
Operating System based Software Generation for
Systems-on-Chip

Dirk Desmet
IMEC,Kapeldreef 75

3001 Leuven,Belgium

desmetd@imec.be

D. Verkest
IMEC,Kapeldreef 75

3001 Leuven,Belgium

Hugo De Man
IMEC,Kapeldreef 75

3001 Leuven,Belgium
also Professor at

Katholieke Univ. Leuven

ABSTRACT
In this paper we propose a system-level design environment, aimed
at System-on-Chip (SOC) designs, including real-time embedded
software. While many SOC modeling languages originate from
hardware description languages, and thus tend to describe statical
architectures, we observe that embedded software makes SOC de-
signs essentially dynamic, and so a SOC modeling environment
must include dynamic behavior. Such behavior is analogous to the
services an Operating System offers in the software world, hence
the term System-on-Chip Operating System (SoCOS).

1. INTRODUCTION
Various system-level design languages have been proposed in the
recent past, to bridge the productivity gap between silicon integra-
tion capability and design productivity. There is a growing consen-
sus in the design community that a general programming language
like C++, already familiar to software designers, can be accommo-
dated to be used also in hardware design. For this purpose libraries
were added to the basic C++ language, rather than extending the
language itself. (SystemC [7], CynApps [2], OCAPI [12]).

Most of these aforementioned libraries are based on typical hard-
ware design requirements, and thus add to the C++ language con-
cepts as signals, clocks, registers, parallel synchronous and asyn-
chronous processes (concepts known from hardware description
languages like VHDL and Verilog). However these libraries tend to
offer little support for the embedded system designer, who wants to
include the dynamic real-time behavior in the system model. This
dynamic behavior comes into the system both by the embedded
software and by reconfigurable hardware. Also the real-time as-
pects, with which the designer deals at the early phases of system
design, are not addressed by the clocked synchronous processes
of these libraries. In system-level design various components of
the system will be described at very different timing abstractions,
which can not be efficiently synchronized by a common system
clock.

At the system level a design team will use many different compu-

tational models, for different components at the different stages of
refinement. It is not our intention to elaborate on the library support
needed for every one of these models. Equally important is a con-
sistent way of instantiating and interconnecting these component
models into an unambiguous system model. The required services
are : run-time component instantiation and termination, run-time
allocation and deallocation of resources (CPU/hardware, memory,
communication channels) and access to these system resources. It
can be observed that these are the type of services that are offered
by (Real-time) Operating Systems in software development. Hence
the idea to start system level design using a similar type of library
(further called SoCOS).

SoCOS, as a system-level design environment, is used for modeling
and simulating the system, analysis of the system and implementa-
tion through gradual refinement. An existing C++ based hardware
design flow [12] is integrated in SoCOS. In this paper we will show
more in detail how SoCOS can be used in embedded software de-
sign. The emphasis will be on the task concurrency issues. Mem-
ory management is an equally important design aspect in SoCOS,
which is already extensively covered in other tools [14], and will
not be further discussed here. It is important to notice that the ma-
jor difference with an RTOS is, that SoCOS is used for simulation
and analysis of the system, including its real-time behavior, on a
workstation, while an RTOS is an implementation library running
on the target platform.

Various design methodologies exist for embedded real-time soft-
ware design. Many of these start from OMT/UML [11] (Rational
[10], Octopus [3]). In our approach the OMT/UML design flow
can be followed up to an intermediate level, where an executable
version of the embedded software is made, so that the remaining
refinement steps (task scheduling, resource allocation, inter-task
communication) can be verified on the executable model. This of-
fers a major advantage over a theoretical analysis. An automated
synthesis also allows a quick evaluation of alternative implementa-
tions.

The remainder of this paper is organized as follows. Section 2 ex-
plains the basic principles of our system level modeling, and sec-
tion 3 makes a comparison with other existing approaches. Section
4 elaborates on the approach for embedded software support. Sec-
tion 5 shows how our approach was applied to an industrial design,
i.c. an ADSL modem.

