
A D-786 371 

OPERATING CHARACTERISTICS FOR DETECTION 
OF A FADING SIGNAL IN M ALTERNATIVE 
LOCATIONS WITH D-FOLD DIVERSITY 

Albert H. Nut ta 11 

Naval Underwater Systems Center 
New London, Connecticut 

20 August 1974 

DISTRIBUTED BY: 

National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 



PREFACE 

This report was prepared under NUSC Project No. 
TA-176-92, nIACS Signal Design,” Principal Investi¬ 
gator, Dr. A. J. Van Woerkom (Code TC), sponsoring 
activity NAVSEA (SEA-06H). Program Manager, J. F. 
Calabrese; and also under NUSC Project No. A-752-05, 
"Applications of Statistical Communication Theory to 
Acoustic Signal Processing,” Principal Investigator, 
Dr. A. H. Nuttall (Code TC), Navy Subproject No. ZF- 
61-112-001, sponsoring activity Chief ot Naval Material, 
Program Manager, Dr. J. H. Huth. 

The Technical Reviewer for this report was Dr, 
A. J. Van Woerkom (Code TC). 

The author of this report Is located at the New London Laboratory, 
Naval Underwater Systems Center, New London, Connecticut 06320 



UNCLASSIFIED 

secumtv CLA»»1PICATI0H Tm» PAOC c»»**« Dal« Bnfrw*) 

REPORT DOCUMENTATION PAGE 
READ INITRUCTIONS 

BEFORE COMPLETING FORM 
1. A Molt NUMBER I. OOVT ACCKUIOM MO. 

TR 4793 

B. RECIPIENT’S CATALOG NUMBER 

/Z/) /tf<¿ tJ" 7/ 

A. TITLE (mnd »ublttlmj 

OPERATING CHARACTERISTICS FOR DETECTION 
OF A FADING SIGNAL IN M ALTERNATIVE LOCA- 
TIONS WITH D- FOLD DIVERSITY 

S. TYPE OF REPORT è PERIOD COVERED 

S. PERFORMING ORO. REPORT NUMBER 

7. AUTHOfKaJ 

Albert H. Nuttall 

$. CONTRACT OR GRANT NUMBCRf«} 

*. PEMFOMM NO OMCANIIATION NAME ANO AGONES! 

Naval Underwater Systems Center 
New London Laboratory 
New Ijondon, Connecticut 06320 

10. PROGRAM ELEMENT. PROJECT. TASK 
AREA « WORK UNIT NUMBERS 

TA-176-92, A-752-05, 
ZF 61-112-001 

11. CONTWOLLIMG OFFICE NA>^E AND AOONESS 

Naval Sea Systems Command (SEA 06H) and 
Chief of Naval Material 
Washington. D. C. 20360 

11. REPORT DATE 

20 August 1974 _ 
IS. NUMBER OF PAGES 

68 
U. MONmOMINO AOSMCV NANE * ADOMESV«/ from CarUru/lhtg Oflif) If. SECURITY CLASS. (Of ihtm roport) 

UNCLASSIFIED 
IS« OECLALStri CATION.'DOWNGRADING 

SCHEDULE 

t§. UlTNt»«jT|ON STATCNEMT (of ihim Ma^orfl 

Approved for public release; distribution unlimited. 

1? DISTRIBUTION STATEMENT (of fho mïêtroct mttormd In Block 30. ft BHIttmf from BapoHj 

IS SUPPLEMENTARY NOTES 

* ; 1 * ' 1 iT.- • ' 1 ‘ ; ! 

It. KEY WONGS (Ctmftnum on rormto of*o ft nocooamry idonllty b* btork mmkor) 

Detection of fading signal Fais e-alarm probability 
Multiple alternatives Optimum energy fractíonaUzatton 

Diversity 
Correct-decision probability 

10. ABSTRACT (Comtmm on rmaorta afée II nocasamy omf Idontllr *r block mmkor) 

The probabilities of correct decision and false alarm for a fading signal in M 
alternative locations with D-fold diversity are derived and numerically evaluated 
over the range of values M = 1, 2, 4, 16, 64, 256, 1024 and D - 1, 2, 3, 4, 6, 8 

12, 16, 24, 32, 48, 64 for a wide range of signal-energy-to-noise-density-level 
ratios (ENR). These results, which apply to the optimum receiver processor, 
have relevance to synchronization as well as to multiple alternative commumca- 

DO 1 jiJ“l í4/3 ÉDITION Of 1 MOV Ik OBSOLETE UNCLASSIFIED 
( ftCCURlTV CLASSIFICATION OF THIS PACE (•»••n Dmim Entwitd) 

I 



UNCLASSIFIED 
SECUWITV CLAMIFICATtOM OF THU PAQZfilkm» OMm 

20. (Contrd). 

tion with thresholding. It is found that the optimum order of diversity does not 
correspond to the familiar 5 dB ENR per branch, but rather to ENR branch 
values as large as 14 dB for some cases of small false-alarm probability and 
moderate correct-decision probability. However, frr error probabilities 
approximately equal to the false-alarm probability, the optimum ENR per 
branch approaches 5 dB. The required total received signal energy increases 
very slowly with M; for example, for a wide range of values of correct-deci¬ 
sion and false-alarm probabilities, a 1-dB increase suffices for the change 
from M = 32 to M = 1024. 

iä/ 
UNCLASSIFIED 

SECURITY CL ASSIFlC ATlON OF THIS P AOEfWh»" Df Bnffd) 



