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Summary: Quantitative traits analyzed in Genome-Wide Association Studies (GWAS) are

often non-normally distributed. For such traits, association tests based on standard linear

regression are subject to reduced power and inflated type I error in finite samples. Applying

the rank-based Inverse Normal Transformation (INT) to non-normally distributed traits has

become common practice in GWAS. However, the different variations on INT-based associ-

ation testing have not been formally defined, and guidance is lacking on when to use which

approach. In this paper, we formally define and systematically compare the direct (D-INT)

and indirect (I-INT) INT-based association tests. We discuss their assumptions, underlying

generative models, and connections. We demonstrate that the relative powers of D-INT and

I-INT depend on the underlying data generating process. Since neither approach is uniformly

most powerful, we combine them into an adaptive omnibus test (O-INT). O-INT is robust

to model misspecification, protects the type I error, and is well powered against a wide

range of non-normally distributed traits. Extensive simulations were conducted to examine

the finite sample operating characteristics of these tests. Our results demonstrate that, for

non-normally distributed traits, INT-based tests outperform the standard untransformed

association test (UAT), both in terms of power and type I error rate control. We apply

the proposed methods to GWAS of spirometry traits in the UK Biobank. O-INT has been

implemented in the R package RNOmni, which is available on CRAN.

Key words: Direct and indirect rank-based inverse normal transformation; Non-normality;

Omnibus test; Quantitative Traits; Transformation; Type I error rate.
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1. Introduction

In Genome-Wide Association Studies (GWAS) of continuous (quantitative) traits, the covariate-

adjusted genetic effect is typically estimated by linear regression using ordinary least squares

(OLS). When the residual distribution is normal, the OLS estimator is normally distributed,

consistent, and efficient (Rawlings et al., 1998). However, for many complex traits, including

spirometry measurements, the residual distribution is markedly non-normal. An example

is peak expiratory flow (PEF), whose residual distribution is skewed and asymmetric even

when the outcome is log transformed. When the residual distribution is non-normal, but

has mean zero and finite-variance, the OLS estimator remains consistent and asymptotically

normal (Cameron and Trivedi, 2005). However, the discrepancy between the asymptotic and

finite-sample distributions of the test statistic makes association tests based on the OLS

estimator sensitive to the underlying residual distribution (Rawlings et al., 1998). Due to

slower convergence of the sampling distribution in the tails, excessive sample sizes n ≫ 105

may be required to achieve nominal control of the type I error at the genome-wide significance

threshold of α = 5×10−8. Moreover, even if the sample is sufficiently sized to protect the type

I error, the OLS estimator is no longer efficient when the residual distribution is non-normal

(Serfling, 1980). Consequently, OLS-based association tests may lack power for detecting true

effects. These limitations of standard association tests in finite samples (failure to control

the type I error and poor power) are highlighted in our simulation studies.

The rank-based inverse normal transformation (INT) is commonly applied during GWAS

of non-normally distributed traits. INT is a non-parametric mapping that replaces sample

quantiles by quantiles from the standard normal distribution. After INT, the marginal

distribution of any continuous outcome is asymptotically normal. INT has the effect of sym-

metrizing and concentrating the residual distribution around zero. Based on the Edgeworth

expansion (Lehmann, 1999), convergence of the OLS estimator’s sampling distribution is
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accelerated when the residual distribution is more nearly normal. Heuristically, INT improves

the operating characteristics of standard association testing by increasing residual normality,

which in turn allows the sampling distribution of the test statistic to converge more quickly.

We classify INT-based tests into direct and indirect methods. In the direct method (D-

INT), INT is applied directly to the phenotype, and the INT-transformed phenotype is

regressed on genotype and covariates. Covariates may include age, sex, and adjustments

for population structure, such as genetic ancestry principal components (PCs). D-INT has

been applied to GWAS of BMI (Scuteri et al., 2007), circulating lipids (Barber et al., 2010),

polysomnography signals (Cade et al., 2016), and many quantitative traits in the UK Biobank

(Abbott et al., 2017). In the indirect method (I-INT), the phenotype is first regressed on

covariates to obtain residuals, then the INT-transformed phenotypic residuals are regressed

on genotype, with or without secondary adjustment for population structure. I-INT has been

applied to GWAS of gene expression (Emilsson et al., 2008; Consortium et al., 2017), serum

metabolites (Kettunen et al., 2012), and spirometry measurements (Repapi et al., 2010).

However, the relative performance of D-INT versus I-INT has not been studied in detail. For

the non-normal quantitative traits encountered in practice, it is unclear which of the these

methods will more robustly control the type I error, and which will provide better power.

