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Abstract Combinatorial objects such as rooted trees that carry a recursive structure
have found important applications recently in both mathematics and physics. We put
such structures in an algebraic framework of operated semigroups. This framework
provides the concept of operated semigroups with intuitive and convenient combina-
torial descriptions, and at the same time endows the familiar combinatorial objects
with a precise algebraic interpretation. As an application, we obtain constructions of
free Rota-Baxter algebras in terms of Motzkin paths and rooted trees.

Keywords Operated semigroups · Operated algebras · Planar rooted trees · Motzkin
paths · Dyck paths · Rota-Baxter algebras

1 Introduction

1.1 Motivation

This paper explores the relationship between two subjects that have been studied sep-
arately until recently. One subject considers algebraic structures, such as semigroups
and associative algebras, with an operator acting on them. Such structures include
differential algebras, difference algebras and Rota–Baxter algebras (See Example 1.3
for the definitions). Another subject studies objects, often combinatorial in nature,
that have underlying recursive structures, such as rooted trees and Motzkin paths.
Since the 1990s, algebraic structures on rooted trees have been studied in the work of
Connes and Kreimer [10] on the renormalization of quantum field theory, Grossman
and Larson [23] on data structures and of Loday and Ronco [34] on operands. The
grafting operator on trees plays an important role in their works. More recently [2,

L. Guo (�)
Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, USA
e-mail: liguo@rutgers.edu

mailto:liguo@rutgers.edu


36 J Algebr Comb (2009) 29: 35–62

16], free Rota–Baxter algebras were constructed using planar rooted trees with spe-
cial decorations.

In this paper, we relate these two subjects through the concepts of operated semi-
groups, operated monoids and operated algebras. We establish that free operated
semigroups have natural combinatorial interpretation in terms of Motzkin paths and
planar rooted forests. This freeness characterization of rooted forests and Motzkin
paths gives an algebraic explanation of the fundamental roles played by these com-
binatorial objects and their related numerical sequences such as the Catalan numbers
and Motzkin numbers [42]. This characterization should be useful in further algebraic
studies of these combinatorial objects. This connection also endows the concept of
operated algebras and semigroups with familiar combinatorial contents, giving sig-
nificance to these operated algebraic structures beyond the abstract generalization. As
a consequence, we obtain several constructions of free Rota-Baxter algebras which
can be adopted to free objects in the other related algebraic structures.

1.2 Definitions and examples

Definition 1.1 An operated semigroup (or a semigroup with an operator) is a
semigroup U together with an operator α : U → U . α is called the distinguished op-
erator on U . A morphism from an operated semigroup (U,α) to an operated semi-
group (V ,β) is a semigroup homomorphism f : U → V such that f ◦ α = β ◦ f.

More generally, let � be a set. An �-operated semigroup is a semigroup U

together with a set of operators αω : U → U, ω ∈ �. In other words, an �-
operated semigroup is a pair (U,α) with a semigroup U and a map α : � →
Map(U,U),α(ω) = αω. Here Map(U,U) is the set of maps from U to U . A mor-
phism from an �-operated semigroup (U, {αω,ω ∈ �}) to an �-operated semigroup
(V , {βω,ω ∈ �}) is a semigroup homomorphism f : U → V such that f ◦ αω =
βω ◦ f for ω ∈ �.

Remark 1.2 When a semigroup is replaced by a monoid we obtain the concept of
an (�-) operated monoid. Let k be a commutative ring. We similarly define the
concepts of an (�-)operated k-algebra or (�-)operated nonunitary k-algebra.

Example 1.3 Here are some examples of operated semigroups and k-algebras.

(a) A semigroup is an operated semigroup when the distinguished operator is taken
to be the identity;

(b) A differential algebra [33, 41] is an algebra A with a linear operator d : A → A

such that

d(xy) = d(x)y + xd(y),∀x, y ∈ A;
(c) A difference algebra [9] is an algebra A with an algebra endomorphism on A;
(d) Let λ be fixed in the ground ring k. A Rota-Baxter algebra (of weight λ) [4, 7,

15, 26, 36, 37] is defined to be an associative algebra A with a linear operator P

such that

P(x)P (y) = P(xP (y)) + P(P (x)y) + λP (xy), ∀x, y ∈ A; (1)
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(e) A differential algebras of weight λ [28] is defined to be an algebra A together
with a linear operator d : A → A such that

d(xy) = d(x)y + xd(y) + λd(x)d(y),∀x, y ∈ A.

Other examples of operated algebras can be found in [37].
Here are some �-operated algebras with multiple operators.

(a) A �-differential algebras [33] is an algebra with multiple differential operators
δ ∈ � that commute with each other;

(b) A σδ-algebra [40] is an algebra with a commuting pair of a difference operator
σ and a differential operator δ;

(c) A differential Rota-Baxter algebra of weight λ [28] is an algebra with a dif-
ferential operator d of weight λ and a Rota-Baxter operator P of weight λ, such
that d ◦ P = id. This last relation is a natural generalization of the First Funda-
mental Theorem of Calculus when d is taken to be the usual derivation and P is
the integral operator P [f ](x) = ∫ x

a
f (t) dt ;

(d) As a variation, we can consider an algebra with a differential operator and a Rota-
Baxter operator of weight −1 that commute with each other. It arises naturally in
the study of multiple zeta values by renormalization methods [30, 31];

(e) A Rota-Baxter family on an algebra R is a collection of linear operators Pω on
R with ω in a semigroup �, such that

Pα(x)Pβ(y) = Pαβ(Pα(x)y) + Pαβ(xPβ(y)) + λPαβ(xy), ∀x, y ∈ A,α,β ∈ �.

It arises naturally in renormalization of quantum field theory [14, Prop. 9.1].

Our main goal here is to give combinatorial constructions of free objects in the cat-
egory of �-operated semigroups and �-operated monoids. They naturally give free
objects in the category of operated algebras. These free objects are obtained as the
adjoint functors of the forgetful functors from the category of operated semigroups
and operated monoids to the category of sets in the usual way. More precisely,

Definition 1.4 A free operated semigroup on a set X is an operated semigroup
(UX,αX) together with a map jX : X → UX with the property that, for any op-
erated semigroup (V ,β) and any map f : X → V , there is a unique morphism
f̄ : (UX,αX) → (V ,β) of operated semigroups such that f = f̄ ◦ jX. Let · be the
binary operation on the semigroup UX , we also use the quadruple (UX, ·, αX, jX) to
denote the free operated semigroup on X, except when X = ∅, when we drop jX and
use the triple (UX, ·, αX).

We similarly define the concepts of free operated monoids, and free operated unitary
and nonunitary k-algebras. We also similarly define the more general concept of free
�-operated monoids. See Theorem 2.1 for the precise definition.

1.3 Outline of the paper

In Section 2, free operated semigroups and free operated monoids are constructed in
terms of Motzkin paths (Corollary 2.2). In fact, we construct free �-operated semi-
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groups and free �-operated monoids in terms of a natural generalization of Motzkin
paths (Theorem 2.1). Through the Motzkin words, we relate the Motzkin paths with
the recursively constructed bracketed words in Section 3 (Theorem 3.4). This in turn
allows us to construct free operated semigroups and free operated monoids in terms of
bracketed words (Corollary 3.6). In Section 4, free �-operated semigroups are con-
structed in terms of vertex decorated planar rooted forests, through a natural isomor-
phism from the free operated semigroup of peak-free Motzkin paths to the operated
semigroup of the vertex decorated planar rooted forests (Theorem 4.2).

One can regard these results on the free objects as a first step in the study of
operated semigroups and operated algebras that generalizes the extensive work on
semigroups [20, 22, 32, 39].