TR 4793 

TABLE OF CONTENTS 

Page 

LIST OF ILLUSTRATIONS. iii 

LIST OF ABBREVIATIONS. v 

LIST OF SYMBOLS. v 

INTRODUCTION. 1 

DEFINITIONS OF ERROR PROBABILITIES.2 

Integral Expressions for Probabilities. 4 

SIGNAL AND NOISE MODELS AND THE OPTIMUM PROCESSOR. . 5 

PERFORMANCE RESULTS. 8 

DISCUSSION. 10 

APPENDIX A - ERROR ANALYSIS AND INTERRELATIONSHIPS . 51 

APPENDIX B - DERIVATION OF FALSE-ALARM AND CORRECT- 
DECISION PROBABILITIES. 53 

APPENDIX C - RELATIONSHIP OF SIGNAL-TO-NOISE RATIO 
TO SIGNAL-ENERGY-TO-NOISE-DENSITY-LEVEL RATIO ... 55 

APPENDIX D - PROGRAM FOR GENERATION OF DETECTION 
CHARACTERISTICS. 57 

REFERENCES. G1 

i h i/ü 
REVERSE BLANK 



TR 4793 

LIST OF ILLUSTRATIONS 

Figure Page 

1 Detection Characteristics for Pp^ = 1°"2> M = 1.13 

2 Detection Characteristics for Pp^ =: 1°”3» M = 1.14 

3 Detection Characteristics for Pp^ = lo M - 1.15 

4 Detection Characteristics for Pp^ = 10“6f M = 1.16 

5 Detection Characteristics for Pp^ = 10'8, M = 1.17 

6 Detection Characteristics for PpA = 10~2, M = 2.18 

7 Detection Characteristics for PpA = 10"8f M = 2.19 

8 Detection Characteristics for Pp^ = 10"4, M = 2.20 

9 Detection Characteristics for Pp^ = 16“*8, M = 2.21 
-8 

10 Detection Characteristics for PpA = 10 , M = 2.22 

11 Detection Characteristics for PpA - 10 , M = 4.23 

12 Detection Characteristics for PpA = 10"8, M = 4.24 

13 Detection Characteristics for Pp^ = 10"4, M = 4.25 

14 Detection Characteristics for PpA = 10~G, M = 4.26 

15 Detection Characteristics for PpA = 10"8, M = 4.27 

16 Detection Characteristics for Pp^ = l^-8» M = 16.28 

17 Detection Characteristics for PpA = 10 8, M = 16.29 

18 Detection Characteristics for PpA = 16”^> M = 16.30 

19 Detection Characteristics for PpA = 10 M = 16.31 

20 Detection Characteristics for PpA = l0”8* M = 16.32 

21 Detection Characteristics for PpA = 16“2, M = 64.33 

22 Detection Characteristics for PpA = 16"8, M = 64.34 

23 Detection Characteristics for PpA = 16”4* M = 64.35 

24 Detection Characteristics for PpA = 10“^, M = 64.36 

25 Detection Characteristics for PpA = 40 , M = 64.37 

iii 



TR 47U3 

1-1 gu re 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

LIST OF ILLUSTRATIONS (Cont'd) 

Detection Characteristics for PpA = 10“2, M ~ 256 . 

Detection Characteristics for ?FA = 10"3, M = 256 . 

Detection Characteristics for PpA = 10"4, M = 256 . 

Detection Characteristics for PpA ^ M = 256 . 

Detection Characteristics for PpA = 10“8, M = 256 . 

Detection Characteristics for PpA = 10-2, M = 1024 

Detection Characteristics for = M = 1024 

Detection Characteristics for PpA = 10-4, M = 1024 

Detection Characteristics for M = 1°24 

Detection Characteristics for PpA = M = 1024 

Minimum E^/N0 Required for P^d = 0.5 .... 

Minimum E^/N Required for P =0.9 .... 

Minimum 1t/N0 Required for PCD = 0. 99 . . . . 

Page 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 



TR 4793 

LIST OF ABBREVIATIONS 

Prob 

max 

ENR 

M 

D 

xk 

A 

PFA 

IN 

PMD 

|S + N 

PID 

PCD 

Pe(^N) 

Pe(N) 

Po(’) 

Pl(-> 

p0(-) 

PlC) 

Ymd 

z 

Prob{k|z( 

Prob jk( 

P(z|k) 

Probability 

Maximum 

Signal-encrgy-to-noise-density-level ratio 

UST OF SYMBOLS 

Number of alternative signal locations 

Order of diversity 

k-th decision variable, 1 £ k £ M 

Threshold 

Probability of false alarm 

Conditioned on noise alone 

Probability of missed decision 

Conditioned on signal and noise present 

Probability of incorrect decision 

Probability of correct decision 

Probability of error for signal and noise present 

Probability of error for noise alone 

Probability density function of decision variable for noise alone 

Probability density function of decision variable for signal and 
noise present 

Cumulative distribution function of decision variable for noise alone 

Cumulative distribution function of decision variable for signal and 
noise present 

Envelope sample on m-th alternative, d-th diversity branch 

Observation vector 

A posteriori probability of alternative k 

A priori probability of alternative k 

Conditional probability density function of z 

V 



M
l 

W
l 

TR 4793 

LIST OF SYMBOLS (Cont’d) 

