
Operating System Support for Multimedia:
The Programming Model Matters

John Regehr, Michael B. Jones†, John A. Stankovic

September 2000

Technical Report
MSR-TR-2000-89

Department of Computer Science † Microsoft Research, Microsoft Corporation
Thornton Hall, University of Virginia One Microsoft Way, Building 112/2156
Charlottesville, VA 22903-2242, USA Redmond, WA 98052, USA

john@regehr.org, stankovic@cs.virginia.edu mbj@microsoft.com
http://www.cs.virginia.edu/holst http://research.microsoft.com/˜mbj

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://research.microsoft.com



Operating System Support for Multimedia:
The Programming Model Matters

John Regehr, Michael B. Jones†, John A. Stankovic

Department of Computer Science
Thornton Hall, University of Virginia
Charlottesville, VA 22903-2242, USA

john@regehr.org, stankovic@cs.virginia.edu
http://www.cs.virginia.edu/holst

†Microsoft Research, Microsoft Corporation
One Microsoft Way, Building 112/2156

Redmond, WA 98052, USA
mbj@microsoft.com

http://research.microsoft.com/˜mbj

September 2000

Abstract
Multimedia is an increasingly important part of

the mix of applications that users run on personal
computers and workstations. The requirements
placed on a multimedia operating system are de-
manding and often conflicting: untrusted, indepen-
dently written soft real-time applications must be
able to coexist without interfering with each other.
This must be accomplished while requiring as lit-
tle extra effort as possible from application devel-
opers, and the resulting system must be usable and
understandable by end users even when application
resource requirements exceed system capacity.

This article analyzes the goals of multimedia
schedulers and provides a taxonomy of techniques
used to achieve them; representative schedulers are
classified and characterized in terms of the things
that they make easy and hard, including the asso-
ciated programming tasks. This is done to support
our principal contribution: an analysis of usability
issues and tradeoffs in multimedia scheduling for
both application developers and end users.

1 Introduction
Multimedia is an increasingly important part of

the mix of applications that users run on personal
computers and workstations. A large subset of mul-
timedia applications (that are sometimes calledcon-

tinuous media) require soft real-time service from
the operating system.

The set of abstractions and conventions imple-
mented by a particular system that allow soft real-
time applications to meet their requirements defines
a programming model. A multimedia scheduler
must support a programming model that is useful
and understandable to the people who develop ap-
plications for the system. Furthermore, the sched-
uler, in conjunction with applications, must meet
user expectations and provide understandable be-
havior in the face of sets of applications that demand
resources exceeding the capacity of the system.

Many systems supporting multimedia and other
soft real-time applications have been described,
each typically claiming unique advantages that
make it better than the others that came before. Yet,
curiously, often the very features claimed as advan-
tages by one system are instead characterized as dis-
advantages by the next.

For example, SMART [17] and Rialto [11] both
offer deadline-based scheduling to applications in
the form of time constraints. To use a time con-
straint, an application requests an amount of CPU
time before a deadline (20ms of processing during
the next 100ms, for example); the scheduler then
notifies the application that the constraint is either
accepted or rejected.

1



Although both systems provide the same basic
abstraction, the guarantees they offer are different.
Once Rialto informs an application that a requested
time constraint is feasible it guarantees that the time
for that constraint will have been dedicated to the
requesting application no matter what other appli-
cations might do. SMART, on the other hand, may
invalidate a previously accepted time constraint part
way through its execution, taking away its reserved
time, if a higher-priority application requests a con-
flicting time constraint (in which case the original
application will receive an exception). So, SMART
potentially provides faster response time for higher-
priority applications that unexpectedly request CPU
time, but Rialto supports a programming model in
which a developer does not need to worry about the
case in which a feasible time constraint is not actu-
ally scheduled.

In both cases the designers of the system believed
they were making the right decision. How can it
be that one man’s features are another man’s bugs?
Clearly the authors have not agreed upon either the
goals they were trying to achieve or the criteria by
which their systems should be judged. Tradeoffs
such as the one in this example are important be-
cause they affect the basic set of assumptions that
programmers can make while implementing multi-
media applications.

This article analyzes the sets of goals that mul-
timedia schedulers might try to achieve. It creates
a taxonomy of the kinds of programming models
used to achieve these goals and it characterizes a
number of representative systems used to run multi-
media applications within this taxonomy.

It is our intent for the use of this taxonomy to en-
able: (i) careful comparisons to be made between
existing work, (ii) the identification of new parts of
the design space leading to possible new solutions,
and (iii) a better understanding of how the needs of
several types of multimedia applications are served
by (or are not well-served by) the various program-
ming models promoted by important types of mul-
timedia schedulers. All of this is done to support
our principal contribution: an analysis of usability
issues and tradeoffs in multimedia scheduling for
both application developers and end users.

2 Multimedia System Require-
ments

2.1 Context for the Requirements
A general-purpose operating system(GPOS) for

a PC or workstation must provide fast response
time for interactive applications, high throughput
for batch applications, and some amount of fairness
between applications. Although there is tension be-
tween these requirements, the lack of meaningful
changes to the design of time-sharing schedulers in
recent years would seem to indicate that they are
working well enough.