Given the recent progresses on Rota-Baxter algebra in both theoretical and applied
aspects [1, 2, 10, 15–19, 24–31], it is desirable to obtain convenient constructions
of free Rota-Baxter algebras. To this end, in Section 5, we put together bijections
and inclusions among bracketed words, Motzkin path, vertex decorated forests and
angularly decorated forests, as well as their various subsets (Theorem 5.1). These
maps preserve the structure of operated semigroups. In Section 6, we use these bijec-
tions and the construction of free Rota-Baxter algebra in terms of angularly decorated
rooted forests [16] to construct free Rota-Baxter algebras in terms of Motzkin paths,
bracketed words and leaf decorated forests (Corollary 6.3 – 6.5).

Notations We will use N to denote the set of non-negative integers. By a ring or an
algebra we mean an associative unitary one unless otherwise specified. For a commu-
tative ring k and a set Y , we use kY to denote the free k-module with basis Y . When
Y is a monoid (resp. semigroup), kY carries the natural k-algebra (resp. nonunitary

k-algebra) structure. We use
•⋃

to denote a disjoint union.

2 Free operated semigroups and monoids in terms of Motzkin paths

We show that free operated semigroups and monoids have a natural construction by
Motzkin paths.

Recall [12, 13] that a Motzkin path is a lattice path in N
2 from (0,0) to (n,0)

whose permitted steps are an up diagonal step (or up step for short) (1,1), a down
diagonal step (or down step) (1,−1) and a horizontal step (or level step) (1,0). The
first few Motzkin paths are

(2)
The height of a Motzkin path is simply the maximum of the height of the points

on the path. Let P be the set of Motzkin paths. For Motzkin paths m and m′, define
m ◦ m, called the link product of m and m′, to be the Motzkin path obtained by
joining the last vertex of m with the first vertex of m′. For example,
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The link product is obviously associative with the trivial Motzkin path • as the
identity. Let I be the set of indecomposable (also called prime) Motzkin paths,
consisting of Motzkin paths that touch the x-axis only at the two end vertices. It is
clear that a Motzkin path is indecomposable if and only if it is not the link product of
two non-trivial Motzkin paths.

Next for a Motzkin path m, denote /m\ to be the Motzkin path obtained by raising
m on the left end by an up step and on the right end by a down step. For example,

/ \ = , / \ = , / \ =
This defines an operator / \ on P , called the raising operator. Thus P , with the link
product ◦ and the raising operator / \ , is an operated monoid.

Let D denote set of Dyck paths which are defined to be paths that do not have
any level steps. Then (D,◦, / \ ) is an operated submonoid of the operated monoid
(P ,◦, / \ ).

A Motzkin path is called peak-free if it is not and does not have an up step fol-

lowed immediately by a down step. For example,

and in the list (2) are peak-free while the rest are not. Let L denote the
set of peak-free Motzkin paths. Then (L,◦, / \ ) is an operated subsemigroup (but
not submonoid) of (P ,◦, / \ ).

Let X be a set. An X-decorated (or colored) Motzkin path [8, 12] is a Motzkin
path whose level steps are decorated (colored) by elements in X. Some examples are

x x y x

x

Let P (X) be the set of X-decorated Motzkin paths and let L(X) be the set of peak-
free X-decorated Motzkin paths. Note that Motzkin paths with no decorations can be
identified with X-decorated Motzkin paths where X is a singleton.

We next generalize the concept of Motzkin paths to allow decorations on the up
and down steps. A matching pair of steps in a Motzkin path consists of an up step
and the first down step to the right of this up step with the same height. To put it
another way, a matching pair of steps is an up step and a down step to its right such
that the path between (and excluding) these two steps is a Motzkin path.

Let � be a set. By an (X,�)-decorated or a fully decorated Motzkin path we
mean a Motzkin path where each matching pair of steps is decorated by an element
of �, and where each level step is decorated by an element of X. For example,

α

β
a

γ
b c

γ
d

β
e

δ
f σ

g

σ τ

h

τ

δ

α

is an (X,�)-decorated Motzkin path with a, b, c, d, e, f, g,h ∈ X and α,β, γ, δ, σ,

τ ∈ �.
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The set of (X,�)-decorated Motzkin paths is denoted by P (X,�). We similarly
define (X,�)-decorated peak-free Motzkin paths L(X,�) and �-decorated Dyck
paths D(�). The last notation makes sense since a Dyck path does not have any level
steps and thus does not involve decorations by X.

The link product of two (X,�)-decorated Motzkin paths is defined in the same
way as for Motzkin paths. Further, for each ω ∈ � and an (X,�)-decorated Motzkin
path m, we define /ω m \ω to be the Motzkin path obtained by raising m on the left
end by an up step on the right end by a down step, both decorated by ω. For example,
we have

/ω \ω = ω ω
, /ω

x \ω = ω
x

ω

, /ω

β β \ω = ω

β β

ω

Thus for each ω ∈ �, we obtain a map /ω \ω on each of the semigroups or monoids
P (X,�), L(X,�) and D(�), making it into an �-operated semigroup or an �-
operated monoid.

The concepts of height and indecomposability in P (X,�) are defined in the same
way as in P . For n ≥ 0, let Pn(X,�) be the submonoid of elements of P (X,�) of
height ≤ n. Also define P−1(X,�) = ∅. Define Ln(X,�) = Pn(X,�) ∩ L(X,�)

and Dn(�) = Pn(X,�) ∩ D(�).

Theorem 2.1 Let � and X be non-empty sets. Let jX : X → L(X,�) ⊆ P (X,�) be

defined by jX(x) = x
, x ∈ X.

(a) The quadruple
(

P (X,�),◦, {/ω \ω

∣
∣ ω ∈ �}, jX

)
is the free �-operated monoid

on X. More precisely, for any �-operated monoid (H, {αω

∣
∣ω ∈ �}) consisting

of a monoid H and maps αω : H → H for ω ∈ �, there is a unique morphism
f̄ : (P (X,�), {/ω \ω

∣
∣ω ∈ �}) → (H, {αω

∣
∣ω ∈ �}) of operated monoids such

that f = f̄ ◦ jX.

(b) The quadruple (L(X,�),◦, {/ω \ω

∣
∣ ω ∈ �}, jX) is the free �-operated semi-

group on X.
(c) The triple (D(�),◦, {/ω \ω

∣
∣ ω ∈ �}) is the free �-operated monoid on the

empty set.

Proof We only need to prove (a). The proof of the other parts are similar.
Let (H, {αω

∣
∣ω ∈ �}) be an �-operated monoid with a monoid H and maps αω :

H → H,ω ∈ �. Let f : X → H be a set map. We will use induction on n to construct
a unique sequence of monoid homomorphisms

f̄n : Pn(X,�) → H,n ≥ 0, (3)

with the following properties.

(a) f̄n

∣
∣

Pn−1(X,�)
= f̄n−1.

(b) f̄n ◦ ( /ω \ω) = αω ◦ f̄n−1 on Pn−1(X,�) for each ω ∈ �.

When n = 0, P0(X,�) is the monoid of paths from (0,0) to (m,0), m ≥ 0, con-
sisting of only level steps which are decorated by elements of X. Thus P0(X,�)
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is the free monoid generated by { x
∣
∣x ∈ X}. Then the map f : X → H extends

uniquely to a monoid homomorphism f̄0 : P0(X,�) → H such that f̄0 ◦ jX = f . f̄0
trivially satisfies properties (a) and (b) since P−1(X,�) = ∅ by convention.

For given k ≥ 0, assume that there is a unique map f̄k : Pk(X,�) → H satisfying
the properties (a) and (b). Note that Pk+1(X,�) is the free monoid generated by
Ik+1(X,�), the set of indecomposable Motzkin paths of height ≤ k + 1, and note
that an indecomposable Motzkin path of height k + 1 is of the form /ω m̄\ω for an
ω ∈ � and an m̄ ∈ Pk(X,�) of height k. This is because an m ∈ Ik+1(X,�) touches
the x-axis only at the beginning and the end of the path. So the first step must be a
rise step and the last step must be a fall step, decorated by the same ω ∈ �. Further, if
the first step and the last step are removed, we still have a Motzkin path m̄ of height
k and m = /ω m̄\ω.