p(Z) Unconditional probability density function of z 

<r^ Common noise power level in all branches 

0.2 Common signal power level in D occupied branches 
s 

Q A priori probability of alternative k = 0, no signal 

R *¡/*1, 

Average received signal energy per branch 

Average total received signal energy on all D branches 

NQ Single-sided noise power density level 

E Received signal energy for nonfluctuating signal 

d (2E/N0)1/2 

Modified Bessel function of order zero 

Q Q-function 

vi 



TR 4793 

OPERATING CHARACTERISTICS FOR DETECTION OF A 
FADING SIGNAL IN M ALTERNATIVE LOCATIONS 

WITH D-FOLD DIVERSITY 

INTRODUCTION 

Before the transfer of information between a transmitter and receiver can 
take place, synchronization is necessary; that is, the receiver must ascertain 
the time delay and frequency shift of the received signal before correct deci¬ 
sions about the information content of an ensuing message can be made. For 
large a priori uncertainties about the transmitter's range and relative velocity, 
the receiver must conduct a search — during this alert phase — of the numerous 
possible locations (time-delay frequency-shift cells) to determine the precise 
time delay and frequency shift of the received signal, and to determine, in fact, 
whether a signal is present at all. Furthermore, in order to combat the possi¬ 
bility of signal fading, the transmitter may employ diversity by dividing the 
available signal energy into a number of branches. The receiver must then know 
the order and pattern of diversity and combine the energies of the appropriate 
diversity branches before making a decision of absence or presence and loca¬ 
tion of a possible signal. The number of locations that the received signal may 
occupy, if present, is denoted by M; the order of diversity employed is denoted 
by D. The objective of this report is to determine the performance (in terms 
of appropriate probabilities of various types of errors) of the synchronization 
procedure as a function of M, D and the received signal and noise power levels. 
Additionally, the optimum order of diversity and optimum fractionalization of 
available signal energy for specified performance are to be determined. 

If the arrival angle of the potential signal is not known to the receiver, a 
search must be conducted in this variable as well as in time delay and frequency 
shift. If the parameter M is increased to include this additional uncertainty, 
the case is subsumed under the earlier framework, where M denotes the num¬ 
ber of potential signal locations, whether they be cells in time delay, frequency 
shift, or arrival angle. More generally, M is simply the number of locations 
in which a signal can be found,, if present, regardless of the physical cause of 
uncertainty. 

Although the discussion has been couched in a detection context, the frame¬ 
work also covers multiple alternative communication with thresholding. For 
example, suppose that either no signal is transmitted or one of M signals is 
transmitted. Then, for fading signals and D-fold diversity, the results to be 

1 
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presented are directly applicable to determining the error probabilities. As 
particular cases, M = 1 corresponds to on-off (binary) communication with 
diversity; M - 2 and a zero threshold corresponds to binary frequency-shift¬ 
keying with diversity; and M '■ 2 and a zero threshold corresponds to M-ary 
communicadon with diversity, as previously analyzed1 and numerically evalu¬ 
ated.2 For M = 1, some results on tins problem are available2 (when D here 
is identified with M there). 

To develop the subject, two types of probabilities of mistakes are defined, 
and generic expressions for their values are presented. Then three different 
signal and noise models — all of which yield the same statistics for the observed 
variables — are described, and the optimum processor is derived. Finally, the 
actual evaluation of the correct-decision and false-alarm probabilities is under¬ 
taken and plotted, and relevant observations and conclusions are extracted from 
the numerical results. 

DEFINITIONS OF ERROR PROBABILITIES 

For a signal that can be found in one of M locations, let x^,..., x^ be 
the M decision variables upon which a decision must be reached as to whether 
signal is absent or whether a particular signal is present. If D-fold diversity 
is employed, the variable xk is an appropriate combination (as yet undefined) 
of the D branch outputs utilized by signal number k. If threshold A is uti¬ 
lized, it is decided that 

signal is absent if max (x-,,..., xM) < A 
(1) 

signal k is present if max (x-p ..., xM) = x^ > A 

Then the probability of false-alarm is given by 

PF^ = 1 - Prob jmax (x^,..., xM) < A |N I , (2) 

where |N denotes conditioning on noise-alone present (that is, no signal pres¬ 
ent). In words, (2) is the probability that one or more of the M decision vari¬ 
ables exceeds the threshold for noise-alone present. 

When a signal is present, two types of mistakes can occur. In order to 
express these quantities, without loss of generality, let signal number 1 be 
transmitted. The probability of a missed decision is defined as 

PMD = Prob \ mãx (xlf • • » XM> < A |S+ N }, (3) 

2 
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where |S* N denotes conditioning on signal-plus-noise present. That is, it is 
erroneously decided that no signal is present because the threshold was not ex¬ 
ceeded. 

On the other hand, the probability of an incorrect decision is defined as 

M 

PTn= T: Prob |max(x1>...> ^) = Xk >A|S^N| . (4) 
k = 2 

That is, one of the wrong decision variables dominates and exceeds the thresh¬ 
old, thereby leading to the wrong decision about which signal was transmitted. * 

Finally, the probability of a correct decision is defined as 

PCD = Prob lmax (xl> - • XM) = X1 >A |S+N}. (5) 

This is the probability that the correct decision variable is largest and exceeds 
the threshold. Since one of the events described in (3), (4), or (5) must happen 
for signal present, we have 

PMD ' PID + PCD " 1 (6) 

An alternative form of (G) is 

P + 
MD PID=1- CD (7) 

where the left side of (7) is the sum of the probabilities of the two types of mis¬ 
takes when signal is present. 

An average error probability could be defined (if desired) in the following 
manner: an error, for a signal transmitted, occurs with probability 

Pq (S 1 N) = pmd + PID ’ 1 “ PCD • 

An error, for no signal transmitted, occurs with probability 

P e (N) = P FA • 

(8) 

(9) 

*An on-off communications system corresponds to M = 1; in this case, 
Pj^ is not defined (that is, it has no meaning). 

3 
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Then the average error probability is 

Pe - Pe(S+ N) Prob js+N} + Pe(N) Prob |n| 

= (1 - PCD) Prob jS+ N[ + PFA Prob , 

where Prob|S+N| and Prob are the a priori probabilities. 

(10) 

INTEGRAL EXPRESSIONS FOR PROBABILITIES 

Analytic evaluation of the probabilities in (2) through (5) is generally im¬ 
possible unless the variables xj,..., xpj are all statistically independent of 
each other. From this point on, this crucial assumption of independence will be 
adopted. It is also assumed that the random variables jx^j not containing a 
signal have identical probability density' functions pQ( .). The random variable 
containing a signal will hav e probability density function pi( * )• The cumulative 
distribution functions are denoted by P0(-) and Pi(*)> respectively. 

