OPERATING CHARACTERISTICS FOR DETECTION OF A FADING SIGNAL IN M ALTERNATIVE LOCATIONS WITH D-FOLD DIVERSITY

Albert H. Nuttall
Naval Underwater Systems Center
New London, Connecticut
20 August 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

PREFACE

This report was prepared under NUSC Project No. TA-176-92, "IACS Signal Design," Principal Investigator, Dr. A. J. Van Woerkom (Code TC), sponsoring activity NAVSEA (SEA-06H), Program Manager, J. F. Calabrese; and also under NUSC Project No. A-752-05,
"Applications of Statistical Communication Theory to Acoustic Signal Processing," Principal Investigator, Dr. A. H. Nuttall (Code TC), Navy Subproject No. ZF-61-112-001, sponsoring activity Chief of Naval Material, Program Manager, Dr. J. H. Huth.

The Technical Reviewer for this report was Dr. A. J. Van Woerkom (Code TC).

The author of this report is located at the New London Laboratory, Naval Underwater Systems Center, New London, Connecticut 0632 J
ic

REPORT DOCUMENTATION PAGE	READ INBTRUCTIONS BEFORE COHPLETING FORM
	D. RECIDIENT'S CATALOG MUMIET $A D 786$
4. TITLE (EN BuHIIT) OPERATING CHARACTERISTICS FOR DETECTION of a fading signal in m alternative loca TIONS WITH D-FOLD DIVERSITY	8. True or nepont a pemod covineo
7. Аuthowes Albert H. Nuttall	- Contract on ghant mumbento
DERFOWG NAGMization NEWE ANO AODESI Naval Underwater Sytems Center New London Laboratory New London, Connecticut 06320	
	12. nepont oati
	20. August 1974
	$\begin{aligned} & \text { 13. MUMOENि OF PAGES } \\ & 68 \end{aligned}$
	is. secunitr Class. (of mie noman) UNCLASSIFIED
	T5. OECLASSITICATION' Downgnaing
Approved for public release; distribution unlimited.	
16 SUPPLEMENTANY Notes	
Detection of fading signal False-alarm probability	
Multiple alternatives Optimum energy fractionalization	
Diversity	
Correct-decision probability	
alternative locations with D -fold diversity are deriv over the range of values $\mathrm{M}=1,2,4,16,64,256$, $12,16,24,32,48,64$ for a wide range of signal-en ratios (ENR). These results, which apply to the opti have relevance to synchronization as well as to multip	larm for a fading signal in M ed and numerically evaluated 1024 and $D=1,2,3,4,6,8$ nergy-to-noise-density-level imum receiver processor, tiple alternative communica-

20. (Cont'd).

tion with thresholding. It is found that the optimum order of diversity does not correspond to the familiar 5 dB ENR per branch, but ather to ENR branch values as large as 14 dB for some cases of small false-alarm probability and moderate correct-decision probability. However, fr r error probabilities approximately equal to the false-alarm probability, the optimum ENR per branch approaches 5 dB . The required total received signal energy increases very slowly with M ; for example, for a wide range of values of correct-decision and false-alarm probabilities, a 1-dB increase suffices for the change from $\mathrm{M}=32$ to $\mathrm{M}=1024$.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS iii
LIST OF ABBREVIATIONS v
LIS'T OF SYMBOLS v
INTRODUCTION 1
DEFINITIONS OF ERROR PROBABILITIES 2
Integral Expressions for Probabilities 4
SIGNA L AND NOISE MODELS AND THE OPTIMUM PROCESSOR. 5
PERFORMANCE RESULTS 8
DISCUSSION 10
APPENDIX A - ERROR ANA LYSIS AND INTERRELATIONSHIPS 51
APPENDIX B - DERIVATION OF FALSE-ALARM AND CORRECT- DECISION PROBABILITIES 53
APPENDIX C - RELATIONSHIP OF SIGNA L-TO-NOISE RATIO TO SIGNA L-ENERGY-TO-NOISE-DENSITY-LEVEL RATIO 55
APPENDIX D - PROGRAM FOR GENERATION OF DETECTION CHARACTERISTICS 57
REFERENCES 61

Figure

Page
1 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-2}, \mathrm{M}=1$. 13
2 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=1$. 14
3 Detection Characteristics for $P_{F A}=1 U^{4}, M=1$. 15
4 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=1$. 16
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=1$. 17
Detection Characteristics for $P_{F A}=10^{-2}, \mathrm{M}=2$. 18
7 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=2$. 19
8 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{M}=2$. 20
9 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=2$. 21
10 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=2$. 22
11 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-2}, \mathrm{M}=4$. 23

15 Detection Characteristics for $P_{F A}=10^{-8}, M=4$.
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-2}, \mathrm{M}=16$. 28
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=16$. 29
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{M}=16$. 30
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=16$. 31
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=16$. 32
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-2}, \mathrm{M}=64$. 33
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=64$. 34
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{M}=64$. 35
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=64$. \quad. . 36
Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=64$. 37

LIST OF ILLUSTRATIONS (Cont'd)
Figure
Page
26 Detection Characteristics for $P_{\mathrm{FA}}=10^{-2}, \mathrm{M}=256$. . . . 38
27 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=256$. 39
28 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{M}=256$. 40
29 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=256$. 41
30 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=256$. 42
31 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-2}, \mathrm{M}=1024$. . . . 43
32 Detection Characteristics for $P_{F A}=10^{-3}, \mathrm{M}=1024$. . . . 44
33 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{M}=1024$. . . . 45
34 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=1024$. . . . 46
35 Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=1024$. . . . 47
36 Minimum $\bar{E}_{\mathrm{T}} / \mathrm{N}_{\mathrm{O}}$ Required for $\mathrm{P}_{\mathrm{CD}}=0.5$. 48
37 Minimum $\overline{\mathrm{E}}_{\mathrm{T}} / \mathrm{N}_{\mathrm{o}}$ Required for $\mathrm{P}_{\mathrm{CD}}=0.9$. 49
38 Minimum $\bar{E}_{\mathrm{T}} / \mathrm{N}_{\mathrm{o}}$ Required for $\mathrm{P}_{\mathrm{CD}}=0.99$. 50

LIST OF ABBREVIATIONS

Prob	Probability
max	Maximum
ENR	Signal-encrgy-to-noise-density-level ratio

LIST OF SYMBOLS

M Number of alternative signal locations
D Order of diversity
$\mathrm{x}_{\mathrm{k}} \quad \mathrm{k}$-th decision variable, $\mathbf{1} \leq \mathrm{k} \leq \mathrm{M}$
$\Lambda \quad$ Threshold
$P_{\text {FA }} \quad$ Probability of false alarm
| N Conditioned on noise alone
$\mathrm{P}_{\mathrm{MD}} \quad$ Probability of missed decision
$\mid S+N \quad$ Conditioned on signal and noise present
$P_{\text {ID }} \quad$ Probability of incorrect decision
$P_{C D} \quad$ Probability of correct decision
$\mathrm{P}_{\mathrm{e}}(\mathrm{S}+\mathrm{N}) \quad$ Probability of error for signal and noise present
$P_{e}(N) \quad$ Probability of error for noise alone
$p_{0}(\cdot) \quad$ Probability density function of decision variable for noise alone
$p_{1}(\cdot) \quad$ Probability density function of decision variable for signal and noise present
$P_{0}(\cdot) \quad$ Cumuiative distribution function of decision variable for noise alone
$\mathrm{P}_{1}(\cdot) \quad$ Cumulative distribution function of decision variable for signal and noise present

