the changeover probabilities are not  stationary b y  the chi-square criterion. The obtained p was < .01. The 
two predictions which were tested, b u t  failed, are shown. The  broken l ine which starts at  the f irst postchangeover 
response is the predicted stationary value when first postchangeover responses were included i n  the calculation; 
the broken line which starts at  the second postchangeover response is the predicted stationary value when f irst 
postchangeover responses are omitted f r o m  the calculation. (Figure 2 used bv permission of the copyright holder, 
Society for the Experinrenral Analysis of Behavior, Inc.) 
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horizontal lines defining stationarity. In 21 of 24 
tests (16 of which are shown in Figures 1 and 2), 
there was not a significant difference between the 
predicted stationary values and the changeover proba- 
bilities, p > .05. The changeover probabilities which 
are not stationary fluctuate in a manner which sug- 
gests that occasionally the birds responded in two- 
peck bursts, for example Pigeoil 241, Figure 2. Simi- 
larly, in a discrete-trial choice procedure in which 
reinforcers were arranged for pigeons on conc VI VI 
schedules (Herrnstein, 1971), changeover probabil- 
ities appeared stationary (the data are displayed in 
de Villiers, 1977). Since other data suggest that the 
rate of responding is relatively constant on VI sched- 
ules (Catania & Reynolds, 1968), the constancy of the 
plotted functions in Figures 1 and 2 implies approxi- 
mate constancy as a function of time since the last 
changeover. In a study of the temporal structure of 
chicks pecking colored hat pins (Machlis, 1977), the 
intervals between pecks and bouts of pecking and not 
pecking were adequately described by exponential 
distributions, which, with independence of the inter- 
vals, defines the process we are assuming. We denote 
by p, and p2 the two exponential intensity parameters 
(time constants). 

Third, we assume, as is true to a good approxima- 
tion, that the subject's rate of responding is so high 
relative to the mean programmed interreinforcement 
intervals that, when a subject is attending to an alter- 
native, we may neglect the delay between the setup 
of a reinforcer and its receipt. This assumption is 
satisfied exactly by procedures in which reinforce- 
ment is contingent on continuous activity, such as 
attending to a key light (Brownstein & Pliskoff, 
1968), and it is approximately correct for procedures 
requiring a discrete response because VI schedules 
maintain such high response rates. 

Although it is possible to derive the equation for 
expected reinforcement rate from direct arguments 
involving only mean delays (Heyman, 1977), it is 
almost as easy to develop the complete theory of dis- 
tributions of reinforcements. 

Let pj(k,t) denote the joint conditional probability 
density that the subject is attending to alternative k 
at time t, given that it was attending to alternative j 
at time 0.  For example, for pl(l,t) the subject may 
have stayed at side 1 from time 0 to time t, which 
occurs with probability e-pit, or it first switched to 
side 2 at some time x < t and then returned to side 1 
at least once and is there at time t: 

For p2(l,t), the subject must have switched from side 2 
to side 1, the first time at some time x < t and it 
continues to be there at time t: 

Equations for pl(2,t) and pl(2,t) are obtained from 
Equations 1 and 2, respectively, by interchanging the 
labels 1 and 2. 

Let )j(t) denote the probability density of times 
between reinforcements on alternative j. Note that 
reinforcement may be obtained in two ways at alter- 
native j. First, the subject is at alternative j when the 
reinforcement first sets up at time t; second, the 
reinforcement sets up at time x < t at alternative j 
but the subject is at the other alternative and it then 
returns to alternative j at time t: 

where Ai = 1 /Vi. 
The expected time between reinforcements at alter- 

native 1 may be calculated from Equation 3 using 
characteristic functions (i.e., Fourier transforms). 
Define the following transforms: 

where i = m. Equation 3 then becomes: 

and Equations 1 and 2 and their analogues with dter- 
natives 1 and 2 interchanged yield: 

M A l  - pl -is) 
Pl(l,l,S) = 

(Al + pl - + pl - is) - plpl 9 (7) 

P1(2,l,s) = 
Alp1 

(A1 + pl - is)(Al + pl - is) - plp2 . (8) 