The quantities in (2) through (5) then follow immediately: 

P FA (ID 

M - 1 

(12) 

M - 2 

P ID 

M - 2 

'A 

and 

P 

» r -i M -1 

dx p1(x) P0(x) • (14) 

4 
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(As a check, notice that 

-. M-1 

which agrees with (()).) 

Of the four prob;ibilities defined in (2) through (5), only three are independ¬ 

ent; see (ii). Furthermore, PpA imci PMD can be founcl very from (11) 
and (12) once the cumulative probability distributions P0(* ) and Pi(* ) are 
known. If (14) is numerically integrated in order to determine pCD’ PID is 
immediately available by use of (6). The discussion, then, will be concentrated 
on the two probabilities PpA anc^ PCD» these are also the only two probabilities 
needed to evaluate the average error probability defined in (10). Therefore, 
only one numerical integration, that in (14), need be conducted. An error 
anah sis for (14) and some interrelationships of the probabilities in (11) through 
(14) are presented in appendix A. 

SIGNAL AND NOISE MODELS AND THE OPTIMUM PROCESSOR 

In the previous section, the M decision variables x^t • • • > were pre¬ 
sumed to be available for comparison with a threshold. Now wfe will backtrack 
to ascertain how these decision variables can be determined in the first place. 
The first model to consider is that in which the received signal consists of nar¬ 
rowband Gaussian processes on D statistically independent branches. The 
particular D branches occupied by the transmission of one of the M alterna¬ 
tives do not overlap any of the (M - 1) D branches utilized for the other signal 
alternatives. AU MD branches are subject to additive narrowband Gaussian 
noise. 

Let y2lui denote a sample of the envelope of the received narrowband proc¬ 
ess on the m-th alternative signal location and the d-th diversity branch (after 
narrowband filtering to the expected signal bandwidth), where 1 £ m £ M and 
1 £ d £ D. It is presumed that all MD random variables |ymd( are independ¬ 
ent of each other. Then for the observation vector 

(16) 

the a posteriori probability of alternative k (after observation of z) is 

Prob |k[ p ( J I k) 
Prob jk |zf = *- 

P(X) 

-, 0 < k £ M , (17) 

5 
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> 

where alternative k - O denotes no signal, Prob jkj is the a priori proba¬ 
bility of alternative k, and p(z|k) and p(z) are the conditional and uncon¬ 
ditional probability density functions, respectively, of z. The denominator of 
(17) can be expressed as 

M 

P(Z)= ^ Prob I k} p(z I k) (18) 

k= 0 

if desired. 

Under the conditions described above, one has 

M J ymd 

m = 1 d=1 I ^n 

p(*i°) = JJ JJ {—— exp I- 
2cr 

2 
where a is the common noise power level in all MD branches. And, for 
k > 1, n 

- 2 \ i 2 
M D p,.,^nn 

m= 1 d= 1 
m^k 

^md / md —espri7 
n \ n 

D 

n kd kd 

2 . 2 
exp - 

A-I + O’ d-1 f s n 
2 2 

2(<r + <r ), s n/J 

(20) 

£ 
where o-g is the common signal power level in the D occupied branches. A 
more convenient form of (20) that is available is (by use of (19)) 

.2 \D 

p(*|k) = p(Z 10) 
n 

2 2 
cr + <r 

s n 

exp 

D 

2 2 2 f "kd 
^s + % d= 1 

, k > 1 . (21) 

Now it is presumed that the a priori probabilities in (17) satisfy the follow¬ 
ing rules: 

1-Q 
Prob l0[ = Q ; Prob {k} =-, l<k<M; (22) 

1 * M “ 

that is, the a priori probabilities of all the signal alternatives are equal. Then 
selection of the maximum a posteriori probability in (17) is tantamount to pi ek¬ 
ing the maximum: 

6 
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max 
O < k < M 

Prob { k I z} corresponds to 

But this is equivalent to 

D 
max 2 > 

1 < k < m 2-jykd < A * 

d= 1 

(24) 

where threshold A absorbs the a priori probabilities, the signal and noise 
levels, and D and M. Satisfaction of the upper inequality in (24) leads to a 
decision of signal present on the particular alternative that dominates the left 
side of (24); satisfaction of the lower inequality in (24) leads to the statement 
that no signal is present in any of the M alternative locations. * Physically, 
(24) indicates that the squared envelopes on all D diversity branches for a 
particular alternative should be summed, and the largest sum (out of the M 
alternatives) should be compared with a threshold. These sums are the deci¬ 
sion variables mentioned in (1) through (5). For a specified false-alarm prob¬ 
ability PpA* only neecl ke known In order to assign a value to A;<r| need 
not be known (but, of course, the detection probabilities do depend on <r|). 

It should be noted that if the cost of mistaking signal location k for signal 
location j is independent of k and j, and if the cost of mistaking signal loca¬ 
tion k for no signal is independent of k, the minimum average cost results 
when the identical test (24) is utilized. Of course, threshold A then involves 
these costs also. 

A second signal and noise model that leads to the same results as those 
above is that of envelopes of narrowband deterministic (except for phase) sig¬ 
nals subject to slow Rayleigh fading and additive narrowband Gaussian noise. 
For example, {ymcj [ could be samples of the envelopes of the outputs of nar¬ 
rowband matched filters that are nonoverlapping in time or nonoverlapping in 

*This derivation parallels that in reference 1, section IV, very closely. 

7 
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frequency. The signal strengths in the D branches are assumed to fade inde¬ 
pendently, and the signal strength changes only slightly in a time interval equal 
to a narrowband-filter impulse-response duration. The quantity (r| is the 
matched-filter output signal power per branch (averaged over the Rayleigh 
fading statistics). The relevant statistics are identical to those given in (19) 
and (20) [see, for example, reference 4, section 7.5]. 