The goal of a hard real-time system is similarly
unambiguous: all hard deadlines must be met. The
design of the system is dictated by this requirement,
although it conflicts to some extent with designing a
low-cost system. Despite the conflict, there appears
to be a standard engineering practice for building
such systems: statically determine resource require-
ments and then overprovision processor cycles as a
hedge against unforeseen situations.

Not surprisingly, there is a large space of sys-
tems whose requirements fall between these two
extremes. These are soft real-time systems: they
need to support a dynamic mix of applications,
some of which must perform computations at spe-
cific times. Missed deadlines are undesirable, but
not catastrophic. In this article we are concerned
with the requirements placed upon multimedia op-
erating systems, which are usually, but not neces-
sarily, general-purpose operating systems with soft
real-time extensions.

We have attempted to identify an uncontroversial
set of requirements that the “ideal” multimedia op-
erating system would meet. Although it is unlikely
that any single system or scheduling policy will be
able to meet all of these requirements for all types
of applications, the requirements are important be-
cause they describe the space within which multi-
media systems are designed. A particular set of pri-
oritizations among the requirements will result in
a specific set of tradeoffs, and these tradeoffs will
constrain the design of the user interface and the ap-
plication programming model of a system.

While our focus is on CPU scheduling, we recog-
nize that other resources can be just as important to
the timely and efficient execution of multimedia ap-

2



plications. The principles behind our technique of
analyzing and evaluating programming models also
apply to the algorithms that allocate other resources.

2.2 List of Requirements
R1: Meet the scheduling requirements of coexisting,
independently written, possibly misbehaving soft
real-time applications.The CPU requirements of a
real-time application are often specified in terms of
an amountandperiod, where the application must
receive the amount of CPU time during each period
of time. No matter how scheduling requirements are
specified, the scheduler must be able to meet them
without the benefit of global coordination among
application developers—multimedia operating sys-
tems areopen systemsin the sense that applications
are written independently.

A misbehaving application (from the point of
view of the scheduler) willoverrunby attempting to
use more CPU time than was allocated to it. Sched-
ulers that provideload isolationguarantee a min-
imum amount or proportion of CPU time to each
multimedia application even if other applications
overrun (by entering an infinite loop, for example).
R2: Minimize development effort by providing ab-
stractions and guarantees that are a good match
for applications’ requirements.An important role
of the designers of soft real-time systems is to ease
application developers into a world where their ap-
plication gracefully shares machine resources with
other applications. We propose the following test:
compare the difficulty of writing an application for a
given multimedia scheduler to the difficulty of writ-
ing the same application if it could assume that it is
the highest priority application in the system (thus
having the machine logically to itself). If the differ-
ence in costs is too high, application developers will
assume that contention does not exist. Rather than
using features provided by the scheduler, they will
force their users to manually eliminate contention.

Getting the programming model right is very im-
portant: if a system becomes widely used, the ef-
fort expended by application developers will far out-
weigh the effort required to implement the system.
It is therefore possible for small increases in usabil-
ity to justify even large amounts of implementation
complexity and effort. In other words, the program-
ming model matters.

R3: Provide a consistent, intuitive user interface.
Users should be able to easily express their pref-
erences to the system and the system should be-
have predictably in response to user actions. Also,
it should give the user (or software operating on
the user’s behalf) feedback about the resource us-
age of existing applications and, when applicable,
the likely effects of future actions.
R4: Run a mix of applications that maximizes
overall value. Unlike hard real-time systems, PCs
and workstations cannot overprovision the CPU re-
source; demanding multimedia applications tend to
use all available cycles. During overload, the mul-
timedia OS should run a mix of applications that
maximizes overall value. Value is a subjective mea-
sure of the utility of an application, running at a par-
ticular time, to a particular user.

3 Basis of a Taxonomy
The top level of our taxonomy of scheduling

support for multimedia applications distinguishes
between steady-state allocation of CPU time and
system behavior during application mode changes
(when an application starts, terminates, or has a
change of requirements). In both parts of the tax-
onomy key questions are:

• What information do applications have to pro-
vide the system with in order to use the pro-
gramming model?

• What kinds of guarantees does the system
make to applications?

• What kinds of applications does the program-
ming model support well (and poorly)?

• Whose jobs does it make easier (and harder)?

• How comprehensible and usable is the result-
ing programming interface?

• How comprehensible and usable is the result-
ing user interface?

3.1 Steady State Allocation of CPU Time
For each scheduler, we provide a brief descrip-

tion, give examples of systems that implement it,
and examine which of the requirements from Sec-
tion 2 the scheduler fulfills. These characteristics
are summarized in Table 1.

3



programming model examples load prior knowledge support for varying
isolation latency requirements?

rate-monotonic and Linux, RTLinux, Solaris, isolated from priority yes
other static priority Windows 2000 lower priority
CPU reservations Nemesis, Rialto, Spring strong period, amount yes
proportional share BVT, EEVDF, SMART strong share (, latency) varies
earliest deadline first Rialto, SMART strong / weak amount, deadline yes
feedback control FC-EDF, SWiFT varies metric, set point varies
hierarchical scheduling CPU Inheritance, SFQ varies varies varies

Table 1: Characterization of soft real-time schedulers.