Ymd Envelope sample on m-th alternative, d-th diversity branch
$z \quad$ Observation vector
Prob $\{k \mid z\}$ A posteriori probability of alternative k
Prob $\{k\}$ A priori probability of alternative k
$p(z \mid k) \quad$ Conditional probability density function of z

LIST OF SYMBOLS (Cont'd)

$p(\mathbf{z})$	Unconditional probability density function of \mathbf{z}
σ_{n}^{2}	Common noise power level in all branches
σ_{S}^{2}	Common signal power level in D occupied branches
Q	A priori probability of alternative $k=0$, no signal
R	$\sigma_{S}^{2} / \sigma_{n}^{2}, \bar{E}_{1} / N_{o}$
\bar{E}_{1}	Average received signal energy per branch
\bar{E}_{T}	Average total received signal energy on all D branches
N_{o}	Single-sided noise power density level
E	Received signal encrgy for nonfluctuating signal
d	$\left(2 \mathrm{E} / \mathrm{N}_{\mathrm{O}}\right)^{1 / 2}$
I_{O}	Modified Bessel function of order zero
Q	Q-function

OPERATING CHAIRACTERISTICS FOR DETECTION OF A FADING SIGNAL IN M ALTERNATIVE LOCATIONS WITH D-FOLD DIVERSITY

INTRODUCTION

Befcre the transfer of information between a transmitter and receiver can take place, synchronization is necessary; that is, the receiver must ascertain the time delay and frequency shift of the received signal before correct decisions about the information content of an ensuing message can be made. For large a priori uncertainties about the transmitter's range and relative velocity, the receiver must conduct a search - during this alert phase - of the numerous possible locations (time-delay frequency-shift cells) to determine the precise time delay ard frequency shift of the received signal, and to determine, in fact, whether a signal is present at all. Furthermore, in order to combat the possibility of signal fading, the transmitter may employ diversity by dividing the available signal energy into a number of branches. The receiver must then know the order and pattern of diversity and combine the energies of the appropriate diversity branches before making a decision of absence or presence and location of a possible signal. The number of locations that the received signal may occupy, if present, is denoted by M; the order of diversity employed is denoted by D. The objertive of this report is to determine the performance (in terms of appropriate probabilities of various types of errors) of the synchronization procedure as a function of M, D and the received signal and noise power levels. Additionally, the optimum order of diversity and optimum fractionalization of available signal energy for specitied performance are to be determined.

If the arrival angle of the potential signal is not known to the receiver, a search must be conducted in this variable as well as in time delay and frequency shift. If the parameter M is increased to include this additional uncertainty, the case is subsumed under the earlier framework, where M denotes the number of potential signal locations, whether they be cells in time delay, frequency shift, or arrival angle. More generally, M is simply the number of locations in which a signal can be found, if present, regardless of the physical cause of uncertainty.

Although the discussion has been couched in a detection context, the framework also covers multiple alternative communication with thresholding. For example, suppose that either no signal is transmitted or one of M signals is transmitted. Then, for fading signals and D-fold diversity, the results to be
presented are directly applicable to determining the error probabilities. As particular cases, $M=1$ corresponds to on-off (binary) communication with diversity; $\mathrm{M}=2$ and a zero threshold corresponds to binary frequency-shiftkeying with diversity; and $M-2$ and a zero threshold corresponds to M-ary communicution with diversity, as previously analyzed ${ }^{1}$ and numerically evaluated. ${ }^{2}$ For $M=1$, some results on this problem are available ${ }^{3}$ (when D here is identified with M there).

To develop the subject, two types of probabilities of mistakes are defined, and generic expressions for their values are presented. Then three different signal and noise models - all of which yield the same statistics for the observed variables - are described, and the optimum processor is clerived. Finally, the actual evaluation of the correct-decision and false-alarm probabilities is undertaken and plotted, and relevant observations and conclusions are extracted from the numerical results.

DEFINITIONS OF ERROR PROBABIJITIES

For a signal that can be found in one of M locations, let x_{1}, \ldots, x_{M} be the M decision variables upon which a decision must be reached as to whether signal is absent or whether a particular signal is present. If D-fold diversity is employed, the variable x_{k} is an appropriate combination (as yet undefined) of the D branch outputs utilized by signal number k. If threshold Λ is utilized, it is decided that

$$
\left\{\begin{array}{l}
\text { signal is absent if } \max \left(x_{1}, \ldots, x_{M}\right)<\Lambda \tag{1}\\
\text { signal } k \text { is present if } \max \left(x_{1}, \ldots, x_{M}\right)=x_{k}>\Lambda
\end{array}\right\}
$$

Then the probability of false-alarm is given by

$$
\begin{equation*}
P_{F A}=1-\operatorname{Prob}\left\{\max \left(x_{1}, \ldots, x_{M}\right)<\Lambda \mid N\right\} \tag{2}
\end{equation*}
$$

where $\mid \mathrm{N}$ denotes conditioning on noise-alone prosent that is, no signal present). In words, (2) is the probability that one or more of the M decision variables exceeds the threshold for noise-alone present.

When a signal is present, two types of mistakes can occur. In order to express these quantities, without loss of generality, let signal number 1 be transmitted. The probability of a missed decision is defined as

$$
\begin{equation*}
\mathrm{P}_{\mathrm{MD}}=\operatorname{Prob}\left\{\max \left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{M}}\right)<\Lambda \mid \mathrm{S}+\mathrm{N}\right\} \tag{3}
\end{equation*}
$$

where $\mid S \cdot N$ denotes conditioning on signal-plus-noise present. That is, it is erroneously decided that no signal is present because the threshold was not exceeded.

On the other hand, the probability of an incorrect decision is defined as

$$
\begin{equation*}
P_{I D}=\sum_{k=2}^{M} \operatorname{Prob}\left\{\max \left(x_{1}, \ldots, x_{M}\right)=x_{k}>\Lambda \mid S+N\right\} \tag{4}
\end{equation*}
$$

That is, one of the wrong decision variables dominates and exceeds the threshold, thereby leading to the wrong decision about which signal was transmitted.