As discussed by Beasley and colleagues (Beasley et al., 2009), the question of whether INT-

based methods have desirable operating characteristics in the GWAS context has not been

critically evaluated. INT of the outcome in a regression model does not guarantee correct

model specification. This is because standard linear regression, considered parametrically,

requires normality of the residual distribution, not of the marginal distribution of the outcome

(Rawlings et al., 1998). Here we systematically study the direct and indirect INT-based

association tests, and provide recommendations on how to apply the INT in practice. We

begin by formally defining D-INT and I-INT, studying their underlying assumptions and
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connections. We demonstrate that if the observed trait is generated by a non-linear, rank-

preserving transformation of a latent normal trait, then INT provides an approximate inverse

of the generative transformation, under the null hypothesis and supposing the covariate

effects are small. Moreover, if the mean of the observed trait is linear in covariates but

the residual distribution is non-normal, then I-INT is asymptotically exact. Our derivation

of I-INT agrees with recent work recommending double adjustment for covariates during

INT-based association testing (Sofar et al., 2019).

Through extensive simulations covering the types of residual non-normality often encoun-

tered in practice, we compare D-INT and I-INT with the standard untransformed association

test (UAT). We find that INT-based tests robustly control the type I error and dominate the

UAT in terms of power. However, neither D-INT nor I-INT was uniformly most powerful,

and their relative performance depended on the underlying data generating mechanism. Since

this is seldom known in practice, we next propose an adaptive omnibus test (O-INT) that

synthesizes D-INT and I-INT. O-INT robustly controls the type I error, and across traits is

nearly as powerful as the more effective of the component methods. We have implemented

all candidate INT-based tests (D-INT, I-INT, and O-INT) in the R package RNOmni, which

is available on CRAN.

We applied the UAT and the INT-based association tests to GWAS of spirometry traits

in the UK Biobank (Sudlow et al., 2015). To demonstrate the power advantage provided

by O-INT, we compare the results from the overall analysis (n = 292K) with those from a

subgroup analysis (n = 29K) among asthmatics. All associations identified by O-INT in the

asthmatic subgroup were declared significant by UAT in the overall analysis. Hence UAT and

O-INT tests agree as to the importance of these loci. However, the more-powerful O-INT test

was able to detect them using only a fraction (9.7%) of the sample. In both the asthmatic
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subgroup and the overall analysis, O-INT realized empirical efficiency and discovery gains

over the UAT.

The remainder of this paper is structured as follows. In the methods section, we present

all candidate association tests, theoretically study D-INT and I-INT, and propose the INT-

based omnibus test (O-INT). In the simulation studies, we present evidence that INT-based

association tests robustly control the type I error, whereas the UAT often does not. We

demonstrate that INT-based association tests dominate the UAT in terms of power, and show

that O-INT is an effective compromise between D-INT and I-INT. In the data application,

we compare the performance of all candidate association tests for GWAS of spirometry traits

from the UK Biobank. We conclude with a discussion of the implications of our findings for

quantitative trait GWAS.

2. Statistical Methods

2.1 Setting

For each of n independent subjects, the following data are observed: a continuous (quantita-

tive) phenotype Yi, genotype gi at the locus of interest, and a p×1 vector xi = (xi,1, · · · , xi,p)

of covariates. In our data application, the phenotype Yi is a spirometry measurement, while

the covariates include an intercept, age, sex, and genetic principal components (PCs). Let

y = (Y1, · · · , Yn) denote the n × 1 sample phenotype vector, g the n × 1 genotype vector,

and X the n× p covariate design matrix.

2.2 Untransformed Association Test

The untransformed association test (UAT) is derived from the normal linear model:

y = XβX + gβG + ǫ, (1)

where ǫ ∼ N
(

0, σ2I
)

is an n × 1 residual vector, βG is the genetic effect, and βX is the

covariate effect. Define the error projection PX = I − X(X ′X)−1X ′, and the phenotypic
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residual eY = PXy, which is the residual after regressing y on X, or the projection of y

onto the orthogonal complement of the column space of X. The efficient score for βG is

UβG
= σ−2g′PXy, and the score statistic assessing H0 : βG = 0 is:

TU = y′PXg(g
′PXg)

−1g′PXy/σ
2, (2)

which follows a χ2
1
distribution. Under H0, an unbiased estimate of the residual variance

is given by σ̂2 = (n − p)−1y′Pxy. The Wald statistic for assessing H0 : βG = 0 takes the

same form as (2), save the residual variance is estimated as σ̃2 = (n− p− 1)−1y′P̃Xy, where

X̃ = (X, g) and P̃X = I − X̃(X̃ ′X̃)−1X̃ ′ = PX − PXg(g
′PXg)

−1g′PX .

If the normal residual assumption is relaxed to allow for an arbitrary distribution with mean

zero and finite variance, then TU still follows an asymptotic χ2
1
distribution. Although (2) is

eventually valid for any continuous trait with constant residual variance, when the residual

distribution exhibits excess skew or kurtosis, the sample size required for valid inference at

α = 5× 10−8 may become impractically large. Moreover, as we will show, even in samples of

sufficient size for valid inference, the UAT is generally less powerful than INT-based tests.