Thus we have the disjoint union

Ik+1(X,�) = Ik(X,�)

•⋃ ( •⋃
ω∈� /ω

(
Lk(X,�)\Lk−1(X,�)

)\ω

)
.

Define fk+1 : Ik+1(X,�) → H by requiring

fk+1(m) =
{

f̄k(m), m ∈ Ik(X,�),

αω(f̄k(m̄)), m = /ωm̄\ω ∈ /ω(Lk(X,�)\Lk−1(X,�))\ω, ω ∈ �.

Then extend fk+1 to the free monoid Pk+1(X,�) on Ik+1(X,�) by multiplicity and
obtain

f̄k+1 : Pk+1(X,�) → H.

By the construction of fk+1, f̄k+1 satisfies properties (a) and (b), and it is the unique
such monoid homomorphism.

By Property (a), the sequence {f̄n, n ≥ 0} forms a direct system of monoid homo-
morphisms and thus gives the direct limit

f̄ = lim−→ f̄n : P (X,�) → H (4)

which is naturally a monoid homomorphism. By Property (b), we have f̄ ◦ ( /ω \ω) =
αω ◦ f̄ , ∀ω ∈ �. Thus f̄ is a homomorphism of �-operated monoids such that
f̄ ◦ jX = f .

Furthermore, if f̄ ′ : P (X,�) → H is another homomorphism of �-operated
monoids such that f̄ ′ ◦ jX = f . Let f̄ ′

n = f̄ ′∣∣
Pn(X,�)

. Then we have

f̄ ′ ◦ jX = f = f̄ ◦ jX

and hence f̄ ′
0 = f̄0 since P0(X,�) is the free monoid generated by jX(X). Further,

{f̄ ′
n, n ≥ 0} also satisfies Property (a) by its construction, and satisfies Property (b)

since f̄ ′ is a homomorphism of �-operated monoids. But by our inductive construc-
tion of {f̄n, n ≥ 0}, such f̄n are unique. Thus we have f̄ ′

n = f̄n, n ≥ 0, and therefore
f̄ = f̄ ′. This proves the uniqueness of f̄ . �

By taking � to be a singleton in Theorem 2.1, we have:
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Corollary 2.2

(a) Let X be a non-empty set. The quadruple (P (X),◦, / \ , jX) is the free oper-
ated monoid on X. In particular, (P ,◦, / \ ) is the free operated monoid on one
generator.

(b) Let X be a non-empty set. The quadruple (L(X),◦, / \ , jX) is the free operated
semigroup on X. In particular, (L,◦, / \ ) is the free operated semigroup on one
generator.

(c) The triple (D,◦, / \ ) is the free operated monoid on the empty set.

Recall that for a semigroup (resp. monoid) Y , we use kY to denote the corresponding
nonunitary (resp. unitary) k-algebra. We then have

Corollary 2.3 Let � and X be non-empty sets. Let jX be as defined in Theorem 2.1.

(a) The quadruple (kP (X,�),◦, {/ω \ω

∣
∣ ω ∈ �}, jX) is the free �-operated k-

algebra on X.
(b) The quadruple (kL(X,�),◦, {/ω \ω

∣
∣ ω ∈ �}, jX) is the free �-operated

nonunitary k-algebra on X.
(c) The quadruple (D(�),◦, {/ω \ω

∣
∣ ω ∈ �}, jX) is the free �-operated k-algebra

on the empty set.

Proof (a). The forgetful functor from the category �-OAlg of �-operated algebras
to the category Set of sets is the composition of the forgetful functor from �-OAlg to
the category �-OMon of operated monoids and the forgetful functor from �-OMon
to Set. As is well-known (for example from Theorem 1 in page 101 of [35]), the
adjoint functor of a composed functor is the composition of the adjoint functors. This
proves (a).

The proofs of the others parts are the same. �

3 Free operated semigroups and monoids in terms of bracketed words

3.1 Motzkin words

We recall the following definition [3, 21, 38].

Definition 3.1 A word from the alphabet set X ∪ {/,\ } (often denoted by X ∪
{U,D}) is called an X-decorated Motzkin word if it has the properties that

(a) the number of / in the word equals the number of \ in the word;
(b) counting from the left, the number of occurrence of / is always greater or equal

to the number of occurrence of \ .

Thus an X-decorated Motzkin word is an element in the free monoid M
(
X ∪ {/,\ })

on the set X ∪ {/,\ } with above two properties. X-decorated Motzkin words are



J Algebr Comb (2009) 29: 35–62 43

used to code Motzkin paths so that every up (resp. down) step in a Motzkin path
corresponds to the symbol / (resp. \ ) and every level step decorated by x ∈ X corre-
sponds to x. Under this coding, the set of Dyck paths corresponds to the set of legal
bracketings [5, 6], consisting of words from the alphabet set {/,\ } with the above
two properties.

We now generalize the concept of decorated Motzkin words. Consider the free
monoid

MX,� = M
(
X ∪ {/ω

∣
∣ω ∈ �} ∪ {\ω

∣
∣ω ∈ �}) (5)

on the set X ∪ {/ω

∣
∣ω ∈ �} ∪ {\ω

∣
∣ω ∈ �}. For a given ω ∈ �, define

Pω : MX,� → MX,�, Pω(m) = /ωm\ω,m ∈ MX,�.

Then MX,� is an �-operated monoid. Define W (X,�) to be the �-operated sub-
monoid of MX,� generated by X. Elements of W (X,�) are called (X,�)-decorated
Motzkin words.

We next show that, as in the case of Motzkin words, (X,�)-decorated Motzkin
words code (X,�)-decorated Motzkin paths.

Proposition 3.2 The �-operated monoids P (X,�) and W (X,�) are isomorphic.
Consequently, W (X,�) is the free �-operated monoid on X.

Proof By the freeness of P (X,�), there is a unique �-operated monoid homomor-
phism

φP ,W : P (X,�) → W (X,�) (6)

such that φP ,W (
x

) = x, x ∈ X. This homomorphism is surjective since W (X,�)

is generated by X as an �-operated monoid.
To see the injectivity of φP ,W , we only need to note that φP ,W sends

⎧
⎨

⎩

an up step in a Motzkin path decorated by ω ∈ � to /ω,

a down step in a Motzkin path decorated by ω ∈ � to \ω,

a level step in a Motzkin path decorated by x ∈ X to x.

(7)

Thus distinct Motzkin paths correspond to distinct Motzkin words. �

Remark 3.3 Through the bijection φP ,W , we can use the definition of a (X,�)-
Motzkin path to characterize an (X,�)-Motzkin word to be a word w ∈ MX,� such
that

(a) ignoring the �-decoration of w, we have an X-decorated Motzkin word;
(b) for any letter / in w decorated an ω ∈ �, its conjugate \ is also decorated by the

same ω.

Here for each / in w, the conjugate of / is the \ in w to the right of this / such that
the subword of w between (and excluding) these / and \ is a X-decorated Motzkin
word. The existence and uniqueness of the conjugate follow from the matching down
step of an up step in the matching pair of Motzkin paths.
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3.2 Bracketed words

We use the following recursion to give an external construction of (X,�)-decorated
Motzkin words and hence of the free operated semigroup and free operated monoid
over X.