A third signal model is afforded by samples of a zero-mean Gaussian proc¬ 
ess (rather than by envelopes). If the number of samples on each alternative is 
even, such as 2D, then it may be shown that the maximum a posteriori proba¬ 
bility processor takes on exactly the form of the test in (24), where each yj^ 
is equal to a sum of squares of two zero-mean Gaussian variates. 

Thus test (24) is appropriate for three different signal and noise models; 
its performance is determined in the next section. 

PERFORMANCE RESULTS 

The false-alarm and correct-decision probabilities are derived in appendix 
B and are given by _ ^ 

- 

PFA = 1 - I 1 - exp (-A) 

D - 1 “I 

Ë 'M 
k = 0 J 

(25) 

and 

CD Í 
oo X 

dx-— 

D- 1 

exp 

(D- 1) ! (1 + R) 
D 1 + R 

D - 1 

1 - exp (-X) xVk ! 

k = 0 

M-l 

,(26) 

where the signal-to-noise ratio per diversity branch is 

R = (27) 

[The result in (26) is a generalization of equation (19) in reference 1 in that the 
lower limit of integration is not zero.] 

8 
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The parameter R in (27) can be interpreted differently for the second sig¬ 
nal model of slow Rayleigh fading signals. For matched filtering of each of the 
D diversity branches, it is shown in appendix C that 

È1 Ex/n0 
R == — = -, (28) 

N0 D 

where is the average received signal energy on one branch, Êj is the 
average total received signal energy on all D branches, and N0 is the single¬ 
sided noise power density level. The curves to follow will employ the signal- 
energy-to-noise-density-level ratio (ENR) parameters in (28). 

In figures 1 through 35,* the probability of correct-decision Pqd is 
plotted versus E^/Nq in dB,t with diversity D as a parametei (solid curves), 
for M = 1, 2, 4, 16, 64, 256, 1024 and PpA = 10"n> n " 2* 3> 4> 8* The 
dashed curves on each figure connect points of equal total signal-energy-to-noise- 
density-level ratio Ej/No- The first point to observe from these detection 
characteristics is that, for a given available Ëx/N0, there is an optimum 
order of diversity to attain the maximum value of Pqd (^or a specified M 
and PFA), as exemplified by the peaks of the dashed curves. However, the 
maximum is not always realized when the ENR per branch is 5 dB, 2 
but, rather, it can be significantly larger than this value. For example, in 
figure 5 for PpA ^ 10”8, M = 1, the optimum order of diversity for ET/N0 = 
13 dB is D = 1; therefore the optimum ENR per branch is 13 dB, realizing a 
value of PçQ = 0.42. And in figure 35 for PpA = 10“8, M = 1024, the same 
behavior occurs for Et/N0 = 14 dB, yielding Pqy)- 0.38. 

The feature of large ENRs per branch being optimum is characteristic of 
the smaller values of P^p) (that is, Pcd < 0. 5). For larger values of Et/N0, 
where values of near unity are attainable, the optimum ENR per branch 
more nearly approaches 5 dB, and the optimum order of diversity increases. 
However, in figure 35 for PF^ = 10-8, even as large a value of PCD asO. 9999 
still requires an optimum ENR per branch of E^/Nq = 7 dB, not 5 dB. Only 
when the two "transition'f probabilities — (1 - Pci)) PFA (8) (9)> 
respectively — are approximately equal does the optimum ENR per branch 
approach 5 dB. But for large M (such as 1024) the optimum ENR per branch 

is still larger than 5 dB, even for 1 “ ^ci) Ä ^fa* 

*A11 figures are grouped together beginning on page 13. 
tThat is, 10 log10 (E^Nq). 

9 
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In figures 36 through 38, the minimum required values of Ej/Nq in dB 
are plotted versus M, with PpA as a parameter, for Pcd ^ 0-5, 0.9, and 
0.99. The results are extracted from figures 1 through 35; results for other 
values of PcD> suchas 0.9999, can also be obtained. The slight irregular¬ 
ities in the curves are caused by an inability to determine the dB levels from 
figures 1 through 35 more accurately than 0. 1 dB. The integer numbers under 
each curve denote the approximate optimum order of diversity at which the 
minimum E^/Nq is realized. 

One of the most striking features of figures 36 through 38 is the slow rate 
of increase with M of the minimum Et/Nq required. (It must be remembered 
that M is the number of alternative signal locations, not the number of signal 
observations; this latter quantity is represented by D, the order of diversity.) 
For example, at the high-quality performance level of Pp^ ^ 10"8, Pcd = °*99» 

> a 1 dB increase suffices over the range of M from 1 to 1024. At the more 
moderate performance level of PpA = 10"4f PCD = 5» a 2, 5 dB increase in 
Ët/Nq is required over the same range of M. 

The optimum order of diversity depends very strongly on the desired value 
of PCd but is somewhat less dependent on the specified PpA- Figures 36 
through 38 show that the optimum diversity is 1 to 2 for Pcd = 5> 5 to 10 
Pcd = 0. 9, and 11 to 19 for PCD = 0. 99. If the optimum order of diversity is 
not attainable, due perhaps to limited available bandwidth, figures 1 through 35 
indicate the additional amount of signal energy necessary to realize the speci¬ 
fied level of performance. 

A sample program for the generation of the detection characteristics in 
figures 1 through 35 is furnished in appendix D. Extension to other ranges of 
PpA , D, or M is possible by modification of this program. 

DISCUSSION 

For nonfluctuating signals received under phase-incoherent conditions and 
with D = 1, * the probability* of correct der ision is given [reference 5, (78), 
with crosscorrelation coefficient X = o] by 

-, M-l 

CD 
r 

= I dx X 
Ja 

2 X + d 
exp 1- l0(dx) 1 - exp (4) (29) 

♦No diversity is needed for nonfluctuating signals. 