2.3 Rank-Based Inverse Normal Transformation

INT is a non-parametric mapping applicable to observations from any absolutely continuous

distribution. The process may be decomposed into two steps. In the first, the observations

are replaced by their fractional ranks. This is equivalent to transforming the observations

by their empirical cumulative distribution function (ECDF) Fn. If W is any continuous

random variable with CDF FW , then the transformed random variable U = FW (W ) is

uniformly distributed (Casella and Berger, 2002). Since the empirical process Fn(·) converges

uniformly to the CDF FW , in independent and identically distributed samples of sufficient

size Û = Fn(W ) is uniformly distributed (van der Vaart, 1998). After transformation by

Fn, the observations reside on the probability scale. In the next step, these probabilities are

mapped to Z-scores using the probit function Φ−1. If U is uniformly distributed, then Z =
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Φ−1(U) follows the standard normal distribution. Consequently, in large samples, INT(W ) =

Φ−1{Fn(W )}
·

∼ N(0, 1), regardless of the initial distribution FW .

In practice, an offset is introduced to ensure that all fractional ranks are strictly between

zero and one, which in turn guarantees that all Z-scores are finite. Suppose that Wi is

observed for each of n independent subjects. The modified INT is:

INT(Wi) = Φ−1

{

rank(Wi)− c

n+ 1− 2c

}

, c ∈ [0, 1/2]. (3)

Hereafter we adopt the conventional Blom offset of c = 3/8 (Beasley et al., 2009). Since

other choices for c lead to Z-scores that are nearly linear transformations of one another, the

choice of offset is considered immaterial.

2.4 Direct Inverse Normal Transformation (D-INT)

In direct INT (D-INT), the INT-transformed phenotype is regressed on genotype and co-

variates according to the association model:

z = XβX + gβG + ǫD, (4)

where z = INT(y) is the INT-transformed phenotype, and ǫD ∼ N
(

0, σ2

DI
)

. Model (4) is

immediately comparable with model (1), the only difference being replacement of y by z.

Thus, the D-INT score statistic for assessing H0 : βG = 0 is:

TD = z′PXg(g
′PXg)

−1g′PXz/σ
2

D. (5)

A p-value is assigned with reference to the χ2
1
distribution. The score statistic estimates the

residual variance as σ̂2

D = (n− p)−1z′PXz, whereas the Wald statistic estimates the residual

variance as σ̃2

D = (n− p− 1)−1z′P̃Xz.

D-INT is adapted for data generating processes (DGPs) of the form:

y = h
(

XβX + gβG + ǫ∗D
)

, (6)

where ǫ∗D ∼ N(0, σ2

DI), and h(·) is a rank-preserving transformation. An example is the log-

normal phenotype, for which h(t) = exp(t). When h(·) is non-linear, the regression function
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E(Yi|xi, gi) is non-linear in its parameters, and the residuals ǫ∗D have non-additive effects.

However, there exists a transformed scale on which the mean model is linear and has additive

normal residuals, namely: h−1(y) = XβX +gβG+ǫD. Thus, under H0 : βG = 0, the efficient

score for βG is UβG
= σ−2

D g′PXh
−1(y). Since h−1(·) is seldom known, D-INT makes the

approximation INT(yi) = Φ−1{FY,n(yi)} ≈ σ−1

D h−1(yi), where FY,n is the marginal ECDF of

the phenotype Yi.

To justify this approximation, observe that under model (6), the conditional distribution

of the transformed-scale residual ǫ∗D,i = h−1(yi)−xiβX − giβG is Fǫ(ǫ
∗

D,i|xi, gi) = Φ(σ−1

D ǫ∗D,i).

The marginal and conditional CDFs of Yi are related via:

FY (yi) =

∫

Φ
[

σ−1

D

{

h−1(yi)− xiβX − giβG

}

]

dF (xi, gi), (7)

where F (xi, gi) is the joint CDF of xi and gi. The empirical counterpart to (7) is:

FY,n(yi) =
1

n

n
∑

i=1

Φ
[

σ−1

D {h−1(yi)− x′

iβX − giβG}
]

.

Under the complete null H0 : (βX = 0) and (βG = 0), FY,n(yi) converges to Φ{σ−1

D h−1(yi)},

such that the D-INT approximation INT(yi) = Φ−1[FY,n(yi)] ≈ σ−1

D h−1(yi) is asymptotically

exact. Under the standard H0 : βG = 0, the approximation is accurate when βX ≈ 0.

2.5 Indirect Inverse Normal Transformation (I-INT)

In indirect INT (I-INT), the phenotype is first regressed on covariates to obtain residuals,

then the INT-transformed phenotypic residuals are regressed on genotype. Specifically, I-INT

is based on the association model:

z̃ = eGβG + ǫI , (8)

where z̃ = INT(eY ) is the INT-transformed phenotypic residual (i.e. eY = PXy), eG = PXg

is the genotypic residual, which is the residual after regressing g on X, and ǫI ∼ N(0, σ2

II).