2. SOCOS PRINCIPLES

2.1 Communicating processes

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

A systemmodelin SoCOSconsistsof communicatingprocesses.
Eachprocessis executedin a separatethreadin theOS.Processes
canbe staticallyor dynamicallycreated. Staticalthreadsare in-
stantiatedbeforethe simulationschedulerstartsrunning,andare
destroyedonly afterthesimulationhasended.

2.2 Communication
Processeshavecommunicationports.Communicationportsarede-
claredasmembersof theprocessobject,andcanhave type input,
outputor in/out. Portsareconnectedto communicationchannels.
Also communicationchannelscanbestaticallyor dynamicallycre-
ated,andcanhave following attributes:

� event/data: whetherthechanneltransportsonly anevent(to-
kenis presentor not),or alsodata

� datatype: floatingpoint,fixedpoint

� buffer size: (default= 1)

� blocking andnon-blocking: blocking communicationscan
causethecalling threadto wait.

2.3 Timing
Real-timebehavior of the differentprocessesis expressedby the
simulatedlocal time of eachprocess.The simulatedtime is ex-
pressedby the statementsoc delay(t), wheret is the time incre-
ment. It is very importantto notice the differencebetweenthis
soc delay(t) statementin SoCOSandasimilartimer-call in aRTOS
(somethinglike os wake after(t)). The SoCOSdelay is merelya
modelingfeature,thatexpressestheestimatedtime executionwill
take in the final implementation,and which SoCOSwill use to
scheduletheprocessesin thesystemmodel.Theschedulingmech-
anismis explainedin more detail in [13]. A similar scheduling
library canbefoundin [5].

2.4 How is it implemented
Sincethe supportfor analysisandrefinementis an essentialfea-
tureof theSoCOSlibrary, aninternalobject-orienteddatastructure
is built at run-time,which storesthe systemconfigurationthat is
createdusing the API calls describedabove. This datastructure
is usedfor simulation,but alsosupportsanalysisandsynthesis(
throughcodegeneration).Analysis routinesoperateon this data
structure. Examplesarecommunicationprofiling (how many ac-
cessesto communicationchannels,andatwhichtimepoints),anal-
ysisof deadlocks(causedby blockingcommunications).

SinceSoCOSis meantfor simulation,analysisandrefinement,the
main focus is not on efficiency (codesize, execution time), but
ratheron observability. In the final step towards the embedded
softwarecode,an efficient RTOS-basedimplementationis gener-
atedthroughcodegeneration,whereall overhead,causedby the
SoCOSdatastructure,is eliminated.

2.5 Computational models
Severalcomputationalmodelswill coexist in asystemlevel model.
Library supporthasto beprovidedto offer thesemodelsto thesys-
temdesigner. This sectiondemonstrateshow SoCOScanbeused
asabasiclayerto build suchmodels.

class Soc_async_generator :
public Soc_object {
const int out_port;

Soc_async_generator(const char* name,
const Soc_channel& _out

) {
int tid = soc_thread_create(

this, Soc_async_generator::run, 0);
out_port = soc_port_create(

"out", tid, OUTPUT);
soc_port_connect(out_port, _out);
soc_thread_start(tid);

}

void Soc_async_generator::run(int arg)
{
int token;
while(1) {
token = calculate_token();
soc_delay(T); // est exec time
soc_port_write(
out_port, NOWAIT, token);

}
}

};

Figure1: Exampleof an asynchronousmodel

2.5.1 Asynchronous models
The full strengthof the SoCOSapproachbecomesclear in asyn-
chronousmodels. Asynchronousmodelscommunicatewith the
restof thesystemwithoutany relationshipto asystem-wideclock.
The executiontime of an asynchronousmodel is determinedby
the soc delay(t) statementsit contains. In addition to soc delay,
an asynchronousmodelcanhave blocking input and outputport
accesses.This waiting time will addto the executiontime of the
process.