Finally, the probability of a correct decision is defined as

$$
\begin{equation*}
{ }^{P_{C D}}=\operatorname{Prob}\left\{\max \left(x_{1}, \ldots, x_{M}\right)=x_{1}>\Lambda \mid S+N\right\} \tag{5}
\end{equation*}
$$

This is the probability that the correct decision variable is largest and exceeds the threshold. Since one of the events described in (3), (4), or (5) must happen for signal present, we have

$$
\begin{equation*}
\mathrm{P}_{\mathrm{MD}}+\mathrm{P}_{\mathrm{ID}}+\mathrm{P}_{\mathrm{CD}}=1 \tag{6}
\end{equation*}
$$

An alternative form of (6) is

$$
\begin{equation*}
\mathrm{P}_{\mathrm{MD}}+\mathrm{P}_{\mathrm{ID}}=1-\mathrm{P}_{\mathrm{CD}} \tag{7}
\end{equation*}
$$

where the left side of (7) is the sum of the probabilities of the two types of mistakes when signal is present.

An average error probability could be defined (if desired) in the following manner: an error, for a signal transmitted, occurs with probability

$$
\begin{equation*}
P_{\mathrm{c}}(\mathrm{~S}+\mathrm{N})=\mathrm{P}_{\mathrm{MD}}+\mathrm{P}_{\mathrm{ID}}=1-\mathrm{P}_{\mathrm{CD}} \tag{8}
\end{equation*}
$$

An error, for no signal transmitted, occurs with probability

$$
\begin{equation*}
P_{e}(N)=P_{F A} \tag{9}
\end{equation*}
$$

[^0]Then the average error probability is

$$
\begin{align*}
P_{e} & =P_{e}(S+N) \operatorname{Prob}\{S+N\}+P_{e}(N) \operatorname{Prob}\{N\} \tag{10}\\
& =\left(1-P_{C D}\right) \operatorname{Prob}\{S+N\}+P_{F A} P \text { rob }\{N\},
\end{align*}
$$

where $\operatorname{Prob}\{S+N\}$ and Prob $\{N\}$ are the a priori probabilitics.
INTEGRAL EXPRESSIONS FOR PROBABILITIES
Analytic evaluation of the probabilities in (2) through (5) is generally impossible unless the variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{MI}}$ are all statistically independent of each other. From this point on, this crucial assumption of independence will be adopted. It is also assumed that the random variables $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ not containing a signal have identical probability density functions $p_{0}(\cdot)$. The random variable containing a signal will have probability density function $\mathrm{p}_{1}(\cdot)$. The cumulative distribution functions are denoted by $\mathrm{P}_{0}(\cdot)$ and $\mathrm{P}_{1}(\cdot)$, respectively.

The quantities in (2) through (5) then follow immediately:

$$
\begin{align*}
P_{F A} & =1-\left[\int_{-\infty}^{\Lambda} d x p_{o}(x)\right]^{M}=1-\left[P_{o}(\Lambda)\right]^{M} \tag{11}\\
P_{M D} & =\int_{-\infty}^{\Lambda} d x p_{1}(x)\left[\int_{-\infty}^{\Lambda} d y p_{o}(y)\right]^{M-1}=P_{1}(\Lambda)\left[P_{0}(\Lambda)\right]^{M-1} \tag{12}\\
P_{I D} & =(M-1) \int_{\Lambda}^{\infty} d x p_{0}(x) \int_{-\infty}^{x} d y p_{1}(y)\left[\int_{-\infty}^{x} d z p_{0}(z)\right]^{M-2} \tag{1i}\\
& =(M-1) \int_{\Lambda}^{\infty} d x p_{0}(x) P_{1}(x)\left[P_{0}(x)\right]^{M-2},
\end{align*}
$$

and

$$
\begin{equation*}
P_{C D}=\int_{\Lambda}^{\infty} d x p_{1}(x)\left[\int_{-\infty}^{x} d y p_{0}(y)\right]^{M-1}=\int_{\Lambda}^{\infty} d x p_{1}(x)\left[p_{0}(x)\right]^{M-1} . \tag{1-4}
\end{equation*}
$$

(As a check, notice that

$$
\begin{equation*}
P_{1 D}+P_{C D} \int_{\Lambda}^{\infty} d x \frac{d}{d x}\left\{P_{1}(x)\left[P_{o}(x)\right]^{M-1}\right\}=1-P_{1}(\Lambda)\left[P_{o}(\Lambda)\right]^{M-1}=1-P_{M D}, \tag{15}
\end{equation*}
$$

which agrees with (0).)

Of the four prohabilities defined in (2) through (5), only three are independent; see (6). Furthermore, I^{FA} and P_{MD} can be found very simply from (11) and (12) once the cumulative probability distributions $P_{0}(\cdot)$ and $P_{1}(\cdot)$ are known. If (14) is numerically integrated in order to determine $P_{C D}, P_{I D}$ is immediately available by use of (6). The discussion, then, will be concentrated on the two probabilities $P_{F A}$ and $P_{C D}$; these are also the only two probabilities needed to evaluate the average error probability defined in (10). Therefore, only one numerical integration, that in (14), need be conducted. An error anal sis for (14) and some interrelationships of the probabilities in (11) through (14) are presented in appendix A.

SIGNAI. AND NOISE MODELS AND THE OPTIMUM PROCESSOR

In the previous section, the M decision variables x_{1}, \ldots, x_{M} were presumed to be available for comparison with a threshold. Now we will backtrack to ascertain how these decision variables can be determined in the first place. The first model to consider is that in which the received signal consists of narrowband Gaussian processes on D statistically independent branches. The particular D branches occupied by the trarsmission of one of the M alternatives do not overlap any of the ($M-1$) D branches utilized for the other signal alternatives. All MD branches are subject to additive narrowband Gaussian noise.

Let ynd denote a sample of the envelope of the received narrowband process on the m-th alternative signal location and the d-th diversity branch (after narrowband filtering to the expected signal bandwidth), where $1 \leq m \leq M$ and $1 \leq \mathrm{d} \leq \mathrm{D}$. It is presumed that all MD random variables $\left\{\mathrm{y}_{\mathrm{md}}\right\}$ are independent of each other. Then for the observation vector

$$
z=\left[\begin{array}{llll}
y_{11} & \ldots & y_{1 \mathrm{D}} & \ldots \tag{16}\\
y_{M 1} & \ldots & y_{M D}
\end{array}\right]
$$

the a posteriori probability of alternative k (after observation of \mathbf{z}) is

$$
\begin{equation*}
\operatorname{Prob}\{k \mid z\}=\frac{\left.\operatorname{Prob}\{k\}_{1}\right)(z \mid k)}{p(z)}, 0 \leq k \leq M, \tag{17}
\end{equation*}
$$

where alternative $k=0$ denotes no signal, Prob $\{k\}$ is the a priori probability of alternative k, and $p(z \mid k)$ and $p(z)$ are the conditional and unconditional probability density functions, respectively, of \mathbf{z}. The denominator of (17) can be expressed as

$$
\begin{equation*}
\mathrm{p}(\mathbf{z})=\sum_{\mathrm{k}=0}^{\mathrm{M}} \operatorname{Prob}\{\mathrm{k}\} \mathrm{p}(\mathbf{z} \mid \mathrm{k}) \tag{18}
\end{equation*}
$$