To obtain the expected time between reinforcements, 
we use the fact that 
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Substituting, we calculate EXPECTED REINFORCEMENT RATE 
ON A CONCURRENT V I  6 0  sec V I  180 sec SCHEDULE 

A similar calculation yields E(T2), from which we 
obtain 

where p = p2/(p, + p2) is the proportion of time spent 
at alternative 1, Vj is the mean programmed inter- 
reinforcement interval at alternative j, and I = 
1 /(pl + p2) is one-half the harmonic mean of the mean 
time between switches. (The individual times are 
I /p  = 1 /p2 and I/(1- p) = 1 /p,.) 

Each of the four terms of Equation 11 have natural 
interpretations. With probability p, the subject is at 
alternative 1 when that alternative sets up, which 
happens at a mean rate of l/V,. With probability 
1 - p, the subject is attending to alternative 2 when 
the setup occurs at alternative 1, which introduces an 
additional mean delay of 1/p until the subject switches 
back and receives the reinforcer. These are the two 
ways that reinforcement can occur at alternative 1. 
The other two terms correspond to reinforcements 
at alternative 2, and the rates add to give the overall 
reinforcement rate. 

We have replaced p, and p2, which characterize the 
behavior, with the equivalent parameters p and I. 
This is because p is the variable usually discussed. 
For example, the matching law simply states that 

The parameter I is an index of the subject's tendency 
to stay at an alternative; when I is large, the average 
visit times are long and changeover rate between the 
alternatives is low. Moreover, the data (Heyman, 
1977) suggest that p, and p2 change reciprocally so 
that I remains approximately constant with changes 
in p. For example, if I is constant, then the expected 
number of changeovers per second is 2p(l -p)/I. 
This means that changeover rate should show a nega- 
tively accelerated increase as p goes from exclusive 
preference to indifference, with the maximum at 1 /2. 
Data from experiments with humans (Baum, 1975), 
rats (Baum, 1973b), and pigeons (Stubbs & Pliskoff, 
1969) show this relationship. 

Figure 3 shows how E(R) varies with p for values 
of 1 which include the range observed in experimental 
studies. The location of the maximum is indicated by 
the solid triangles. According to Equation 12, match- 
ing occurs for this schedule at 3/4. Except for I =0 ,  
where the maximum is independent of p, matching 

PROPORTION OF TIME ON V I  60 sec SCHEDULE 

Figure 3. The expected reinforcement rate on a conc V I  60-sec 
V I  180-sec schedule. The curves were drawn according to Equa- 
tion 1 1 ,  and the value of the parameter I (changeover rate) was 
varied to draw the different curves. This means that the differ- 
ences between the curves show the effect that changeover rate 
has on reinforcement rate on a cone V I  V I  schedule (see text). 
For example, at p = .75 and I = 10 sec. the expected reinforce- 
ment rate is approximately 75 reinforcements/h, while at the same 
p value but I = 50 sec, it is approximately 65 reinforcements/h. 
The filled triangles show the locations of the maxima. Matching 
and maximizing do not agree at any value of I ,  although subjects 
match on this type of schedule. 

and maximizing do  not agree for any I ,  and the 
difference increases with increasing I. To  get some 
idea of reasonable values of I, note that changeover 
rates typically vary from about 1 to  30/min. So 
for p = 1/2 and I = 1 sec, the changeover rate 
[2p(l - p)/I] is 30/min, whereas at the same p but 
with I = 30 sec, the changeover rate is 1 /min. 

A Model for Interdependent 
Conc VI VI Performance 

Equation 12 defines the matching value by the pro- 
grammed relative reinforcement rate. However, 
experimenters typically calculate the obtained rela- 
tive reinforcement frequency, which varies somewhat 
with the subject's distribution of time between the 
schedules. Because of this interdependency, a proce- 
dure is frequently used in which the relative rein- 
forcement frequency is precisely fixed and indepen- 
dent of responding (Stubbs & Pliskoff, 1969). This is 
achieved by making the two timers interdependent: 
when one timer sets up, the other is also stopped 
so that the assigned reinforcements are collected in 
order and the programmed proportions are necessarily 
the obtained proportions. 