The I-INT score statistic for assessing H0 : βG = 0 takes the form:

TI = z̃′PXg(g
′PXg)

−1g′PX z̃/σ
2

I . (9)
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A p-value is assigned with reference to the χ2
1
distribution. The score statistic estimates the

residual variance as σ̂2

I = n−1z̃′z̃ = 1, while the Wald statistic estimates the residual variance

as σ̃2

I = (n− 1)−1z̃′Peg z̃, where PeG = I − eG(e
′

GeG)
−1e′

G = I − PXG(g′PXg)
−1g′PX .

Since INT is a non-linear transformation, the INT transformed phenotypic residuals z̃ are

no longer orthogonal to the covariates. That is, the correlation between z̃ and the columns

of X is non-zero. Consequently, secondary adjustment for covariates has been recommended

Sofar et al. (2019), as in the association model:

z̃ = XβX + gβG + ǫI . (10)

We demonstrate that the score statistic from model (10), which adjusts twice for covariates, is

equivalent to the score statistic from model (8), which instead adjusts for genotypic residuals.

I-INT is adapted for a DGP of the form:

y = XβX + gβG + ε, (11)

where the residuals ε ∼ fε(·) follow an arbitrary continuous distribution with mean zero and

constant finite variance. Under (11), F (yi|xi, gi) = Fε(yi − x′

iβX − giβG), such that under

the complete null H0 : (βX = 0) and (βG = 0), the DGPs in (11) and (6) are equivalent.

To motivate I-INT, we begin by showing that the efficient score for βG from model (11) is

consistently estimated by the score for βG from the model eY = eGβG + ε. Observe that, for

any fε, the ordinary least squares estimator β̃X = (X ′X)−1X ′(y− gβG) remains consistent

for βX . Thus, the profile log likelihood from (11) is consistently estimated by:

ℓ̃p(βG) = ln fε(y −Xβ̃X − gβG) = ln fε{PX(y − gβG)} (12)

Letting Uε(·) = ∂ ln{fε(ε)}/∂ε, the efficient score for βG from (11) is consistently estimated

by the gradient of (12), which is ŨβG
= −g′PXUε{PX(y − gβG)}.

Now consider the following model for the phenotypic residual:

eY = XαX + gβG + ε, (13)

where ε is distributed as before. The profile log likelihood for βG in (13), with αX evaluated
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at the consistent estimator α̃X = (X ′X)−1X ′(eY − gβG), coincides with the profile log

likelihood in (12). Moreover, the log likelihood for βG from the following model, which relates

eY to the genotypic residual eG, is also identical to (12):

eY = eGβG + ε. (14)

Thus, the score for βG from (14) is consistent for the efficient score for βG from (11).

Now, under H0 : βG = 0, model (14) and model (13) with αX evaluated at its least squares

estimate α̃X = 0, both reduce to eY = ε. Model (14), together with the observation that

z̃ = INT(eY ) = INT(ε)
·

∼ N(0, I), motivate the I-INT association model in (8). Moreover,

under H0 : βG = 0, the distributional assumption in (8) is asymptotically exact, with σ2

I = 1.

2.6 Omnibus Inverse Normal Transformation Test (O-INT)

As shown in the simulation studies, both D-INT and I-INT robustly controlled the type I

error. However, neither D-INT nor I-INT was uniformly most powerful. We therefore propose

combining the two approaches into a robust and powerful omnibus test. The omnibus statistic

is constructed using the method of Cauchy aggregation, in which the p-values from dependent

hypothesis tests are converted to standard Cauchy random deviates and then combined (Liu

and Xie, 2019; Liu et al., 2019). Cauchy aggregation is preferred to classic approaches for

combining p-values, such as Fisher’s method (Fisher, 1934), since analytical expression are

available for the finite-sample distribution of a Cauchy combination of dependent p-values.

Let pD and pI denote the p-values from D-INT and I-INT. Define the O-INT statistic as:

TO = −
1

2

{

F−1

C (pD) + F−1

C (pI)
}

=
1

2
tan

{

π(0.5− pD)
}

+
1

2
tan

{

π(0.5− pI)
}

, (15)

where F−1

C (u) = tan
{

π(u − 0.5)
}

is the inverse CDF of the standard Cauchy distribution.

UnderH0 : βG = 0, pD and pI are each uniformly distributed, such that F−1

C (pD) and F−1

C (pI)

are standard Cauchy. Since the Cauchy distribution is symmetric and closed with respect to

convolution, the omnibus statistic TO = −{F−1

C (pD)+F−1

C (pI)}/2 is again standard Cauchy

in the tail (Liu and Xie, 2019; Liu et al., 2019), even though pD and pI are in general
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positively correlated. The p-value of the O-INT statistic (15) with observed value tO is:

pO = P [TO > tO] = 1− FC(tO) =
1

2
−

1

π
arctan

(

tO
)

.