if desired.
Under the conditions described above, one has

$$
\begin{equation*}
p(z \mid 0)=\prod_{m=1}^{M} \prod_{d=1}^{D}\left\{\frac{y_{m d}}{\sigma_{n}^{2}} \exp \left(-\frac{y_{m d}^{2}}{2 \sigma_{n}^{2}}\right)\right\}, y_{m d}>0, \tag{19}
\end{equation*}
$$

where σ_{n}^{2} is the common noise power level in all MD branches. And, for $\mathrm{k} \geq 1$,
$p(z \mid k)=\prod_{\substack{m=1 \\ m \neq k}}^{M} \prod_{d=1}^{D}\left\{\frac{y_{m d}}{\sigma_{n}^{2}} \exp \left(-\frac{y_{m d}^{2}}{2 \sigma_{n}^{2}}\right)\right) \prod_{d=1}^{D}\left(\frac{y_{k d}}{\sigma_{s}^{2}+\sigma_{n}^{2}} \exp \left(-\frac{y_{k d}^{2}}{2\left(\sigma_{s}^{2}+\sigma_{n}^{2}\right)}\right)\right)$,
where σ_{S}^{2} is the common signal power level in the D occupied branches. A more convenient form of (20) that is available is (by use of (19))

$$
\begin{equation*}
p(z \mid k)=p(z \mid 0)\left(\frac{\sigma_{n}^{2}}{\sigma_{s}^{2}+\sigma_{n}^{2}}\right)^{D} \exp \left[\frac{1}{2} \frac{\sigma_{s}^{2}}{\sigma_{s}^{2}+\sigma_{n}^{2}} \sum_{d=1}^{D} y_{k d}^{2}\right], k \geq 1 \tag{21}
\end{equation*}
$$

Now it is presumed that the a priori probabilities in (17) satisfy the following rules:

$$
\begin{equation*}
\text { Prob }\{0\}=Q ; \text { Prob }\{\mathrm{k}\}=\frac{1-Q}{M}, 1 \leq \mathrm{k} \leq M ; \tag{22}
\end{equation*}
$$

that is, the a priori probabilities of all the signal alternatives are equal. Then selection of the maximum a posteriori probability in (17) is tantamount to picking the maximum:

$$
\begin{align*}
& \begin{array}{l}
\max \\
0 \leq k \leq M
\end{array} \operatorname{Prob}\{k \mid \mathbf{z}\} \text { corresponds to } \\
& \max \left(Q,\left\{\frac{1-Q}{M}\left(\frac{\sigma_{n}^{2}}{\sigma_{s}^{2}+\sigma_{n}^{2}}\right)^{D} \exp \left[\frac{1}{2} \frac{\sigma_{s}^{2}}{\sigma_{s}^{2}+\sigma_{n}^{2}} \sum_{d=1}^{D} y_{k d}^{2}\right]\right\}_{1}^{M}\right) . \tag{23}
\end{align*}
$$

But this is equivalent to

$$
\begin{equation*}
\max _{1 \leq \mathrm{k} \leq M} \sum_{d=1}^{\mathrm{D}} \mathrm{y}_{\mathrm{kd}}^{2}<\Lambda, \tag{24}
\end{equation*}
$$

where threshold Λ absorbs the a priori probabilities, the signal and noise levels, and D and M. Satisfaction of the upper inequality in (24) leads to a decision of signal present on the particular alternative that dominates the left side of (24); satisfaction of the lower inequality in (24) leads to the statement. that no signal is present in any of the M alternative locations. * Physically, (24) indicates that the squared envelopes on all D diversity branches for a particular alternative should be summed, and the largest sum (out of the M alternatives) should be compared with a threshold. These sums are the decision variables mentioned in (1) through (5). For a specified false-alarm probability $P_{F A}$, only σ_{n}^{2} need be known in order to assign a value to $\Lambda ; \sigma_{S}^{2}$ need not be known (but, of course, the detection probabilities do depend on σ_{s}^{2}).

It should be noted that if the cost of mistaking signal location k for signal location j is independent of k and j, and if the cost of mistaking signal location k for no signal is independent of k, the minimum average cost results when the identical test (24) is utilized. Of course, threshold Λ then involves these costs also.

A second signal and noise model that leads to the same results as those above is that of envelopes of narrowband deterministic (except for phase) signals subject to slow Rayleigh fading and additive narrowband Gaussirun noise. For example, $\left\{y_{m d}\right\}$ could be samples of the envelopes of the outputs of narrowband matched filters that are nonoverlapping in time or nonoverlapping in

[^1]frequency. The signal strengths in the D branches are assumed to fade independently, and the signal strength changes only slightly in a time interval equal to a narrowband-filter impulse-response duration. The quantity σ_{S}^{2} is the matched-filter output signal power per branch (averaged over the Rayleigh fading statistics). The relevant statistics are identical to those given in (19) and (20) [see, for example, reference 4, section 7.5].

A third signal model is afforded by samples of a zero-mean Gaussian process (rather than by envelopes). If the number of samples on each alternative is even, such as 2D, then it may be shown that the maximum a posteriori probability processor takes on exactly the form of the test in (24), where cach $y_{k d}^{2}$ is equal to a sum of squares of two zero-mean Gaussian variates.

Thus test (24) is appropriate for three different signal and noise models; its performance is determined in the next section.

PERFORMANCE RESULTS

The false-alarm and correct-decision probabilities are derived in appendix B and are given by

$$
\begin{equation*}
P_{F A}=1-\left[1-\exp (-\Lambda) \sum_{k=0}^{D-1} \Lambda^{k} / k!\right]^{M} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{C D}=\int_{\Lambda}^{\infty} d x \frac{x^{D-1}}{(D-1)!(1+R)}{ }^{D} \exp \left(-\frac{x}{1+R}\right)\left[1-\exp (-x) \sum_{k=0}^{D-1} x^{k} / k!\right]^{M-1},(\tag{26}
\end{equation*}
$$

where the signal-to-noise ratio per diversity branch is

$$
\begin{equation*}
\mathrm{R}=\frac{\boldsymbol{\sigma}_{\mathrm{S}}^{2}}{\sigma_{\mathrm{n}}^{2}} \tag{27}
\end{equation*}
$$

[The result in (26) is a generalization of equation (19) in reference 1 in that the lower limit of integration is not zero.]

The parameter R in (27) can be interpreted differently for the second signal model of slow Rayleigh fading signals. For matched filtering of each of the D diversity branches, it is shown in appendix C that

$$
\begin{equation*}
R=\frac{\bar{E}_{1}}{N_{0}}=\frac{\bar{E}_{\mathrm{T}} / N_{0}}{D} \tag{28}
\end{equation*}
$$

where $\overline{\mathrm{E}}_{1}$ is the average received signal energy on one branch, $\overline{\mathrm{E}}_{\mathrm{T}}$ is the average total received signal energy on all D branches, and N_{O} is the singlesided noise power density level. The curves to follow will employ the signal-energy-to-noise-density-level ratio (ENR) parameters in (28).