10 



TR 4793 

where 

d = (30) 

and E is the received signal energy. The false-alarm probability is [reference 
5, (77)] 

FA = 1 - - exp (- A2/2)j 
M 

(31) 

(These results are identical in form to (14) and (11), respectively; only the den¬ 
sities pxi-) and p0(-) have changed. ) Now, (31) could be solved explicitly 
for A in terms of and M, and then (29) could be numerically integrated 
to evaluate PcD* Alternatively, the bracketed term in (29) can be expanded in 
a binomial series, yielding 

PCD = ¿ eXP (" V)^ (_1)n"1 0 ""P (^) Q(^’ /'-V/Ír)’ (32) 

where Q (•, • ) is the Q function [reference 4, (4-55)]. However, the alter¬ 
nating sequence of large numbers in (32) will suffer loss of significance, and 
(32) may be useless for large M. As a final alternative, the upper and lower 
bounds of (A-10) could be used for evaluation of Pcd* 

A comparison of the performance of the nonfluctuating signal results, (29) 
through (32), with the present results has not been pursued any further except 
for M = 1. In this case, (31) and (32) reduce to 

PFA = exp (- A2/2) (33) 

and 

pCD = «(d,A) = e^, 

If these results are superposed on figures 1 through 5, where the abscissa is 
interpreted as 10 logio (E/N0), it is found that (33) cuts across the D = 1 
curve at approximately Pqj^ = 0.25 for Pp^ = 10"2 and cuts across at ap¬ 
proximately PçD=0. 36 for PpA = 1°”®* That is, the performance for 
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fluctuating signals is better than for nonfluctuating signals for small correct- 
decision probabilities (< 0.4); the occasionally large signal amplitudes occur¬ 
ring in fading are actually helpful when the noise level is high. Of ffourse, for 
larger ENR, where P^d approaches 1, the nonfluctuating signal case yields 
better performance by several dB. For example, Pp^ = 10"8, PCD = 0.99 
requires an ENR of 15.4 dB for no fading versus 19.1 dB for fading, a differ¬ 
ence of 3. 7 dB. The same difference also prevails approximately at PpA= 10~2- 

12 
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Figure 1. Detection Characteristics for Pp^ = 10 , M = 1 
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Figure 2. Detection Characteristics for PFA = 10 M = 1 
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Figure 3. Detection Characteristics for PpA = 10“4, M = 1 

15 



r 

TR 4793 

L 



r 

TR 4793 

Figure 5. Detection Characteristics for PFA = 10 ö, M = 1 
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Figure 6. Detection Characteristics for = 10 2* M = 2 
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Figure 7. Detection Characteristics for ~ 10 M - 2 
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Figure 8, Detection Characteristics for = 10"^, M - 2 
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Figure 9. Detection Characteristics for PFA = 10’6, M - 2 
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—ft 

Figure 10. Detection Characteristics for PFA = 10*" , M = 2 
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Figure 11. Detection Characteristics for PpA ^ 10"^, M = 4 
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Figure 12. Detection Characteristics for “ 10"3, M = 4 
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Figure 13. Detection Characteristics for P^ - 10M = 4 
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E./N (dB) 
I o 

—fi 
Figure 14. Detection Characteristics lor = ^ » M = 4 
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Figure 15. Detection Characteristics for P^ - 10"^, M ^ 4 
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E./N (dB) 
I o 

-2 Figure 16. Detection Characteristics for = 10 , M = 16 
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> 

E/N (dB) 
I O 

Figure 18. Detection Characteristics for = 10"^, M = 16 
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E/N (dB) 
I o 

Figure 19. Detection Characteristics for ~ 
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Figure 20. Detection Characteristics for PFA 10~8, M = 16 
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Figure 21. Detection Characteristics for = 10 “2, M = 64 
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E./N (dB) 
I O 

Figure 22. Detection Characteristics for PpA 10“3, M = 64 
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E ,/N (dB) 
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Figure 23. Detection Characteristics for = M = 64 
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E./N (dB) 
I O 

Figure 24. Detection Characteristics for = M - 64 
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Figure 25. Detection Characteristics for P^A = 10“8, M = 64 
FA 
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> 

Figure 26. Detection Characteristics for = 10"2, M = 256 
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Figure 28. Detection Characteristics for = 10“^, M = 256 
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Figure 29, Detection Characteristics for P . = 10"6, M 256 
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> 

Figure 31. Detection Characteristics for = 10”^ m = 1024 
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E/N (dB) 
I o 

Figure 32. Detection Characteristics for PpA = 10“3, M = 1024 
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Figure 33. Detection Characteristics for PF^ = HT4, M = 1024 
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Figure 34. Detection Characteristics for = 10"6, M - 1024 
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Figure 35. Detection Characteristics for P - 10“^, M - 1024 
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Appendix A 

ERROR ANALYSIS AND INTERRELATIONSHIPS 

ERROR ANALYSIS 

The probability of correct decision, which is given in (14) of the main text 
as 

pcd=/a [p0(x)]M 1 > (A-l) 

will be approximated by 

^ r MI r00 

PCD= JA ^ Pi(x) [p0(x)] +Jclxp1(x). (A-2) 

The error is tlien 
/• oo 

0 < Error = PCD - PCD =J dx p^x) j 1 - [P0(x)]M_1 
_ A 

< |i- [Po^p1'1})1 -IVa)} 

(A-3) 

Now we must choose A large enough that Error is sufficiently small. One 
way of accomplishing this is to solve for A0 and Ai in 

1 - [Pq (A0)]M""1 = Prror 

1 - (A^) = Error 
(A-4) 

and then choose A = minimum (A0» A^). Only the first integral in (A-2) need 
be numerically evaluated inasmuch as the second integral is given by 1 - Pi(A). 

INTERRE LA TIONSHIPS 

From (11) and (12), we have 

P < 
MD- 

1 - (A-5) 

51 



TR *479,3 

This is a very weak inequality in most practical cases. However, in the limit 

of small signal-to-noise ratios, 1 - Pmd approaches PpA* 

From (13), we have 

M-l M-lf M-l 

[p0M] =—|l-[Po(A)] j = —PFA‘ (A'6) 

that is, the incorrect-decision probability is always less than the false-alarm 

probability. 