3.1.1 Static Priority and Rate Monotonic
Scheduling

The uniprocessor real-time scheduling problem
has essentially been solved bystatic priority analy-
sis[1] when the set of applications and their periods
and amounts are known in advance, and when appli-
cations can be trusted not to overrun. Static-priority
analysis is a generalization ofrate-monotonic anal-
ysis[14].

Popular general-purpose operating systems such
as Linux and Windows 2000 extend their time-
sharing schedulers to support static priority threads
that have strictly higher priority than any time-
sharing thread. Schedulers with this structure ex-
hibit well-known pathologies such as unbounded
priority inversion (unless synchronization primi-
tives have been augmented to support priority inher-
itance) and starvation of time-sharing applications
during overload [16]. Furthermore, developers are
likely to overestimate the priority at which their ap-
plications should run because a poorly performing
application reflects negatively on its author. This
phenomenon is known aspriority inflation.

Although static priority schedulers are simple, ef-
ficient, and well understood, they fail to isolate ap-
plications from one another, and optimal priority as-
signment requires coordination among application
developers. Applications can only be guaranteed to
receive a certain amount of CPU time if the worst-
case execution times of higher-priority applications
are known, and this is generally not possible. Still,
the static-priority programming model is reasonably
intuitive for both users (if an application is starv-
ing, there must be overload at higher priorities) and
programmers (higher priority applications run first),
and it supports legacy applications.

3.1.2 CPU Reservations

A CPU reservationprovides an application with
load isolation and periodic execution. For example,
a task could reserve 10ms of CPU time out of every
50ms; it would then be guaranteed to receive no less
than the reserved amount per period.

The original Spring kernel [20] is an example that
represents one end of the reservation spectrum, i.e.,
it provides precise hard real-time guarantees. To
achieve these hard guarantees Spring required sig-
nificant amounts of a priori information and asso-
ciated tools to extract that information. For exam-
ple, the Spring programming language had restric-
tions placed on it such as capping all loops, no dy-
namic memory management, etc. Due to the cost of
runtime support in this system, this solution is not
suitable for continuous media. However, the Spring
system was then extended in [12] to integrate con-
tinuous multimedia streams into this hard guarantee
paradigm.

In general-purpose operating systems reserva-
tions can be implemented in a variety of ways.
Nemesis [13] uses an earliest deadline first (EDF)
scheduler in conjunction with an enforcement
mechanism; a rate-monotonic scheduler could also
be used. Rialto [11] uses a tree-based data structure
to represent time intervals.

CPU reservations satisfy the requirement of sup-
porting coexisting, possibly misbehaving real-time
applications. They eliminate the need for global
coordination because application resource require-
ments are stated inabsolute units (time) rather
thanrelative units like priority or share. However,
reservation-based schedulers must be told applica-
tions’ periods and amounts. The period is eas-
ier to determine: the characteristics of a periodic

4



thread, such as its data rates, buffer sizes, and la-
tency requirements typically dictate its period; like-
wise, applications often implicitly make it available
to the operating system by using a timer to awaken
a thread every time the period begins. The amount
of CPU time can be difficult to predict, as it is
both platform and data dependent. For some ap-
plications a good estimate of future amount can be
obtained by averaging previous amounts; other ap-
plications such as the notoriously variable MPEG
video decoder inherently show wide fluctuations in
amount [2]. Underestimates of amounts will some-
times prevent application requirements from being
met, and overestimates will result in needless rejec-
tion of multimedia applications. Furthermore, de-
termining CPU requirements through measurement
begs the question of how to tell when a program is
behaving normally and when it is overrunning.

Because reservations provide applications with
fairly hard performance guarantees (how hard de-
pends on the particular implementation), they are
best suited for scheduling applications that lose
much of their value when their CPU requirements
are not met. Reservations can be used to support
legacy multimedia applications if the period and
amount can be determined from outside the appli-
cations and applied to them without requiring mod-
ifications.

3.1.3 Proportional Share

Proportional share schedulersare quantum-
based weighted round-robin schedulers that guaran-
tee that an application withN shares will be given at
leastN/T of the processor time, on average, where
T is the total number of shares over all applications.
This means that the absolute fraction of the CPU
allocated to each application decreases as the total
number of shares increases, unless the system re-
computes shares. Quantum size is chosen to provide
a good balance between allocation error and system
overhead.

Other than Lottery scheduling [23], which is a
randomized algorithm, all proportional share algo-
rithms appear to be based on avirtual clock—a per-
application counter that the scheduler increments in
proportion to the amount of real time the applica-
tion executes and in inverse proportion to the ap-
plication’s share. At each reschedule, the scheduler

dispatches the runnable application with the lowest
virtual clock value.

Some proportional share algorithms decouple an
application’s share from its latency requirement—
this is a critical property for real-time schedulers.
EEVDF [22] achieves this by allowing clients to
individually make the tradeoff between allocation
accuracy and scheduling overhead. SMART [17]
supports a mixed programming model in which ap-
plications receiving proportional share scheduling
can meet real-time requirements using the deadline-
basedtime constraintabstraction. BVT [6] asso-
ciates awarp value with each application; positive
warp values allow a thread to build up credit while
blocked, increasing the chances that it will be sched-
uled when it wakes up. (Nemesis provides alatency
hint that is similar to warp: it brings the effective
deadline of an unblocking thread closer, making it
more likely to be scheduled.) Thehybrid lottery
schedulerdescribed by Petrou et al. [19] automat-
ically provides improved response time for interac-
tive applications.