In figures 1 through 35,* the probability of correct-decision $P_{C D}$ is pletted versus $\overline{\mathrm{E}}_{1} / \mathrm{N}_{\mathrm{O}}$ in dB, \dagger with diversity D as a parameter (solid curves), for $M=1,2,4,16,64,256,1024$ and $P_{F A}=10^{-n}, n=2,3,4,6,8$. The dashed curves on each figure connect points of equal total signal-energy-to-noise-density-level ratio $\bar{E}_{\mathrm{T}} / \mathrm{N}_{\mathrm{O}}$. The first point to observe from these detection characteristics is that, for a given available \bar{E}_{T} / N_{o}, there is an optimum order of diversity to attain the maximum value of $P_{C D}$ (for a specified M and $P_{F A}$, as excmplified by the peaks of the dashed curves. However, the maximum $P_{C D}$ is not always realized when the ENR per branch is $5 \mathrm{~dB}, 2$ but, rather, it can be significantly larger than this value. For example, in figure 5 for $P_{F A}=10^{-8}, M=1$, the optimum order of diversity for $\bar{E}_{T} / N_{0}=$ 13 dB is $\mathrm{D}=1$; therefore the optimum $E N R$ per branch is 13 dB , realizing a value of $P_{C D}=0.42$. And in figure 35 for $P_{F A}=10^{-8}, \mathrm{M}=1024$, the same behavior occurs for $\overline{\mathrm{E}}_{\mathrm{T}} / \mathrm{N}_{\mathrm{O}}=14 \mathrm{~dB}$, yielding $\mathrm{P}_{\mathrm{CD}}=0.38$.

The feature of large ENRs per branch being optimum is characieristic of the smaller values of $P_{C D}$ (that is, $P_{C D}<0.5$). For larger values of \bar{E}_{T} / N_{0}, where values of P_{CD} near unity are attainable, the optimum ENR per branch more nearly approaches 5 dB , and the optimum order of diversity increases. However, in figure 35 for $P_{F A}=10^{-8}$, even as large a value of $P_{C D}$ as 0.9999 still requires an optimum ENR per branch of $\bar{E}_{1} / \mathrm{N}_{0}=7 \mathrm{~dB}$, not 5 dB . Only when the two "transition" probabilities - (1- $P_{C D}$) and $P_{F A}$ of (8) and (9), respectively - are approximately equal does the optimum ENR per branch approach 5 dB . But for large M (such as 1024) the optimum ENR per branch is still larger than 5 d$\}$, even for $1-\mathrm{P}_{\mathrm{CD}} \approx \mathrm{P}_{\mathrm{FA}}$.

[^2]In figures 36 through 38 , the minimum required values of \bar{E}_{T} / N_{o} in $d B$ are plotted versus M, with $P_{F A}$ as a parameter, for $P_{C D}=0.5,0.9$, and 0.99. The results are extracted from figures 1 through 35 ; results for other values of $P_{C D}$, such as 0.9999 , can also be obtained. The slight irregularities in the curves are caused by an inability to determine the dB levels from figures 1 through 35 more accurately than 0.1 dB . The integer numbers under each curve denote the approximate optimum order of diversity at which the minimum \bar{E}_{T} / N_{0} is realized.

One of the most striking features of figures 36 through 38 is the slow rate of increase with M of the minimum $\overline{\mathrm{E}}_{\mathrm{T}} / \mathrm{N}_{\mathrm{O}}$ required. (It must be remembered that M is the number of alternative signal locations, not the number of signal observations; this latter quantity is represented by D, the order of diversity.) For example, at the high-quality performance level of $P_{F A}=10^{-8}, P_{C D}=0.99$, a 1 dB increase suffices over the range of M from 1 to 1024. At the more moderate performance level of $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{P}_{\mathrm{CD}}=0.5$, a 2.5 dB increase in $\overline{\mathrm{E}}_{\mathrm{T}} / \mathrm{N}_{\mathrm{o}}$ is required over the same range of M .

The optimum order of diversity depends very strongly on the desired value of P_{CD} but is somewhat less dependent on the specified P_{FA}. Figures 36 through 38 show that the optimum diversity is 1 to 2 for $P_{C D}=0.5,5$ to 10 for $P_{C D}=0.9$, and 11 to 19 for $P_{C D}=0.99$. If the optimum order of diversity is not attainable, due perhaps to limited available bandwidth, figures 1 through 35 indicate the additional amount of signal energy necessary to realize the specified level of performance.

A sample program for the generation of the detection characteristics in figures 1 through 35 is furnished in appendix D. Extension to other ranges of P_{FA}, D , or M is possible by modification of this program.

DISCUSSION

For nonfluctuating signals received under phase-incoherent conditions and with $\mathrm{D}=1, *$ the probability of correct derision is given [reference 5, (78), with crosscorrelation coefficient $\lambda=0$] by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{CD}}=\int_{\Lambda}^{\infty} \mathrm{dx} x \exp \left(-\frac{x^{2}+\mathrm{d}^{2}}{\frac{2}{2}}\right) I_{o}(\mathrm{dx})\left[1-\exp \left(-\frac{x^{2}}{2}\right)\right]^{\mathrm{M}-1}, \tag{29}
\end{equation*}
$$

[^3]where
\[

$$
\begin{equation*}
d=\sqrt{\frac{2 \mathrm{E}}{\mathrm{~N}_{\mathrm{O}}}} \tag{30}
\end{equation*}
$$

\]

and E is the received signal energy. The false-alarm probability is [reference 5, (77)]

$$
\begin{equation*}
P_{F A}=1-\left[1-\exp \left(-\Lambda^{2} / 2\right)\right]^{\mathrm{M}} \tag{31}
\end{equation*}
$$

(These results are identical in form to (14) and (11), respectively; only the densities $\mathrm{p}_{1}(\cdot)$ and $\mathrm{p}_{\mathrm{O}}(\cdot)$ have changed.) Now, (31) could be solved explicitly for Λ in terms of $P_{F A}$ and M, and then (29) could be numerically integrated to evaluate P_{CD}. Alternatively, the bracketed term in (29) can be expanded in a binomial series, yielding

$$
\begin{equation*}
P_{C D}=\frac{1}{M} \exp \left(-\frac{d^{2}}{2}\right) \sum_{n=1}^{M}(-1)^{n-1}\binom{M}{n} \exp \left(\frac{d^{2}}{2 n}\right) Q\left(\frac{d}{\sqrt{n}}, \Lambda \sqrt{n}\right), \tag{32}
\end{equation*}
$$

where $Q(\cdot, \cdot)$ is the Q function [reference $4,(4-55)$]. However, the alternating sequence of large numbers in (32) will suffer loss of significance, and (32) may be useless for large M. As a final alternative, the upper and lower bounds of ($\mathrm{A}-10$) could be used for evaluation of P_{CD}.