For any set Y , let S(Y ) denote the free semigroup generated by Y , let M(Y) de-
note the free monoid generated by Y . For a fixed ω ∈ �, let ωY �ω denote the set
{ωy�ω

∣
∣y ∈ Y } which is in bijection with Y , but disjoint from Y . Also assume the

sets ωY �ω to be disjoint with each other as ω ∈ � varies.
We now inductively define a direct system {Sn = Sn(X,�), in,n+1 : Sn →

Sn+1}n∈N of free semigroups and a direct system {Mn = Mn(X,�), ĩn,n+1 : Mn →
Mn+1}n∈N of free monoids, both with inclusions as the transition maps, and such
that, for each ω ∈ �,

ω Sn�ω ⊆ Sn+1, ω Mn�ω ⊆ Mn+1, n ∈ N. (8)

We do this by first defining S0 := S(X) and M0 := M(X) = S(X)∪ {1}, and then
defining

S1 := S
(
X ∪ (∪ω∈�ω S0�ω)

) = S
(
X ∪ (∪ω∈�ωS(X)�ω)

)
,

M1 := M
(
X ∪ (∪ω∈�ω M0�ω)

)

with i0,1 and ĩ0,1 being the inclusions

i0,1 : S0 = S(X) ↪→ S1 = S
(
X ∪ (∪ω∈�ω S0�ω)

)
,

ĩ0,1 : M0 = M(X) ↪→ M1 = M
(
X ∪ (∪ω∈�ω M0�ω)

)
.

Clearly, ω S0�ω ⊆ S1 and ω M0�ω ⊆ M1 for each ω ∈ �.
Inductively assume that Sn−1 and Mn−1 have been defined for n ≥ 2, with the

inclusions

in−2,n−1 : Sn−2 ↪→ Sn−1 and ĩn−2,n−1 : Mn−2 → Mn−1. (9)

We then define

Sn := S
(
X ∪ (∪ω∈�ω Sn−1�ω)

)
and Mn := M

(
X ∪ (∪ω∈�ω Mn−1�ω)

)
. (10)

The inclusions in Eq. (9) give the inclusions

ω Sn−2�ω ↪→ ω Sn−1�ω and ω Mn−2�ω ↪→ ω Mn−1�ω,

yielding inclusions of free semigroups and free monoids

in−1,n : Sn−1 = S
(
X ∪ (∪ω∈�ω Sn−2�ω)

)
↪→ S

(
X ∪ (∪ω∈�ω Sn−1�ω)

) = Sn,

ĩn−1,n : Mn−1 = M
(
X ∪ (∪ω∈�ω Mn−2�ω)

)
↪→ M

(
X ∪ (∪ω∈�ω Mn−1�ω)

)

= Mn.
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By Eq. (10), ω Sn−1�ω ⊆ Sn and ω Mn−1�ω ⊆ Mn. This completes the inductive
construction of the direct systems. Define the direct limit of semigroups

S(X,�) = lim−→ Sn =
⋃

n≥0

Sn (11)

whose elements are called nonunitary bracketed words and the direct limit of
monoids

M(X,�) = lim−→ Mn =
⋃

n≥0

Mn (12)

whose elements are called unitary bracketed words. Then by Eq. (8),
ω S(X,�)�ω ⊆ S(X,�) and ω M(X,�)�ω ⊆ M(X,�) for ω ∈ �. Thus S(X,�)

(resp. M(X,�)) carries an �-operated semigroup (resp. monoid) structure.

Theorem 3.4

(a) The �-operated monoids M(X,�) and W (X,�) are naturally isomorphic.
(b) The �-operated monoids M(X,�) and P (X,�) are naturally isomorphic.
(c) The �-mapped semigroups S(X,�) and L(X,�) are naturally isomorphic.

Proof (a) By Theorem 2.1 and Proposition 3.2, (W (X),◦, / \ ) is a free �-operated
monoid on X. Thus there is a unique homomorphism of �-operated monoids

φW ,M : W (X,�) → M(X,�) (13)

such that φW ,M(x) = x.

Let M′ be the �-operated submonoid of M(X,�) generated by X. Then an in-
ductive argument shows that Mn ⊆ M′ for all n ≥ 0. Thus the �-operated monoid
M(X,�) is generated by X and therefore φW ,M is surjective.

To prove that φW ,M is injective, we only need to define a homomorphism of
�-operated monoids

φM,W : M(X,�) → W (X,�) (14)

such that φM,W ◦φW ,M = idW (X,�). For this, we inductively define monoid homo-
morphisms

φM,W ,n : Mn → W (X,�), n ≥ 0,

by taking

(a) φM,W ,0 to be the unique monoid homomorphism from the free monoid M0 on
X to W (X,�) sending x to x, x ∈ X, and

(b) φM,W ,k+1 to be such that φM,W ,k+1(ωm�ω) = /ωφM,W ,n(m)\ω , m ∈ Mn.
Here φM,W ,n(m) is defined by the induction hypothesis.

Taking the direct limit, we obtain a monoid homomorphism.

φM,W = lim−→ φM,W ,n : M(X,�) = lim−→ Mn → W (X,�). (15)
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By item (b) above, for each ω ∈ �, the bracket operator ω �ω on M(X,�) is com-
patible with the operator Pω on W (X,�). Thus φM,W is an �-operated monoid
homomorphism. Further, since φM,W ◦ φW ,M is the identity on X, by the universal
property of W (X,�), we must have φM,W ◦ φW ,M = idW (X,�).

(b) The isomorphism is

φM,P = φ−1
P ,W ◦ φM,W (16)

for φP ,W in Eq. (6) and φM,W in Eq. (14).

(c) Since S(X,�) (resp. L(X,�)) is the �-operated subsemigroup of M(X,�)

(resp. P (X,�)) generated by X (resp. { x
∣
∣x ∈ X}), the �-operated monoid iso-

morphism φM,P in Eq. (16) restricts to an isomorphism φS,L : S(X,�) → L(X,�)

of �-operated semigroups. �

Remark 3.5 In the proof of Theorem 3.4, the isomorphism φM,W : M(X,�) →
W (X,�) is almost like the identity map. For example,

φM,W (xωy�ω) = φM,W (x)φM,W (ωy�ω) = x /ωy\ω.

The difference is that in xωy�ω, ωy�ω is a new symbol, while in x /ωy\ω, /

ωy\ω is a word consisting of the three symbols /ω, y and \ω . Thus we can identify
M(X,�) with W (X,�), allowing us to use M(X,�) to give a recursive description
of W (X,�) and use W (X,�) to give an explicit description of M(X,�).

By Theorem 2.1 and Theorem 3.4, we have

Corollary 3.6 Let jX denote the natural embeddings X → M(X,�) or X →
S(X,�).

(a) With the word concatenation product, the triple (M(X,�),  �, jX) is the free
�-operated monoid on X.

(b) With the word concatenation product, the triple (S(X,�),  �, jX) is the free �-
operated semigroup on X.

We will use jX here and later to denote the natural embeddings of X to various oper-
ated monoids and operated semigroups. The meaning will be clear from the context.
By the same proof as for Corollary 2.3, we further have:

Corollary 3.7 Let jX denote the natural embeddings from X to k M(X) or k S(X).

(a) The triple (k M(X),  �, jX) is the free operated (unitary) k-algebra on X.
(b) The triple (k S(X),  �, jX) is the free operated nonunitary k-algebra on X.
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4 Free operated semigroups in terms of planar rooted trees

We follow the notations and terminologies in [11, 43]. A free tree is an undirected
graph that is connected and contains no cycles. A rooted tree is a free tree in which a
particular vertex has been distinguished as the root. A planar rooted tree (or ordered
tree) is a rooted tree with a fixed embedding into the plane. The depth d(T ) of a
rooted tree T is the length of the longest path from its root to its leaves.

Let T be the set of planar rooted trees. A planar rooted forest is a noncommuta-
tive concatenation of planar rooted trees, denoted by T1 �· · ·�Tb or simply T1 · · · Tb,
with T1, · · · , Tb ∈ T . The depth d(F ) of F is the maximum of the depths of the trees
Ti,1 ≤ i ≤ b. Let F be the set of planar rooted forests. Then F is the free semigroup
generated by T with the tree concatenation product.

Remark 4.1 For the rest of this paper, a tree or forest means a planar rooted tree or
a planar rooted forest unless otherwise specified.

Let T1 · · · Tb� denote the usual grafting of the trees T1, · · · , Tb by adding a new root
together with an edge from the new root to the root of each of the trees T1, · · · , Tb .