Without admission control, proportional share
schedulers will not be able to guarantee that any
particular application will receive even its minimum
CPU requirement during overload. Therefore, pro-
portional share schedulers best support applications
thatdegrade gracefully, or lose value smoothly and
in proportion to the amount of CPU time taken away
from them. For example, in response to a shortage
of cycles a game or other real-time renderer can re-
duce its frame rate; an MPEG video player can re-
duce its frame rate and drop frames. Other applica-
tions do not gracefully degrade: software modems
and audio players lose most of their value if they
receive even slightly less CPU time than their full
requirement.

3.1.4 Earliest Deadline First
EDF is an attractive scheduling discipline be-

cause it is optimal in the sense that if there exists
any algorithm that can schedule a set of tasks with-
out missing any deadlines, then EDF can also sched-
ule the tasks without missing any deadlines. Soft
real-time OSs primarily use EDF to keep track of
deadline urgency inside the scheduler; only a few
systems such as Rialto and SMART have exposed
deadline-based scheduling abstractions to applica-
tion programmers. Both systems couple deadlines

5



with an admission test (because EDF does not work
well during overload) and call the resulting abstrac-
tion atime constraint.

Time constraints present a fairly difficult pro-
gramming model because they require fine-grained
effort: the application programmer must decide
which pieces of code to execute within the con-
text of a time constraint in addition to providing the
deadline and an estimate of the required processing
time. Applications must also be prepared to skip
part of their processing if the admission test fails.
Once a time constraint is accepted, Rialto guaran-
tees the application that it will receive the required
CPU time. SMART will sometimes deliver an up-
call to applications informing them that a deadline
previously thought to be feasible has become infea-
sible.

3.1.5 Feedback-Based Scheduling

Multimedia OSs need to work in situations where
total load is difficult to predict and execution times
of individual applications vary considerably. To
address these problems new approaches based on
feedback control have been developed. Feedback
control concepts can be applied at admission con-
trol and/or as the scheduling algorithm itself.

In the FC-EDF work [15] a feedback controller is
used to dynamically adjust CPU utilization in such
a manner as to meet a specific set point stated as
a deadline miss percentage. FC-EDF is not de-
signed to prevent individual applications from miss-
ing their deadlines; rather, it aims for high utiliza-
tion and low overall deadline miss ratio.

SWiFT [21] uses a feedback mechanism to esti-
mate the amount of CPU time to reserve for applica-
tions that are structured as pipelines. The scheduler
monitors the status of buffer queues between stages
of the pipeline; it attempts to keep queues half full
by adjusting the amount of processor time that each
stage receives.

Both SWiFT and FC-EDF have the advantage of
not requiring estimates of the amount of process-
ing time that applications will need. Both systems
require periodic monitoring of the metric that the
feedback controller acts on.

3.1.6 Hierarchical Scheduling

Hierarchical (or multi-level) schedulers general-
ize the traditional role of schedulers (i.e., scheduling

threads or processes) by allowing them to allocate
CPU time to other schedulers. Theroot scheduler
gives CPU time to a scheduler below it in the hier-
archy and so on until a leaf of the scheduling tree—a
thread—is reached.

The scheduling hierarchy may either be fixed at
system build time or dynamically constructed at run
time. CPU inheritance scheduling[7] probably rep-
resents an endpoint on the static vs. dynamic axis:
it allows arbitrary user-level threads to act as sched-
ulers bydonatingthe CPU to other threads.

Hierarchical scheduling has two important prop-
erties. First, it permits multiple programming mod-
els to be supported simultaneously, potentially en-
abling support for applications with diverse require-
ments. Second, it allows properties that schedulers
usually provide to threads to be recursively applied
to groups of threads. For example, a fair-share
scheduler at the root of the scheduling hierarchy on
a multi-user machine with a time-sharing scheduler
below it for each user provides load isolation be-
tween users that is independent of the number of
runnable threads each user has. A single-level time-
sharing or fair-share scheduler does not do this.

Hierarchical Start-Time Fair Queuing (SFQ) [8]
provides flexible isolation using a hierarchical pro-
portional share scheduler. Deng et al. [5] describe
a two-level scheduling hierarchy for Windows NT
that has an EDF scheduler at the root of the hierar-
chy and an appropriate scheduler (rate-monotonic,
EDF, etc.) for each real-time application.

3.2 System Behavior During Mode
Changes

We characterize system behavior during applica-
tion mode changes by looking at the various kinds
of guarantees that the operating system gives appli-
cations. The guarantee is an important part of the
programming model since it determines what as-
sumptions the programmer can make about the al-
location of processor time that an application will
receive.

When the OS gives an application a guarantee, it
is restricting its future decision making in propor-
tion to the strength of the guarantee. Seen in this
light, it is understandable that many systems give
applications weak or nonexistent guarantees—there
is an inherent tradeoff between providing guaran-

6



tees and dynamically optimizing value by allocating
cycles on the fly in response to unexpected demand.

3.2.1 Best Effort

Best effort systems make no guarantees to appli-
cations. Rather than rejecting an application during
overload, a best effort system reduces the processor
time available to other applications to “make room”
for the new one. This works well when application
performance degrades gracefully.