A comparison of the pertormance of the nonfluctuating signal results, (29) through (32), with the present results has not been pursued any further except for $M=1$. In this case, (31) and (32) reduce to

$$
\begin{equation*}
P_{F A}=\exp \left(-\Lambda^{2} / 2\right) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{C D}=Q(d, \Lambda)=Q\left(\sqrt{\frac{2 E}{N_{o}}}, \sqrt{-2 \ln P_{F A}}\right) . \tag{34}
\end{equation*}
$$

If these results are superposed on figures 1 through 5 , where the abscissa is interpreted as $10 \log _{10}\left(\mathrm{E} / \mathrm{N}_{\mathrm{O}}\right)$, it is found that (33) cuts across the $\mathrm{D}=1$ curve at approximately $P_{C D}=0.25$ for $P_{F A}=10^{-2}$ and cuts across at approximately $P_{C D}=0.36$ for $P_{F A}=10^{-8}$. That is, the performance for
fluctuating signals is better than for nonfluctuating signals for small correctdecision probabilities (<0.4); the occasionally large signal amplitudes occurring in fading are actually helpful when the noise level is high. Of dourse, for larger ENR, where $P_{C D}$ approaches 1 , the nonfluctuating signal case yields better performance by several dB. For example, $P_{F A}=10^{-8}, P_{C D}=0.99$ requires an ENR of 15.4 dB for no fading versus 19.1 dB for fading, a difference of 3.7 dB . The same difference also prevails approximately at $\mathrm{P}_{\mathrm{FA}}=10^{-2}$.

Figure 1. Detection Characteristics for $P_{F A}=10^{-2}, \mathrm{M}=1$

Figure 2. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=1$

Figure 3. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{M}=1$

Figure 4. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=1$

Figure 5. Detection Characteristics for $P_{F A}=10^{-8}, \mathrm{M}=1$

Figure 6. Detection Characteristics for $P_{F A}=10^{-2}, M=2$

Figure 7. Detection Characteristics for $P_{F A}=10^{-3}, M=2$

TR 4793

Figure 8. Detection Characteristics for $P_{F A}=10^{-4}, M=2$

Figure 9. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=2$

Figure 10. Detection Characteristics for $P_{F A}=10^{-8}, M=2$

Figure 11. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-2}, \mathrm{M}=4$

Figure 12. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=4$

TR 4793

Figure 13. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-4}, \mathrm{M}=4$

Figure 14. Detection Characteristics for $P_{F A}=10^{-6}, M=4$

Figure 15. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=4$

Figure 16. Detection Characteristics for $P_{F A}=10^{-2}, \mathrm{M}=16$

Figure 17. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-3}, \mathrm{M}=16$

Figure 18. Detection Characteristics for $P_{F A}=10^{-4}, M=16$

Figure 19. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=16$

Figure 20. Detection Characteristics for $P_{F A}=10^{-8}, M=16$

Figure 21. Detection Characteristics for $P_{F A}=10^{-2}, M=64$

TR 4793

Figure 22. Detection Characteristics for $P_{F A}=10^{-3}, M=64$

Figure 23. Detection Characteristics for $P_{F A}=10^{-4}, M=64$

Figure 24. Detection Characteristics for $P_{F A}=10^{-6}, \mathrm{M}=64$

Figure 25. Detection Characteristics for $P_{F A}=10^{-8}, M=64$

Figure 26. Detection Characteristics for $P_{F A}=10^{-2}, M=256$

Figure 27. Detection Characteristics for $P_{F A}=10^{-3}, M=256$

Figure 28. Detection Characteristics for $P_{F A}=10^{-4}, M=256$

Figure 29. Detection Characteristics for $P_{F A}=10^{-6}, M=256$

Figure 30. Detection Characteristics for $P_{F A}=10^{-8}, M=256$

Figure 31. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-2}, \mathrm{M}=1024$

Figure 32. Detection Characteristics for $P_{F A}=10^{-3}, M=1024$

Figure 33. Detection Characteristics for $P_{F A}=10^{-4}, \mathrm{M}=1024$

Figure 34. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-6}, \mathrm{M}=1024$

Figure 35. Detection Characteristics for $\mathrm{P}_{\mathrm{FA}}=10^{-8}, \mathrm{M}=1024$

Figure 38. Minimum $\overline{\mathrm{E}}_{\mathrm{T}} / \mathrm{N}_{\mathrm{o}}$ Required for $\mathrm{P}_{\mathrm{CD}}=0.99$

Appendix A

ERROR ANA LYSIS AND INTERRELATIONSHIPS

ERROR ANA LYSIS

The probability of correct decision, which is given in (14) of the main text as

$$
\begin{equation*}
P_{C D}=\int_{\Lambda}^{\infty} d x p_{1}(x)\left[P_{o}(x)\right]^{M-1} \tag{A-1}
\end{equation*}
$$

will be approximated by

$$
\begin{equation*}
\tilde{P}_{C D} \equiv \int_{\Lambda}^{A} d x p_{1}(x)\left[P_{0}(x)\right]^{M-1}+\int_{A}^{\infty} d x p_{1}(x) \tag{A-2}
\end{equation*}
$$

The error is then

$$
\begin{align*}
0 & \leq \operatorname{Error} \equiv \widetilde{P}_{C D}-P_{C D}=\int_{A}^{\infty} d x P_{1}(x)\left\{1-\left[P_{o}(x)\right]^{M-1}\right\} \\
& \leq\left\{1-\left[P_{o}(A)\right]^{M-1}\right\}\left\{1-P_{1}(A)\right\} \tag{A-3}
\end{align*}
$$

Now we must choose A large enough that Error is sufficiently small. One way of accomplishing this is to solve for A_{0} and A_{1} in

$$
\begin{align*}
& 1-\left[P_{0}\left(A_{0}\right)\right]^{M-1}=\text { Error } \tag{1}\\
& 1-P_{1}\left(A_{1}\right)=\text { Error }
\end{align*}
$$

and then choose $A=$ minimum $\left(A_{0}, A_{1}\right)$. Only the first integral in ($A-2$) need be numerically evaluated inasmuch as the second integral is given by $1-P_{1}(A)$.

INTERRELATIONSHIPS

From (11) and (12), we have

$$
\begin{equation*}
\mathrm{P}_{\mathrm{MD}} \leq 1-\mathrm{P}_{\mathrm{FA}} \tag{A-5}
\end{equation*}
$$

This is a very weak inequality in most practical cases. However, in the limit of small signal-to-noise ratios, $1-\mathrm{P}_{\mathrm{MD}}$ approaches P_{FA}.

From (13), we have

$$
P_{I D} \leq(M-1) \int_{\Lambda}^{\infty} d x p_{o}(x)\left[P_{o}(x)\right]^{M-1}=\frac{M-1}{M}\left\{1-\left[P_{0}(\Lambda)\right]^{M}\right\}=\frac{M-1}{M} P_{F A} ; \quad(A-6)
$$

that is, the incorrect-decision probability is aiways less than the false-alarm probability.