For two non-empty sets X and �, let F (X,�) be the set of planar rooted forests
whose leaf vertices are decorated by elements of X and non-leaf vertices are deco-
rated by elements of �. The only vertex of the tree • is taken to be a leaf vertex. For
example,

α

β e δ

a γ
d

b c

f
σ

g

τ

h
(17)

with a, b, c, d, e, f, g,h ∈ X and α,β, γ, δ, σ, τ ∈ �. As special cases, we have
F (X,X) of planar rooted forests whose vertices are decorated by elements of X.
When X = � = {x}, F (X,X) is identified with the planar rooted forests without
decorations.

As in the above case of planar rooted forests without decorations, F (X,�), with
the concatenation product, is a semigroup. Further, for ω ∈ � and F = T1 · · · Tb ∈
F (X,�), let ω F �ω be the grafting of T1, · · · , Tb with the new root decorated by ω.
Then with the grafting operators ω �ω,ω ∈ �, F (X,�) is an �-operated semigroup.

We now describe the recursive structure on F (X,�) in algebraic terms. For any
subset Y of F (X,�), let 〈Y 〉 be the sub-semigroup of F (X,�) generated by Y . Let
F0(X,�) = 〈{•x

∣
∣x ∈ X}〉, consisting of forests composed of trees • x, x ∈ X. These

forests are also the ones decorated by X of depth zero. Then recursively define

Fn(X,�) = 〈X ∪ (∪ω∈�ω Fn−1(X,�)�ω)〉. (18)

It is clear that Fn(X,�) is the set of (X,�)-decorated forests with depth less or equal
to n and

F (X,�) = ∪n≥0 Fn(X,�) = lim−→ Fn(X,�). (19)
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Theorem 4.2 Let X and � be non-empty sets.

(a) F (X,�) is the free �-operated semigroup on X.
(b) kF (X,�) is the free �-operated non-unitary algebra on X.

Proof (a) It can be proved directly following the proof of Theorem 2.1.(b), using the
recursive structure on F (X,�) in Eq. (18). Just replace L(X,�) and Ln(X,�),n ≥
0 by F (X,�) and Fn(M,�). We leave the details to the interested reader and turn to
an indirect proof by showing that the �-operated semigroup F (X,�) is isomorphic
to the �-operated semigroup L(X,�). Hence F (X,�) is free by Theorem 2.1.(b).

We obtain such an isomorphism by starting with the natural set map

f : X → F (X,�), x �→ • x, x ∈ X.

Then by Theorem 2.1.(b), there is a unique homomorphism

φL,F : L(X,�) → F (X,�) (20)

of �-operated semigroups such that φL,F (
x

) = • x, x ∈ X. We only need to show
that φL,F is bijective.

By an inductive argument, the �-operated subsemigroup of F (X,�) generated by
X contains Fn(X,�) for all n ≥ 0. Thus by Eq. (18), F (X,�) is generated by X as
an �-operated semigroup. Thus φL,F is surjective. To prove that φL,F is injective,
we construct a homomorphism of �-operated semigroups

φF ,L : F (X,�) → L(X,�) (21)

such that φF ,L ◦ φL,F = idL(X,�). This follows by multiplicity from a map

φF ,L : T (X,�) → L(X,�) ∩ I(X,�). (22)

This explicitly defined combinatorial bijection might be of interest on its own right.
Trees and Motzkin paths have been related in previous works such as [12].

To define φF ,L in Eq. (22), we first combine the well-known processes of preorder
and postorder of traversing a planar rooted tree to define the process of biorder. The
vertex biorder list of a tree T ∈ T (X,�) is defined as follows.

(a) If T has only one vertex, then that vertex is the vertex biorder list of T ;
(b) If T has more than one vertices, then the root vertex of T has branches

T1, · · · , Tk , k ≥ 1, listed from the left to the right. Then the vertex biorder list
of T is the root of T , followed by the vertex biorder list of T1, · · · , followed by
the vertex biorder list of Tk , followed by the root of T .

We use the adjective vertex with biorder to distinguish it from the edge biorder list
to be introduced in Remark 5.2. For example, the vertex biorder list of the tree in
Eq. (17) is

αβaγ bcγ dβeδf σgστhτδα (23)
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It is clear that a vertex appears exactly once in the list if it is a leaf and exactly
twice if it is not a leaf. The only vertex of • is taken to be a leaf. Thus we can record
/ω (instead of ω) if a non-leaf vertex decorated by ω is listed for the first time and \ω

(instead of ω) if this vertex is listed for the second time. This gives a word in MX,�

defined in Eq. (5) and satisfies the required properties of an (X,�)-Motzkin word
described in Remark 3.3 and therefore gives an (X,�)-Motzkin word. For example,
the Motzkin word from Eq. (23) is

/α /β a /γ b c\ γ d\ β e /δf /σ g\ σ /τ h\ τ\ δ\ α (24)

Then through the bijection φP ,W in Eq. (7), such an (X,�)-decorated Motzkin
word gives an (X,�)-decorated Motzkin path. As an example, the Motzkin word in
Eq. (24) above corresponds to the Motzkin path

α

β
a

γ
b c

γ
d

β
e

δ
f σ

g

σ τ

h

τ

δ

α (25)

This completes the construction of φF ,L in Eq. (22) and hence in Eq. (21).
It is clear that this correspondence sends the concatenation of rooted forests to the

link of Motzkin paths and sends the grafting operator of rooted forests to the raising

operator of peak-free Motzkin paths. Since (φF ,L ◦ φL,F )(
x

) = x for x ∈ X,
by the freeness of L(X,�), we have φF ,L ◦ φL,F = idL(X,�), as needed.

(b) The proof follows in the same way as the proof of Corollary 3.7. �

5 Some natural bijections

As noted in Example 1.3, well-known algebras with operators such as differential
algebras, difference algebras and Rota-Baxter algebras are operated algebras with
additional conditions on their operators. Thus the free objects in these categories
are quotients of free operated algebras. In this context, results in previous sections
show that free objects in these categories are quotients of the operated algebras of
Motzkin paths or planar rooted forests. For some of these categories it is possible to
find a canonical subset of the Motzkin paths or planar rooted forests that projects to
a basis in these quotients. This is the case for Rota-Baxter algebras. It was shown
in [2, 16] that free Rota-Baxter algebras on a set can be constructed from a subset
of planar rooted forests with decorations on the angles. In Section 6, we will give
similar constructions in terms of Motzkin paths and leaf decorated trees, as well as in
terms of bracketed words which relates to the construction in [15]. For this purpose,
we now put together bijections among these combinatorial objects.
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5.1 Angularly decorated forests

For later references, we review the concept of angularly decorated planar rooted
forests. See [16] for further details.

Let X be a non-empty set. Let F ∈ F with � = �(F ) leaves. Let XF denote the
set of pairs (F ; �x) where �x is in X(�(F )−1) with the convention that X • = {(• ;1)}.
Let XF =

•⋃
F∈F XF . We call (F ; �x) an angularly decorated forest since it can be

identified with the forest F together with an ordered decoration by �x on the angles of
F . For example,

( ; x
) = x ,

( ; (x, y)
) = x y ,

( ; (x, y)
) = x

y
.

x
y

is denoted by �x
y

in [16].

Let (F ; �x) ∈ XF . Let F = T1 · · ·Tb be the decomposition of F into trees. We
consider the corresponding decomposition of the decorated forest. If b = 1, then
F is a tree and (F ; �x) has no further decompositions. If b > 1, denote �i = �(Ti),

1 ≤ i ≤ b. Then

(T1; (x1, · · · , x�1−1)), (T2; (x�1+1, · · · , x�1+�2−1)), · · · ,

(Tb; (x�1+···+�b−1+1, · · · , x�1+···+�b
))

are well-defined angularly decorated trees when �(Ti) > 1. If �(Ti) = 1, then
x�i−1+�i−1 = x�i−1 and we use the convention (Ti;x�i−1+�i−1) = (Ti;1). Thus we
have,

(F ; (x1, · · · , x�−1)) = (T1; (x1, · · · , x�1−1))x�1(T2; (x�1+1, · · · , x�1+�2−1))x�1+�2

· · ·x�1+···+�b−1(Tb; (x�1+···+�b−1+1, · · · , x�1+···+�b
)).