Following the assumptions and logic that led to  
Equation 11 (the stationary changeover probabilities 
in Figures 1 and 2 are from a conc VI VI schedule 
with linked alternatives), the expected reinforcement 
rate for an interdependent conc VI V1 schedule is: 
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Table 1 
A Comparison of  the Obtained and Predicted (Equation 13)  

Reinforcement Rates for Some Interdependent 
Conc V1 VI Schedules 

Reinforcements per Hour 
Conc VI VI 
Schedules* Subject Obtained Predicted 

The first two terms show the programmed reinforce- 
ment rate, which is also the maximum possible; the 
third and fourth terms give the expected rate of 
reinforcement loss at an unattended alternative, 
which occurs when a reinforcement sets up there; 
and the fifth and sixth ones give the expected rate 
of reinforcement loss at the attended schedule-re- 
member that on the interdependent eone VI VI pro- 
cedure, the attended schedule stops running when 
a reinforcement has set up at the unattended one. 
Note also that if the loss rate at the attended schedule 
is excluded (terms 5 and 6), Equation 13 describes 
an independent eone VI VI procedure, and it gives 
the same result as Equation 11. 

Figure 4 shows how E(R) varies with p for the 
interdependent procedure. The abscissa is the same 
as the obtained reinforcement proportions. Matching 
and maximizing do not agree for any I, and the 
maximizing value approaches 1/2 for large I. Impor- 
tantly, pigeons (Stubbs & Pliskoff, 1969) and hu- 
mans (Baum, 1975) match on interdependent cone 
VI VI schedules (other species have not been tested), 
and apparently they do so independently of change- 
over rates and overall reinforcement rates (Fantino, 
Squires, Delbruck, & Peterson, 1972). The available 
data, then, suggest that the large discrepancy be- 
tween the theoretical maximizing value and the ob- 
served performance, matching, in interdependent 

EXPECTED REINFORCEMENT RATE 

ON AN INTERDEPENDENT CONCURRENT V I  K J s e c  V I  l 8 O v c  SCHEDULE 
- - - --- 

1 

WOPORTION Of TIME ON VI 60rcc SCUEDULE 

Figure 4. The expected reinforcement rate on an interdependent 
conc V1 60-sec VI  180-sec schedule. On the interdependent pro- 
cedure, the experimenter fixes the overall proportion of reinforce- 
ments so that the abscissa gives the obtained reinforcement propor- 
tions. The parameter, I ,  indexes changeover rate as in Figure 3 
(see text), and the triangles show the location of the maxima. 

Note-The data are from the last session each schedule was in 
effecf. The subjects showed close matching in each condifion, 
and a changeover delay contingency was not used (Heyman, 
1979). *Inseconds. 

eone VI VI schedules is independent of species, Vi, 
and I. 

Table 1 compares the predicted reinforcement 
rates from Equation 13 with the rate obtained in a 
study with pigeons (Heyman, 1979). The programmed 
VI values summed to 120 reinforcementdh, there 
was a discrete response requirement, a keypeck, the 
changeover delay was omitted (Findley, 1958), and 
the pigeons showed matching which was well within 
the normal range. To  account for the response re- 
quirement, the respective average interresponse times 
were added to 'the denominators of the first two 
terms of Equation 13. The predictions were then ob- 
tained by inserting the programmed values for Vi and 
the obtained performance parameters for p and I into 
the equation. The average absolute discrepancy was 
about 2 reinforcementdh, or 2%. Thus, Equation 13 
provides a reasonably precise model of interdepen- 
dent eone VI VI performance. 

Generality of the Exponential Model 
and its Implications 

Several considerations 'suggest that the results 
shown in Figures 3 and 4 apply generally to eone 
VI VI performance. 