3. Simulation Studies

3.1 Simulation Methods

Extensive simulations were conducted to evaluate the type I error and power of the UAT and

INT-based association tests (D-INT, I-INT, O-INT). Genotypes exhibiting linkage disequi-

librium were randomly sampled from unrelated subjects in the UK Biobank. The genotypes

were additively coded, assuming values gi ∈ {0, 1, 2}. Simulated covariates included age

and sex. Age was drawn from a gamma distribution with mean 50 and variance 10, and

sex was drawn independently from a Bernoulli distribution with proportion 1/2. To emulate

population structure, the top 3 PCs of the empirical genetic relatedness matrix were included

as covariates. These correspond to the leading 3 left singular vectors from the subject by

variant genotype matrix.

For type I error simulations, a subject-specific linear predictor ηi was generated as ηi =

x′

iβX , where xi included an intercept, age, sex, and 3 genetic ancestry PCs. Regression

coefficients were selected such that the proportion of total phenotypic variation explained

(PVE) by age and sex was 20%, and the PVE by PCs was 5%. For power simulations, the

linear predictor included a contribution from genotype. The PVE by genotype or heritability,

defined as h2 = Var(giβG)/Var(yi), ranged between 0.1% and 1.0%.

Phenotypes were generated either from models with additive residuals, as in yi = ηi+ǫi, or

from non-linear transformations of such models, as in yi = h(ηi+ ǫi). Here, we report on four

representative traits: three with additive residuals, and one with multiplicative residuals. The

additive models were: (1) a reference trait, with N(0, 1) residuals; (2) a skewed trait, with χ2
1

residuals; and (3) a kurtotic trait, with t3 residuals. In all cases, the residual distribution was
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centered and scaled to have mean zero and unit variance. For the multiplicative model, a log-

normal phenotype was generated by exponentiating a latent normal trait: yi = exp(ηi + ǫi),

where ǫi ∼ N(0, 1).

3.2 Type I Error Simulations

A total of R = 108 simulation replicates were performed under H0 : βG = 0 at samples size

of n ∈ {103, 104, 105}. On each simulation replicate, the four phenotypes (normal, skewed,

kurtotic, log-normal) were generated independently and tested for association with genotype

by each of the four association methods (UAT, D-INT, I-INT, O-INT).

[Figure 1 about here.]

The uniform QQ plots in Figure 1 summarize the distribution of association p-values at

sample size n = 103 for each combination of phenotype (row) and association test (column).

All association tests performed well against the normal phenotype (row 1), providing uni-

formly distributed p-values. UAT (column 1) exhibited inflated type I error against all non-

normal phenotypes, although inflation attenuated with increasing sample size (Web Figures

S1-2). Inflation was most severe for the log-normal phenotype (row 4), likely because the

standard linear model is misspecified when the residuals have multiplicative rather than

additive effects. However, inflation was still present for the skewed χ2
1
(row 2) and kurtotic

t3 (row 3) phenotypes, for which UAT is correctly specified. In contrast, by sample size

n = 103 the INT-based tests provided uniformly distributed p-values when applied to non-

normal phenotypes. Although the modeling assumptions underlying D-INT were not met for

the skewed or kurtotic phenotypes, D-INT maintained the type I error across all scenarios.

I-INT exhibited slight deflation against the log-normal phenotype, for which its modeling

assumptions were not met. This deflation ameliorated with increasing sample size. O-INT

performed well under all scenarios.
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[Table 1 about here.]

Type I error estimates at α = 10−6 and sample sizes n ∈ {103, 104, 105} are presented in

Table 1. For all non-normal phenotypes, UAT had substantially inflated type I error at sample

size n = 103. This includes the skewed χ2
1
and kurtotic t3 phenotypes, for which UAT should

provide asymptotically valid inference. Although the type I error approached its nominal

level with increasing sample size, for the kurtotic and log-normal phenotypes the UAT still

exhibited excess type I error at n = 105. For the non-normal phenotypes, D-INT generally

provided nearly the nominal type I error, while I-INT was slightly conservative. However,

this does not imply I-INT is less powerful for these phenotypes (see power simulations). For

all phenotypes and sample sizes considered, the omnibus test provided nominal control of

the type I error.

3.3 Power Simulations

At each heritability h2 ∈ {0.1, 0.2, · · · , 1.0}%, a total of R = 106 power simulations were

performed at sample size n = 103. On each replicate, a single randomly selected locus served

as the causal locus. As before, the phenotypes were generated independently and tested for

association with genotype by each of the candidate association methods. Power is considered

even for the UAT, which did not consistently control the type I error, because this approach

is still often applied in practice.

[Figure 2 about here.]