Upper and lower bounds on P_{CD} are also attainable: from (5) we have

$$
\begin{equation*}
\mathrm{P}_{\mathrm{CD}} \leq \operatorname{Prob}\left\{\mathrm{x}_{1}>\Lambda \mid \mathrm{S}+\mathrm{N}\right\}=1-\mathrm{P}_{1}(\Lambda), \tag{A-7}
\end{equation*}
$$

whereas from (14) we have

$$
\begin{equation*}
P_{C D} \geq\left[P_{o}(\Lambda)\right]^{M-1} \int_{\Lambda}^{\infty} d x p_{1}(x)=\left[P_{0}(\Lambda)\right]^{M-1}\left[1-P_{1}(\Lambda)\right] \tag{A-8}
\end{equation*}
$$

Therefore it holds that

$$
\begin{equation*}
\left[P_{o}(\Lambda)\right]^{M-1}\left[1-P_{1}(\Lambda)\right] \leq P_{C D} \leq 1-P_{1}(\Lambda) . \tag{A-9}
\end{equation*}
$$

By employing (11), this can be expressed as

$$
\begin{equation*}
\left[1-P_{F A}\right]^{\frac{M-1}{M}}\left[1-P_{1}(\Lambda)\right] \leq P_{C D} \leq 1-P_{1}(\Lambda) \tag{A-10}
\end{equation*}
$$

which is a very useful and tight bound for $\mathrm{P}_{\mathrm{FA}} \ll 1$. In fact, the use of (A-10) requires no numerical integrations at all.

Appendix B

DERIVATION OF FALSE-A LARM AND CORRECT-DECISION PROBABIIITTIES

From the section on definitions of error probabilities and equation (24), we see that the M decision variables can be expressed as (proportional to)

$$
\begin{equation*}
x_{k}=\frac{1}{2 \sigma_{n}^{2}} \sum_{d=1}^{D} y_{k d}^{2}, \quad 1 \leq k \leq M \tag{B-1}
\end{equation*}
$$

When the probability density function for noise-alone given in (19) and (20) is utilized, the probability density function $\mathrm{p}_{\mathrm{o}}(\cdot)$ in (11) through (14) is given by

$$
p_{o}(x)=\frac{x^{D-1} \exp (-x)}{(D-1)!}, x>0
$$

Similarly, the probability density function $p_{1}(\cdot)$ is available from (20) as

$$
p_{1}(x)=\frac{x^{D^{-1}} \exp \left(-\frac{x}{1+R}\right)}{(D-1)!(1+R)^{D}}, x>0
$$

where $R=\sigma_{s}^{2} / \sigma_{n}^{2}$ is the signal-to-noise ratio per diversity branch. Then the cumulative distribution functions are

$$
\begin{equation*}
P_{o}(x)=1-\exp (-x) \sum_{k=0}^{D-1} x^{k} / k!, x>0 \tag{B-4}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{1}(x)=1-\exp \left(-\frac{x}{1+R}\right) \sum_{k=0}^{D-1} \frac{1}{k!}\left(\frac{x}{1+R}\right)^{k}, x>0 \tag{B-5}
\end{equation*}
$$

The false-alarm and assorted decision probabilities follow upon substitution of (B-2) through (B-5) in (11) through (14).

Appendix C

RE LATIONSHIP OF SIGNA L-TO-NOISE RATIO TO SIGNA L-ENERGY -

 TO-NOISE-DENSITY-LEVE L RATIOFor transmitted signal $R(t) \cos \left[\omega_{0} t+\theta(t)\right]$, the received waveform on one diversity branch in slow fading is given by

$$
\begin{equation*}
w(t)=A R(t) \cos \left[\omega_{0} t+\theta(t)+\phi\right]+n(t) \tag{C-1}
\end{equation*}
$$

where A and ϕ are the instantaneous amplitude and phase of the fading. The output cf a synchronized matched filter (prior to envelope detection) is

$$
\begin{equation*}
y=\int d t R(t) \cos \left[\omega_{0} t+\theta(t)\right] w(t) \equiv y_{S}+y_{n}, \tag{C-2}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{S} \cong \frac{1}{2} A \cos \phi \int \mathrm{dt}^{2}(\mathrm{t}) \tag{C-3}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n}=\int d t R(t) \cos \left[\omega_{0} t+\theta(t)\right] n(t) \tag{C-4}
\end{equation*}
$$

Then, for uniform signa! phase ϕ and white noise $n(t)$, filter output powers are

$$
\begin{align*}
& \sigma_{\mathrm{S}}^{2} \equiv \overline{\mathrm{y}_{\mathrm{s}}^{2}}=\frac{1}{4} A^{2} \frac{1}{2}\left[\int d t \mathrm{R}^{2}(\mathrm{t})\right]^{2} \\
& \sigma_{\mathrm{n}}^{2} \equiv \overline{\mathrm{y}_{\mathrm{n}}^{2}}=\frac{\mathrm{N}_{\mathrm{o}}}{2} \frac{1}{2} \int \mathrm{dt} \mathrm{R}^{2}(\mathrm{t}) \tag{C-5}
\end{align*}
$$

Now, the instantaneous received signal energy per diversity branch is, from (C-1),

$$
\begin{equation*}
E_{1} \cong \frac{1}{2} A^{2} \int d t R^{2}(t) \tag{C-6}
\end{equation*}
$$

Therefore it holds that

$$
\begin{equation*}
\bar{E}_{1}=\frac{1}{2} \overline{A^{2}} \int d t R^{2}(t) \tag{C-7}
\end{equation*}
$$

By combining ($\mathrm{C}-5$) and $(\mathrm{C}-7$), one obtains

$$
\begin{equation*}
\mathrm{R}=\frac{\sigma_{\mathrm{S}}^{2}}{\sigma_{\mathrm{n}}^{2}}=\frac{\overline{\mathrm{E}}_{1}}{\mathrm{~N}_{\mathrm{o}}} . \tag{C-8}
\end{equation*}
$$

[See also reference 1, (22).]
Notice that nowhere in the above derivation has it been necessary to specify the time-bandwidth product of the component pulse; therefore ($\mathrm{C}-8$) is applicable to any time-bandwidth product, provided the fading is slow and is frequency-nonselective relative to the pulse duration and bandwidth.