Thecodeexamplein Figure1 shows anasynchronousprocessthat
generatesandinfinite streamof outputtokens. The time between
the tokensis only determinedby the soc delay statement.In this
simpleexampletherearenoblockingcommunications(NOWAIT),
so this processis synchronizedwith its environmentonly through
the soc delay statement.The delayis essentialhere,sinceother-
wiseanendlessloopwouldbecreated.

2.5.2 Reactive models
Reactive modelscontainprocessesthat are triggeredby an event
on a communicationchannel.In thatrespectthey arevery similar
to interruptroutinesin software. Theseprocessesaredynamicby
nature. SoCOSprovidesa system-callsoc set event handler that
definesa reactiveprocess.

Reactive processescancontain’delay’ statements,or not. When
they do not, a zero-execution-timemodelis built. Thesewill gen-
erally be usedat the highestabstractionlevels, whereexecution
time is not yet relevant.Suchmodelsarealsousefulto modeltest-
benches,probes,etc...

Reactivemodelscanbeusedbothfor hardwareandsoftwareblocks.

class Soc_react : public Soc_object {
const int in_port;
const int out_port;

Soc_react(const char* name,
const Soc_channel& _in,
const Soc_channel& _out

) {
int tid = soc_thread_create(

this, Soc_react::run, 0);
in_port = soc_port_create(

"in", tid, INPUT);
soc_port_connect(in_port, _in);
out_port = soc_port_create(

"out", tid, OUTPUT);
soc_port_connect(out_port, _out);
soc_set_event_handler(in_port, tid);

}

void Soc_react::run(int arg)
{

int in_token = soc_port_read(
in_port, NOWAIT);

int token = calculate_token(in_token);
soc_delay(T); // est exec time
soc_port_write(

out_port, NOWAIT, token);
}

};

Figure2: Exampleof a reactive model

In softwareblocksthesecorrespondobviouslyto interruptroutines.
In hardwaremodelsthey canbeusedat thehighestabstractionlev-
elsin combinationwith synchronousandasynchronousmodels.

Figure2 shows a reactive model,wheretheSoc react::run() func-
tion is attachedasaneventhandlerroutineto in port, so it is trig-
geredby an incomingevent on the in port. It reactsafter time T
by producinganoutput.By settingT equalto zero(or omitting the
statement),azero-executiontimemodelis obtained.

2.5.3 Synchronous models
Synchronousmodelscommunicatewith the restof the systemon
theedgesof a clock. This conceptis well known to hardwarede-
signers,andis usedto build register-transferlevel descriptions.It
can as well be usedat a higher level to make e.g. sample-rate
dataflow models.

The executiontime of a synchronousprocessis fully determined
by theclock, andhenceit cannotcontainasynchronoussoc delay
statementsnorblockinginput/outputportaccesses.Theclockitself
however is modeledasan asynchronousprocess.A masterclock
canbeeasilymodeledin SoCOSby anasynchronousprocess,con-
sistingof an infinite loop with a soc delay(clock period) All syn-
chronousprocessessensitiveto thisclockaretriggeredin this loop.
Derivedclockscanbemodeledassynchronousprocessessensitive
to amasterclock.

3. COMPARISON TO PREVIOUS WORK

System Requirements

System Architectures

Subsystem
analysis

Subsystem
analysis

Subsystem
analysis

Module
exec.
spec

Module
exec.
spec

Module - dataflow
exec. - RT C++
spec

UML/OCTOPUS

Target
proc
simulation

SW HW

Platform
simulation

VHDL

S
o
C
O
S

O
C
A
P
I

Figure3: Systemlevel designflow

OtherC++basedsystem-level modelshavebeenproposedrecently.
SystemCis oneof the most comprehensive of these,and it cov-
ersalsomany of the modelsdiscussedabove. The timing model
usedis however fundamentallydifferentfrom SoCOS.In SystemC
onesystem-widemasterclock controlsthe simulation. As a con-
sequenceasynchronousprocesseshave inherentlyazero-execution
time. This is very well suitedto model relaxation-simulationin
combinationwith a synchronousmodel. The SoCOSapproachis
however moregeneral,andbecomesespeciallyusefulwhencom-
bining several models,describedat very differentabstractionlev-
els.