(1) Although future research is likely to show some 
individual and procedural variation in switching pat- 
terns (Heyman, 1979), the exponential assumption 
for changeover times is in accord with the presently 
available data. As cited above, changeover probabil- 
ities were approximately stationary for pigeons on 
independent (Herrnstein, 1971) and interdependent 
(Heyman, 1979) cone VI VI schedules, and the dis- 
tribution of intervals between choices for chicks 
(Machlis, 1977) was approximately exponential. In 
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addition, Nevin (1969) recorded changeover proba- 
bilities in a discrete-trial version of a conc VI VI 
schedule. However, Nevin pooled sessions in which 
the overall average changeover probabilities varied 
(Nevin, Note l), so that the results are based on hetero- 
geneous distributions of interchangeover times, and 
are, therefore, ambiguous (Heyman, 1977). The ex- 
ponential model, then, appears to describe switching 
for pigeons in concurrent schedules, and data dis- 
cussed elsewhere (Heyman, 1979) suggest that this 
model may also be approximately correct for other 
species as well. 

(2) It can also be shown that matching and maxi- 
mizing are also different when changeover probabil- 
ities are not stationary. An expected reinforcement 
rate equation was derived for the situation in which 
the subject switches from schedule i at precisely time 
ti (Heyman, 1977). That is, according to this model, 
the probability of a changeover is 0 at time t less 
than ti and 1 at time ti, so that for each value of p 
there are just two interchangeover times, I/(1- p) at 
schedule 1 and I/p at schedule 2. In contrast, for the 
exponential model there was an exponential distribu- 
tion of times at each schedule for each value of p. 
Nevertheless, the reinforcement rate equation for the 
fixed-time switching process showed about the same 
magnitude of difference between matching and maxi- 
mizing and about the same absolute reinforcement 
rates as did the equation based on the Poisson switch- 
ing process (Equation 11). That two very different 
models of switching, the exponential and fixed time, 
predict similar outcomes suggests that there is a 
wide range of other switching patterns for which 
matching and maximizing are different. 

(3) The maximizing hypothesis described by Rachlin 
et al. (1976) depends on the assumption that the dis- 
tribution of time in a concurrent schedule is con- 
trolled by the overall reinforcement rate. Figures 3 
and 4 imply that this assumption is generally incor- 
rect. The reinforcement contingencies in independent 
and interdependent conc VI VI schedules are dif- 
ferent. Accordingly, as Figures 3 and 4 show, the 
maximizing solutions for each are different. Yet it is 
well established (de Villiers, 1977) that subjects 
match in both procedures, and there is some evidence 
that the switching patterns in the two procedures are 
also approximately the same (Herrnstein, 1971; 
Heyman, 1979). Similarly, elsewhere (Herrnstein & 
Heyman, in press) one of us showed that in a con- 
current schedule in which reinforcers were arranged 
by a variable-interval schedule at one alternative 
and a variable-ratio schedule at the other (conc 
VI VR), pigeons matched even though maximizing 
overall reinforcement rate predicted a much different 
overall distribution of behavior. Maximizing rein- 
forcement rate, then, predicts different outcomes for 
conc VI VR and independent and interdependent 

conc VI VI schedules, yet in each of the procedures, 
subjects match to about the same degree of error. 
This result is only possible if the distribution of times 
between the competing reinforcement sources was 
not controlled by the overall reinforcement rate. 

To summarize the results so far, then, matching 
and maximizing are different for an exponential 
switching process in independent and interdependent 
conc VI VI schedules; other evidence and arguments 
suggest that this difference is not specific to the 
Poisson model of behavior; and an analysis very 
similar to that presented above shows that matching 
and maximizing are also quite different in a conc 
VI VR procedure (Herrnstein & Heyman, in press). 

Factors Not Considered by the Models 
Although both independent evidence (Herrnstein, 

1971; Heyman, 1979; Machlis, 1977) and the good 
fit of Equation 13 to some data (Table 1) indicate 
that our assumptions and logic approximate experi- 
mental situations, we need to consider explicitly some 
possible complicating factors. 