Upper and lower bounds on PCD are also attainable: from (5) we have 

PCDlPr0b K > A ,S+N} = 1 ’ Pl<A) ’ (A’7) 

whereas from (14) we have 

M-l i-oo M-l 

PCD- ^Po(A)^ JA ^ P1(X) = CPo(A)] ^ ” P1(A)^ • (A_8) 

Therefore it holds that 

M-l 

[P0(A)] [1 - P^)] < PCD < 1 - PiiA) • (A'9) 

By employing (11), this can be expressed as 

M-l 

t-pj m ‘a-io> 

which is a very useful and tight bound for Pp^ <<: the use of (A-10) 

requires no numerical integrations at all. 
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Appendix B 

DERIVATION OF FALSE-ALARM AND CORRECT-DECISION 
PROBABILITIES 

From the section on definitions of error probabilities and equation (Z4), we 
see that the M decision variables can be expressed as (proportional to) 

1 

1 < k < M . (B-l) 

When the probability density function for noise-alone given in (19) and (20) is 
utilized, the probability density function p0(*) in (11) through (14) is given by 

Xo-1 exp (—x) 
p (X) =- , x > 0 . (B-2) 

(D-l) ! 

Similarly, the probability density function p1(- ) is available from (20) as 

.D-l exp (- 
1+R 

P^x) = 
(D-l)! (1+R) D 

, x > 0 , (B-3) 

where R - is the signal-to-noise ratio per diversity branch. Then the 
cumulative distribution functions are 

D-l 

P (x) = 1 - exp (-x) ^ ^ xVk ! , x > 0 

k - 0 

(B-4) 

and 

Pj(x) = 1 - exp 
^ x \ y^1 J_ / x N 

Vl+R/j^ \l+R 
, x > 0 . (B-5) 

The false-alarm and assorted decision probabilities follow upon substitution of 
(B-2) through (B-5) in (11) through (14). 
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Appendix C 

RELATIONSHIP OF SIGNA L-TO- NOISE RATIO TO SIGNA L~ ENERGY - 
TO-NOISE-DENSITY-LEVEL RATIO 

For transmitted signal R(t) cos [w0t + 0(t)] , the received waveform on 
one diversity branch in slow fading is given by 

w(t) = A R(t) cos [w0t h 0 (t) + $] + n (t) , (C-l) 

where A and $ are the instantaneous amplitude and phase of the fading. The 
output cf a synchronized matched filter (prior to envelope detection) is 

y = /dt R(t) cos [uot + 0(t)] w(t) = ys + yn , (C-2) 

where 

1 2 
y ^ —A cos^ J dt R (t) 

2 
(C-3) 

and 

y = /dt R(t) cos fw t + e(t)] n(t) . (C-4) 
n L o j 

Then, for uniform signa! phase ÿ and white noise n(t), filter output powers 
are 

2 -2 

N, (C-5) 

Now, the instantaneous received signal energy per diversity branch is, from 
(C-l), 

E^jA2 fdt R2(t) • (C-G) 

Therefore it holds that 

Ej = - A /dt R (t) . (C-7) 
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(C-8) 

By combining (C-5) and (C-7), one obtains 

2 R, 
ffs El 

[See also reference 1, (22).] 

Notice that nowhere in the above derivation has it been necessary to specify 
the time-bandwidth product of the component pulse; therefore (C-8) is applicable 
to any time-bandwidth product, provided the fading is slow and is frequency-non- 
selective relative to the pulse duration and bandwidth. 
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Appendix D 

PROGRAM FOR GENERATION OF DETECTION C RARACTERISTIC S 

DOUBLE PRECISION F*V1»V2 
INTEGER 0(12).01 
external F 
DIMENSION ZtZOQHGf 12) tFAC(12l »PR08( 23«12)«VN0RM(25> 
COMMON D1 
DATA CVl»2>3»A«Gf8«12»lG.2^f32tA8*G4/ 
DATA YNORM/- 3.71902 »- 3 .2 90 5 - 3.09 023 •-2 . B 7 8 1 G .-2 • 57 5 8 3 »-2.326 3 5 • 

»-2.0 53 75*-! .64M85i“l .26155.-.8^1621-.52(1401-.25335.0.1 -253351.5 2^4^ 
*•.04162* 1- 28155.1 .64 4 85.2.05375.2.32635» 2.57583 »2.37816.3. 0902 3. 
*3,29053.3,71902/ 

DO 21 IP F- 2 • 8 » 2 
PF=10. **( -IPF ) 
DO 22 IM=2.4.2 
M = TM 
M1rH-1 
OM=i./M 
FAC( 1 1=0. 
FAC (2)=0• 
FAC(3)=LOG( 2 . ) 
f AC(4)=L ÛG(6 • ) 
F AC (5)-L 0G( 120.) 
FACÍ 6):L OC( 5040.) 
FAC(7)=L0G( 3.99168E7 ) 
FACÍ 8)-L 0G 11 .30767437 E12) 
FACÍ9)=LOG(2.5B52 016 7E22 ) 
FACÍ 1C)=L OGÍ 8.222 8 3065E3 3) 
FACÍ 111=L 0G(2.5B6232 421^59.*LCGtl0. ) 
FACÍ 12)=L0G(1.9826083 2)+37.•LOG!10.) 
S = 0. 
T=-l. 
00 1 N=1 » 100 
T = T*(N-l . - OH 1•PF/N 
S-S+T 
IF (ABS(T).LT.l .E-9*ABS( S) ) GO TO 2 
GC 11=-1 OG(S) 
DO 3 10=2.12 
01=0(10)-1 
Vl =2 . • G( ID-1 ) + 13. 
V 2 = VI♦1.00 
CALL ROOTíF.DBLEíS).W1.V2) 
G ( 10) = V 2 
PRINT 4. 0(10).0(10) 
FORMAT!' D = * » 13t * IHRESHOLD = *.E15.9 ï 
DO 5 10=1.12 
D1=D(ID )-1 
DO 6 IE = 1 • 23 
ETN0DB = IE + 3 
R = 10.•♦(•1+ ETNODB )/D( ID I 
0 = 1./11.+ R i 
Q=( l.+ R I • (33. +1.38*D( IDI-15.* EXPI- .092+01 ) ) 
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COhP-D(ID Í-LOGC1.♦«)«FAC(ID I 
VrSIMPSíH»GÍID>tU»;23l 
PR3NT 7. 0 I ID I# ETNQDB.V 