Othersystemlevel models,likeCoWare[6], alsoaccommodatethe
mix of many differentabstractionlevelsin onesystemmodel.The
main differencehereis however the dynamiccharacterof the So-
COSmodel,asopposedto thestatical(compile-time)modelcom-
position in CoWare. The dynamicalcharactermakes the model
moresuitedto model the embeddedsoftware,aswill be demon-
stratedin section4. Also the simulatedtime notion is absentin
CoWare,whichmakesmodelseitherclocked(synchronous)or un-
timed.

Anotherenvironment,wheremultiplecomputationalmodelscanbe
cosimulated,is Ptolemy[4, 9]. In SoCOSall modelsaresynchro-
nizedby the commonnotion of the real-timebehavior (simulated
time). In Ptolemynotall modelshave to betime-aware,soit offers
a moregeneralway of synchronizingdifferentdomains.Dynamic
processcreationis alsopossiblein Ptolemy. However Ptolemyis
mainlyintendedasasimulationenvironment,while supportfor im-
plementationthroughrefinementis anessentialpartof theSoCOS
approach.

4. DEVELOPMENT OF EMBEDDED SOFT-
WARE

4.1 Designflow

SoCOS

OsAPI

Generated
Application
SW

Sw
Generation

Process1 ProcessN

intra-
processor
comm

inter-
processor
comm

OsAPI

RTOS
ISS

target proc
porting

Generated
Application
SW

(a) Communicating
 processes

(b) Application SW
 on workstation

(c) Application SW
 on target platform

T1
Tn

Figure4: EmbeddedSw Generation

Thissectionexplainstherefinementof thesoftwarepartof thesys-
temlevel model. Contrarily to thehardwareimplementationpath,
whichhaswell definedstepsin goingfrom ahigh-level model,over
a RT-level refinement,to synthesizableHDL (seee.g. [12]) the
stepstaken in real-timesoftware implementationare lessclearly
defined.

Figure 3 shows the positioningof the SoCOSenvironment in a
globalsystemdesignflow. Systemdesignstartswith a systemre-
quirementsspecificationphase,followedby a systemarchitecture
phase. As a result, the systemis divided in subsystems,and for
every subsystemananalysisis made.Theabove mentioneddesign
phasesare coveredin OMT/UML basedmethodologiesfor soft-
waredesign,suchasOCTOPUS[3]. The next stepis subsystem
designfor every subsystem.Herehardwareandsoftwaredesignof
coursefollow very differentdesignflows, however for both,C++
baseddesignenvironmentsexist, which resultin executablespeci-
ficationsin SoCOS.

Our designflow is intendedto becomplimentaryto existing soft-
ware designflows. The startingpoint in SoCOSis the mostab-
stract,yet executable,level of description,which is calledfurther
uncommittedparallelprocesses.Uncommittedmeans:havingmax-
imum parallelism(all threadsrun virtually in parallelon different
processors),having zeroexecutiontime, andunlimitedcommuni-
cation resources(i.e. a dedicatedchannelfor every communica-
tion). This uncommittedparallel processesmodel is the closest
we cangetusinga sequentiallanguagelike C++ to a purelyfunc-
tional specification. Although functional languages,suchasML
[8], mightbeidealfor modelingparallelprocessesatapurelyfunc-
tional level, webelieve thattheC++ modelis preferabledueto the
largeacceptanceof thelanguagein thedesigncommunity.

In the implementationrefinementprocessthegoal is to arrive at a
fully committeddescription,whichmeans:

� executiontime: all processesareannotatedwith realisticex-
ecutiontimes.Thesewill have to beextractedfrom profiling
the codeon the targetprocessor. It hasto be remarked that

not giving realisticexecutiontimeswill not prevent the use
of ourdesignflow to generateasoftwareimplementation,but
will of coursemake it impossibleto evaluatethescheduling
upfront.

� processorscheduling:processesareallocatedto processors,
andprioritiesaredefined.