Although “best effort” often has a negative con-
notation, it does not need to imply poor service.
Rather, a best-effort system avoids the possibility of
needlessly rejecting feasible applications by placing
the burden of avoiding overload on the user. The
computer and user form a feedback loop, where the
user manually reduces system load after observing
that applications are performing poorly.

We propose two requirements that applications
must meet for “feedback through the user” to work.
First, applications must degrade gracefully. Second,
application performance must not be hidden from
the user, who has to be able to notice degraded per-
formance in order to do something about it. An ap-
plication that fails both of these criteria is the soft-
ware controlling a CD burner: it does not degrade
gracefully since even a single buffer underrun will
ruin a disc, and the user has no way to notice that
the burner is running out of buffers supplied by the
application.

3.2.2 Admission Control

A system that implementsadmission control
keeps track of some metric of system load, and re-
jects new applications when load is above a thresh-
old. For systems implementing reservations, system
load could be the sum of the processor utilizations
of existing reservations.

Because it can be used to prevent overload, ad-
mission control allows a multimedia system to meet
the requirements of all admitted applications. It pro-
vides a simple programming model: applications
are guaranteed to receive the amount of resources
that they require until they terminate or are termi-
nated (assuming that CPU requirements can be ac-
curately estimated at the time a program first re-
quests real-time service). Admission control also
makes the system designer’s job easy: all that is re-
quired is a load metric and a threshold.

Admission control does not serve the user well
in the sense that there is no reason to believe that
the most recently started application is the one that
should be rejected. However, when a valuable ap-
plication is denied admission the user can manually
decrease the load on the system and then attempt
to restart the application. Obviously, this feedback
loop can fail when the admission controller rejects
a job not directly initiated by the user (for example,
recording a television show to disk while the user is
not at home).

3.2.3 Resource Management: System Support
for Renegotiation

Best effort and admission control are simple
heuristics for achieving high overall value in situa-
tions where the user can take corrective action when
the heuristic is not performing well.Resource man-
agementtechniques attempt to achieve high overall
value with little or no user intervention. They do
this by stipulating that guarantees made to applica-
tions may be renegotiated to reflect changing condi-
tions. Renegotiation is initiated when the resource
manager calculates that there is a way to allocate
CPU time that is different from current allocations
that would provide higher value to the user. To per-
form this calculation, the system must have, for each
application, some representation of the relationship
between the resources granted to the application and
the application’s perceived value to the user.

Oparah [18] describes a resource management
system that extends Nemesis; it has the interesting
feature that the user can assign positive or negative
feedback to decisions made by the resource man-
ager. This is designed to bring the resource man-
ager’s actions more closely into line with user pref-
erences over time.

3.2.4 Adaptation: Application Support for
Renegotiation

Adaptive applications support different modes of
operation along one or more dimensions. For exam-
ple, a video player may support several resolutions,
frame-rates, and compression methods. Each mode
has a set of resource requirements and offers some
value to the user. The promise of adaptive applica-
tions is that a resource manager will be able to select
modes for the running set of applications that pro-
vide higher overall value than would have been pos-

7



sible if each application had to be either accepted at
its full service rate or rejected outright.

The imprecise computation model[9] permits
fine-grained adaptation by dividing computations
into mandatory and optional parts, where the op-
tional part adds value, if performed.

Assuming that an application already supports
different modes, adaptation complicates the appli-
cation programming model only slightly, by requir-
ing the application to provide the system with a
list of supported modes and to change modes asyn-
chronously in response to requests from the system.
Adaptive systems also require a more careful spec-
ification of what guarantees are being given to ap-
plications. For example, is an application asked if it
can tolerate degraded service, is it told that it must,
or does it simply receive less processor time with-
out being notified? Is renegotiation assumed to be
infrequent, or might it happen often?

Adaptation does not appear to make the user’s
job, the programmer’s job, or the system designer’s
job any easier. Rather, it permits the system to pro-
vide more value to the user. A possible drawback of
adapting applications is that users will not appreci-
ate the resulting artifacts, such as windows chang-
ing size and soundtracks flipping back and forth be-
tween stereo and mono. Clearly there is a cost asso-
ciated with each user-visible adaptation; successful
systems will need to take this into account.

3.3 Practical Considerations
Programming models encompass more than high-

level abstractions and APIs: any feature (or misfea-
ture) of an operating system that the programmer
must understand in order to write effective programs
becomes part of the programming model. In this
section we explore a few examples of this.

Can applications that block expect to meet their
deadlines?Analysis of blocking and synchroniza-
tion is expected for hard real-time systems; soft
real-time programs are usually assumed to not block
for long enough to miss their deadlines. Applica-
tions that block on calls to servers can only expect
the server to complete work on their behalf in a
timely way if the operating system propagates the
client’s scheduling properties to the server, and if
the server internally schedules requests accordingly.