Power curves at α = 10−6 are presented in Figure 2. Relative efficiency (RE) curves,

comarping the INT-based tests with UAT, are presented in Web Figure S3. RE was calculated

as the ratio of the χ2
1
non-centrality parameters. This metric has the advantage of not

depending on either α level or sample size n. For the normal phenotype, the UAT is

theoretically most powerful. However, the INT-based tests were fully efficient, achieving
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a relative efficiency of one. Despite having inflated type I error under the null hypothesis,

UAT was consistently least powerful for detecting true associations with the non-normal

phenotypes. Since the relative efficiencies of the INT-based tests always exceeded one for the

non-normal phenotypes, this conclusion is expected to extend across significance levels and

sample sizes. For the log normal phenotype, D-INT was most powerful, achieving twice the

efficiency of the UAT. For this phenotype, the log transform is theoretically optimal. Since

the log transform maps the log normal phenotype to a normal phenotype, the power of the

log transform against the log normal phenotype is identical to the power of the UAT against

the normal phenotype. Comparing the power of D-INT against the log normal phenotype

with that of UAT against the normal phenotype, we observe that D-INT attains optimal

power. For the skewed χ2
1
phenotype, I-INT was most powerful, achieving over 5 times the

efficiency of the UAT, while D-INT was twice as efficient. For the kurtotic t3 phenotype, the

efficiency gains provided by the INT-based tests were more modest yet still noteworthy, at

around 55% for the I-INT and 35% for D-INT.

By synthesizing D-INT and I-INT, O-INT aims to provide a test that is well powered across

the residual distributions encountered in practice. As a compromise between complementary

methods, the power and RE of O-INT were intermediate to those of D-INT and I-INT. How-

ever, for all phenotypes studies, O-INT performed comparably to the more efficient of D-INT

and I-INT. Thus, O-INT achieves robustness to the underlying data generating mechanism

with little to no loss of efficiency. In addition, we compared INT-based testing with the non-

parametric Kruskal-Wallis (KW) test (Kruskal and Wallis, 1952). Unlike regression-based

association tests, adjusting for covariates in the KW test is not straightforward. Yet even in

the absence of covariates, INT-based testing was more powerful than the KW test.
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4. Application to UK Biobank

4.1 Application Methods

We conducted GWAS of spirometry phenotypes within the UK Biobank (UKB). To mitigate

confounding due to population structure, our study population was restricted to unrelated

subjects of white, British ancestry. The phenotypes were forced expiratory volume in 1

second (FEV1), forced vital capacity (FVC), the FEV1 to FVC ratio (FEV1/FVC), and

the logarithm of peak expiratory flow (lnPEF). Our analyses focused on 360,761 additively

coded and directly genotyped, as opposed to imputed, autosomal SNPs, with sample minor

allele frequencies (MAFs) exceeding 5%, and a per locus missingness rates of less than

10%. Covariates included an intercept, age, sex, BMI, two orthogonal polynomials in height,

genotyping array, and 20 genetic PCs. Each locus was tested individually for association with

the four spirometry phenotypes (FEV1, FVC, FEV1/FVC, lnPEF). The results were greedily

‘clumped’ in PLINK (Purcell et al., 2007) using a 1000 kb radius and an r2 threshold of 0.2.

The overall analysis consisted of n = 292K subjects that met all inclusion criteria. A subgroup

analyses was conducted among subjects with physician diagnosed asthma (n = 29K).

4.2 Empirical Type I Error

LD score regression (LDSC) was performed to assess inflation of the association test statistics

due to confounding bias (Bulik-Sullivan et al., 2015). Briefly, in LDSC the test statistic for

each locus is regressed on a local measure of linkage disequilibrium. An intercept exceeding

one suggests inflation, whereas an intercept falling below one suggests deflation. The results

from applying LDSC in the overall sample and in the asthmatic subgroup are presented in

Web Tables S4-5. Overall, there was no evidence of residual confounding due to population

structure. Therefore, under the null hypothesis of no genetic effects, the marginal distribution

of each spirometry trait is expected to be independent of genotype.

The empirical type I error of the association tests was assessed via a permutation analysis.
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Genotypes and phenotypes were first regressed on covariates to obtain residuals, then the

genotypic residuals were permuted. Regressing out the effects of covariates accounts for

potential confounding of the genotype-phenotype relationship. Permuting the genotypic

residuals breaks the association between genotype and the spirometry traits, thereby impos-

ing the null hypothesis of no genetic effect. Uniform QQ plots for the association p-values

after permutation are presented in Web Figure S7. For all association methods (columns)

and spirometry traits (rows), the p-values were uniformly distributions, suggesting nominal

control of the type I error for the observed residual distributions.

4.3 Empirical Discovery and Efficiency Gains

[Table 2 about here.]

Table 2 presents the average χ2
1
statistics across all loci that reached genome-wide signif-

icance (α = 5 × 10−8) in the overall sample according to at least one of the association

methods. Average χ2
1
for the asthmatic subgroup are presented in Web Table S6. The

empirical efficiency gain (O-INT vs. UAT) was defined as the ratio of the non-centrality

parameters minus one, where the non-centrality parameters were estimated using loci that

reached significance according to at least one association method:

Efficiency Gain =

(

χ̄2

1,O-INT
− 1

)

(

χ̄2

1,UAT
− 1

) − 1.