� every inter-processcommunicationis allocatedto a commu-
nicationresource.Herewemustmake adistinctionbetween
inter-processorand intra-processorcommunications.Intra-
processorcommunicationswill be implementedin the de-
signflow discussedbelow towardsaRTOS-basedimplemen-
tation. Inter-processorcommunicationsrequire hardware-
softwareinterfaces.

Noparticularorderin therefinementis imposed.After everyrefine-
mentstep,theresultwill haveto beverifiedbysimulation.Profiling
resultscanbecomparedto previousexecutions.

4.2 EmbeddedSoftware Generation
For every softwareprocessor, applicationsourcecodeis generated
from the fully committedcommunicatingprocessmodel. In gen-
eral, applicationsoftwarewill be basedon an RTOS. In this step
every SoCOSsystemcall, presentin the communicatingprocess
modelof Figure4.a,is replacedby a correspondingpieceof code
basedon the RTOS library in Figure 4.b. In this translationthe
behavior is guaranteedto bekeptconsistent,while the implemen-
tationoverheadof SoCOSis replacedby anefficientRTOSimple-
mentation.

4.3 EmbeddedSoftware Co-simulation
In our environmentthe final embeddedsoftwarecodeis cosimu-
lated in the systemmodel using an OSAPI library (seeFig. 4).
TheOSAPIlibrary providesthefunctionalityof a typicalRTOSto
the applicationcode. This functionality is implementedon top of
theunderlyingSoCOSsimulationenvironment.Thisapproachcan
be used,eitherto cosimulateexisting softwarecode,or generated
code,with the restof the systemmodel. This simulationwill run

RX DATAPATH

TX_DATAPATH

Control SW

interruptsreg/RAM write

testbench

(symbol
generator)

RX CTRL TX CTRL

DSP FEFFTDEMAPEC

EC MAP IFFT DSP FE

Channel

Model

HW

Figure5: ADSL Application

ordersof magnitudefasterthana simulationon anInstructionSet
Simulator(at the costof lesstiming accuracy) and is usefulasa
last verificationof the embeddedsoftware functionality andas a
referencebeforetransferringthesoftwareto thetargetprocessor.

Becausethe timing accuracy is always limited by execution-time
estimates,all assumptionsmuststill beverifiedon the targetplat-
form (Fig 4.c). However a quick designpath exists to generate
alternative implementationsfrom thesamecommunicatingprocess
level description.

5. DESIGN EXAMPLE
The SoCOSdesignlibrary wassuccessfullyappliedto the design
of an ADSL modem. This design(seeFig. 5) consistsof two
datapaths,eachdatapathcontrolledby a real-timeprogrammable
controller, and embeddedcontrol software (runningon an ARM
core)that controlsthe initialization andretrainingof the modem.
Moredetailsaboutthedesigncanbefoundin [1].

5.1 Systemlevel modelof the modem
Thesystemlevel modelof theADSL modem,shown in Fig. 6, is
built usingSoCOSasacombinationof variouscomputationalmod-
elseachmostappropriatefor a specificcomponentof thesystem.
Both DSPdatapathsweremodeledassampleratedataflow using
synchronousprocesses,controlledby a samplerateclock (0.5 - 2
MHz). Thereal-timecontrolunits (DSTU) weremodeledassim-
ple instruction-setsimulators,runningassynchronousprocessesat
a instruction-cycle clock (here8 MHz). The high-level testbench
(which implementsthe behavior of the othermodem)is modeled
asa reactiveprocess,triggeredby a tokenat its inputport.

Thevarioushardwareblockshaveoutputs,sendinginterruptevents
to thecontrol software(e.g. theRX datapathwill producea sym-
bol detected eventwhenagivensymbolwasreceived).At thislevel
the software is describedasa numberof reactive processes,trig-
geredby theinterruptevents.While thehardwarecomponentsde-
scribedabovearestaticallycreated(theconfigurationis unchanged
during all the simulation),in the softwarethe dynamicalfeatures
of SoCOSareused.Supposethe threadF1 in Fig. 6 corresponds
to thesoftwareroutinehandlingthedetectionof theACK-symbol.
Uponsuccessfuldetectionof theACK, thesystemis reconfigured
to detectREVERB, and a new processis connectedto the sym-
bol detected interruptevent.