Does dispatch latency meet application require-
ments?Dispatch latency is the time between when
a thread is scheduled and when it actually runs.
It can be caused by the scheduling algorithm or
by other factors; for example, in a GPOS a vari-
ety of events such as interrupt handling and net-
work protocol processing can delay thread schedul-
ing. Non-preemptive operating systems exacerbate
the problem: a high priority thread that wakes up
while the kernel is in the middle of a long sys-
tem call on the behalf of another thread will not
be scheduled until the system call completes. Prop-
erly configured Windows 2000 [4] and Linux ma-
chines have observed worst-case dispatch latencies1

below 10ms—this meets the latency requirements
of virtually all multimedia applications. Unfortu-
nately, their real-time performance is fragile in the
sense that it can be broken by any code running in
kernel mode. Device drivers are particularly prob-
lematic; rigorous testing of driver code is needed
in order to reduce the likelihood of latency prob-
lems [10]. Hard real-time operating systems keep
interrupt latencies very low and prohibit other kinds
of unscheduled CPU time; they may have worst-
case thread dispatch latencies in the tens of mi-
croseconds.

Is the same programming model available to all
threads?Very low dispatch latency can be achieved
using co-resident operating systems [3]. This ap-
proach virtualizes the interrupt controller seen by
a general-purpose operating system in order to al-
low a small real-time kernel to run even when the
GPOS has “disabled interrupts.” The GPOS runs
in the idle time of the real-time kernel; the two
OSs may then communicate through FIFOs that are
non-blocking from the real-time side. The program-
ming environment presented by the real-time kernel
is sparse (since it cannot easily invoke services pro-
vided by the GPOS) and unforgiving (mistakes can
easily hang or crash the machine). However, this is
a useful approach for highly latency-sensitive appli-
cations that can be divided into real-time and non-
real-time components.

1Based on dispatch latency measurements while the system
is heavily loaded. This is not a true worst-case analysis but it
indicates that the systems can perform well in practice.

8



type examples period amount degrades latency
gracefully? sensitivity

stored audio MP3, AAC around 100ms 1%–10% no low
stored video MPEG-2, AVI 33ms large yes low
distributed audio Internet telephone bursty 1%–10% no high
distributed video video conferencing bursty large yes high
real-time audio software synthesizer 1–20ms varies no very high
RT simulation virtual reality, Quake up to refresh period usually 100% yes high
RT hardware soft modem, USB speakers3–20ms up to 50% no very high

Table 2: Characterization of soft real-time applications.

4 Applications Characterized
The real-time requirements imposed on an op-

erating system are driven by the applications that
must be supported. This section briefly describes
the main characteristics of several important cate-
gories of applications; these are summarized in Ta-
ble 2.

Applications that play stored audio and video are
characterized by the lack of a tight end-to-end la-
tency requirement: large buffers of encoded and de-
coded data can be stored in order to tolerate vari-
ations in disk, network, and processor bandwidth.
The only latency-sensitive part of the video display
process is switching the frame that is being dis-
played. The latency sensitivity of a digital audio
player is determined by the size of the buffer on the
sound hardware. Video players can degrade grace-
fully by dropping frames; audio players are not able
to do this and will cause annoying sound glitches if
their CPU requirements are not met. Although de-
coding audio streams in formats such as MP3 and
AAC (MPEG-2 Advanced Audio Coding—a com-
pressed audio format that is similar to MP3) does
not require a substantial fraction of a modern CPU,
decoding video can be CPU intensive, especially
when the display adapter does not provide hard-
ware acceleration. Encoding MPEG-2 streams in
software is much more CPU-intensive than decod-
ing them; high-quality real-time encoding is just be-
coming possible.

For other applications, latency sensitivity comes
from a timing dependency between a data source
and sink. For example, video frames received by
a telepresence or video conferencing application
must be displayed shortly after they are received—
the requirement for low perceived latency precludes

deep buffering. Audio and video applications, live
or recorded, can, in principle, be adaptive. How-
ever, current applications tend to either not be adap-
tive, or to be manually adaptive at a coarse gran-
ularity. For example, although Winamp, a popular
MP3 player, can be manually configured to reduce
its CPU usage by disabling stereo sound, it has no
mechanism for doing this in response to a shortage
of processor cycles.

When a computer is used as a real time au-
dio mixer or synthesizer, the delay between when
a sound arrives from a peripheral and when it is
played must not exceed about 20ms if the sound
is to be perceived as simultaneous with the act of
playing it. Reliable fine-grained (small millisecond)
real-time is barely within reach of modern general-
purpose OSs. Real-time audio synthesis is espe-
cially demanding because, in some cases, it is closer
to hard real-time than soft: during a recording ses-
sion the cost of a dropped sample may be large.

The rendering loop in immersive 3D environ-
ments and games such as Doom and Quake must
display frames that depend on user input with as lit-
tle delay as possible in order to be convincing and
avoid inducing motion sickness. Rendering loops
are usually adaptive, using extra CPU cycles to pro-
vide as many frames per second as possible, up to
the screen refresh rate. Consequently, these applica-
tions are almost always CPU bound and they cannot
easily share the processor with other applications,
unless the scheduler can enforce a limit on the CPU
usage of the game.

Finally, the high average-case performance of
modern processors and low profit margins in the PC
industry create powerful incentives for peripheral
designers to push functionality from hardware into

9



software. For example, software modems contain
a bare minimum of hardware, performing all signal
processing tasks in software on the main CPU(s).
This requires code to be reliably scheduled every 3-
16ms; missed deadlines reduce throughput and may
cause dropped connections. USB speakers and CD
burners also require real-time response from the OS
in order to avoid sound glitches and ruined discs,
respectively.