In all cases the average χ2
1
statistics of the INT-based tests exceeded those of UAT, both

in the overall analysis and in the asthmatic subgroup. Table 2 also presents the counts

of genome-wide significant associations after LD ‘clumping’ to reduce redundant signals.

Counts for the asthmatic subgroup are presented in Web Table S6. The empirical discovery

gain (O-INT vs. UAT) was defined as:

Discovery Gain =
nOINT − nUAT

nOINT∪UAT

,

where nOINT is the number of associations identified by O-INT only, nUAT is the number of
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associations identified by UAT only (if any), and nOINT∪UAT is the number of associations

identified by either O-INT or UAT. In all cases, the INT-based tests discovered more

independent (at r2 = 0.2) associations with the target phenotype than UAT. All associations

that reach genome-wide significance in the asthmatic subgroup, according to either UAT or

the INT-based tests, reached significance according to O-INT in the overall sample.

The efficiency and discovery gains were more dramatic for those traits whose residuals

were less normally distributed (Web Figure S6). However, the INT-based tests were con-

sistently more powerful than the UAT, even when the normal residual assumption was not

unreasonable. Consistent with the simulations, the power of O-INT was always intermediate

between that of D-INT and I-INT. For a given trait, the number of discoveries by O-INT

was generally closer to the number of discoveries by the more powerful of D-INT and I-INT.

5. Discussion

In this paper, we have systematically investigated the utility of different INT-based asso-

ciation tests for GWAS of quantitative traits with non-normally distributed residuals. We

formally defined the Direct (D-INT) and Indirect (I-INT) INT-based tests, demonstrating

that these approaches are adapted to different underlying data generating processes. D-

INT posits that the outcome could have arisen from a monotone transformation of a latent

normal trait, whereas I-INT posits that the outcomes has additive but potentially non-

normal residuals. When covariate effects are small, the two approaches are approximately

equivalent under the null hypothesis of no genetic effect; and in the absence of covariates,

the two approaches are identical.

For non-normally distributed quantitative traits, INT-based tests provided nominal control

of the type I error by n = 103, whereas the UAT exhibited excess type I error even at

n = 105. Moreover, the INT-based tests were consistently more powerful than UAT. Neither

D-INT nor I-INT was uniformly more powerful. To obviate the need for choosing between
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them, we have proposed an adaptive omnibus test (O-INT). O-INT combines the p-values

from D-INT and I-INT via Cauchy combination (Liu and Xie, 2019; Liu et al., 2019), and

may easily be extended to incorporate p-values from complementary (e.g. non-parametric)

association tests. In simulations and data applications, O-INT provided valid and powerful

inference that was robust to the underlying data generating process. As a compromise

between complementary methods, O-INT cannot be expected to outperform both D-INT

and I-INT. However, the performance of O-INT was similar to the more efficient of the

component tests. O-INT was uniformly more powerful than UAT, and is applicable whenever

UAT is applicable. All INT-based tests (D-INT, I-INT, O-INT) have been implemented in

the R package RNOmni, which is available on CRAN. We further demonstrated the utility of

INT-based association tests through GWAS of spirometry traits from the UK Biobank.

In D-INT, the INT is applied directly to the phenotype, and the transformed phenotype

is regressed on genotype and covariates. Under the complete null hypothesis of no genetic

or covariate effects, D-INT is asymptotically exact, and when the covariate effects are small,

D-INT holds approximately. I-INT is a two-stage procedure. Different variants of I-INT

have been considered in the literature. In all approaches, the phenotype is first regressed

on covariates to obtain residuals. In the second stage, the INT-transformed residuals are

regressed on genotype, with or without a secondary adjustment for genetic PCs. To provide

guidance on which approach to use in practice, we formally derived I-INT, starting from

the assumption that the observed phenotype follows a linear regression model with a non-

normally distributed residual. Our derivations indicate that, during the second stage of I-INT,

the transformed phenotypic residuals should be regressed on genotypic residuals, which are

the residuals obtained by regressing genotype on covariates. This second stage is equivalent

to regressing the INT-transformed phenotypic residuals on genotype while performing a

secondary adjustment for covariates. Therefore, all covariates, including genetic PCs, should
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be included in both the first and second stage regressions. Under the standard null hypothesis

of no genetic effects, I-INT is asymptotically exact, and under the complete null hypothesis

of neither genetic nor covariate effects, D-INT and I-INT are asymptotically equivalent.

The use of INT does not compromise the validity of association testing, whose primary

objective is to determine whether there is evidence that genotype is associated with the

phenotype. Moreover, INT is useful for estimating standardized effect sizes. After INT, any

absolutely continuous random variable is unitless, with mean zero, unit variance, and a

common limiting distribution. Consequently, effect sizes estimated after INT are comparable

across traits measured in different units and along different dimensions. Standardized effect

sizes estimated via D-INT (Cade et al., 2016; Abbott et al., 2017) and via I-INT (Kettunen

et al., 2012; Consortium et al., 2017) have been reported in numerous applications.