5.2 Refinementof the SW model

Rx DSTU

TX DSTU

synchr.
instr cycle

RX Datapath

TX Datapath

synchr.
sample rate

HL
testbench

Reactive

SoCOS

Reactive SW

F1

F2

interrupts

symb.

Figure6: Systemlevel modelof ADSL

Up to this point the SW wasmodeledwithout any resourcecon-
straints, i.e. every threadruns in a parallel processwith zero-
executiontime. This sectionexplainsthestepstakento refinethis
uncommittedmodel towardsa software implementationusingan
RTOSonanembeddedcoreprocessor.

First estimatedexecutiontimesareaddedto the model for time-
consumingcalculations,e.g. thecalculationof theequalizercoef-
ficients in threaddetectREVERB.Sinceit wasdecidedto run all
control software on one ARM core, all SW threadswill run on
the sameprocessor. At this point an implementationstrategy for
the interrupthandlingmustbe chosen.In our case(seeFig. 7) a
main routinewasadded,containingan infinite loop thatwaits for
anincomingevent,anddispatchesit accordingto theorigin of the
interrupt.

Next, implementationdecisionshave to be taken concerningthe
task concurrency. Every event on a communicationchannel,to
which a reactive task is attachedasan event handler, canbe im-
plementedeithersynchronouslyor asynchronously. In this context
synchronoushasthe meaningof a function call, andthe body of
the calledprocessis executedin the calling process;while asyn-
chronousmeansthecalledprocessis executedin aseparatethread.
At this point the model canbe simulatedto verify the decisions
madesofar. In our casetheseconddetect-routinewasmadeasyn-
chronous,becausethecoefficient calculationis very timeconsum-
ing, and would block the handlingof other interruptsif it was
merged into the main process.Figure7 shows that the software
now consistsof 2 processes.

In a next stepmoredetailedimplementationdecisionshave to be
taken concerningan RTOS basedimplementation(Fig. 8). ISRs
(InterruptServiceRoutines)areaddedto the model,which trans-
latetheincominghardwareinterruptinto anRTOSevent. Next all
inter-processcommunications(within thesameprocessor)areallo-
catedto RTOSresources(e.g.messagequeues,semaphores,shared
memory).Theseareaddedasattributesto theportsof theprocesses
andto thechannels.Again at this point thesimulationcanberun
to verify all refinements.

5.3 EmbeddedSoftware Generation
The fully committedsoftwaremodeldescribedabove containsall
informationto generatethe RTOS-basedapplicationsourcecode.
Basicallyevery SoCOScall is replacedby a library-basedimple-
mentation,basedontheattributesgivenin theprevioussteps,using
RTOSsystemcalls.

Thegeneratedsoftwarecanagainbesimulatedon theworkstation,
usinganOSAPI library, implementedon top of SoCOS.TheOS-

soc_delay(T);

detectREVERB
{
 ...
calc_teq_coeff();

}

detect_symSWControl()
{
 while(1) {
 detect_sym.wait();

 handler_start->send()

detectACK

sync

async

Figure7: SW after processorand processallocation

SWControl()
{
 while(1) {
 detect_sym.wait();

 handler_start->send()

soc_delay(T);

detectREVERB
{
 ...
calc_teq_coeff();

}

detect_sym

detectACK

sync

async

ISR1

ISR2

Figure8: Fully refinedSW

API library implementsall commonRTOSsystemcalls.Thesame
generatedapplicationsoftwarecanbecompiledfor thetargetpro-
cessor, usingan OSAPIversionfor a specificRTOS(OSAPIacts
asasimpletranslationbetweenOSAPIcallsandRTOScalls).