A trend opposing the migration of functional-
ity into software is the decreasing size and cost
of embedded computers; this makes it inexpensive
to perform real-time tasks on special-purpose hard-
ware instead of on general-purpose operating sys-
tems. However, the low cost of downloading a soft-
ware module (compared to acquiring a new embed-
ded device) ensures that users will want to perform
real-time tasks on PCs during the foreseeable fu-
ture. Furthermore, we believe that PCs will continue
to have abundant resources compared to special-
purpose devices (although PCs often lack dedicated
hardware that enables some kinds of tasks to be per-
formed much more easily).

5 Challenges for Practical Soft
Real-Time Scheduling

In Section 2 we presented several requirements
that a good multimedia OS should fulfill; in this sec-
tion we refocus those requirements into a set of re-
search challenges for future systems.

C1: Create user-centric systems.Users tell the
system how to provide high value—they start up a
set of applications and expect them to work. Re-
source management systems should respect a user’s
preferences when tradeoffs need to be made be-
tween applications, and should seek to maximize
the utility of the system as perceived by the user.
User studies are needed in order to figure out how
admission control and adaptation can be used in
ways that are intuitive and minimally inconvenient
to users.

C2: Create usable programming models.In ad-
dition to the usual questions about how effective,
novel, and efficient a scheduler is, we believe that
the systems research community should be asking:

• What assumptions does it make about applica-
tion characteristics, and are these assumptions
justified?

• Can application developers use the program-
ming model that is supported by the proposed
system? Is it making their job easier?

• Are applications being given meaningful guar-
antees by the system?

C3: Design schedulers and metrics that are ro-
bust with respect to unpredictability.Traditional
real-time analysis assumes that software execution
times can be predicted. Unfortunately, a number
of hardware and software trends are making pre-
dictability an increasingly difficult goal. These
trends include deeper caching hierarchies, increas-
ing prevalence of multiprocessors (and eventu-
ally, multi-threaded processors), variable processor
speeds for power and heat management, larger and
more deeply layered software bases, and just-in-
time translation, optimization, and virtualization of
binaries. Increasing unpredictability means that we
need scheduling techniques that are more adaptive,
where both applications and the system monitor and
react to application progress. We also need metrics
for soft real-time (traditional metrics such as num-
ber of missed deadlines are no longer sufficient) that
provide a means with which to talk and reason about
the complex relationship between scheduling unpre-
dictability and loss of value in applications.

C4: Provide scheduling support for applications
with diverse requirements.We believe that multi-
media systems should support at least three types
of scheduling: (i) guaranteed rate and granularity
scheduling for real-time applications that do not de-
grade gracefully, (ii) best-effort real-time schedul-
ing for real-time applications that degrade grace-
fully, and (iii) time-sharing support for non-real-
time applications.

C5: Provide integrated scheduling of all impor-
tant resources.Although we have concentrated on
CPU scheduling in this article, other resources such
as disk, network, and memory also need to be sched-
uled in order to achieve overall application pre-
dictability. Not only must these resources be sched-
uled, but we also need to understand the interactions
between policies scheduling various resources. Fi-
nally, scheduling information must be propagated

10



between subsystems in order to support end-to-end
guarantees.

6 Conclusions
Scheduling support for multimedia does not ex-

ist in a vacuum: schedulers only make sense within
the context of a set of requirements of applications
and, ultimately, users. This article has provided a
framework by which the differing goals of many of
the multimedia schedulers in research and produc-
tion operating systems might be compared and eval-
uated. Rather than making value judgments about
one system being better than another in an absolute
sense, we have characterized each in terms of the
different things that they make easy and hard, in-
cluding the associated programming tasks.

As in the realm of programming languages, there
are probably multiple “sweet spots” in operating
system support for multimedia applications. It is
our hope that this article will aid the research com-
munity in constructively comparing their systems
in this space, and indeed, to help find these “sweet
spots” and promote the construction of systems fill-
ing them.

Acknowledgments
The authors would like to thank Tarek Abdelza-

her, David Coppit, Kevin Jeffay, Chenyang Lu, Ste-
fan Saroiu, Leigh Stoller, and Kevin Sullivan for
their helpful comments on drafts of this article.

References
[1] Neil Audsley, Alan Burns, Mike Richardson, Ken Tin-

dell, and Andy Wellings. Applying New Scheduling The-
ory to Static Priority Pre-emptive Scheduling.Software
Engineering Journal, 8(5):284–292, September 1993.

[2] Andy C. Bavier, A. Brady Montz, and Larry L. Peter-
son. Predicting MPEG execution times. InProc. of the
Joint International Conf. on Measurement and Modeling
of Computer Systems, pages 131–140, Madison, WI, June
1998.

[3] Gregory Bollella and Kevin Jeffay. Support For Real-
Time Computing Within General Purpose Operating Sys-
tems: Supporting co-resident operating systems. InProc.
of the 1st IEEE Real-Time Technology and Applications
Symposium, pages 4–14, Chicago, IL, May 1995.

[4] Erik Cota-Robles and James P. Held. A Comparison of
Windows Driver Model Latency Performance on Win-
dows NT and Windows 98. InProc. of the 3rd Sympo-
sium on Operating Systems Design and Implementation,
pages 159–172, New Orleans, LA, February 1999.