7 rORMATtllOtE10.2.E20 .8 » 
V -S IMPS2 ( 0 ) 
PRINT 6 * V 

8 FORMAT (e^O-3) 
V-MIN(Vi.9985^8i 
PRO0 ( IC » ID) - H A X (V* 1 «C-ô) 

6 CONTINUE 

5 CONTINUE 
CALL M ODE SC < 2 » Qi 

CAL L SU 9j E G I Z » Q • * YNOR Mil) f2C.»YN0RM(25)) 
CALL 0BJCTG(Zfll50.f 3CO.• 2850.•2730.) 
CALL St T SM G ( Z » 3û » 1 • ) 
DO 9 J - 2 11 8 • 2 
CALL LINESGfZ *C*FLOA T IJl#YNORM<1 ) ) 

9 CALL L INESGf Z* IfFLO AT ( Jl .YN0RH(25n 
DO 10 Jz2 » 2 
CALL L IN ES G t Z » 0 » O..YNORM(J)i 

1C CALL LINESGtZtl.20 .tYNGRM(J) I 
CALL SETSMGtZ.30.2.) 
CALL L TNE S C ( Z r 0 » C..YNCRMI1M 
CALL L iNESGtZ»!* 0 . * Y NOiT M Í 2 5») 
CALL LINESCIZ*1.20.»YNORM<25IÍ 
CALL L INESGtZ» 1.20. »YNOR Mil) ) 
CALL LINESGIZ.I» O.iYNORMUli 
CALL S ETSMG (Z » 8<* . *4* ) 
00 11 10=1*12 
DDB = 10.*lOGIOrD (ID ) ) 
P=T INORM IPROQ <1 . ID) *J 30) 
CALL LTNESG(Z.0.4 .-DD3.P I 
CALL PÛ INTGI Z.l . 4 .-DD6 .P ) 

DO 1 1 I£ = 2* 23 
P = TINORM IPRÛB ( IE* IL) .$ 30) 

CALL LINESGIZ*!t IE*3-DD8*P) 
11 CALL POINTGIZ*1.IÈ»3-DÛô*P) 

CALL PAGECÍ7.0.4.1) 
22 CONTINUE 
21 CONTINUE 

CALL EXITGIZI 
3C STOP 

FU NC TTCN HI XI 
H = EXP <-X ) 
IF <01.EG.Ol GO TO 2 
T = H 
CO 1 K = 1» D 1 
T = T • X /K 

1 H=H4T 
2 H=EXP l D1 *L 0 G < X ) -Q • X »NI * LOG < 1 •- H) - CO MP) 

RETURN 
END 
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SUBROUTINE ROOHF.Dt VI»V2 ) 
DOUBLE PRECISION F • D « V 1 * V 2 * X < 1 0 □) » DA U OQ ) tB »8 A 

xtiuvi 
X(2 » = V2 
DAtl l = F(Xi 1 ) ï 
0 A( 2)=F(X(2I ) 
NI =2 
DO *4 N = 3110Q 
TFIABSIDA(N-1)-01.LE 9*ABS(D)1 GO TO 5 
TF tDAl N-l i-DA (N-21 1 7.6.7 
X(NI=X(N-1)*1.100 
GO TG ß 
XtN)-fX(N-ll*(D“DAlN-2))+X(W-2)* (0AÍN-1)-0)I/<DA( N-l l-OA( N-2 ) ) 

B=X(N)-X( N-lI 
BAiABSi BJ 
XCNI=X(N-1 »♦MTN<0A.X CN-1 I*.1D0J •SIGNd .DO»ßl 

X(N) = MAX(X (N ).0.00) 
NI -N 
DAiN)=rrx(Ni ) 
PRINT 9. X(NI I » DA(NI )»N1 
FORMATI/2Ö30.18.I10) 

V2 = X (NI) 
RETURN 
END 

FUNCTION SIMPS(F.X1. X2.NNI 
DOUBLE PRECISION ACEiACO 
N-((MAX I ABS(NN I11)♦!!/2)*2 
H“ (X2-X1)/N 
0=2.*«/3. 
Sr.BM F(X1 I ♦F ( X2 I ï 
ACE =0.DO 
IF IN.FQ.2 I GO TO 3 
LTM=N-2 
DO 2 T=2.LIN.2 

T =F(X1^H*II 
ACE = AC E+T 
A CO =0•DO 
LIM=N-1 
DO 1 1=1.LIN.2 
T = FI X1I) 
ACO = ACO^T 
S TM P S = Í i*2.*SNGL (ACO) ♦SNGL ( AC E ) )*0 

RETURN 
ENTRY SIMPS2(IDUMMY) 
N - N* 2 
H= H*.5 
0= D*•5 
ACE=ACE»ACO 
GO TO 3 
END 
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DOUBLE PRECISION FUNCTION FIX) 
DOUBLE PRECISION X*T 

INTEGER 01 
C0KMÛN Dl 
FrEXPl-X) 
IF( Dl .EQ .0) RETURN 

T-F 
UO 1 K- 1 » D1 

T z T • X/ K 
1 FzF+T 

RETURN 

ENO 
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