We call this the standard decomposition of (F ; �x) and abbreviate it as

(F ; �x) = (T1; �x1)xi1(T2; �x2)xi2 · · ·xib−1(Tb; �xb) = D1xi1D2xi2 · · ·xib−1Db (26)

where Di = (Ti; �xi),1 ≤ i ≤ b. For example,

( ; (v, x,w,y)
) = ( ;1

)
v
( ;x)w

( ;y) = v x w y

We note that even though XF is not closed under concatenation of forests, it is closed
under the grafting operator and (F ; �x)� = (F �; �x).

5.2 The bijections

We list below all the objects that we have encountered so far in order to study their
relations in Theorem 5.1. Let X be a non-empty set and let � be a singleton. Thus
we will drop � in the following notations.
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(a) M(X) is the operated monoid of unitary bracketed words on the alphabet set X,
defined in Eq. (11);

(b) S(X) is the operated semigroup of nonunitary bracketed words on the alphabet
set X, defined in Eq. (12);

(c) R(X) is the set of Rota-Baxter bracketed words[15, 29] on the alphabet set
X. Such a word is defined to be a word in M(X) that does not contain �  as in
x�y�;

(d) P (X) is the set of Motzkin paths with level steps decorated by X, considered in
Corollary 2.2;

(e) L(X) is the set of peak-free Motzkin paths with level steps decorated by X, con-
sidered in Corollary 2.2;

(f) V (X) is the set of valley-free Motzkin paths with level steps decorated by X,
consisting of Motzkin paths in P (X) with no down step followed immediately
by an up step;

(g) F (X) is the set of planar rooted forests with leaves decorated by X, defined in
Eq. (19);

(h) Define F�(X) to be the subset of F (X) consisting of leaf decorated forests that
do not have a vertex with adjacent non-leaf branches. Such a forest is called leaf-
spaced. For example, the tree

e

a
d

b c

f

g h

is not leaf-spaced since the two right most branches, with leaves decorated by g

and h, are not separated by a leaf branch. But the tree

e

a
d

b c

g

f h
(27)

is leaf-spaced;
(i) XF is the set of planar rooted tree with angles decorated by X, defined in Sec-

tion 5.1;
(j) XF

0 be the subset of XF consisting of ladder-free forests, namely those forests
that do not have a ladder tree, the latter being defined to be a subtree �= • with
only one leaf. Equivalently, a ladder-free forest is a forest �= • that does not

have a subtree . For example, x is ladder-free, but x is not ladder-free
because of its right branch.
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Theorem 5.1 There are maps among the sets in the above list that fit into the follow-
ing commutative diagram of bijection and inclusions.

M(X)

φM,P

S(X)

φS,L

φS,M

P (X) R(X)

φR,V

φR,M

L(X)

φL, F

φL,P

V (X)

φV ,XF

φV ,P

F (X) S(X) ∩ R(X)

φS R,L V

φS R,S φS R,R

XF

L(X) ∩ V (X)

φL V , F�

φL V ,L φL V ,V

φL V ,XF
0

F�(X)
φF�,XF

0

φF�, F

XF
0

φ
XF

0 ,XF

The maps will be recalled or defined in the proof. Each of the maps is compatible with
the products, whenever defined, and is compatible with the distinguished operators.

Proof All the inclusions are clear from the definition of the sets. So we only need to
verify the claimed properties for the bijective maps.

The isomorphism φM,P is obtained in Eq. (16). The isomorphism φS,L is the
restriction of φM,P . See Theorem 3.4.(c) and its proof. The isomorphism φL,F is
defined in Eq. (20) whose inverse is φF ,L in Eq. (21).

φR,V is the restriction of the operated monoid isomorphism φM,P to R(X). Its
bijectivity follows from Theorem 3.4 and Remark 3.5.

φS R,L V is defined to be the restriction of φM,P . Hence its bijectivity follows
from the bijectivity of φS,L and φR,V which are both restrictions of φM,P .

φL V ,F�
is defined to be the restriction of the bijective map φL,F to L(X) ∩ V (X).

By the explicit description of φF ,L = φ−1
L,F in the proof of Theorem 4.2, a Motzkin

path m ∈ L(X) has a peak if and only if the corresponding leaf decorated rooted forest
φL,F (m) = φL,F (m) ∈ F (X) has a vertex with two adjacent non-leaf branches. The
bijectivity of φL V ,F�

follows.
We will define below a bijective map

φV ,XF : V (X) → XF (28)
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that restricts to a bijective map

φL V ,XF
0

: L(X) ∩ V (X) → XF
0 (29)

and is compatible with the distinguished operators. Then by composition, we obtain
a bijective map

φF�,X
F
0

= φL V ,XF
0

◦ φ−1
L V ,F�

: F�(X) → L(X) ∩ V (X) → XF
0

that is compatible with the distinguished operators.
Thus it remains to construct a bijective map

φV ,XF : V (X) → XF (30)

with the prescribed properties above. For this we give another canonical decomposi-
tion of a decorated Motzkin path • �= m ∈ V (X). Let

m = m1 ◦ · · · ◦ mp. (31)

be the decomposition of m �= • into indecomposable decorated Motzkin paths mi �=
• ,1 ≤ i ≤ p. Since m is valley free, there are no consecutive mi and mi+1 that have
height greater or equal to 1. Then add a path factor • to the beginning and the end of
m, and insert a • between any two consecutive mi and mi+1 of height zero. That is,

rewrite mi ◦ mi+1 = x ◦ y as mi ◦ • ◦ mi+1. Since • is the identity element
of the product ◦, this rewriting does not change m. In this way Eq. (31) is uniquely
rewritten as

m = V1 ◦ xi1 ◦ V2 ◦ · · · ◦ Vb−1 ◦ xib−1 ◦ Vb (32)

where each Vj ,1 ≤ j ≤ b, is either • or an indecomposable valley-free Motzkin path
of height at least one. Call this the standard decomposition of m. As an example we
have the following decomposition and standard decomposition of a Motzkin path.

Note that an indecomposable valley-free Motzkin path Vj of height k ≥ 1 is of the
form /V j\ for another Motzkin path V j of height k − 1. We then use induction on
k to define

φV ,XF (m) =
{

(• ,1), m = • ,

φV ,XF (V1)xi1φV ,XF (V2) · · ·φV ,XF (Vb−1)xib−1φV ,XF (Vb), m �= •
(33)

with

φV ,XF (Vj ) =
{

(• ,1), Vj = • ,

φV ,XF (V j )�, Vj = /V j\ .
(34)
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Here the second case is well-defined by the induction hypothesis. It is clear that
Eq. (33) gives the standard decomposition of a planar rooted forest in XF .

Conversely, for any given angularly decorated rooted forest D ∈ XF , let

D = D1xi1D2 · · ·Db−1xib−1Db

be its standard decomposition in Eq. (26). Then define

φXF ,V (D) = φXF ,V (D1) ◦ xi1 ◦ φXF ,V (D2) ◦ · · · ◦ xib−1 ◦ φXF ,V (Db) (35)

where on the right hand side

φXF ,V (Dj ) =
{ • , Dj = (• ;1),

/φXF ,V (Dj )\ , Dj = Dj �. (36)

Then clearly φXF ,V is the inverse of φV ,XF .
Note that

φXF ,V ( ) = φXF ,V (• �) = /φXF ,V (• )\ =

Thus if D ∈ XF does not have a subtree then φXF ,V (D) does not have a sub-

path , namely φXF ,V (D) is peak free. This shows that φXF ,V restricts to a
bijection φXF

0 ,L V in Eq. (29). This completes the proof of the theorem. �

Remark 5.2 (A combinatorial description of φXF ,V .) Let D = (T ; �x) with T a
planar rooted tree and �x the vector of angular decorations on T . We first list the
edges of T in biorder. The edge biorder list of T is defined as follows.