Appendix D

PROGRAM FOR GENERATION OF DETECTION CHARACTERISTICS

```
DCUGLE PRECISION FIVI,VZ
INTEGER DI12I.DI
ExTERNAL F
OIMENSION 2(200),G112),FAC(12),PROB(23,12),YNORM(25)
COMMON DI
DATA ON1,2,3,4,6,8,12,16,24,32,48.641
DATA YNORM/- 3.71902,-3.29053,-3.09023,-2.87816,-2.57583,-2.32635,
s-2.05375,-1.64485,-1.28155,-.84162,-.52440,-.25335,0.,.25335,.5244
3..84162.1.28155,1.64485.2.05375.2.32635,2.57583,2.97816,3.09023.
$3.29053.3.719021
    D0 21 IPF=2,8,2
    PF=10.**(-IPF)
DO 22 IM=2,4,2
M=TM
M2=H-1
OM=1./M
FAC(1)=0.
FAC(2)=0.
FAC(3)=LOG(2.1
FAC(4)=LOG(f.1)
FAC(5)=LOG(120.)
FAC(6)=LOG(5040.)
FAC(7)=LOG(3.99168E7)
FAC(8)=LOG(1.30757437E12)
FAC(9)=LOG(2.585201E7E22)
FAC(10)=LOG(8.22283日65E33)
FAC111)=LOG(2.58623242)+59.0LCG(10.)
FAC(12)=LOG(1.982608321+a7.0LOG(10.)
S=0.
T=-1.
00 1 N=1.100
T=T•|N-1.-OM|•PF/N
S=S*T
IF(ABSPT).LT.1.E-9*ABSISJ) GO TO 2
G(1)=-LOG(S)
DO 3 10=2,12
01=0(IO)-1
v1=2."G(IO-1)+23.
V2=v2.1.00
CALL ROOT(F,OBLE(S),V1,V2)
G(IO)=v2
PRINT 4, DIIDI,OIIDI
4 FORMATIO D=:.I3,' THRESHOLD='.E25.91
OO 5 ID=1,12
D1=D(I0)-1
DO 6 IE=1.23
ETNODE=IE+3
R=10.**1.1•ETNODBI/DIIDI
0=1./\10+R|
0=(1.+तl*(33.*1.38*D(IDI-15.* EXP(-.092*01))
```

```
    COMP=D(IDI-LGG(1.+R)PFAC(ID)
    v=弓IMPSIHOSIIJIOGO\28)
    PRYNT 7, DIIDIOETNODS,V
    FORMATIIIO.E10.2.E20.81
    v=SIMPS2(0)
    PRINT B.V
    FORMAT(E4O.3)
    V=MIN(V,.999099)
    PROB(IE,ID)=MAX(V.1.E-б)
    CONTINUE
    contINUE
    CALL mCDESC(2,0)
    CALL SUSJEGIZ,O.. YNORM(1),2C..YNORM(25))
    CALL GBJCTCIZ.1150..3CD.02850..2700.)
    CALL SETSMG(2.30.1.)
    DO g J=2.19.2
    CALL IINESCIZ,C,FLÜATIJI,YNORM(I)I
    CALL LINESC(Z,1,FLOAI(J),YNORM(25))
    cO 10 J=2.24
    CALL LINESG(Z.D. O..YNOAM(J))
    CALL IINESGIZ.1,20..YNCRM(J)I
    CALL SETSMGEZ.30.2.)
    CALL LINEECIZ,O, C.,YNCRMII\)
    CALL LINESG(Z.]. D..YNORMI251)
    CALL LINESCIZ,1,20.. MNORM(251)
    CALL LINESGIZ.1,20.,YNORM(1)]
    CALL ITNESG(Z.I, D.,YNORM(1))
    CALL SETSMG(Z,84.'4')
    20 11 [0=1.12
    DDB=10.010G1010(ID):
    P=TINORM(PROB11,ID:,3 30)
    CALL LINESGIZ,O,4.-DD3,P1
    CALL POINTCCIZ.2.4.-DDB.P1
    DO 1] IE=2:23
    P=TINORM(PHOB(IE,IO).S3O)
    CALL LJNESGIZ,i,IE,Z-DOB,PI
    CALL POINTG(Z.1.IE*3-DDB,P)
    CALL PAGEG(Z,0,4,1)
    continue
    continue
    CALL EXITGIZI
    STGP
    FUNCTTCN H(X)
    H=EXP(-X)
    IFCD1.EG.01 GO T0 =
    T=H
CO 1 K=1,D1
T=T**/K
H=H.T
H=EXP(D1*LOG(X)-O*XPM1=LOG(1.-H)-COMP)
RETURN
ENO
```

```
SUBROUTINE ROOT(F.O,VI,V2)
OOUBLE PRECISION F.D.VI.V2,X(1OOJ,OA(100).B.8A
X(1) =V1
x(2)=v2
OA(1)=F(X12))
DA(2)=F(X(2))
N1=2
00 4 N=3.100
IF(ABSIDA(N-1)-DI.LE.1.D- 9*ABS(D)\GOTO 5
IF(DAIN-1)-DA(N-2)
6 X(NI=X(N-1):1.100
GOTG E
7 X(N)={X(N-1):(D-DA(N-2))+X(N-2):(DA(N-1)-D))/(DA(N-1)-DA(N-2))
E=X(N)-X(N-1)
BA=ABS(B)
X(N)=X(N-1)+MIN(BA,X(N-1)*.1DO)*SIGN(1.DO.B)
X(N)=MAX(X(N),Q.OQ)
N1=N
DA(NI=F(X(NI)
PRINT 9, X(NII,DASNIIINI
FOHMAT(/2030.18,IIJ)
V2=X(N1)
RETURN
END
FUNCTION SIMPSIF:X1,X2,NNI
DOUBLE PRECISION ACE,ACO
N={(MAX(ABS(NN),1)+1\/2):2
H={\times2-X1)/N
D=2.* H/3.
S=.5*(FIX1)+F(X2))
ACE =0.DO
IFIN.EG.2\ GOTO 3
LTM=N-2
DO2 T=2.LIM.2
T=F|XI+H*I|
ACE =ACE+T
ACO =0.DO
LIM=N-1
CO1 I=1,LIM,2
F=F(XI)+H:I)
ACG=ACO&I
SIMBS=:; + 2.*SNGL(ACO) +SNGL(ACE))*0
RE TURW
ENTRY SIMPS2(IDUMMY)
N=N:2
H=H*.5
D=D*.5
ACE=ACE+ACO
GOTO 3
END
```

```
DOUBLE precision function f(X)
DOUGLE PRECISION X.T
INTEGER 01
COMMON DI
F=EXP(-X)
IFID1.EQ.0) RETURN
T=r
00 1 k=1.01
T=1*X/K
1 F=F+T
RETURN
ENO
```


REFERENCES

1. P. M. Hahn, "Theoretical Diversity Improvement in Multiple Frequency Shift Keying, " IRE Transactions on Communications Systems, June 1962, pp. 177-184.
2. A. H. Nuttall, Error Probability Characteristics for Orthogonal Multiple Alternative Communication with D-Fold Diversity, NUSC Techuical Feport 4769, 19 June 1974.
3. A. H. Nuttall and A. F. Magaraci, Signal-to-Noise Ratios Required for Short-Term Narrowband Detection of Gaussian Processes, NUSC Technical Report 4417, 20 October 1972.
4. A. D. Whalen, Detection of Signals in Noise, Academic Press, New York, 1971.
5. A. H. Nuttall, "Error Probabilities for Equicorrelated M-ary Signals Under Phase-Coherent and Phase-Incoherent Reception, " IRE Transactions on Information Theory, vol. IT-8, no. 4, July 1962, pp. 305-314.

[^0]: *An on-off communications system corresponds to $M=1$; in this case, $P_{\text {ID }}$ is not defined (that is, it has no meaning).

[^1]: *This derivation parallels that in reference 1 , section IV, very closely.

[^2]: *All figures are grouped together beginning on page 13.
 $\dagger_{\text {That is, }} 10 \log _{10}\left(\bar{E}_{1} / N_{0}\right)$.

[^3]: *No diversity is needed for nonfluctuating signals.