[5] Zhong Deng, Jane W.-S. Liu, Lynn Zhang, Seri Mouna,
and Alban Frei. An Open Environment for Real-Time
Applications. Real-Time Systems Journal, 16(2/3):165–
185, May 1999.

[6] Kenneth J. Duda and David C. Cheriton. Borrowed-
Virtual-Time (BVT) scheduling: supporting latency-
sensitive threads in a general-purpose scheduler. InProc.
of the 17th ACM Symposium on Operating Systems Prin-
ciples, Kiawah Island, SC, December 1999.

[7] Bryan Ford and Sai Susarla. CPU Inheritance Schedul-
ing. InProc. of the 2nd Symposium on Operating Systems
Design and Implementation, pages 91–105, Seattle, WA,
October 1996.

[8] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A Hi-
erarchical CPU Scheduler for Multimedia Operating Sys-
tems. InProc. of the 2nd Symposium on Operating Sys-
tems Design and Implementation, pages 107–121, Seat-
tle, WA, October 1996.

[9] David Hull, Wu-chun Feng, and Jane W.-S. Liu. Operat-
ing System Support for Imprecise Computation. InProc.
of the AAAI Fall Symposium on Flexible Computation,
pages 9–11, Cambridge, MA, November 1996.

[10] Michael B. Jones and John Regehr. The Problems You’re
Having May Not Be the Problems You Think You’re Hav-
ing: Results from a Latency Study of Windows NT. In
Proc. of the 7th Workshop on Hot Topics in Operating
Systems, pages 96–101, March 1999.

[11] Michael B. Jones, Daniela Roşu, and Marcel-Căt̆alin
Roşu. CPU Reservations and Time Constraints: Effi-
cient, Predictable Scheduling of Independent Activities.
In Proc. of the 16th ACM Symposium on Operating Sys-
tems Principles, pages 198–211, Saint-Malô, France, Oc-
tober 1997.

[12] Hiroyuki Kaneko, John A. Stankovic, Subhabrata Sen,
and Krithi Ramamritham. Integrated Scheduling of Mul-
timedia and Hard Real-Time Tasks. InProc. of the 17th
IEEE Real-Time Systems Symposium, Washington, DC,
December 1996.

[13] Ian Leslie, Derek McAuley, Richard Black, Timothy
Roscoe, Paul Barham, David Evers, Robin Fairbairns,
and Eoin Hyden. The Design and Implementation of an
Operating System to Support Distributed Multimedia Ap-
plications.IEEE Journal on Selected Areas in Communi-
cations, 14(7):1280–1297, September 1996.

[14] C. L. Liu and James W. Layland. Scheduling Algo-
rithms for Multiprogramming in a Hard-Real-Time En-
vironment. Journal of the ACM, 20(1):46–61, January
1973.

[15] Chenyang Lu, Jack A. Stankovic, Gang Tao, and Sang H.
Son. The Design and Evaluation of a Feedback Control
EDF Scheduling Algorithm. InProc. of the 20th IEEE
Real-Time Systems Symposium, Phoenix, AZ, December
1999.

[16] Jason Nieh, James G. Hanko, J. Duane Northcutt, and
Gerard A. Wall. SVR4 UNIX Scheduler Unacceptable
for Multimedia Applications. InProc. of the 4th Interna-
tional Workshop on Network and Operating System Sup-
port for Digital Audio and Video, November 1993.

11



[17] Jason Nieh and Monica S. Lam. The Design, Implemen-
tation and Evaluation of SMART: A Scheduler for Multi-
media Applications. InProc. of the 16th ACM Symposium
on Operating Systems Principles, Saint-Mal̂o, France,
October 1997.

[18] Don Oparah. A Framework for Adaptive Resource Man-
agement in a Multimedia Operating System. InProc. of
the 6th IEEE International Conf. on Multimedia Comput-
ing and Systems, Florence, Italy, June 1999.

[19] David Petrou, John W. Milford, and Garth A. Gibson. Im-
plementing Lottery Scheduling: Matching the Specializa-
tions in Traditional Schedulers. InProc. of the USENIX
1999 Annual Technical Conf., pages 1–14, Monterey, CA,
June 1999.

[20] John A. Stankovic and Krithi Ramamritham. The Spring
kernel: a new paradigm for real-time systems.IEEE Soft-
ware, 8(3):62–72, May 1991.

[21] David C. Steere, Ashvin Goel, Joshua Gruenberg,
Dylan McNamee, Calton Pu, and Jonathan Walpole.
A Feedback-driven Proportion Allocator for Real-Rate
Scheduling. InProc. of the 3rd Symposium on Operat-
ing Systems Design and Implementation, New Orleans,
LA, February 1999.

[22] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, San-
joy K. Baruah, Johannes E. Gehrke, and C. Greg Plax-
ton. A Proportional Share Resource Allocation Algo-
rithm For Real-Time, Time-Shared Systems. InProc.
of the 17th IEEE Real-Time Systems Symposium, pages
288–299, Washington, DC, December 1996.

[23] Carl A. Waldspurger and William E. Weihl. Lottery
Scheduling: Flexible Proportional-Share Resource Man-
agement. InProc. of the 1st Symposium on Operat-
ing Systems Design and Implementation, pages 1–11.
USENIX Association, 1994.

12