(a) If T has only one vertex, then there is nothing in the edge biorder list of T ;
(b) If T has more than one vertices, then the root vertex of T has subtrees T1, · · · , Tk ,

k ≥ 1, listed from left to right. Then the edge biorder list of T is

• U , followed by the edge biorder list of T1, followed by D,
• · · · ,
• U , followed by the edge biorder list of Tk , followed by D.

Modifying the “worm” illustration of the vertex preorder in [42, Figure 5-14], imag-
ine that a worm begins just left of the root of the tree and crawls counterclockwise
along the outside of the tree until it returns to the starting point. As it crawls along,
for each of the edges it passes, it records a / if it is crawling away from the root and
records a \ if it is crawling toward the root. Note that this way, each edge is recorded
twice, the first by a / and the second time by a \ . For example, the edge biorder list
of the angular decorated tree

e

a
d

b c f

g

h
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(ignoring the decorations for now) is

/ /\ / /\ /\ /\ \ /\ \ / / /\ /\ \ / /\ /\ \ \ .

Regarding an edge biorder list as a word w with the alphabet set {/,\ }, counting
from the left of w, the number of occurrences of / (resp. \ ) is the number of edges
that are encountered for the first (resp. the second) time. Thus w is a Motzkin word
by its definition (Definition 3.1). In fact, it is a Dyck word in the sense that it codes a
Dyck path.

Next we deduce a Motzkin word decorated by L from this edge biorder list by
replacing each occurrence of \ / by an L. For example, the above edge biorder list
is deduced to

/ /L/LL\ L\ L/ /L\ L/L\ \ \ .

Note that each time the “worm” passes an angles of the tree it records a pair \ /

in the edge biorder list and hence an L in the corresponding Motzkin word. So the
number of angles of the tree T equals the number of L-letters in the Motzkin path.
Thus we can use the entries of �x in D = (T ; �x) to decorate and replace the L-letters,
giving rise to an X-decorated Motzkin word. For our example above, we have

/ /a /bc\ d\ e / /f \ g /h\ \ \
and hence the Motzkin path

a

b c

d

e

f

g

h

6 Constructions of free Rota-Baxter algebras

In [16] (see also [2]), free Rota-Baxter algebras on a set X is constructed using an-
gularly decorated planar forests. We first recall this construction and then show how,
through the natural bijections in Theorem 5.1, we transport this Rota-Baxter algebra
structure on angularly decorated forests to such a structure on Motzkin paths, leaf
decorated planar forests and bracketed words.

6.1 Review of the Rota-Baxter algebra structure on angularly decorated forests

On the set of angularly decorated forests XF defined in Section 5.1, define the free
k-module kXF (denoted by XNC(X) in [16]). Note that if D = (F ; �x) ∈ XF is a
tree (that is, if F is a tree), then since F is either • or F � for F ∈ F , we have either
D = (• ;1) or D = D� where D = (F ; �x). The depth filtration on F in Eq. (18) in-
duces a depth filtration on XF . In [16], we use this filtration to define a multiplication
� on kXF that is characterized by the following properties.
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(a) (• ;1) is the multiplication identity;
(b) If D and D′ are angularly decorated trees not equal to • , so D = D�,D′ = D′�

for D,D
′ ∈ XF , then

D �D′ = D �D′� + D �D
′� + λD �D

′�. (37)

(c) If D = D1xi1 · · ·xib−1Db and D′ = D′
1x

′
i′1

· · ·x′
i′
b′−1

D′
b′ are the standard decompo-

sition of the angularly decorated forests D and D′ in Eq. (26), then

D �D′ = D1xi1 · · ·Db−1 xib−1 (Db �D′
1) x′

i′1
D′

2 · · · x′
i′
b′−1

Db′ . (38)

For example, applying Eq. (37) and Eq. (38) we have

x � y = •x •� � •y •�

= (•x • ) � y � +  x � (•y • )� + λ(•x • )� (•y • )�

= •x y � +  x y •� + λ•x • y •� (39)

= x

y
+ y

x
+ λ x y

Extending the product � bilinearly, we obtain a binary operation � on kXF . For
(F ; �x) ∈ XF , define

PX(F ; �x) = (F ; �x)� = (F � ; �x) ∈ XF �, (40)

extending to a linear operator PX on kXF . Let

jX : X → kXF (41)

be the map sending x ∈ X to (• • ;x). The following theorem is proved in [16].

Theorem 6.1 The quadruple (kXF , � ,PX, jX) is the free Rota–Baxter algebra of
weight λ on the set X. More precisely, for any Rota–Baxter algebra (R,P ) and map
f : X → R, there is a unique Rota–Baxter algebra homomorphism f̄ : kXF → R

such that f = f̄ ◦jX. Similarly, The quadruple (kXF
0 , � ,PX, jX) is the free nonuni-

tary Rota–Baxter algebra of weight λ on the set X. Here XF
0 is the set of ladder-free

angularly decorated forests in Theorem 5.1.

6.2 Rota-Baxter algebra structure on Motzkin paths

We now transport the Rota-Baxter algebra structure from kXF to kV (X) through
the bijection φXF ,V in Eq. (35) and its inverse φV ,XF in Eq. (33). Note that an in-

decomposable X-decorated Motzkin path is either • or or /m̄\ for another
X-decorated Motzkin path m̄.



J Algebr Comb (2009) 29: 35–62 57

Theorem 6.2 The bijection φXF ,V : XF → V extends to an isomorphism

φXF ,V : (kXF , � ,PX) → (kV ,�v ,  �)

of Rota-Baxter algebras where the multiplication �v on kV is defined recursively
with respect to the height of Motzkin paths and is characterized by the following
properties.

(a) The trivial path • is the multiplication identity;
(b) If m and m′ are indecomposable X-decorated Motzkin paths not equal to • , then

m �v m
′ =

{
m ◦ m′, m = x or m′ = x′

,

/m̄ �v m′\ + /m � m̄′\ + λ/m̄ �v m̄′\ , m = /m̄\ ,m′ = /m̄′\ ;
(42)

(c) If m = m1 ◦ · · · ◦ mp and m′ = m′
1 ◦ · · · ◦ m′

p′ are the decompositions of m,m′ ∈
V (X) into indecomposable paths, then

m �v m
′ = m1 ◦ · · · ◦ (mp �v m

′
1) ◦ · · · ◦ mp′ . (43)

Further, the Rota-Baxter algebra isomorphism φXF ,V restricts to an isomorphism

φXF
0 ,L V : kXF

0 → k(L ∩ V )

of nonunitary Rota-Baxter algebras.

As an illustration, the example in Eq. (39) corresponds to

x

�v

y

= /
x \ �v /

y \

= /
x �v

y

\ + /

x

�v
y \

+ λ/
x �v

y \

= / x

y

\ + /

x

y \ + λ/
x y \ (44)

=
x

y

+

x

y

+ λ

x y

Proof We just need to show that under the bijection φXF ,V , the product � on kXF

characterized by (a) – (c) in § 6.1 corresponds to the product �v characterized by (a)
– (c) in Theorem 6.2.

First of all, since φXF ,V (• ) = • ∈ V (X), • is the identity for the multiplication
�v . Next let m and m′ be indecomposable X-decorated Motzkin paths that are not • .
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Then either m = x or m = /m̄\ . Similarly for m′. Then by Eq. (34), we have

φV ,XF (m) =
{

•x • , m = x
,

φV ,XF (m̄)�, m = m̄�. φV ,XF (m′) =
{

•x′ • , m = x′
,

φV ,XF (m̄′)�, m′ = m̄′�.