(1) Conc VI VI schedules often include the contin- 
gency that changeover responses initiate a brief inter- 
val during which reinforcements are not delivered. 
This is called a changeover delay (Findley, 1958), 
and it has been said that the matching result depends 
on its inclusion (Mackintosh, 1974; Shimp, 1975). 
However, it is possible to obtain quite acceptable 
matching without the delay contingency in both inde- 
pendent (Baum, 1974; Bradshaw, Szabadi, & Bevan, 
1976; Findley, 1958) and interdependent (Heyman, 
1979; Stubbs & Pliskoff, 1969) procedures. More- 
over, the changeover delay has little effect on overall 
reinforcement rate when the delay interval is short, 
say 1.5 sec, so that models of concurrent perfor- 
mance which do not represent the changeover contin- 
gency may nevertheless accurately predict the obtained 
reinforcement rate (Herrnstein & Heyman, in press). 
Therefore, the effects of the changeover delay need 
not be modeled to establish the argument that maxi- 
mizing overall reinforcement rate is not a sufficient 
condition for matching. 

(2) We did not include terms for response costs or 
effort. However, the evidence shows that response 
effort must be virtually independent of the overall 
distribution of time in conc VI VI performance. 
First, the overall rate of responding remains approxi- 
mately constant with changes in p (Catania, 1966). 
Second, overall response rates vary slightly (Catania, 
1966; McSweeney, 1977) or not at all (Fantino et al., 
1972) with overall reinforcement rate. Therefore, if 
response rates in conc VI VI procedures do not vary, 
response costs must have little, if any, relevance to 
the issue of whether matching depends on maximiz- 
ing overall reinforcement rate. 

(3) Nonscheduled reinforcements take up some 
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fraction of the subject's time during an experimental 
session. For example, for pigeons such activities as 
preening, wing flapping, and inspecting the house- 
lights interrupt responding at the arranged reinforce- 
ment sources. However, cumulative recorder tracings 
and the good fit of Equation 13 suggest that this 
fraction is quite small, so that it is unlikely that 
including terms for extraneous reinforcements in the 
models would alter the account given here. 

(4) In contrast to our findings, Rachlin et al. 
(1976) claim that maximizing overall reinforcement 
rate explains matching. Their conclusion is based on 
a computer simulation of an independent cone VI VI 
schedule. They found that under certain conditions- 
the study was not exhaustive, nor the results consis- 
tent-that maximizing closely approximated match- 
ing. For example, according to the simulation, match- 
ing and maximizing differed by 2% with a 2-sec 
changeover delay and differed by 8% with a 0-sec 
delay, that is, no delay contingency. However, 
Rachlin et al. (1976) assumed that changeover rate 
was independent of p and fixed at 6/min. This is not 
in accord with the data; changeover rate varies with 
p, and the form this relationship takes is often 
approximated by the exponential process prediction, 
2p(l -p)/I (see, e.g., Herrnstein, 1961; Stubbs & 
Pliskoff, 1969). 

(5) Also in contrast to our results, Shimp (1969) 
has argued that maximizing leads to matching. His 
hypothesis is based on the assumption that subjects 
respond to the schedule with the highest probability 
of reinforcement at the moment. However, Figures 
1 and 2 and other data (Herrnstein, 1971; Nevin, 
1969) show that matching occurs when subjects do 
not follow the response strategies predicted by the 
momentary maximizing hypothesis. 

Conclusion 
Figures 1 and 2 and other data showed that match- 

ing may occur in independent and interdependent 
cone VI VI procedures when the probability of switch- 
ing from one alternative to the other is approximately 
stationary. Figures 3 and 4 showed that when change- 
over probabilities are approximately stationary in 
cone VI VI procedures, maximizing is different from 
the observed behavior, matching. In addition, other 
data and arguments suggested that matching does not 
follow from maximizing for a number of other 
switching patterns, and was pointed out that Fig- 
ures 3 and 4 imply that the distribution of time in a 
cone VI VI schedule is not controlled by the overall 
reinforcement rate, as assumed by the maximizing 
hypothesis. At the very least, then, we have shown 
that maximizing overall reinforcement rate is not a 
sufficient condition for matching. In contrast, those 
who have argued for maximizing have yet to demon- 
strate a plausible model of behavior which supports 
their hypothesis. 
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