A limitation of INT-based tests is the restriction to absolutely continuous phenotypes. The

INT cannot ensure asymptotic normality of a distribution with discrete probability masses.

Our simulation studies and data application were restricted to common variants, those having

a sample MAF exceeding 5%. For variants with lower MAF, unequal sample sizes can result

in non-constant variance across minor allele count strata. This heteroscedasticity is not

remedied by INT, and is likely more deleterious than residual non-normality (Beasley et al.,

2009). A future direction is to develop set-based tests that leverage the INT to improve

power in rare variant association testing.

Finally, this paper has focused on GWAS of independent subjects. However, INT-based

tests can be extended to the correlated data setting using linear mixed models (LMMs). We

plan to develop INT-based tests for LMMs in which that correlation across related subjects

is modeled via a random effect whose covariance pattern depends on the genetic relatedness

matrix (Kang et al., 2010; Loh et al., 2015; Chen et al., 2016). A similar modeling strategy
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can accommodate longitudinal phenotypes arising from repeated measurements on the same

subjects across time (Chen et al., 2019).
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Figure 1. Distribution of Association p-values Under the Null at Sample Size

n = 103 across R = 108 Simulation Replicates. Rows correspond to different phenotype
distributions. The first phenotype has normal residuals; the second has χ2

1
residuals; the

third phenotype has t3 residuals; and the log of the fourth phenotype has normal residuals.
Columns correspond to different association tests. The first is the untransformed association
test (UAT), the second is the direct INT (D-INT), the third is indirect INT (I-INT), and
the fourth column is omnibus INT (O-INT). Note that this figure appears in color in the
electronic version of this article.
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Figure 2. Power Curves at α = 10−6 and Sample Size n = 103 across R = 106

Simulation Replicates. Simulations were conducted at heritabilities ranging from 0.1%
and 1.0%. Gray is the untransformed association test (UAT), blue is direct INT (D-INT),
yellow the indirect INT (I-INT), red is omnibus INT (O-INT). Each panel corresponds to a
different phenotype. The first phenotype has normal residuals; the second has χ2

1
residuals;

the third phenotype has t3 residuals; and the log of the fourth phenotype has normal residuals.
Note that this figure appears in color in the electronic version of this article.
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Table 1

Empirical Type I Error (×10
6) at α = 10

−6 across R = 10
8 Simulation Replicates. Size simulations were

conducted under the H0 : βG = 0 at sample sizes ranging from n = 10
3 to n = 10

5. The following association tests
were evaluated: the untransformed association test (UAT), direct INT (D-INT), indirect INT (I-INT), and omnibus

INT(O-INT). Each test was applied to a normal phenotype, a skewed phenotype with χ2

1 residuals, a kurtotic
phenotype with t3 residuals, and a phenotype whose log had normal residuals.

Sample Size
Phenotype Test n = 103 n = 104 n = 105

Normal UAT 1.04 0.93 1.03
Normal D-INT 0.84 0.87 1.02
Normal I-INT 0.97 0.93 1.00
Normal O-INT 0.91 0.93 0.99

Skewed UAT 8.03 1.87 1.43
Skewed D-INT 1.20 1.10 1.05
Skewed I-INT 0.67 0.84 0.89
Skewed O-INT 1.10 1.01 0.98

Kurtotic UAT 15.89 5.54 3.12
Kurtotic D-INT 0.94 0.91 0.95
Kurtotic I-INT 1.00 0.88 1.00
Kurtotic O-INT 0.96 0.90 0.97

Log-Normal UAT 59.34 11.01 7.52
Log-Normal D-INT 0.74 1.02 1.02
Log-Normal I-INT 0.40 0.40 0.43
Log-Normal O-INT 0.55 0.74 0.76
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Table 2

Empirical Efficiency and Discovery Gains for Lung Function GWAS in the UK Biobank (n = 292K).
Genome-wide significance was declared at α = 5× 10

−8. The average χ2

1 statistics are reported across all loci
detected by at least one of the association tests. The empirical efficiency gain, comparing O-INT with UAT, is the

ratio of the estimated χ2

1 non-centrality parameters minus 1. The counts of significant associations are reported after
LD clumping within 1000 kb radii at r2 = 0.2 to remove redundant signals. The discovery gain, comparing O-INT

with UAT, is the ratio of the number of associations uniquely identified by O-INT to the total number of
associations detected.

Average χ2

1

Trait UAT D-INT I-INT O-INT Efficiency Gain (%)

FEV1 56.77 57.55 64.69 63.59 12
FVC 37.14 46.91 51.47 50.59 37

FEV1/FVC 63.21 83.76 83.00 83.63 33
lnPEF 17.72 52.44 65.40 64.11 278

Significant Associations

Trait UAT D-INT I-INT O-INT Discovery Gain (%)

FEV1 331 352 422 398 15
FVC 213 323 375 364 38

FEV1/FVC 450 653 649 652 28
lnPEF 39 202 270 251 79
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