Denote

D = φV ,XF (m),D′ = φV ,XF (m′),D = φV ,XF (m̄),D
′ = φV ,XF (m̄′).

It then follows from Eq. (37) and (38) that

φV ,XF (m)�φV ,XF (m′)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

•x • x′ • , m = x
,m′ = x′

,

•xD′�, m = x
,m′ = /m̄′\ ,

D�x′ • , m = /m̄\ ,m′ = x′
,

D �D′� + D �D
′� + λD �D

′�, m = /m̄\ ,m′ = /m̄′\ .

By definition, the product �v on kV is obtained from the product � on kXF by

m �v m
′ = φXF ,V (φV ,XF (m)�φV ,XF (m′)).

Thus by Eq. (35) and (36) we have

m �v m
′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ◦ x′ = m ◦ m′, m = x
,m′ = x′

,
x ◦ /m̄′\ = m ◦ m′, m = x

,m′ = /m̄′\ ,

/m̄\ ◦ x′ = m ◦ m′, m = /m̄\ ,m′ = x′
,

/m̄ �v m′\ + /m �v m̄′\ + λ/m̄ �v m̄′\ , m = /m̄\ ,m′ = /m̄′\ .

This is Eq. (42).
Let m = m1 ◦ · · · ◦ mp and m′ = m′

1 ◦ · · · ◦ m′
p′ be the decompositions of m,m′ ∈

V (X) into indecomposable paths. Let m = V1 ◦ xi1 ◦ V2 ◦ · · · ◦ xib−1 ◦ Vb and

m = V ′
1 ◦ x′

i′1 ◦ V ′
2 ◦ · · · ◦ x′

i′
b′−1 ◦ V ′

b′ be their standard decompositions in Eq. (32).

Then by Eq. (33), (35) and (38), we have

m�v m
′ = V1 ◦ xi1 ◦V2 ◦· · ·◦ xib−1 ◦(Vb �v V ′

1)◦ x′
i′1 ◦V ′

2 ◦· · ·◦ x′
i′
b′−1 ◦V ′

b′ . (45)

We check that no matter mp = x or not and no matter m′
1 = x′

or not, Eq. (45)
agrees with Eq. (43). This completes the proof that φXF ,V in Eq. (35) is a Rota-Baxter
algebra isomorphism.

Since φXF ,V restricts to a bijection φXF
0 ,L V : XF

0 → L ∩ V by Theorem 5.1 (see
Eq. (29)), the second part of the theorem follows. �
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Furthermore the map jX : X → XF in Eq. (41) is translated to

jX : X → P (X), jX(x) = x
. (46)

Then by Theorem 6.1 and Theorem 6.2 we have

Corollary 6.3 The quadruple (kV (X),�v, / \ , jX) (resp. (k (V (X) ∩ L(X)),�v, /

\ , jX)) is the free Rota-Baxter algebra (resp. free nonunitary Rota-Baxter algebra)
on X.

6.3 Rota-Baxter algebra structure on bracketed words

Through the natural bijection φR,V : R(X) → V (X) in Theorem 5.1, the Rota-Baxter
algebra structure on kV (X) in Theorem 6.2 is transported to a Rota-Baxter algebra
structure on kR(X), giving another construction of the free Rota-Baxter algebra on
X, in terms of bracketed words. See also [15, 29] for variations of this construction.

A bracketed word W ∈ M(X) is called indecomposable if either W = 1 or
W = x ∈ X or W = W� where W is another bracketed word. Clearly, W ∈ M(X) is
indecomposable if and only if the Motzkin path φM,P (W) ∈ P (X) is indecompos-
able. It then follows that any bracketed word has a unique decomposition as a product
of indecomposable bracketed words.

Since φM,P is an isomorphism of operated monoids, its restriction φR,V and
its inverse φV ,R are compatible with the multiplications (link product on paths and
concatenation product on words) and the distinguished operators (the raising and
bracketing operators). Then we transport the product �v on kXF , characterized by
(a)–(c) in Theorem 6.2, to a product �w on kR(X), characterized by the following
properties.

(a) 1 is the multiplication identity.
(b) If W and W ′ are indecomposable words in R(X) not equal to 1, then

W �w W ′ =
⎧
⎨

⎩

W W ′ (word concatenation), W = x ∈ X or W ′ = x′ ∈ X,

W �w W ′� + W �w W
′� + λW �w W

′�,
W = W�,W ′ = W ′�.

(47)
(c) If W = W1 · · ·Wb and W ′ = W ′

1 · · ·W ′
b′ are the decompositions of W,W ′ ∈ R(X)

into indecomposable words, then

W �w W ′ = W1 · · · (Wb �w W ′
1) · · ·W ′

b′ . (48)

The example in Eq. (44) corresponds to

x� �w y� = x �w y�� + x� �w y� + λx �w y� = xy�� + x�y� + λxy�
(49)

Further the map jX : X → R(X) in Eq. (46) is transported to

jX : X → S(X) ∩ R(X) ⊆ R(X), jX(x) = x. (50)

Then by Theorem 6.2 and Corollary 6.3 we have
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Corollary 6.4

(a) The bijection φR,V : R(X) → V (X) extends to an isomorphism φR,V :
(kR(X),�w,  �) → (kV (X),�v, / \ ) of Rota-Baxter algebras. This isomor-
phism restricts to an isomorphism φS R,L V : (k(S(X) ∩ R(X)),�w,  �) →
(k(L(X) ∩ V (X)),�v, / \ ) of nonunitary Rota-Baxter algebras.

(b) The quadruple (kR(X),�w,  �, jX) (resp. (k (S(X) ∩ R(X)),�w,  �, jX)) is
the free Rota-Baxter algebra (resp. free nonunitary Rota-Baxter algebra) on X.

6.4 Rota-Baxter algebra structure on leaf decorated rooted forests

We finish this paper by obtaining a free Rota-Baxter algebra structure on the free
k-module kF�(X) of leaf decorated rooted forests.

Through the bijection φL V ,F�
: L(X) ∩ V (X) → F�(X) in Theorem 5.1, the free

nonunitary Rota-Baxter algebra on k(L(X) ∩ V (X)) in Corollary 6.3 gives us a free
nonunitary Rota-Baxter algebra structure on k F�(X). Since φL V ,F�

sends the link
product of paths to the concatenation of forests and sends the raising operator to the
grafting operator, the two properties in Eq. (42) and Eq. (43) translate to the following
properties characterizing the multiplication �� on leaf-spaced leaf decorated forests.

(a) If F and F ′ are leaf decorated trees, then

F �� F ′ =
{

F F ′ (concatenation of trees), F = •x or F ′ = •′
x,

F �� F ′� + F �� F
′� + λF �� F

′�, F = F �,F ′ = F ′�. (51)

(b) If F = F1 · · · Fb and F ′ = F ′
1 · · · F ′

b′ are in F�(X) with their corresponding de-
composition into leaf decorated trees, then

F �� F ′ = F1 · · · (Fb �� F ′
1) · · · F ′

b′ . (52)

The example in Eq. (44) translates to

x
��

y
= •x � �� •y �

= •x ��
y

� + 
x

�� •y � + λ•x �� •y �

= •x
y

� + 
x

•y � + λ•x •y � (53)

=
y

x +
x

y + λ
x y

Further the map jX : X → L(X) ∩ V (X) in Eq. (46) is transported to

jX : X → F�(X), jX(x) = • x, x ∈ X. (54)

Then by Theorem 6.2 and Corollary 6.3 we have
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Corollary 6.5

(a) The bijection φL V ,F�
: L(X) ∩ V (X) → F�(X) extends to an isomorphism

φL V ,F�
: (k(L(X) ∩ V (X)),�v, / \ ) → (kF�(X),��,  �) of nonunitary Rota-

Baxter algebras.
(b) The quadruple (kF�(X),��,  �, jX) is the free nonunitary Rota-Baxter algebra

on X.
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