5.4 Results
The completeADSL model consistsof the sample-ratedataflow
modelof the datapaths(8700 lines of C++ code)and the simple
instructionsetsimulatorfor the real-timecontrollers(980 linesof
C++ code).Theembeddedsoftwareis describedat thecommuni-
catingprocesseslevel by approx.5000linesof code,whichexpand
to 22640linesof C++ codeafterrefinement.Thesimulationof the
entiremodelon a 366MHz Pentiumwith Linux takesapprox.25
minutesfor simulating10sof real-timebehavior.

The SoCOSlibrary wasextendedwith Tcl/Tk GraphicalUserIn-
terface,throughwhich thesimulationis controlled.Designobject
like registers,RAMs,communicationchannels,etc.areobservable
in theGUI.

6. CONCLUSION

ThispaperproposedaC++ library for systemlevel design,thatof-
fersthedesignerwith servicesanalogousto anoperatingsystemin
softwaredesign.Softwarecanbe functionally testedin combina-
tion with hardware.Real-timeaspectscanbegraduallyintroduced,
without rewriting the code(by addingimplementationattributes).
We have elaboratedtherefinementstepsthat leadfrom thesystem
level modelto embeddedreal-timesoftwaresourcecode.This ap-
proachwasdemonstratedon adigital DMT ADSL modem.

7. ACKNOWLEDGEMENTS
This work was fundedby the FlemishIWT in the Medea-xDSL
project,andby theFlemishGovernmentImpulseProgramfor In-
formationTechnology(IT-IRMUT). Thework wasmadepossible
thanksto theclosecollaborationwith thesystemengineersin Al-
catelMicroelectronics.

8. REFERENCES
[1] K. Adriaensen,F. VanBeylen,S.VanHoogenbemt,H. Van

DeWeghe,J.DeLaender,G. Verhenne,andP. Reusens.
SinglechipDMT-modemtransceiver for ADSL. In
Proceedings Ninth Annual IEEE International ASIC
Conference and Exhibit (Cat. No.96TH8186). IEEE, New
York, NY, USA; 1996; xvii+326 pp. p.123-6, 1996.

[2] C. . C. Applications.http://www.cynapps.com.

[3] M. Awad,J.Kuusela,andJ.Ziegler. Object-Oriented
Technology for Real-Time Systems : A Practical Approach
Using OMT and Fusion. PrenticeHall PTR,1996.ISBN 0
132279436.

[4] J.B. etal. PTOLEMY: A framework for simulatingand
prototypingheterogeneoussystems.International Journal on
Computer Simulation, January1994.

[5] K. HinesandG. Borriello. DynamicCommunicationModels
in EmbeddedSystemCo-Simulation.In Proceedings of the
34th Design Automation Conference, pages395–400,June
1997.

[6] C. Inc. http://www.coware.com.

[7] T. O. S. Initiative.http://www.systemc.org.

[8] L. C. Paulson.ML for the working programmer. Cambridge
UniversityPress,1991.

[9] PtolemyII.http://ptolemy.eecs.berkeley.edu/ptolemyII.

[10] Rational.http://www.rational.com/uml/index.html.

[11] J.Rumbaugh.Omt : Thedevelopmentprocess.Journal of
Object Oriented Programming, May 1995.

[12] P. Schaumont,S.Vernalde,L. Rijnders,M. Engels,and
I. Bolsens.A programmingEnvironmentfor theDesignof
Complex High SpeedASICs.In Proceedings of the 35th
Design Automation Conference, pages315–320,June1998.

[13] D. Verkest,J.Cockx,F. Potargent,H. DeMan,andG. de
Jong.On theuseof C++ for system-on-chipdesign.In
Proceedings of the IEEE Workshop on VLSI, pages42–47.
Orlando,Florida,April 1999.

[14] D. Verkest,J.daSilva,C. Ykman,K. Croes,M. Miranda,
S.Wuytack,G. deJong,F. Catthoor, andH. DeMan.
Matisse:A system-on-chipdesignmethodologyemphasizing
dynamicmemorymanagement.Journal of VLSI Signal
Processing, 21(3):277–291,July 1999.

